WO2012013160A1 - 液压换向阀、液压换向阀组及液压换向阀控制方法 - Google Patents

液压换向阀、液压换向阀组及液压换向阀控制方法 Download PDF

Info

Publication number
WO2012013160A1
WO2012013160A1 PCT/CN2011/077822 CN2011077822W WO2012013160A1 WO 2012013160 A1 WO2012013160 A1 WO 2012013160A1 CN 2011077822 W CN2011077822 W CN 2011077822W WO 2012013160 A1 WO2012013160 A1 WO 2012013160A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
directional control
port
spool
hydraulic directional
Prior art date
Application number
PCT/CN2011/077822
Other languages
English (en)
French (fr)
Inventor
易小刚
刘永东
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2012013160A1 publication Critical patent/WO2012013160A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/041Construction of housing; Use of materials therefor of sliding valves cylindrical slide valves

Definitions

  • the present invention relates to the field of hydraulic transmission and control technology, and in particular to a hydraulic reversing valve and a hydraulic reversing valve group for controlling a liquid flow direction or a liquid flow rate in a hydraulic system, and a control method of the hydraulic reversing valve .
  • Hydraulic directional control valves for fluid direction control or flow control in hydraulic systems are widely used and come in many types.
  • FIG. 1 shows a prior art slide valve type hydraulic reversing valve structure.
  • the hydraulic directional control valve includes a first end cap ⁇ , a first return spring 2', an integral spool 3', a valve body 4', a second return spring 5', and a second end cap 6'.
  • the integral spool 3' is disposed in the cavity of the valve body 4', is centered by the first return spring 2' and the second return spring 5', and is held in the neutral position.
  • the hydraulic pressure on both sides of the hydraulic directional control valve is introduced by the X' and Y' ports.
  • the entire hydraulic reversing valve is scrapped.
  • the valve core 3' is integral and the mating surface with the valve body 4' is long, the inner hole of the valve body 4' is processed for a long length, and the machining accuracy is difficult to ensure, and it is difficult to ensure a small and uniform assembly requirement. Clearance.
  • the excessive clearance between the valve core 3' and the valve body 4' leads to an increase in the leakage between the internal bores, which affects the working performance of the reversing valve; Too small, it is easy to cause the spool 3' to be issued, resulting in abnormal commutation.
  • An object of the present invention is to provide a hydraulic directional control valve which can solve the problem that the mating surface length of the valve core and the valve body in the hydraulic directional control valve is difficult to ensure, and the processing and assembly are inconvenient.
  • Another object of the present invention is to provide a hydraulic directional control valve that can be repaired, replaced, interchangeable, and has a long service life.
  • Another object of the present invention is to provide a hydraulic directional control valve which is not easy to be issued and has strong anti-pollution ability.
  • Another object of the present invention is to provide a hydraulic reversing valve group. The valve core of the hydraulic reversing valve group is not easy to be issued, has strong anti-pollution capability, and is convenient for assembly and maintenance.
  • a hydraulic directional control valve includes: a valve body; a valve sleeve disposed in a cavity of the valve body, the valve sleeve being a split valve sleeve, including at least a valve sleeve and a second valve sleeve; a valve core, disposed in the valve sleeve, the valve core is a split valve core, comprising at least a first valve core and a second valve core, the first valve core and the first valve core.
  • the two spools are in a synchronous working state; the hydraulic directional control valve is provided with at least three oil ports, and at least two working positions can be realized.
  • the oil port in the present invention includes a working oil port, a pressure oil port and a oil return port.
  • the valve sleeve is a stepped valve sleeve, and the cavity of the valve body is also arranged in a stepped manner to match the stepped structure of the valve sleeve.
  • the valve sleeve is provided with an oil passage corresponding to the pressure oil port on the valve body, and the valve sleeve and the valve body are sealed by a sealing ring.
  • the hydraulic directional control valve further includes: a first following spring directly abutting the end of the first valve core; and a second following spring directly abutting the end of the second valve core, the first following spring and the second following spring And a method for maintaining the first valve core and the second valve core in abutting state.
  • the hydraulic directional control valve further includes a third valve core, and the third valve core is disposed between the first valve core and the second valve core.
  • the hydraulic directional control valve further includes a third valve sleeve, and the third valve sleeve is matched with the third valve core.
  • the hydraulic directional control valve is an electromagnetically driven hydraulic directional control valve, and the end of the first valve core and the end of the second valve core are respectively provided with a first electromagnet and a second electromagnet for The action of the spool is manipulated.
  • the hydraulic directional control valve is a flow valve, and the electromagnet is a proportional electromagnet for controlling the flow rate through the flow valve through the current control through the proportional electromagnet.
  • the axis of the first spool is different from the axis of the second spool. Further, the outer diameters of the first valve core and the second valve core are different.
  • the hydraulic reversing valve is a three-position three-way hydraulic reversing valve, and the valve body and the valve sleeve are provided with corresponding pressure oil ports P, oil return ports T, and first working oil ports. The position of the return port is set relative to the first spool and the second spool.
  • the hydraulic directional control valve is a three-position four-way hydraulic directional control valve, and the valve body and the valve sleeve are provided with corresponding pressure oil ports ⁇ , oil return ports ⁇ , first working oil ports ⁇ , a working port ⁇ and a drain port R, wherein the drain port R is disposed at a position relative to the first spool and the second spool.
  • the hydraulic directional control valve is a three-position six-way hydraulic directional control valve, and the valve body and the valve sleeve are provided with corresponding pressure oil ports P, oil return ports T, first working oil ports ⁇ , a working port ⁇ , a third working port C, a fourth working port D, and a drain port R, wherein the drain port R is disposed at a position relative to the first spool and the third spool And between the second valve core and the third valve core.
  • a drain port R on the valve body serves as a control port K at the same time, when the spool is in the neutral position and the left position And the right position, the leakage oil between the first valve core and the second valve core is discharged through the rake, and when the rake is introduced into the pressure oil, the first spool is leftward Movement, and the second spool moves to the right.
  • the P port on the valve body communicates with the A port
  • the P port communicates with the B port to realize the four-position function.
  • a hydraulic reversing valve block includes: a valve block; a valve sleeve disposed in a cavity of the valve block, the valve sleeve being a split valve sleeve, including at least a first a valve sleeve and a second valve sleeve; a valve core, disposed in the valve sleeve, the valve core is a split valve core, comprising at least a first valve core and a second valve core, the first valve core and the second valve core.
  • the spool is in a synchronous working state; the hydraulic directional control valve is provided with at least three oil ports, and the hydraulic directional valve can realize at least two working positions.
  • a hydraulic control system including the hydraulic directional control valve or hydraulic directional control valve group described above is provided.
  • a construction machine provided with a hydraulic directional control valve or a hydraulic directional control valve group as described above.
