WO2012070275A1 - モータの駆動制御システムおよび駆動制御方法 - Google Patents

モータの駆動制御システムおよび駆動制御方法 Download PDF

Info

Publication number
WO2012070275A1
WO2012070275A1 PCT/JP2011/065588 JP2011065588W WO2012070275A1 WO 2012070275 A1 WO2012070275 A1 WO 2012070275A1 JP 2011065588 W JP2011065588 W JP 2011065588W WO 2012070275 A1 WO2012070275 A1 WO 2012070275A1
Authority
WO
WIPO (PCT)
Prior art keywords
position data
servo
signal
control device
control
Prior art date
Application number
PCT/JP2011/065588
Other languages
English (en)
French (fr)
Inventor
酒井 俊彦
真人 高瀬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2012070275A1 publication Critical patent/WO2012070275A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41141Position error compensation as function of speed to compensate detection delay

Definitions

  • the present invention relates to drive control of a motor that performs position control and speed control, particularly for high acceleration / deceleration operations with high reproducibility required for injection shafts of injection molding machines and pressure slide drives of press machines.
  • the present invention relates to a motor drive control system for controlling a suitable servo motor.
  • the control operation of the motor output torque by position feedback and speed feedback is determined based on the detection data of the rotational angle position of the rotor obtained from the position detector directly connected to the servo motor. It is always performed at every sampling time interval.
  • This rotation angle position detection data is essential data for determining the current phase necessary to generate the torque as commanded in the permanent magnet motor. For example, if a transfer error occurs, the motor may run away.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-3292864 discloses a sensor device that transmits position detection data to a servo control device and a host control device by serial communication, that is, a position detector (rotary encoder). Disclosed is a technique for providing an error check code by calculating position detection data with a predetermined error check value, and transmitting the error check code together with the position detection data to the host control device via the servo control device. Yes.
  • the host controller is also provided with the same error check value and function calculation means separately, and a reception side error check code is generated by calculation based on the received data and the error check value and received from the position detector.
  • a reception side error check code is generated by calculation based on the received data and the error check value and received from the position detector.
  • the servo control device controls the drive current at a sampling cycle determined based on the detected data. As described above, if there is a delay time from the detection of the error until the drive prohibition process becomes effective, the servo controller rotates at high speed. During middle and large torque generation, the operation delay cannot be ignored, and there is a risk that danger avoidance will be insufficient.
  • the servo control device and host control device are often designed for each machine to be driven, compared to the position detectors that are being commercialized as standard products. For this reason, at the time of confirming the start-up for the first time, it is more likely that the detection data transferred due to a malfunction in a part other than the position detector, such as incorrect wiring or a bug in the control program, becomes an incorrect value. For this reason, when a new product is started up or after the servo controller or host controller is changed, the servo controller or host controller may perform drive control without detecting the expected error. There is a risk of troublesome troubleshooting, such as machine breakage due to runaway without a track record of normal operation.
  • the present invention provides a motor drive control system and a drive method for smoothly and safely stopping a servo from the initial operation by quickly detecting a transfer error of position detection data. With the goal.
  • the present invention provides a motor drive comprising a servo control device, a servo motor, and a position detection unit that detects position data of the servo motor and supplies it to the servo control device as a feedback signal.
  • the position detection unit includes a detector that detects position data, a data holding unit that transmits the detected position data to the servo control device as a feedback signal, return position data returned from the servo control device, and the data A comparison determination unit that compares the position data of the holding unit to determine whether it is correct or not, and a state holding unit that outputs a control signal based on the determination result and transmits the control signal to the servo control device,
  • the servo control device includes a speed control unit that controls the servo motor based on a speed command, and a position data receiving unit that receives position data from the detection unit, supplies the position data to the speed control unit, and returns the position data to the position detection unit.
  • a drive control unit that receives a control signal from the state holding unit and transmits the control signal to the servo control device, and a command control unit that switches a command to the speed control unit to a preset stop command based on a control signal at the time of erroneous determination It has the part.
  • the servo control device further calculates position data used for servo calculation from position data received from the detection unit by internal calculation based on a control signal at the time of erroneous determination.
  • a position data control unit for switching to estimated position data is provided.
  • the servo control device includes a stop command generator that generates a stop command for a deceleration pattern registered in advance, and the command control unit is based on a control signal at the time of erroneous determination.
  • a stop command from the stop command generator is supplied to the speed control unit.
  • the comparison determination unit of the detection unit includes a counter that counts the number of erroneous determinations, and a drive prohibition signal when the count value is equal to or greater than a predetermined value, and when the count value is less than the predetermined value.
  • a control unit for generating a data invalid signal is provided.
  • the position data control unit may switch position data used for servo calculation to estimated position data calculated by internal calculation based on a data invalid signal of the comparison determination unit. It is structured.
  • the command control unit switches a command to the speed control unit to a preset stop command based on a drive prohibition signal. To do.
  • the counter value is reset to zero when the comparison determination unit makes a positive determination that the return position data matches the position data of the data holding unit.
  • the present invention includes a servo control device, a servo motor, and a position detection unit that detects position data of the servo motor, and transmits the feedback signal to the servo control device as a servo control.
  • the position detection unit compares the returned position data returned from the servo control device with the detected position data based on the position data transmitted to the servo control device, and makes a correct / incorrect determination.
  • Send a control signal based on the servo controller The servo control device performs servo control based on a preset stop command by receiving a control signal at the time of erroneous determination.
  • the present invention has a position data monitoring function in the position detection unit, and compares and determines the latest position data held by the position detection unit and the echo position signal of the latest position data output from the servo control device, When there is a difference, a transition is made to the drive inhibition state, and a drive inhibition signal is output to the servo controller.
  • the servo control device shifts to the drive prohibited state based on the input of the drive prohibition signal, switches the position data for feedback from the latest position data to the estimated position data, and changes the command signal from the operation command to a predetermined stop control command signal (stop The motor is stopped while continuing to drive until the speed and torque drop to zero.
  • the servo control after detecting a transfer error of the position detection data quickly, the servo control is smoothly and safely stopped, and when starting or changing the servo control device or the host control device, runaway from the initial operation is performed. It can be prevented in advance.
  • FIG. 1 shows a functional block diagram of Embodiment 1 of the present invention.
  • Reference numeral 1 denotes a speed control type servo controller
  • 2 denotes a current control unit of a servo amplifier
  • 3 denotes a servo motor (rotary electric machine)
  • 4 denotes a position detection unit that detects a rotation angle of a drive shaft of the servo motor.
  • the position detector 4 includes four functional blocks, 5 is a detector that detects position data of the drive shaft, 6 is a position data holder that holds the latest detected position data, and 7 is a position data holder.
  • 6 is a comparison / determination unit that compares the position data of 6 and a later-described return position data (echo back data) returned from the servo control device 1 to determine correctness.
  • 8 is a control based on the determination output from the comparison / determination unit It is a state holding unit that stores signals.
  • the comparison determination unit 7 makes an erroneous determination when the position data of the position data holding unit 6 and the return position data do not match, and makes a positive determination when they match.
  • the comparison / determination unit 7 includes a counter 7a and a control unit 7b, and the counter 7a counts the number of erroneous determinations.
  • the controller 7b outputs a determination result when the count value of the counter 7a is equal to or greater than a predetermined value (for example, 5 times) and when the count value is less than the predetermined value.
  • the control unit 7b resets the count value of the counter 7a to zero when the comparison determination unit 7 makes a positive determination.
  • the status holding unit 8 receives the determination result, and prohibits driving as a control signal at the time of erroneous determination corresponding to when the count value of the counter 7a exceeds a predetermined value (for example, 5 times) and when the count value is less than the predetermined value, respectively.
  • a signal and a data invalid signal are output and transmitted to the servo controller 1.
  • Each functional block of the position detection unit 4 includes a latest position data 9, a latest position data return position data (echo back data) 11, a data invalid signal 12 as a control signal, and a drive inhibition signal 39 via a signal line. Information is exchanged with the speed control type servo controller 1.
  • a drive control unit 13 receives the control signal transmitted from the state holding unit 8 and transmits it to the servo control device 1.
  • the drive control unit 13 transmits the data invalid signal 12 to the signal line 14 and transmits the drive inhibition signal 39 to the signal line 28.
  • the position data received by the position data receiving unit 10 is normally supplied to the speed control unit 17 and used for servo calculation.
  • a control signal data invalid signal
  • it is switched to estimated position data calculated by an internal calculation of a motor state estimator 20 described later and supplied to the speed control unit 17.
  • the motor state estimator 20 is a mathematical model of a target motor and a load having the torque command data 18 output from the speed controller 17 as input and the motor rotation angle position estimation signal 21 (estimated position data) as output.
  • the motor constants and the like representing the control characteristics of the motor and load are preset and programmed.
  • the difference between the feedback position data 16 and the estimated position data 21 is calculated by the subtractor 22, and this difference is used as the motor state correction signal 23 to correct the parameters of the motor state estimator 20.
  • the so-called “asymptotic stability” required above is ensured.
  • the motor drive control within the output error of the motor state estimator 20 can be continued, and the following stop process can be executed smoothly.
  • Reference numeral 24 denotes a speed command control unit (command control unit), which normally controls the speed control unit 17 by an external command speed signal (external command) 25, but a control signal (driving prohibition signal) at the time of erroneous determination is transmitted to the signal line 28.
  • the speed control unit 17 is controlled by switching to a stop command speed signal (stop command) 40 of a stop pattern registered in advance.
  • the stop command speed signal (stop command) 40 is generated based on a stop pattern set and stored in the stop command speed signal generator (stop command generator) 26 in advance.
  • a signal 27 is a command speed signal supplied by switching the signals 25 and 39 by the speed command control unit 24.
  • 38 is a safety device that displays an emergency stop associated with the generation of the drive prohibition signal 39. Also, a restart sequence after an emergency stop of the servo control device (such as generation control of a start permission signal that is not released unless the power is turned on again). ) Is built-in.
  • the detector 5 is installed so as to be able to detect a change in the rotation angle or an absolute angle in conjunction with the rotation shaft of the servomotor 3.
  • the rotation state is detected.
  • the data is converted into data and determined as the latest position data (S101 in FIG. 3).
  • the position data holding unit 6 samples and holds this, and holds it as the latest position data in a period until the next position data is determined (S101).
  • the latest position data is transmitted from the position detector 5 to the servo control device 1 (S103, S202) in response to a transmission request from the servo control device 1 (FIG. 3, S102, FIG. 4, S201).
  • the latest position data 9 received and held by the position data receiving unit 10 is taken into the position data control unit 15, and at the same time, return position data (echo back data) obtained by copying the held latest position data 9. 11 is generated and transmitted to the position detector 4 (S104, S203).
  • the position detection unit 4 takes this return position data 11 into the comparison / determination unit 7, compares the return position data 11 with the latest position data 9 in the position data holding unit 6, and outputs the determination result to the state holding unit 8. (S105).
  • the state holding unit 8 If the two position data are different as a result of the comparison (S105, N), the state holding unit 8 outputs an erroneous determination control signal.
  • the state holding unit 8 sets (ON) a data invalid signal, outputs it, and transmits it to the servo controller 1.
  • 7b increments the integrated value of the counter 7a by 1 (S107).
  • the drive prohibition signal is OFF (S110, S208, Y).
  • the data invalid signal is ON (N in S204)
  • the data invalid signal 12 is transmitted to the signal line 14, and a position signal used for servo calculation in the position data control unit 15 is transmitted from the position detector 4.
  • the latest position data 9 is switched to the estimated position data (S207), and feedback calculation / control is performed.
  • the motor state estimator 20 performs an estimation calculation (S209).
  • the position data holding unit 6 passes the position data receiving unit 10 to the comparison / determination unit 7. This is a case where an accidental error in the signal transmission path leading to the data affects the data (single error reception), and the servo control device 1 continues the servo control based on the estimated position data.
  • the count value of the counter 7a is reset and the normal operation is resumed.
  • the servo control device 1 determines that the drive prohibition signal is ON (S208, N), and the drive prohibition signal 39 is transmitted to the signal line 28.
  • the speed command control unit 24 inputs the drive prohibition signal 39 to the speed command value 27. Is switched from an external command speed signal (external command) 25 used in a normal state to a stop command speed signal (stop command) 40 stored in the stop command speed signal generator 26 in advance. Therefore, the speed control unit 17 performs servo control for stopping driving until the speed and torque are reduced to zero.
  • the stop command speed signal 40 uses a signal generated from a deceleration pattern corresponding to a controllable range in view of the outputtable torque of the servo motor.
  • the position data control unit 15 switches from the latest position data 9 from the position detector 4 to the estimated position data as a position signal used for servo calculation (S207).
  • the speed controller 17 determines that the estimated position data 21 and the stop command speed signal 40 Based on the above, servo control for stopping driving is performed. In this servo control for stopping driving, since the estimated position data 21 that can obtain a more correct value is used as the position data for the servo calculation instead of the return position data 11, smooth and stable servo control without impact is performed.
  • the position detection unit 4 determines the soundness of the position data in the control system, and allows the servo control device 1 to permit or prohibit driving. Therefore, it is possible to prevent erroneous control due to an initial failure of the detection software and prevent danger or breakage due to inadvertent runaway in a trial operation when starting up or changing the servo control device.
  • the host controller not shown in FIG. 1
  • erroneous control due to initial failure of the maintenance software is prevented, and the risk of inadvertent runaway Can be prevented, and fail-safe operation can be realized.
  • the maintenance device 38 is incomplete, and even in the trial operation of only the “servo control device + motor + detection unit”, erroneous control is prevented, and danger and damage due to inadvertent runaway are prevented before fail-safe. Can be realized.
  • the speed is controlled by a preset pattern. Since it can be stopped after the kinetic energy is consumed, it is possible to prevent the servo motor drive circuit from being damaged due to abnormal boosting.
  • a position data transmission error from the position detector to the servo controller occurs in the state of large torque during acceleration or deceleration, it can be stopped after kinetic energy is consumed by the deceleration action controlled by a preset pattern. . Therefore, even in an emergency stop from a high acceleration state, a high deceleration state, etc., there is little impact on the driven machine or the connecting part of this machine and the motor.
  • the data transfer in the servo control device 1 or the position detection unit 4 may include an error detection process realized in a normal communication protocol. That is, the same function can be realized even when a redundant error detection code is added to the latest position data 9 and the echo back data 11.
  • the servo control device 1 and the position detection component 4 each detect an error in a single operation, and at the same time, an abnormal process or retry request is made by a known technique. Therefore, it is possible to execute necessary processing when an error occurs.
  • the speed control type servo control device 1 is a part of the position control system, and the position control device 29 is connected to the upstream side. That is, the speed control device 1 and the position control device 29 constitute a new servo control device, and the speed control device 1 performs the same operation as in the first embodiment.
  • 33 is an external command position signal
  • 34 is a stop command position signal generator
  • 41 is a stop command position signal
  • 32 is a position command control unit (command control unit)
  • 30 is a drive inhibition control unit
  • 35 is a position control unit.
  • control is performed by a position command as a command, and a position command control unit 32 is provided instead of the speed command control unit 24 of the first embodiment.
  • the drive control unit 13 of the servo control device 1 transmits the data invalid signal 12 to the signal line 14 and receives the drive prohibition signal 39 to the signal line 28 to further control the drive prohibition signal 39. Transmitted to the unit 30.
  • the drive prohibition control unit 30 makes a transition to the drive prohibition state, the drive stop control signal 31 is turned on, and the position command control unit 32 performs drive stop control. .
  • the position command control unit 32 when the drive stop control signal 31 is input, the position command value 37 is preliminarily converted from the external command position signal (external command) 33 used in normal time by the stop command position signal generator 34.
  • the position control unit 35 continues the position control by switching to the generated stop command position signal (stop command) 41.
  • the stop command position signal 41 is a signal generated from a deceleration waveform pattern corresponding to a controllable range as seen from the servo motor outputtable torque.
  • error detection processing realized by a normal communication protocol may be included in data transfer in the servo control device 1 or the position detector 4.
  • the rotary servo motor is described.
  • this configuration can also be applied to a general motor, and a linear motor is used instead of the rotary motor 3, and the position detector 5 of the rotational position is used. Instead, it can be applied to a combination as a linear scale.
  • the compatible controller portion is not limited to the configuration divided by the position controller and the speed controller as in the present embodiment, and is generally applicable to a feedback controller. It is a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Numerical Control (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