  • the hydraulic directional control valve according to the present invention has the following advantages:
  • valve core no longer directly cooperates with the valve body, but instead cooperates with the valve sleeve to transfer the high precision requirement from the valve body to the valve sleeve.
  • the valve sleeve can be processed separately, the processing is very convenient, the precision is easy to guarantee, and the processing precision of the valve body is greatly reduced.
  • the valve sleeve and the valve core adopt a split structure, which greatly shortens the matching length of the valve core with the valve sleeve and the valve body.
  • the inner hole of the valve body can be processed separately from both sides, which greatly reduces the processing difficulty.
  • the coaxiality between the inner holes on both sides of the valve body is greatly reduced. There is no need for coaxiality between the first valve sleeve and the second valve sleeve, and the first valve core and the second valve core do not require the same outer diameter. Even allowing eccentricity, the two valve cores can be machined separately.
  • the first valve core and the first valve sleeve need only be processed in a complete process, and the second valve core and the second valve sleeve are processed in a complete set, which is extremely convenient to process. Therefore, it is easy to ensure a proper and uniform gap between the valve core and the valve sleeve, which reduces the hidden danger of the jam, and has strong anti-pollution ability, and because the spool is separated, the action mode of the spool can be utilized to eliminate another valve through one spool.
  • the lag of the core greatly improves the working efficiency and working stability of the hydraulic directional control valve.
  • the split valve core wears evenly during the commutation process, which can improve the life of the spool and improve the service life of the hydraulic reversing valve. Due to the disassembly of the split valve sleeve, one of the spools can be replaced separately or the valve sleeve can be repaired and compensated for by the replacement of the valve sleeve. The interchangeability and reusability of the components are good, and the use cost is reduced.
  • the prior art hydraulic reversing valve body can only be formed by casting.
  • the valve core and the valve sleeve adopt a split structure, the processing is convenient, and the valve body can be realized by a forging.
  • the split valve core and valve sleeve can increase the overall length of the valve core, and more oil ports can be arranged. Special median functions can be obtained without special design. While realizing the functions of the two-way three-way, three-position four-way, and three-position six-way reversing valve, the four-position reversing function can be realized by using the drain port as a control port.
  • FIG. 1 is a schematic structural view of a prior art hydraulic reversing valve
  • FIG. 1a is a schematic view of a prior art hydraulic reversing valve in a left position
  • FIG. 1b is a prior art hydraulic reversing valve working.
  • 2 is a schematic view of a hydraulic directional control valve according to a first embodiment of the present invention
  • FIG. 2a is a schematic view of a hydraulic directional control valve according to a first embodiment of the present invention when it is in a left position.
  • 2b is a schematic view of the hydraulic directional control valve according to the first embodiment of the present invention when it is in the right position;
  • FIG. 4 is a schematic structural view of a hydraulic directional control valve according to a third embodiment of the present invention; and
  • FIG. 5 is a fourth embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a hydraulic directional control valve according to a modification of the fourth embodiment of the present invention
  • FIG. 6 is a schematic structural view of a hydraulic directional control valve according to a fifth embodiment of the present invention
  • Figure 6a is Schematic structural view of the flow valve according to the present invention is a hydraulic valve
  • FIG. 6B is a schematic structural view of the manually-driven hydraulic directional valve according to the present invention
  • FIG. 6B
  • Figure 7 is a schematic structural view of a hydraulic directional control valve according to a sixth embodiment of the present invention
  • Figure 8 is a schematic structural view of a hydraulic directional control valve according to a seventh embodiment of the present invention
  • Figure 9 is a view showing hydraulic reversing according to the present invention.
  • FIG. 6 is a schematic structural view of a hydraulic directional control valve according to a fifth embodiment of the present invention
  • Figure 6a is Schematic structural view of the flow valve according to the present invention is a hydraulic valve
  • FIG. 6B is a schematic
  • FIG. 10 is a schematic view showing a method for controlling a four-position function by adding a control port to a hydraulic directional control valve according to the present invention
  • FIG. 10 is a schematic view of the four-position control method of the hydraulic directional control valve according to the present invention
  • In the hydraulic directional control valve control method a schematic view of two split valve spools is separated
  • FIG. 11 shows a structure in which a spool and a valve sleeve are integrated into a valve block to form a hydraulic directional control valve block according to the present invention.
  • the hydraulic reversing valve includes a valve body 10, a valve core and a valve sleeve, the valve sleeve is disposed in the cavity of the valve body, and the valve sleeve is a split valve sleeve.
  • the first valve sleeve 21 and the second valve sleeve 22 are disposed.
  • the valve core is disposed in the valve sleeve, and the valve core is a split valve core, and includes a first valve core 31 and a second valve core 32.
  • a reset mechanism is further included, and the reset mechanism is disposed at an end of the spool for driving the spool to be reset.
  • the reset mechanism includes a first elastic member 51 and a second elastic member 52.
  • the first elastic member 51 is disposed at an end of the first valve core 31 for pressing the end of the first valve core 31.
  • the second elastic member 52 is disposed at the end of the second valve core 32 for pressing the end of the second valve core 32.
  • the resilient member described above may be a spring or other component or mechanism that enables the spool 30 to be reset.
  • the hydraulic directional control valve of the present invention is further provided with an end cap assembly including a first end cap assembly 71 and a second end cap assembly 72, respectively disposed at both ends of the valve body 10, and simultaneously for receiving And positioning the first elastic member 51 and the second elastic member 52.
  • the specific form of the first spool 31 and the second spool 32 can be specifically designed according to the required median function, and the two spools 31, 32 are held in the middle by the resultant force of the first elastic member 51 and the second elastic member 52. Bit.
  • valve body 10 corresponding to the valve sleeve is provided with an oil port
  • an oil port corresponding to the oil port on the valve body 10 is also provided on the valve sleeve.
  • a sealing ring 40 is provided between the valve sleeve and the valve body 10 for sealing action.
  • the sealing ring 40 is a 0-type sealing ring.
  • the hydraulic directional control valve of the present invention can realize at least two working positions, that is, the left and right positions described above. In actual use, since the two spools 31, 32 can be held in the neutral position by the resultant force of the first elastic member 51 and the second elastic member 52, three working positions can be realized.
  • the hydraulic directional control valve of the present invention also provides a two-position three-way or three-position three-way implementation. As shown in Fig.
  • the split valve sleeve since the split valve sleeve is adopted, the seal between the valve body and the valve sleeve is sealed by the seal ring, the machining precision of the inner hole of the valve body 10 is reduced, and the conventional hydraulic directional control valve is The cooperation between the valve body and the valve core is transferred between the inner hole of the valve sleeve and the valve core, and the valve sleeve can be processed separately, the processing is extremely convenient, and the precision is easy to ensure.
  • valve sleeve Since the valve sleeve is of a split type, the inner hole of the valve body 10 can be separately processed from both sides, and the processing length on both sides is reduced, which is easy to realize, and the coaxiality between the inner holes on both sides of the valve body 10 is greatly required. Lowering, there is no need for coaxiality between the first valve sleeve 21 and the second valve sleeve 22. On the other hand, since the position of the first spool 31 and the second spool 32 is not high after the valve core of the present invention is changed from the conventional integral type, only the first spool 31 and the first valve are required.
  • a valve sleeve 21 is processed in a complete set, and the second valve core 32 and the second valve sleeve 22 are processed in a complete set.
  • the first valve core 31 and the second valve core 32 can be separately processed, and the processing is convenient.
  • the outer diameter of the first valve core 31 and the second valve core 32 are not required to be the same, that is, Eccentricity can also achieve its function. That is, after the split valve sleeve and the valve core structure are adopted in the invention, the spool operation mode can still be realized in accordance with the conventional hydraulic directional control valve, and the conventional hydraulic directional control valve can be realized as the reversing valve. Median function.
  • the hydraulic reversing valve adopts the split valve sleeve and the valve core
  • the first valve core 31 and the second valve core 32 are respectively processed, the machining precision and the assembly precision are easily ensured, and the assembly is convenient, and the valve core mating length is shortened and reduced.
  • the action of the spool can be used to eliminate the jam of the other spool with one spool.
  • the two spools wear evenly during the commutation process, which increases the life of the spool and increases the life of the hydraulic reversing valve.
  • One of the spools can be replaced or replaced by a valve sleeve to repair and compensate for the wear of the spool.
  • FIG. 2 of the present invention provides a hydraulic reversing valve having three through-four ports with at least three oil ports, and the valve body and the valve sleeve are provided with corresponding pressure ports (P) and oil return.
  • Port (T), first working port ( ⁇ ), second working port ( ⁇ ), and drain port (R), the drain port (R) is set at a position relative to the first spool (31) Between the second spool (32).
  • the split valve sleeve and the valve core can increase the overall length of the valve core, and more oil ports can be arranged, and special median functions can be obtained without special design.
  • FIG. 3 is a schematic view showing the structure of a hydraulic directional control valve according to a second embodiment of the present invention.
  • the first valve body 31 and the second valve body 32 are also disposed between the split type.
  • the first valve sleeve 21 and the second valve sleeve 22 are provided.
  • the first valve sleeve 21 and the second valve sleeve 22 are designed in a stepped manner, and the cavity of the valve body 10 is also arranged in a stepped manner, and the stepped structure of the first valve sleeve 21 and the second valve sleeve 22 Match.
  • the stepped valve sleeve structure described above provides great convenience for the installation of the first valve sleeve 21 and the second valve sleeve 22, and is convenient to be assembled from the opposite direction to the valve body 10 by the sealing manner of the 0-type sealing ring 40. In the middle, it is possible to avoid scratching the 0-ring 40.
  • the sealing is performed by means of the 0-type sealing ring 40, and the first valve sleeve 21 and the second valve sleeve 22 are easily taken out from the valve body 10 and repeatedly assembled from the opposite direction.
  • the contact surface of the first spool 31 and the second spool 32 communicates with the drain port R, and the leakage oil flow between the first spool 31 and the second spool 32 can be
  • the oil return tank is prevented from being separated due to the oil pressure generated between the first valve body 31 and the second valve body 32, so that the synchronous commutation cannot be performed, that is, the first spool 31 and the second spool 32 are in a synchronous operation state.
  • a third embodiment of the present invention is also provided. As shown in Fig.
  • a hydraulic directional control valve structure according to a third embodiment of the present invention is shown.
  • the first elastic member 51 is disposed in the first end cap assembly 71 and abuts against the end of the first valve core 31 through a first sleeve member 61
  • the second elastic member 52 is disposed at the second end.
  • the cover assembly 72 is seated against the end of the second spool 32 by a second sleeve member 62.
  • a first follower spring 81 is disposed in the first sleeve member 61.
  • first follower spring 81 directly abuts the end of the first spool 31; the second follower spring 82 is disposed in the second In the sleeve member 62, one end of the second follower spring 82 directly abuts against the end of the second valve body 32.
  • the first follower spring 81 and the second follower spring 82 are used to maintain the first spool 31 and the second spool 32 in an abutting state. During the entire stroke of the spool movement, the first follower spring 81 and the second follower spring 82 will always follow the mating faces of the first spool 31 and the second spool 32, that is, always maintain contact with the spool. .
  • the center of the spool is still maintained by the resultant force of the first elastic member 51 and the second elastic member 52.
  • the second spool 32 has been separated from the second elastic member 52.
  • the first elastic member 51 will push the first spool 31 and the second spool 32 to the neutral position, and the second spool 32 is caused by the transient hydraulic power when the spool is actuated.
  • the first spool 31 is separated to affect the commutation stability of the hydraulic directional control valve, and the added first follower spring 81 is always attached to the left end surface of the first spool 31 to generate a top pressure on the first spool 31. Further, the first valve body 31 and the second valve body 32 are bonded together. Similarly, when both the first spool 31 and the second spool 32 are in the right position of the valve body 10, the first spool 31 has been separated from the first elastic member 51, and after the control oil is released from the X port, the second The elastic member 52 will push the second valve core 32 and the first valve core 31 to move to the neutral position.
  • the transient hydraulic power during the action of the spool will separate the first valve core 31 from the second valve core 32, affecting the hydraulic reversal.
  • the commutation stability of the valve, and the added second follower spring 82 will always fit on the right end surface of the second spool 32, generating a top pressure on the second spool 32, thereby maintaining the second spool 32 and the first valve The bonding of the core 31. As shown in FIG.
  • the end surface of the valve body 31 is in abutting state with the end surface of the second valve body 32, so that the first valve core (31) and the second valve core (32) are in synchronous operation.
  • the present invention provides a three-position four-way hydraulic reversing valve, wherein the valve body and the valve sleeve are provided with corresponding pressure oil ports P, oil return ports T, and the first work.
  • Fig. 5 shows a hydraulic directional control valve structure in accordance with a fourth embodiment of the present invention.
  • a third spool 33 may be further included, and the third spool 33 is disposed between the first spool 31 and the second spool 32.
  • Fig. 5a shows the structure of a modification of the hydraulic directional control valve according to the fourth embodiment of the present invention.
  • the hydraulic directional control valve also includes a third valve sleeve 23 that mates with the third valve core 33.
  • FIG. 5a of the present invention provides a three-position six-way hydraulic reversing valve, and the valve body and the valve sleeve are provided with corresponding pressure ports (P), oil return ports (T), and a working port ( ⁇ ), a second working port ( ⁇ ), a third working port (C), a fourth working port (D), and a drain port (R), the drain port (R) setting
  • P pressure ports
  • T oil return ports
  • R working port
  • working port
  • second working port
  • C third working port
  • D fourth working port
  • R drain port
  • the position is relative to between the first spool (31) and the third spool (33) and between the second spool (32) and the third spool (33).