位置検出データの転送誤りを敏速に検出することにより、初回稼動時から不用意な暴走を確実に防止する駆動制御システムを提供する。 位置検出器に位置データの監視機能をもたせ、位置検出器が保持した最新位置データと、サーボ制御装置から出力させた最新位置データのエコーバック信号とを比較判定して、差異があるときには駆動禁止状態に遷移して、駆動禁止信号をサーボ制御装置に出力する。サーボ制御装置では、駆動禁止信号を入力すると駆動禁止状態に遷移して、フィードバック用位置データを最新位置データから推定位置データに切替え、指令信号を運転指令から所定の停止制御指令信号に切替え、速度、トルクがゼロに下がるまでは駆動を継続しながらモータを停止させる。

Description

モータの駆動制御システムおよび駆動制御方法
 本発明は、位置制御や速度制御を行なうモータの駆動制御に係り、特に、射出成形機の射出軸やプレス機械の加圧スライド駆動などに要求される、高い再現精度での高加減速動作に好適なサーボモータを制御するモータの駆動制御システムに関する。
 いわゆる自動機械の位置決め制御システムにおいては、サーボモータに直結された位置検出器から得られる回転子の回転角度位置の検出データに基づいて、位置フィードバック、速度フィードバックによるモータ出力トルクの制御動作が、所定のサンプリング時間間隔ごとに常時行なわれている。この回転角度位置の検出データは、永久磁石式モータにおいて指令どおりのトルクを発生させるために必要な電流位相を決めるためにも必須のデータであり、一サンプリングであってもその値に大きな誤差、例えば転送誤りが発生するとモータの暴走状態にもつながる恐れがある。
 近年様々な機械装置において、高速、高精度、高品質な位置制御動作を行なう目的でサーボモータを使用した例が増えてきているが、これらの機械の中には、機械動作の調整のために位置制御動作をさせながら作業者が可動部に接近して確認する場合や、加工など作業の性質上、機構部同士を接触させながら位置制御動作を行なう場合など、位置制御動作の品質の程度によっては、危険な状況を発生させうる場合が多々ある。
 これに対する解決策として特許文献1(特開2002-329284号)には、位置検出データをシリアル通信によりサーボ制御装置ならびにホスト制御装置に送信するセンサー装置、即ち、位置検出器(ロータリーエンコーダ)に、位置検出データを所定の誤り確認数値と演算して誤り確認コードを生成する関数演算手段を設け、位置検出データとともに誤り確認コードもサーボ制御装置を介してホスト制御装置へ送信する技術が開示されている。
 この技術では、ホスト制御装置にも同様の誤り確認数値と関数演算手段を別個に備えておいて、受信データと誤り確認数値とによる演算により受信側誤り確認コードを生成し、位置検出器から受信した誤り確認コードとの比較により、受信データの誤り有無を検出して、サーボ制御装置を介したデータ転送ミスによる誤動作を防止することができるとしている。また、先行技術文献に記載は無いが、同様の誤り検出機能をサーボ制御装置に備えることも可能である。
特開2002-329284号公報
 この技術においては、通信理論に基づいた効率の良い誤り検出系が構成されるが、その基本的技術思想はゼロではない値の誤り率を前提とした冗長化である。一方前述したようにサーボ駆動機械は単なる情報転送とは異なり、一サンプリングであっても転送誤りが発生すればモータが暴走する可能性もあるので、安全性確保の観点からは不完全なものとなる恐れがある。
 また、ホスト制御装置側での別個の関数演算及び比較処理が必要であり、受信データが誤りと判断するまでに一定の処理時間がかかる。一方サーボ制御装置は検出データを元に決められたサンプリング周期で駆動電流を制御しており、前記のように誤り検出から駆動禁止処理が効力を発揮するまでに遅れ時間が存在すれば、高速回転中や、大トルク発生中においては動作遅れが無視できず、危険回避が不十分となる恐れがあった。
 また、標準の市販製品化が進んでいる位置検出器に比べて、サーボ制御装置やホスト制御装置は駆動対象機械ごとに設計される場合が多い。このため初めて動作確認を行なう立上確認時点では、誤配線や制御プログラムのバグなど、位置検出器以外の部分の不具合により転送された検出データが誤った値になる可能性の方が大きい。このため製品の新規の立上げや、またはサーボ制御装置やホスト制御装置の変更後の立上げ時に、サーボ制御装置やホスト制御装置が期待された誤り検出ができないまま駆動制御を行う可能性があり、一度も正常運転の実績がないまま暴走により機械破損を起こすなど、トラブルシューティングの困難な事態となる恐れがある。
 本発明は、上記従来の問題点に鑑み、位置検出データの転送誤りを敏速に検出することにより、初回稼動時から円滑、安全にサーボを停止させるモータの駆動制御システムおよび駆動方法を提供することを目的とする。
 上記の目的を達成するため本発明は、サーボ制御装置と、サーボモータと、サーボモータの位置データを検出してフィードバック信号として前記サーボ制御装置に供給する位置検出部とで構成されるモータの駆動制御システムにおいて、
 前記位置検出部は、位置データを検出する検出器と、検出された位置データを前記サーボ制御装置にフィードバック信号として送信するデータ保持部と、前記サーボ制御装置から返信される返信位置データと前記データ保持部の位置データを比較して正誤判定する比較判定部と、判定結果に基く制御信号を出力して前記サーボ制御装置に送信する状態保持部を備え、
 前記サーボ制御装置は、速度指令に基づいて前記サーボモータを制御する速度制御部と、前記検出部から位置データを受信し前記速度制御部に供給すると共に前記位置検出部に返信する位置データ受信部と、前記状態保持部からの制御信号を受けてサーボ制御装置に伝送する駆動制御部と、誤判定時の制御信号に基いて前記速度制御部への指令を予め設定された停止指令に切替える指令統制部を備えたことを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記サーボ制御装置はさらに、誤判定時の制御信号に基いて、サーボ演算に用いる位置データを前記検出部から受信した位置データから内部演算で算出した推定位置データに切替える位置データ統制部を備えたことを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記サーボ制御装置は予め登録された減速パターンの停止指令を発生する停止指令発生器を備え、前記指令統制部は誤判定時の制御信号に基いて上記停止指令発生器からの停止指令を前記速度制御部に供給することを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記検出部の比較判定部は、誤判定の回数を計数するカウンタと、計数値が所定値以上のとき駆動禁止信号を、所定値未満のときデータ無効信号を発生する制御部を備えたことを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記位置データ統制部は、前記比較判定部のデータ無効信号に基いてサーボ演算に用いる位置データを内部演算で算出した推定位置データに切替えるように構成されたことを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記指令統制部は駆動禁止信号に基いて、前記指令統制部は前記速度制御部への指令を予め設定された停止指令に切替えることを特徴とする。
 また、上記に記載のモータの駆動制御システムにおいて、前記比較判定部で返信位置データと前記データ保持部の位置データが一致する正判定のとき、前記カウンタの計数値をゼロにリセットすることを特徴とする。
 また、上記の目的を達成するため本発明は、サーボ制御装置と、サーボモータと、サーボモータの位置データを検出する位置検出部を備えて、フィードバック信号として前記サーボ制御装置に送信してサーボ制御するモータの駆動制御方法において、
 前記位置検出部は、前記サーボ制御装置に送信された位置データに基いて、サーボ制御装置から返信される返信位置データと前記検出された位置データとを比較して正誤判定して、判定結果に基く制御信号を前記サーボ制御装置に送信し、
 前記サーボ制御装置は、誤判定時の制御信号の受信により、予め設定された停止指令に基いてサーボ制御を行うことを特徴とする。
 また、本発明は、位置検出部に位置データの監視機能をもたせ、位置検出部が保持した最新位置データと、サーボ制御装置から出力させた最新位置データのエコーバック信号とを比較判定して、差異があるときには駆動禁止状態に遷移して、駆動禁止信号をサーボ制御装置に出力する。サーボ制御装置では、駆動禁止信号の入力に基いて駆動禁止状態に遷移して、フィードバック用位置データを最新位置データから推定位置データに切替え、指令信号を運転指令から所定の停止制御指令信号(停止指令)に切替え、速度、トルクがゼロに下がるまでは駆動を継続しながらモータを停止させる。
 本発明によれば、位置検出データの転送誤りを迅速に検出後、円滑にかつ安全にサーボ制御を停止させ、サーボ制御装置やホスト制御装置の立上や変更などに際し、初回稼動時から暴走を未然に防止することができる。
本発明の実施例1のサーボモータの速度制御駆動システムの構成図である。 本発明の実施例2のサーボモータの位置制御駆動システムの構成図である。 本発明実施例の位置検出部の動作フロー図である。 本発明実施例のサーボ制御装置の動作フロー図である。
 以下、図面を用いて本発明の実施形態を説明する。
 図1に本発明の実施例1の機能ブロック図を示す。1は速度制御形サーボ制御装置、2はサーボアンプの電流制御部、3はサーボモータ(回転電機)、4はサーボモータの駆動軸の回転角度を検出する位置検出部を表す。位置検出部4の内部には4つの機能ブロックがあり、5は駆動軸の位置データを検出する検出器、6は検出された最新位置データを保持する位置データ保持部、7は位置データ保持部6の位置データとサーボ制御装置1から返信される後述の返信位置データ(エコーバックデータ)とを比較して正誤を判定する比較判定部、8は比較判定部7から出力される判定に基く制御信号を記憶する状態保持部である。
 比較判定部7は、位置データ保持部6の位置データと返信位置データが不一致のとき誤判定とし、一致のとき正判定とする。比較判定部7はカウンタ7aと制御部7bを内蔵し、カウンタ7aで誤判定の回数を計数する。制御部7bはカウンタ7aの計数値が所定値(例えば5回)以上のときと、上記計数値が所定値未満のときの判定結果を出力する。また、制御部7bは比較判定部7が正判定をしたときカウンタ7aの計数値をゼロにリセットする。
 状態保持部8は判定結果を受け、カウンタ7aの計数値が所定値(例えば5回)を超えたときと計数値が所定値未満のときに対応して、それぞれ誤判定時の制御信号として駆動禁止信号とデータ無効信号を出力しサーボ制御装置1に送信する。
 上記位置検出部4の各機能ブロックは、信号線を介して最新位置データ9、最新位置データの返信位置データ(エコーバックデータ)11、制御信号としてのデータ無効信号12、駆動禁止信号39によって、速度制御形サーボ制御装置1と情報交換している。
 速度制御形サーボ制御装置1の内部には5つの機能ブロックがある。13は状態保持部8から送信された制御信号を受けてサーボ制御装置1内に伝達する駆動制御部である。駆動制御部13は、データ無効信号12を信号線14に伝達し、駆動禁止信号39を信号線28に伝達する。
 15は位置データ統制部で、通常は位置データ受信部10に受信した位置データを速度制御部17に供給してサーボ演算に用いる。信号線14に誤判定時の制御信号(データ無効信号)が伝達されたとき、後述のモータ状態推定器20の内部演算で算出した推定位置データに切替えて速度制御部17に供給する。
 上記モータ状態推定器20は、速度制御部17の出力であるトルク指令データ18を入力とし、モータ回転角度位置推定信号21(推定位置データ)を出力とした対象モータ及び負荷の数学モデルであり、モータ及び負荷の制御特性を表すモータ定数その他を予め設定して、プログラミングされる。また、フィードバック用位置データ16と推定位置データ21との差分を減算器22により算出し、この差分をモータ状態修正信号23としてモータ状態推定器20のパラメータ修正を行なうことにより、この推定器の動作上必要ないわゆる「漸近安定性」を確保する。こうして、モータ状態推定器20の出力誤差以内でのモータ駆動制御が継続可能となり、以下の停止処理が円滑に実行可能となる。
 24は速度指令統制部(指令統括部)で、通常は外部指令速度信号(外部指令)25によって速度制御部17を制御するが、信号線28に誤判定時の制御信号(駆動禁止信号)が伝達されたとき、予め登録された停止パターンの停止指令速度信号(停止指令)40に切替えて速度制御部17を制御する。上記停止指令速度信号(停止指令)40は、予め停止指令速度信号発生器(停止指令発生器)26に設定記憶されている停止パターンに基いて生成される。