  • Figure 6 is a schematic view showing the structure of a hydraulic directional control valve according to a fifth embodiment of the present invention.
  • the hydraulic directional control valve is an electromagnetically driven hydraulic directional control valve, and the end of the first valve body 31 and the end of the second valve core 32 are respectively provided.
  • the hydraulic directional control valve of the present invention can also be used as a flow valve, in which case the electromagnets on both sides use proportional electromagnets 93, 94.
  • the ratio The magnitude of the electromagnetic force of the electromagnet is adjusted by the current of the proportional electromagnet, and by controlling the current passing through the proportional electromagnets 93, 94, an appropriate electromagnetic force is obtained, and the magnitude of the electromagnetic force determines the displacement amount of the spool, thereby obtaining the spool 31.
  • the precise control of the 32-displacement, and the displacement of the spool determines the opening of the valve port formed between the spool and the cavity of the valve body, thereby controlling the flow through the port and functioning as a flow control valve. As shown in Fig.
  • the hydraulic directional control valve of the present invention may also be a manually driven hydraulic directional control valve, and 95, 96 are manual drive shanks.
  • Fig. 7 it is a structure of a hydraulic directional control valve according to a sixth embodiment of the present invention.
  • the axis of the first spool 31 is different from the axis of the second spool 32, and the distance between the two axes is shown as L1.
  • a step surface 311 and a step surface 321 are respectively disposed on the first valve core 31 and the second valve core 32, and an outer diameter of the step surface 311 of the first valve core 31 is smaller than an outer diameter of the second valve core 32,
  • the outer diameter of the stepped surface 321 of the two valve bodies 32 is smaller than the outer diameter of the first valve body 31 so that no interference occurs between the respective stepped surfaces and the corresponding valve core holes. Therefore, in the state where the axes of the first valve body 31 and the second valve body 32 are deviated, the normal operation of the valve body can still be achieved.
  • Figure 8 is a schematic view showing the structure of a hydraulic directional control valve according to a seventh embodiment of the present invention. As shown in FIG.
  • the outer diameters of the first valve body 31 and the second valve body 32 may be different.
  • the outer diameter of the first spool 31 shown in Fig. 8 is L2, and the outer diameter of the second spool 32 is L3. It is not difficult to understand that due to the split valve core structure adopted by the present invention, the normal operation of the hydraulic directional control valve can be realized even when the outer diameters of the two valve cores are different.
  • first and second spools 31 and 32 and the length of the first and second sleeves 31 and 22 in the hydraulic directional control valve of the present invention are not limited in the foregoing, Obviously the first spool The length of the 31 and the second valve body 32 may be the same or different, and the lengths of the first valve sleeve 21 and the second valve sleeve 22 may be the same or different.
  • Figure 9 shows a structure in which two split valve cores and valve sleeves have different lengths.
  • Fig. 10 and Fig. 10a show a control method of the hydraulic directional control valve according to the present invention, that is, a control port is added to realize a four-position function control method.
  • the port originally used as the drain port R can be used as the control port K.
  • the oil ports, the first valve body 31 and the second valve core 32 maintain the neutral type 0 function under the action of the first elastic member 51 and the second elastic member 52, ⁇ , ⁇ , ⁇ oil ports are not connected to each other.
  • the first valve body 31 moves to the right, and the first valve core 31 transmits the force to the second valve core 32 through the abutting surface of the second valve body 32, and the second valve core 32 follows the first valve core 32.
  • a spool 31 is moved to the right to compress the second elastic member 52 and realize the left position function.
  • the fistula communicates with the fistula, and the fistula communicates with the fistula.
  • the spool returns to the neutral position under the force of the second elastic member 52.
  • the second valve core 32 moves to the left, and the second valve core 32 transmits the force to the first valve core 31 through the abutting surface of the first valve body 31, and the first valve core 31 follows The second valve core 32 moves to the left to compress the first elastic member 51 and realize the right position function.
  • the P port communicates with the A port, and the B port communicates with the T port. After the pressure oil is released, the spool returns to the neutral position under the force of the first elastic member 51.
  • the hydraulic directional control valve adopts a new commutation principle, and can realize the four-position function under the common pressure oil control mode.
  • such a hydraulic reversing valve group includes a valve core, a valve sleeve and a valve block 11, the valve sleeve is disposed in the cavity of the valve block, and the valve sleeve is a split valve sleeve, including the first a valve sleeve 21 and a second valve sleeve 22, the valve core is disposed in the valve sleeve, the valve core is a split valve core, and includes a first valve core 31 and a second valve core 32, wherein the split valve cores 31, 32 are Synchronous working state, the hydraulic reversing valve group is provided with at least three oil ports, which can realize at least two working positions.
  • valve core and the valve sleeve can be conveniently integrated into the valve block to realize the function of the hydraulic reversing valve.
  • the hydraulic reversing valve group is different from the hydraulic reversal of the traditional independent structure.
  • the valve because the valve core is directly inserted into the inner hole of the valve block through the valve sleeve, can reduce the connection between the traditional hydraulic directional control valve and the valve block, that is, reduce the leakage
  • the dew point, control and implementation are very convenient, and the design of the valve block can be used to achieve a reasonable layout of the entire hydraulic system.
  • the integration of the spool into the valve block reduces the mass and volume of the entire valve block assembly, resulting in a significant reduction in material costs.
  • a hydraulic control system can be provided in accordance with the present invention, which includes the hydraulic directional control valve or hydraulic directional control valve set previously described.