 18は速度制御部17から出力されるトルク指令データ、19は電流制御部2の出力でトルク指令データに対応する駆動電流、22は減算器、23はモータ状態推定器20を制御するモータ状態修正信号、27は速度指令統制部24によって信号25と39が切替えられて供給される指令速度信号を示す。38は保安装置で、駆動禁止信号39の発生に伴う非常停止表示を行い、また、サーボ制御装置の非常停止後の再起動のリセットシーケンス(電源再投入しないと解除されない起動許可信号の発生制御など)が内蔵されている。
 次に実施例1の動作について図1、図3および図4に基づいて説明する。図1において、検出器5はサーボモータ3の回転軸と連動することにより回転角度の変化もしくは絶対角度を検知可能に設置されている。検出器5は図3のステップ(S)100に示すように予め設定された所定のサンプリング時間間隔、もしくはサーボ制御装置1から送信された最新位置データ要求を受信するたびに、その回転状態を位置データに変換して、最新位置データとして確定する(図3、S101)。位置データ保持部6はこれをサンプルホールドして、次の位置データ確定までの期間における最新位置データとして保持する(S101)。最新位置データは、サーボ制御装置1からの送信要求(図3、S102、図4、S201)により位置検出器5からサーボ制御装置1に送信される(S103、S202)。
 サーボ制御装置1では、位置データ受信部10で受信保持された最新位置データ9を位置データ統制部15に取込むと同時に、保持された最新位置データ9をコピーした返信位置データ(エコーバックデータ)11を生成して、位置検出部4に送信する(S104、S203)。位置検出部4ではこの返信位置データ11を比較判定部7に取り込み、返信位置データ11と位置データ保持部6の最新位置データ9との比較を行い、その判定結果を状態保持部8に出力する(S105)。
 状態保持部8では、比較の結果両位置データが同じで正常判定の場合(S105、Y)、S106でデータ無効信号と駆動禁止信号を共に出力せず(OFF)、制御部7bがカウンタ7aの計数値をゼロにリセットする。サーボ制御装置1では、データ無効信号OFFと判断し(S204、Y)、サーボ制御に用いる位置データ=検出データ9として(S205)フィードバック演算・制御を行う。なお、並行してモータ状態推定器20では推定演算が行われている(S206)。
 比較の結果両位置データが異なる場合(S105、N)、状態保持部8は誤判定の制御信号を出力する。カウンタ7aの計数値が所定値(例えば5回)未満のとき(S108、Y)、状態保持部8はデータ無効信号をセット(ON)して出力してサーボ制御装置1に送信し、制御部7bがカウンタ7aの積算値を1増加させる(S107)。なお、駆動禁止信号はOFFとなっている(S110、S208、Y)。
 サーボ制御装置1では、データ無効信号ONと判断し(S204、N)、データ無効信号12が信号線14に伝達されて、位置データ統制部15でサーボ演算に用いる位置信号を位置検出器4からの最新位置データ9ではなく、推定位置データに切替えて(S207)フィードバック演算・制御を行う。また並行してモータ状態推定器20では推定演算が行なわれている(S209)。
 上記のように、カウンタ7aの計数値が所定値(例えば5回)未満でデータ無効信号の発生が伴うときは、位置データ保持部6から位置データ受信部10を経由して比較判定部7に至る信号伝送路においての偶発的誤りがデータに影響を与えた場合(単発誤受信)であり、サーボ制御装置1は推定位置データに基づいてサーボ制御を継続する。次の比較で両位置データが一致すると、カウンタ7aの計数値がリセットされ正常動作に戻る。
 比較判定部7での比較の結果、両位置データが異なる場合(S105、N)で、カウンタ7aの計数値が所定値(例えば5回)以上のとき(S108、N)、状態保持部8は駆動禁止信号をセット(ON)して出力し、サーボ制御装置1に送信する(S111)。
 サーボ制御装置1では、駆動禁止信号ONと判断し(S208、N)、駆動禁止信号39が信号線28に伝達され、速度指令統制部24では、駆動禁止信号39の入力によって、速度指令値27を正常時に使用されている外部指令速度信号(外部指令)25から、予め停止指令速度信号発生器26に記憶してある停止指令速度信号(停止指令)40に切替える。したがって、速度制御部17は駆動停止のサーボ制御を速度、トルクがゼロに下がるまでを行う。通常、停止指令速度信号40には、サーボモータの出力可能トルクからみて制御可能な範囲に対応する減速パターンから生成された信号を用いる。なお、位置データ統制部15でサーボ演算に用いる位置信号として、位置検出器4からの最新位置データ9から、推定位置データに切替えている(S207)。
 上記のように、カウンタ7aの計数値が所定値(例えば5回)以上のときは、位置データ保持部6から位置データ受信部10を経由して比較判定部7に至る信号伝送路において、確定的に誤りが発生し、データに影響を与え続けている場合(連続誤受信)であってサーボ動作的には故障と判断され、速度制御部17は推定位置データ21と停止指令速度信号40とに基づいて、駆動停止のサーボ制御を行う。この駆動停止のサーボ制御では、サーボ演算の位置データとして、返信位置データ11ではなくより正しい値が得られる推定位置データ21を用いるので、衝撃のない円滑で安定したサーボ制御がなされる。
 以上述べた構成とすることにより、位置検出部4が制御システム内の位置データの健全性を判断してサーボ制御装置1に駆動の許可と禁止の動作がとれる。したがって、サーボ制御装置の立上げや変更に際しての試運転で、検出ソフトの初期不良による誤制御を防止して、不用意な暴走による危険や破損を未然に防止することができる。また、サーボ制御装置の上位に配置されるホスト制御装置(図1には図示せず)の立上や変更に際しても、保全ソフトの初期不良による誤制御を防止して、不用意な暴走による危険や破損を未然に防止して、フェイルセーフな運転が実現できる。また、保全装置38が未完成で、「サーボ制御装置+モータ+検出部」だけの試運転においても、誤制御を防止して、不用意な暴走による危険や破損を未然に防止して、フェイルセーフな運転が実現できる。