  • the hydraulic directional control valve and the hydraulic directional control valve group of the invention can be widely used in various construction machinery, including concrete machinery, road construction machinery, excavation machinery, lifting machinery, port machinery and pile machinery.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Multiple-Way Valves (AREA)

Description

液压换向阀、 液压换向阀组及液压换向阀控制方法
本申请要求于 2010年 7月 30日向中国国家知识产权局提交的名称为"液压阀、液 压阀组及液压阀控制方法"的第 201010240847.9号发明专利申请的优先权, 其全部内 容结合于此供参考。 技术领域 本发明涉及液压传动与控制技术领域, 尤其涉及一种控制液压系统中液流方向或 液流量的液压换向阀、 液压换向阀组, 本发明还涉及该液压换向阀的控制方法。 背景技术 液压系统中用于流体方向控制或流量控制的液压换向阀应用十分广泛, 其种类也 很多。 按操纵方式分有电动、 液动、 电液动等, 按阀的结构又有滑阀、 转阀等多种形 式。 图 1所示为一种现有的滑阀式液压换向阀结构。 如图 1所示, 该液压换向阀包括 第一端盖 Γ、第一复位弹簧 2'、整体阀芯 3'、阀体 4'、第二复位弹簧 5'及第二端盖 6'。 整体阀芯 3'设于阀体 4'的腔体内, 由第一复位弹簧 2'和第二复位弹簧 5'来对中, 保持 在中位。 该液压换向阀的两侧控制油压由 X'、 Y'口引入, 如图 la所示, 当 X'口进油时, 油压推动整体阀芯 3'向右动作,压缩第二复位弹簧 5'并实现换向,此时 P'口与 B'口相 通, A'口与 T'口相通; X'口油压泄压后, 整体阀芯 3'在第二复位弹簧 5'的作用下回到 中位, P'口、 A'口、 B'口、 T'口各不相通。 如图 lb所示, 当 Y'口进油时, 油压推动整 体阀芯 3'向左动作, 压缩第一复位弹簧 2'并实现换向, 此时 P'口与 A'口相通, B'口与 T'口相通; 当 Y'口油压泄压后, 阀芯 3'在第一复位弹簧 2'的作用下回到中位。 现有技术的液压换向阀存在以下的缺陷。 由于阀芯 3'直接与阀体 4'相互配合,需直接在阀体 4'上加工用于容纳阀芯 3'的阀 孔, 加工很不方便, 且阀孔孔径加工大了后会直接导致整个液压换向阀的报废。 同时, 由于阀芯 3'为整体式, 与阀体 4'的配合面较长, 阀体 4'的内孔加工长度较 长, 加工精度很难保证, 难以保证装配所要求的较小而均匀的间隙。 阀芯 3'与阀体 4' 的配合间隙过大会导致内部腔孔间的泄露量增大, 影响换向阀的工作性能; 配合间隙 过小, 容易使阀芯 3'发卡, 导致换向不正常。 且该液压阀作为换向阀工作时, 整体式 阀芯 3'容易受液压油中杂质的影响而导致卡滞, 使换向阀抗污染能力较差。 另外, 阀体 4'的阀孔和阀芯 3'在使用时存在磨损, 导致阀孔与阀芯的配合间隙过 大, 整个液压换向阀难以修复, 使换向阀的重复使用性不好。 有鉴于此, 提供一种能克服上述现有技术所存在缺陷的液压换向阀成为本技术领 域所亟待解决的问题。 发明内容 本发明的目的在于提供一种液压换向阀, 能解决液压换向阀中的阀芯与阀体的配 合面长、 精度难以保证, 加工、 装配不方便的问题。 本发明的另一目的在于提供一种部件可修复、 更换, 互换性好、 使用寿命长的液 压换向阀。 本发明的又一目的在于提供一种阀芯不易发卡, 抗污染能力强的液压换向阀。 本发明的又一目的在于提供一种液压换向阀组, 该液压换向阀组中的阀芯不易发 卡, 抗污染能力强, 且装配、 维修方便。 本发明的又一目的在于提供一种能克服上述现有技术缺陷的液压控制系统。 为实现上述目的, 根据本发明的一个方面, 提供了一种液压换向阀, 包括: 阀体; 阀套, 设于阀体的腔体内, 所述阀套为分体式阀套, 至少包括第一阀套与第二阀套; 阀芯, 设于所述阀套内, 所述阀芯为分体式阀芯, 至少包括第一阀芯与第二阀芯, 所 述第一阀芯和第二阀芯处于同步工作状态;所述液压换向阀上设置有至少三个通油口, 可实现至少二个工作位。 本发明中的通油口包括工作油口、 压力油口及回油口。 进一步地, 所述阀套为阶梯式阀套, 所述阀体的腔体也设置为阶梯式, 与所述阀 套的阶梯式结构相匹配。 进一步地, 所述阀套上设置有与所述阀体上的压力油口相对应的通油口, 所述阀 套与阀体之间通过密封圈密封。 进一步地, 该液压换向阀还包括: 第一跟随弹簧, 直接与所述第一阀芯的端部相抵接; 以及 第二跟随弹簧, 直接与所述第二阀芯的端部相抵接, 所述第一跟随弹簧与第二跟随弹簧用于保持所述第一阀芯与第二阀芯处于相抵靠 状态。 进一步地, 该液压换向阀还包括第三阀芯, 所述第三阀芯设于所述第一阀芯与第 二阀芯之间。 进一步地, 该液压换向阀还包括第三阀套,所述第三阀套与所述第三阀芯相匹配。 进一步地, 所述液压换向阀为电磁驱动式液压换向阀, 所述第一阀芯的端部与第 二阀芯的端部分别设有第一电磁铁与第二电磁铁, 用于操纵所述阀芯的动作。 进一步地, 所述液压换向阀为流量阀, 所述电磁铁为比例电磁铁, 用于对通过比 例电磁铁的电流控制来控制通过流量阀阀口的流量。 进一步地, 所述第一阀芯的轴线与第二阀芯的轴线不同轴。 进一步地, 所述第一阀芯与第二阀芯的外径不相同。 进一步地, 所述液压换向阀为三位三通液压换向阀, 所述阀体与阀套上设有相对 应的压力油口 P、 回油口 T、 第一工作油口 Α, 所述回油口 Τ设置的位置相对于所述 第一阀芯与第二阀芯之间。 进一步地, 所述液压换向阀为三位四通液压换向阀, 所述阀体与阀套上设有相对 应的压力油口 Ρ、 回油口 Τ、 第一工作油口 Α、 第二工作油口 Β、 及泄油口 R, 所述泄 油口 R设置的位置相对于所述第一阀芯与第二阀芯之间。 