 また、サーボモータが高速回転で大エネルギーが蓄積されている状態で位置検出部からサーボ制御装置への位置データの伝送に誤りが発生した場合に、予め設定されたパターンで制御された減速作用により運動エネルギーを消費した後に停止できるので、サーボモータの駆動回路の異常昇圧による破損等を防止できる。
 加速や減速時の大トルク発生状態で、位置検出部からサーボ制御装置への位置データの伝送誤りが発生した場合、予め設定されたパターンで制御された減速作用により運動エネルギーを消費した後に停止できる。したがって、高加速状態や高減速状態などからの非常停止においても、駆動される機械やこの機械とモータの連結部などに衝撃をきたすことが少ない。
 サーボモータの制御を変える過渡状態で位置検出部からサーボ制御装置への位置データの伝送に誤りが発生した場合、予め設定されたパターンで制御された減速作用により運動エネルギーを消費した後に停止できるので、制御が不安定になって危険な状態に移行する可能性を確実に回避できる。
 また、暴走検知や暴走防止のために行なうソフトリミットが不要になる。暴走が未然に防げるので、通常動作として最大能力のトルクまで使用でき、機械動作性能を改善できる。
 なおここで、サーボ制御装置1や位置検出部4におけるデータ転送に際しては、通常の通信プロトコルにおいて実現されている誤り検出処理が含まれていても構わない。すなわち、最新位置データ9やエコーバックデータ11には、冗長化誤り検出符号が付加された場合も同様の機能が実現できる。この場合、本実施例の特徴をなす技術部分が動作する前の段階において、サーボ制御装置1や位置検出分4がそれぞれ単独動作において、誤りを検出すると同時に、公知の技術により異常処理またはリトライ要求により誤り発生時の必要な処理を実行することも可能である。
 次に、本発明の実施例2について機能ブロック図2に基いて説明する。ここで符号1から27は図1と同じ部分を示しているので説明を省略する。本実施例では、速度制御形サーボ制御装置1が位置制御システムの一部となって、上流側に位置制御装置29が接続されている。すなわち、速度制御装置1と位置制御装置29で、新たなサーボ制御装置が構成され、速度制御装置1は、先の実施例1と同様の動作を行うものである。
 33は外部指令位置信号、34は停止指令位置信号発生器、41は停止指令位置信号、32は位置指令統制部(指令統制部)、30は駆動禁止制御部、35は位置制御部をそれぞれ示す。本実施例2では、指令として位置指令により制御するものであり、実施例1の速度指令統制部24に代えて位置指令統制部32を設けている。
 本実施例2の動作を説明する。サーボ制御装置1の駆動制御部13は、データ無効信号12を受信したとき信号線14に伝達し、駆動禁止信号39を受信したとき信号線28に伝達し、駆動禁止信号39をさらに駆動禁止制御部30に伝達する。駆動禁止信号39を受信したときは、駆動禁止制御部30が駆動禁止状態への遷移を行い、駆動停止制御信号31がオン状態となって、位置指令統制部32に対して駆動停止制御を行なう。
 位置指令統制部32では、駆動停止制御信号31が入力されると、位置指令値37を、正常時に使用されている外部指令位置信号(外部指令)33から、予め停止指令位置信号発生器34で生成される停止指令位置信号(停止指令)41に切替えて、位置制御部35で位置制御を継続する。通常、停止指令位置信号41には、サーボモータの出力可能トルクからみて制御可能な範囲に対応する減速波形パターンから生成された信号が用いられる。
 以上のべた構成とすることにより、位置制御システムの用途において、先の実施例1と同様に、サーボ制御装置やホスト制御装置の立上や変更に際して、誤った位置データによる駆動制御を防止して、不用意な暴走による危険や破損を未然に防ぐことができる。また、高速回転や高加減速動作からの停止においても、危険な状況の発生を確実に低減できる。
 また本実施例においても、サーボ制御装置1や位置検出器4におけるデータ転送に際して通常の通信プロトコルにて実現される誤り検出処理が含まれていても構わない。
 このように本発明によれば、出力可能な最大トルクでの加速や減速を常時繰り返しているような応用機械においても、トルク制限機能などによらずとも誤動作による暴走を防止でき、危険な状態の発生を根絶できる。
 なお、本実施例では回転型のサーボモータについて記載したが、本構成は一般的なモータにおいても採用可能なものであり、回転モータ3の代わりにリニアモータとし、回転位置の位置検出器5の代わりにリニアスケールとしての組合せなどにも適用可能である。また、対応可能な制御器部分についても、本実施例にあるような位置制御器と速度制御器とで分割された構成に限定されるものではなく、一般的にフィードバック制御器に対して適用可能なものである。
 また本実施例では便宜上、関連する部分に通常設けられる他の保安用部品、例えばオーバランスイッチや非常停止ボタン系統などについては省略しているが、本発明はこれらとの併用についても特に問題になることはない。
 1・・・サーボ制御装置、1、29・・・サーボ制御装置、2・・・サーボアンプの電流制御部、3・・・サーボモータ、4・・・位置検出部、5・・・検出器、6・・・位置データ保持部、7・・・比較判定部、7a・・・カウンタ、7b・・・制御部、8・・・状態保持部、9・・・最新検出位置データ、10・・・位置データ保持部、11・・・位置データのエコーバックデータ(返信位置データ)、12・・・駆動禁止状態信号、13・・・駆動禁止制御部、14・・・データ無効信号線、15・・・位置データ統制部、16・・・フィードバック用位置データ、17・・・速度制御部、18・・・トルク指令データ、19・・・トルク指令データに対応する駆動電流、20・・・モータ状態推定器、21・・・モータ状態推定位置信号、22・・・減算器、23・・・モータ状態修正信号、24・・・速度指令統制部(指令統制部)、25・・・外部指令速度信号(外部指令)、26・・・停止指令速度信号発生器、27・・・速度指令信号、28・・・駆動禁止信号線、29・・・位置制御装置、30・・・駆動禁止制御部、31・・・停止制御信号、32・・・位置指令統制部(指令統制部)、33・・・外部指令位置信号(外部指令)、34・・・停止指令位置信号発生器、35・・・位置制御部、36・・・フィードバック用位置データ、37・・・位置指令信号、38・・・保安装置、39・・・駆動禁止信号、40・・・停止指令速度信号(停止指令)、41・・・停止指令位置信号(停止指令)。