进一步地, 所述液压换向阀为三位六通液压换向阀, 所述阀体与阀套上设有相对 应的压力油口 P、 回油口 T、 第一工作油口 Α、 第二工作油口 Β、 第三工作油口 C、 第 四工作油口 D、 及泄油口 R, 所述泄油口 R设置的位置相对于所述第一阀芯与第三阀 芯之间以及所述第二阀芯与第三阀芯之间。 根据本发明的另一个方面, 提供了一种上面所述的液压换向阀的控制方法, 所述 阀体上的泄油口 R同时作为控制油口 K, 当阀芯在中位、 左位及右位时, 第一阀芯与 第二阀芯之间的泄漏油通过所述 Κ口泄出, 当所述 Κ口引入压力油时, 第一阀芯向左 运动, 而第二阀芯向右运动, 此时阀体上的 P口与 A口相通, 同时 P口与 B口相通, 实现四位功能。 根据本发明的又一个方面, 提供了一种液压换向阀组, 包括: 阀块; 阀套, 设于 所述阀块的腔体内, 所述阀套为分体式阀套, 至少包括第一阀套与第二阀套; 阀芯, 设于所述阀套内, 所述阀芯为分体式阀芯, 至少包括第一阀芯与第二阀芯, 所述第一 阀芯和第二阀芯处于同步工作状态; 所述液压换向阀上设置有至少三个通油口, 所述 液压换向阀可实现至少二个工作位。 根据本发明的又一个方面, 提供了一种液压控制系统, 所述液压控制系统包括前 面所述的液压换向阀或液压换向阀组。 根据本发明的又一个方面, 提供了一种工程机械, 所述工程机械上设置有前面所 述的液压换向阀或液压换向阀组。 根据本发明的液压换向阀, 具有以下的优点:
1、 由于在阀芯和阀体之间采用了分体式阀套, 阀芯不再直接与阀体配合, 而改为 与阀套配合, 将加工高精度要求从阀体转移到了阀套, 而阀套可单独加工, 加工极为 方便, 精度容易保证, 大大降低了阀体的加工精度要求。
2、 阀套及阀芯采用分体式结构, 大大缩短了阀芯与阀套、 阀体的配合长度, 阀体 内孔可从两侧分别加工, 大大降低了加工难度。 阀体两侧内孔之间的同轴度要求大为 降低, 第一阀套和第二阀套之间无需作同轴度要求, 且第一阀芯和第二阀芯不要求外 径一致, 甚至允许偏心, 因此两阀芯可分开加工, 加工时只需将第一阀芯和第一阀套 成套加工, 第二阀芯和第二阀套成套加工, 加工极为方便。 从而容易保证阀芯和阀套 之间合适而均匀的间隙, 降低了卡滞隐患, 抗污染能力强, 且由于阀芯分体, 可利用 阀芯的动作方式, 通过一个阀芯消除另一个阀芯的卡滞, 使液压换向阀的工作效率与 工作稳定性大为提高。
3、分体式阀芯在换向过程中均匀磨损, 可提高阀芯寿命, 进而提高液压换向阀的 使用寿命。 由于分体式阀套的设置, 在其中一个阀芯过度磨损后可单独更换或者通过 更换阀套来修复和补偿阀芯的磨损, 部件互换性与重复使用性好, 降低了使用成本。
4、 现有技术液压换向阀阀体只能用铸件加工成型, 本发明中, 由于阀芯、 阀套采 用分体式结构, 加工方便, 阀体可通过锻件实现。 5、 采用分体式阀芯、 阀套可使阀芯整体长度增加, 可布置更多的油口, 无需特殊 设计即可获得特殊的中位机能。 在实现两位三通、 三位四通、 三位六通换向阀功能的 同时, 通过将泄油口作控制口使用, 可以实现四位换向功能。 除了上面所描述的目的、 特征、 和优点之外, 本发明具有的其它目的、 特征、 和 优点, 将结合附图作进一步详细的说明。 附图说明 构成本说明书的一部分、 用于进一步理解本发明的附图示出了本发明的优选实施 例, 并与说明书一起用来说明本发明的原理。 本发明的示意性实施例及其说明用于解 释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1为现有技术的液压换向阀结构示意图; 图 la为现有技术的液压换向阀工作时处于左位的示意图; 图 lb为现有技术的液压换向阀工作时处于右位的示意图; 图 2为根据本发明的第一实施例的液压换向阀的结构示意图; 图 2a为根据本发明的第一实施例的液压换向阀工作时处于左位时的示意图; 图 2b为根据本发明的第一实施例的液压换向阀工作时处于右位时的示意图; 图 2c为根据本发明的液压换向阀实现二位三通或三位三通时的示意图; 图 3为根据本发明的第二实施例的液压换向阀结构示意图; 图 4为根据本发明的第三实施例的液压换向阀结构示意图; 图 5为根据本发明的第四实施例的液压换向阀结构示意图; 图 5a为根据本发明的第四实施例一种变型的液压换向阀结构示意图; 图 6为根据本发明的第五实施例的液压换向阀结构示意图; 图 6a为根据本发明的液压换向阀为流量阀时的结构示意图; 图 6b为根据本发明的液压换向阀采用手动驱动式时的结构示意图; 图 7为根据本发明的第六实施例的液压换向阀结构示意图; 图 8为根据本发明的第七实施例的液压换向阀结构示意图; 图 9示出了根据本发明的液压换向阀中分体式阀芯、 阀套长度不相同时的结构; 图 10 为根据本发明的液压换向阀增加了一个控制油口实现四位功能控制方法的 示意图; 图 10a为图 10所示的液压换向阀控制方法中, 两个分体式阀芯分开时的示意图; 以及 图 11示出了根据本发明的将阀芯、 阀套集成到阀块中构成液压换向阀组的结构。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 2、 图 2a、 图 2b分别为根据本发明的第一实施例的液压换向阀的结构示意图、 液压换向阀处于左位时及右位时的示意图。 如图 2所示, 在本发明的第一实施例中, 液压换向阀包括阀体 10、 阀芯与阀套, 阀套设于所述阀体的腔体内, 阀套为分体式阀套, 包括第一阀套 21与第二阀套 22, 阀芯设置于阀套内, 阀芯为分体式阀芯, 包括第一阀芯 31与第二阀芯 32。 在本发明的液压换向阀中, 还包括有复位机构, 该复位机构设置于阀芯的端部, 用于驱动阀芯复位。 如图 2所示, 复位机构包括第一弹性件 51与第二弹性件 52, 第 一弹性件 51设于第一阀芯 31的端部处,用于顶压该第一阀芯 31的端部,第二弹性件 52设于第二阀芯 32的端部处, 用于顶压该第二阀芯 32的端部。 可以理解,上述的弹性件可以是弹簧或其他能实现让阀芯 30复位功能的部件或机 构。 如图 2所示,本发明的液压换向阀还设有端盖组件,包括第一端盖组件 71与第二 端盖组件 72, 分别设置于阀体 10的两端处, 同时用于容纳并定位第一弹性件 51与第 二弹性件 52。 第一阀芯 31与第二阀芯 32的具体形式可以根据所需要的中位机能来具体设计, 两个阀芯 31、 32通过第一弹性件 51和第二弹性件 52的合力保持在中位。 可以理解, 当与设置阀套相对应的阀体 10上具有油口时,在阀套上也设置有与阀 体 10上的油口相对应的通油口。 如图 2所示, 在阀套与阀体 10之间设置密封圈 40, 用于起密封作用。 优选地, 该密封圈 40采用 0型密封圈。 如图 2a所示, 在需要实现液压换向阀左位功能时, 通过 X口往第一弹性件 51腔 体引入压力油, 推动第一阀芯 31向右动作, 第一阀芯 31通过其端面接触面将换向力 传递给第二阀芯 32,推动第二阀芯 32向右动作,两个阀芯可同时到达阀体 10的右侧, 实现 P口与 A口、 B口与 T口的连通。 同理, 如图 2b所示, 通过 Y口往第二弹性件 52腔体引入压力油, 可推动第二阀 芯 32和第一阀芯 31同时到达阀体 10左侧, 实现 P口与 B口, A口与 T口的连通。 可见本发明的液压换向阀可实现至少二个工作位, 即上述的左位与右位。 在实际 使用中, 由于两个阀芯 31、 32可通过第一弹性件 51和第二弹性件 52的合力保持在中 位, 因此可实现三个工作位。 本发明的液压换向阀也提供了二位三通或三位三通的实现方式。如图 2c所示, 当 液压换向阀的阀芯处于中位时, 油口互不相通; 处于左位时, P口与 T口相通; 而处 于右位时, A口与 T口相通。 此外, 在图 2c示出的实施例中, 实际使用中也可以将一侧的复位弹性件撤掉, 则 分体式阀芯在另一侧弹簧的作用力下会顶到一边, 这样就没有了中位, 成为另一种二 个工作位的实现方式, 也即作为二位三通换向阀。 在本发明的液压换向阀中, 由于采用了分体式阀套, 阀体与阀套之间通过密封圈 实现密封, 降低了阀体 10内孔的加工精度, 同时将传统液压换向阀中阀体与阀芯的配 合转移到了阀套内孔与阀芯之间, 阀套可以单独加工, 加工极为方便, 精度容易保证。 由于阀套为分体式, 使阀体 10内孔可以从两侧分别加工, 两侧的加工长度减小, 很容易实现, 且阀体 10两侧的内孔之间的同轴度要求大为降低, 第一阀套 21与第二 阀套 22之间不需要作同轴度要求。另一方面, 由于本发明中阀芯从传统的整体式变成 分体式后, 第一阀芯 31 与第二阀芯 32之间的位置度要求不高, 只需要第一阀芯 31 与第一阀套 21成套加工, 第二阀芯 32与第二阀套 22成套加工, 第一阀芯 31与第二 阀芯 32可分开加工, 加工方便。 并且第一阀芯 31与第二阀芯 32外径不要求一致, 即 使偏心也可实现其功能。 也即, 在本发明采用了分体式阀套及阀芯结构后, 阀芯动作 方式仍然能够实现与传统液压换向阀一致, 能够实现传统的液压换向阀作为换向阀时 所能实现的中位机能。 液压换向阀采用分体式阀套及阀芯后, 第一阀芯 31与第二阀芯 32分别加工, 加 工精度和装配精度均容易保证, 且装配方便, 阀芯配合长度变短, 降低了卡滞隐患, 且可利用阀芯的动作方式, 用一个阀芯消除另一个阀芯的卡滞。 两个阀芯在换向过程 中均匀磨损, 可提高阀芯寿命, 进而提高液压换向阀寿命。 其中一个阀芯过度磨损后 可单独更换或者通过更换阀套来修复和补偿阀芯的磨损, 互换性好, 重复使用性好, 降低了使用成本。 本发明的上述图 2的实施例提供了一种三位四通具有至少三个通油口的液压换向 阀, 阀体与阀套上设有相对应的压力油口 (P)、 回油口 (T)、 第一工作油口 (Α)、 第 二工作油口 (Β)、 及泄油口 (R), 该泄油口 (R) 设置的位置相对于第一阀芯 (31 ) 与第二阀芯 (32) 之间。 采用分体式阀套及阀芯可使阀芯整体长度增加, 可布置更多的油口, 无需特殊设 计即可获得特殊的中位机能。通过将泄油口作控制口使用,可以实现四位换向功能(后 面将详细说明)。 图 3为根据本发明的第二实施例的液压换向阀的结构示意图, 如图所示, 在该实 施例中,同样在分体式的第一阀芯 31及第二阀芯 32之间设置了第一阀套 21与第二阀 套 22。 所不同之处在于, 第一阀套 21与第二阀套 22设计为阶梯式, 阀体 10的腔体 也设置为阶梯式, 与第一阀套 21及第二阀套 22的阶梯式结构相匹配。 采用上述的阶梯式阀套结构, 为第一阀套 21及第二阀套 22的安装提供了极大的 便利, 同时方便通过 0型密封圈 40的密封方式从相对的方向装配至阀体 10中, 且可 以避免划破 0型密封圈 40。 在本发明的第二实施例中, 通过 0型密封圈 40的方式来密封, 方便从相反的方 向将第一阀套 21与第二阀套 22从阀体 10中取出和重复装配。 在本发明的液压换向阀中,第一阀芯 31与第二阀芯 32的接触面与泄油口 R相通, 可将第一阀芯 31与第二阀芯 32之间的泄漏油流回油箱,防止因第一阀芯 31与第二阀 芯 32之间产生油压而分离, 导致无法同步换向的情况, 也即第一阀芯 31和第二阀芯 32处于同步工作状态。 为进一步确保第一阀芯 31与第二阀芯 32的同步换向动作, 还提供了本发明的第 三实施例。 如图 4所示, 示出了根据本发明的第三实施例的液压换向阀结构。 在该实 施例中,第一弹性件 51设于第一端盖组件 71内并通过一第一套筒件 61顶靠第一阀芯 31的端部, 第二弹性件 52设于第二端盖组件 72内并通过一第二套筒件 62顶靠第二 阀芯 32的端部。 此外, 还具有第一跟随弹簧 81, 设置于第一套筒件 61内, 第一跟随 弹簧 81的一端直接与第一阀芯 31的端部相抵接; 第二跟随弹簧 82, 设置于第二套筒 件 62内, 该第二跟随弹簧 82的一端直接与第二阀芯 32的端部相抵接。第一跟随弹簧 81与第二跟随弹簧 82用于保持第一阀芯 31与第二阀芯 32处于相抵靠状态。 在阀芯运动的整个行程中, 第一跟随弹簧 81和第二跟随弹簧 82会一直分别跟随 第一阀芯 31和第二阀芯 32的贴合面, 也即始终保持与阀芯的接触状态。 阀芯的中位 仍然靠第一弹性件 51和第二弹性件 52的合力来保持。 当第一阀芯 31和第二阀芯 32 均处于阀体 10左侧位置时, 第二阀芯 32已经与第二弹性件 52分离。 控制油从 Y口 泄压后,第一弹性件 51将推动第一阀芯 31和第二阀芯 32向中位运动, 由于阀芯动作 时的瞬态液动力会使第二阀芯 32与第一阀芯 31分离,影响液压换向阀的换向稳定性, 而增加的第一跟随弹簧 81会一直贴合在第一阀芯 31的左端面,对第一阀芯 31产生顶 压力, 进而保持第一阀芯 31与第二阀芯 32的贴合。 