Claims (14)

  1.  サーボ制御装置と、サーボモータと、サーボモータの位置データを検出してフィードバック信号として前記サーボ制御装置に供給する位置検出部とで構成されるモータの駆動制御システムにおいて、
     前記位置検出部は、位置データを検出する検出器と、検出された位置データを記憶して前記サーボ制御装置にフィードバック信号として送信するデータ保持部と、前記サーボ制御装置から返信される返信位置データと前記データ保持部の位置データを比較して正誤判定する比較判定部と、判定結果に基く制御信号を出力して前記サーボ制御装置に送信する状態保持部を備え、
     前記サーボ制御装置は、外部指令に基づいて前記サーボモータを制御する速度制御部と、前記検出部から位置データを受信し前記速度制御部に供給すると共に前記位置検出部に返信する位置データ受信部と、前記状態保持部からの制御信号を受けてサーボ制御装置に伝送する駆動制御部と、誤判定時の制御信号に基いて前記速度制御部への指令を予め設定された停止指令に切替える指令統制部を備えたことを特徴とするモータの駆動制御システム。
  2.  請求項1に記載のモータの駆動制御システムにおいて、前記サーボ制御装置はさらに、誤判定時の制御信号に基いて、サーボ演算に用いる位置データを前記検出部から受信した位置データから内部演算で算出した推定位置データに切替える位置データ統制部を備えたことを特徴とするモータの駆動制御システム。
  3.  請求項1または2に記載のモータの駆動制御システムにおいて、前記サーボ制御装置は予め登録された減速パターンの停止指令を発生する停止指令発生器を備え、前記指令統制部は誤判定時の制御信号に基いて上記停止指令発生器からの停止指令を前記速度制御部に供給することを特徴とするモータの駆動制御システム。
  4.  請求項1~3のいずれかに記載のモータの駆動制御システムにおいて、前記検出部の比較判定部は、誤判定の回数を計数するカウンタと、計数値が所定値以上のとき駆動禁止信号を、所定値未満のときデータ無効信号をそれぞれ発生する制御部を備えたことを特徴とするモータの駆動制御システム。
  5.  請求項4に記載のモータの駆動制御システムにおいて、前記位置データ統制部は、前記比較判定部のデータ無効信号に基いてサーボ演算に用いる位置データを内部演算で算出した推定位置データに切替えるように構成されたことを特徴とするモータの駆動制御システム。
  6.  請求項4または5に記載のモータの駆動制御システムにおいて、指令統制部は駆動禁止信号に基いて、前記速度制御部への指令を予め設定された停止指令に切替えることを特徴とするモータの駆動制御システム。
  7.  請求項4~6のいずれかに記載のモータの駆動制御システムにおいて、前記比較判定部は返信位置データと前記データ保持部の位置データが一致する正判定のとき、前記カウンタの計数値をゼロにリセットすることを特徴とするモータの駆動制御システム。
  8.  サーボ制御装置と、サーボモータと、サーボモータの位置データを検出する位置検出部を備えて、位置データをフィードバック信号として前記サーボ制御装置に送信してサーボ制御するモータの駆動制御方法において、
     前記位置検出部は、送信された位置データに基いてサーボ制御装置から返信される返信位置データと前記検出された位置データとを比較して正誤判定して、判定結果に基く制御信号を前記サーボ制御装置に送信し、
     前記サーボ制御装置は、誤判定時の制御信号の受信により、予め設定された停止指令に基いてサーボ制御を行うことを特徴とするモータの駆動制御方法。
  9.  請求項8に記載のモータの駆動制御方法において、前記サーボ制御装置はさらに、誤判定時の制御信号の受信により、サーボ演算に用いる位置データとして内部演算で算出した推定位置データに基いてサーボ制御を行うことを特徴とするモータの駆動制御方法。
  10.  請求項8に記載のモータの駆動制御方法において、前記サーボ制御装置は誤判定時の制御信号の受信により、予め登録された減速パターンから生成された停止指令に基いてよりを発生する停止指令発生器を備え、前記指令統制部は誤判定時の制御信号に基いてサーボ制御を行うことを特徴とするモータの駆動制御方法。
  11.  請求項8~10のいずれかに記載のモータの駆動制御方法において、前記検出部は誤判定の回数を計数し、計数値が所定値以上のとき駆動禁止信号を発生し、所定値未満のときデータ無効信号を発生して前記サーボ制御装置に誤判定時の制御信号として送信することを特徴とするモータの駆動制御方法。
  12.  請求項11に記載のモータの駆動制御方法において、前記サーボ制御装置はデータ無効信号に基いて、サーボ演算に用いる位置データを内部演算で算出した推定位置データに切替えてサーボ制御することを特徴とするモータの駆動制御方法。
  13.  請求項11または12に記載のモータの駆動制御方法において、前記サーボ制御装置は駆動禁止信号に基いて、予め設定された停止指令に切替えてサーボ制御することを特徴とするモータの駆動制御方法。
  14.  請求項11~13のいずれかに記載のモータの駆動制御方法において、前記位置検出部でサーボモータの位置データと返信位置データとが一致する正判定のとき、誤判定の計数値がゼロにリセットされることを特徴とするモータの駆動制御方法。
PCT/JP2011/065588 2010-11-26 2011-07-07 モータの駆動制御システムおよび駆動制御方法 WO2012070275A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263425 2010-11-26
JP2010263425A JP5492061B2 (ja) 2010-11-26 2010-11-26 モータの駆動制御システムおよび駆動制御方法

Publications (1)

Publication Number Publication Date
WO2012070275A1 true WO2012070275A1 (ja) 2012-05-31

Family

ID=46145637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065588 WO2012070275A1 (ja) 2010-11-26 2011-07-07 モータの駆動制御システムおよび駆動制御方法

Country Status (2)

Country Link
JP (1) JP5492061B2 (ja)
WO (1) WO2012070275A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097268A1 (en) * 2017-11-20 2019-05-23 77 Elektronika Műszeripari Kft. Centrifuge and control method therefor, computer program carrying out the method and storage medium
TWI776344B (zh) * 2021-01-04 2022-09-01 東元電機股份有限公司 自動調適作業判斷系統及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152905A (ja) * 1994-11-28 1996-06-11 Toshiba Fa Syst Eng Kk プログラマブルコントローラの2重化システム
JP2002329284A (ja) * 2001-04-27 2002-11-15 Okuma Corp センサー装置及び検出データ送信装置
JP2007213314A (ja) * 2006-02-09 2007-08-23 Yaskawa Electric Corp エンコーダ装置およびサーボモータ並びにサーボシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152905A (ja) * 1994-11-28 1996-06-11 Toshiba Fa Syst Eng Kk プログラマブルコントローラの2重化システム
JP2002329284A (ja) * 2001-04-27 2002-11-15 Okuma Corp センサー装置及び検出データ送信装置
JP2007213314A (ja) * 2006-02-09 2007-08-23 Yaskawa Electric Corp エンコーダ装置およびサーボモータ並びにサーボシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097268A1 (en) * 2017-11-20 2019-05-23 77 Elektronika Műszeripari Kft. Centrifuge and control method therefor, computer program carrying out the method and storage medium
US10898906B2 (en) 2017-11-20 2021-01-26 77 Elektronika Muszeripari Kft Centrifuge and control method therefor, computer program carrying out the method
TWI776344B (zh) * 2021-01-04 2022-09-01 東元電機股份有限公司 自動調適作業判斷系統及其方法

Also Published As

Publication number Publication date
JP2012113601A (ja) 2012-06-14
JP5492061B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
EP1814217B1 (en) Motor control method and motor control apparatus
EP3530423B1 (en) Method and device for detecting abnormality of encoder, and robot control system
EP3588208B1 (en) Servo system
JP5367623B2 (ja) サーボシステム、サーボモータ駆動装置、セーフティユニットおよびサーボシステムの制御方法
CA2967528C (en) Electromechanical drive system
JP4392013B2 (ja) エラーの遮断を制御するための電動機の調整
JP5172042B2 (ja) 電動機制御装置の制御方法
JP2010152595A (ja) サーボシステムおよび安全制御機器
JPWO2019031218A1 (ja) エンコーダの異常検出方法
JP6310905B2 (ja) タップ切換器の機能監視方法
CN112147507B (zh) 一种基于闭环控制的电机抱闸状态检测方法及系统
JP5492061B2 (ja) モータの駆動制御システムおよび駆動制御方法
JP2017167704A (ja) 速度監視装置と速度監視方法
JP5778891B2 (ja) ロボット制御装置
TWI641759B (zh) 真空泵及其運轉方法
EP3588210B1 (en) Motor control device
EP3588769B1 (en) Motor control device
US11025190B2 (en) Motor control device, motor control system, runaway state detection method, and non-transitory computer readable storage medium
JP2013089020A (ja) 速度監視装置
JP6572124B2 (ja) モータ制御装置
US20230042139A1 (en) System and Method for Monitoring a Failsafe Function of Sensors in a Motor
JP2011257909A (ja) 複数軸駆動装置、複数軸駆動機械、及び複数軸駆動装置の駆動制御方法
JP4498730B2 (ja) エレベータの異常振動検出装置
JP6131906B2 (ja) リンプホームシステム、その安全制御装置
EP3588209B1 (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843838

Country of ref document: EP

Kind code of ref document: A1