同样地, 当第一阀芯 31和第二阀芯 32均处于阀体 10右侧位置时, 第一阀芯 31 已经与第一弹性件 51分离,控制油从 X口泄压后,第二弹性件 52将推动第二阀芯 32 和第一阀芯 31向中位运动, 由于阀芯动作时的瞬态液动力会使第一阀芯 31与第二阀 芯 32分离, 影响液压换向阀的换向稳定性, 而增加的第二跟随弹簧 82会一直贴合在 第二阀芯 32的右端面,对第二阀芯 32产生顶压力,进而保持第二阀芯 32与第一阀芯 31的贴合。 如图 4及其他图中所示, 第一阀芯 31与第二阀芯 32相互抵靠的部分处通过泄油 口 R泄出阀芯分体处腔体中的液压油, 以保持第一阀芯 31的端面与第二阀芯 32的端 面处于相抵靠状态, 使第一阀芯 (31 ) 与第二阀芯 (32) 处于同步工作状态。 如图 2至图 4所示, 本发明提供了一种三位四通液压换向阀, 所述阀体与阀套上 设有相对应的压力油口 P、回油口 T、第一工作油口 Α、第二工作油口 Β、及泄油口 R, 所述泄油口 R设置的位置相对于所述第一阀芯 (31 ) 与第二阀芯 (32) 之间。 图 5示出了根据本发明的第四实施例的液压换向阀结构。 如图 5所示, 在本发明 的第四实施例中, 还可以包括第三阀芯 33, 该第三阀芯 33设于第一阀芯 31与第二阀 芯 32之间。 图 5a示出了根据本发明第四实施例的液压换向阀的一种变型的结构。该液压换向 阀还包括第三阀套 23, 第三阀套 23与第三阀芯 33相匹配。 另一方面, 本发明图 5a 的实施例提供了一种三位六通液压换向阀, 阀体与阀套上设有相对应的压力油口(P)、 回油口 (T)、 第一工作油口 (Α)、 第二工作油口 (Β )、 第三工作油口 (C)、 第四工 作油口 (D)及泄油口 (R), 该泄油口 (R)设置的位置相对于第一阀芯 (31 ) 与第三 阀芯 (33 ) 之间以及第二阀芯 (32) 与第三阀芯 (33 ) 之间。 图 6为根据本发明的第五实施例的液压换向阀结构示意图。 与前面各实施例所不 同的是, 在该第五实施例中, 液压换向阀为电磁驱动式液压换向阀, 第一阀芯 31的端 部与第二阀芯 32的端部分别设有第一电磁铁 91与第二电磁铁 92, 用于操纵阀芯的动 作。 如图 6a所示, 本发明的液压换向阀还可以作为流量阀使用, 此时两侧电磁铁采用 比例电磁铁 93、 94, 当液压换向阀的阀芯用比例电磁铁驱动时, 比例电磁铁的电磁力 大小通过比例电磁铁的电流调节, 通过对通过比例电磁铁 93、 94的电流控制, 获得适 当的电磁力, 而电磁力的大小决定阀芯的位移量, 从而获得阀芯 31、 32位移的精确控 制, 而阀芯的位移决定阀芯与阀体的腔体之间构成的阀口的开度, 进而可以控制通过 油口的流量, 起到流量控制阀的作用。 如图 6b所示, 本发明的液压换向阀还可以是手动驱动式液压换向阀, 图中 95、 96为手动驱动柄。 如图 7所示, 为根据本发明的第六实施例的液压换向阀的结构。 在该实施例中, 第一阀芯 31的轴线与第二阀芯 32的轴线不同轴, 图中示出两轴线偏离距离为 Ll。优 选地, 在第一阀芯 31与第二阀芯 32上分别设置有台阶面 311与台阶面 321, 第一阀 芯 31的台阶面 311的外径小于第二阀芯 32的外径,第二阀芯 32的台阶面 321的外径 小于第一阀芯 31的外径, 使各台阶面与对应的阀芯孔之间不会产生干涉。因而在第一 阀芯 31与第二阀芯 32的轴线相偏离的状态下, 仍能实现阀芯的正常动作。 图 8为根据本发明的第七实施例的液压换向阀结构示意图。 如图 8所示, 在本发 明第七实施例的液压换向阀中, 第一阀芯 31与第二阀芯 32的外径可以不相同。 图 8 中示出的第一阀芯 31的外径为 L2, 而第二阀芯 32的外径为 L3。 不难理解, 由于本 发明所采用的分体式阀芯结构, 使得在这种两阀芯外径不同的情况下, 依然能实现液 压换向阀的正常工作。 可以理解,虽然前面所述中没有对本发明液压换向阀中分体式的第一阀芯 31与第 二阀芯 32的长度以及第一阀套 21与第二阀套 22的长度进行限定,但显然该第一阀芯 31与第二阀芯 32的长度可以相同, 也可以不相同, 第一阀套 21与第二阀套 22的长 度可以相同, 也可以不相同。 图 9示出两个分体式阀芯、 阀套长度不相同时的一种结 构。 图 10与图 10a示出了根据本发明的液压换向阀的一种控制方法,也即增加了一个 控制油口实现四位功能控制方法。 如图所示, 原作为泄油口 R的油口可作为控制油口 K。 当 、 X、 Υ油口均未引入压力油时, 第一阀芯 31和第二阀芯 32在第一弹性件 51和第二弹性件 52作用下保持中位的 0型机能, Ρ、 Τ、 Α、 Β油口互不相通。 当 X口引入压力油时, 第一阀芯 31 向右运动, 第一阀芯 31通过与第二阀芯 32 的贴合面将力传递给第二阀芯 32, 第二阀芯 32随第一阀芯 31—起向右运动, 压缩第 二弹性件 52并实现左位功能, 此时 Ρ口与 Β口相通, Α口与 Τ口相通。 压力油泄压 后, 阀芯在第二弹性件 52力作用下回到中位。 当 Y口引入压力油时, 第二阀芯 32向左运动, 第二阀芯 32通过与第一阀芯 31 的贴合面将力传递给第一阀芯 31, 第一阀芯 3 1随第二阀芯 32—起向左运动, 压缩第 一弹性件 51并实现右位功能, 此时 P口与 A口相通, B口与 T口相通。 压力油泄压 后, 阀芯在第一弹性件 51力作用下回到中位。 当阀芯在中位、 左位及右位时, 第一阀芯 31与第二阀芯 32之间的泄漏油通过 K 口泄出。 如图 10a所示, 当 K口引入压力油时, 第一阀芯 31克服第一弹性件 51力向 左运动, 而第二阀芯 32克服第二弹性件 52力向右运动, 此时 P口与 A口相通, 同时 P口与 B口相通, 实现 P型机能。 所以该液压换向阀采用了一种新型换向原理后, 能 够在普通压力油控制方式下实现四位功能。 本发明的分体式阀套、 阀芯结构还可以运用到其他形式的液压换向阀或液压控制 系统中。 如图 11所示给出了这样的一种液压换向阀组, 包括有阀芯、 阀套与阀块 11, 阀套设于阀块的腔体内, 阀套为分体式阀套, 包括第一阀套 21与第二阀套 22, 阀芯 设于阀套内, 阀芯为分体式阀芯, 包括第一阀芯 31与第二阀芯 32, 其中分体式的阀 芯 31、 32处于同步工作状态, 液压换向阀组上设置有至少三个通油口, 可实现至少二 个工作位。 由于采用了分体式阀芯、 阀套结构, 可方便地将阀芯、 阀套集成在阀块内来实现 液压换向阀的功能, 该液压换向阀组区别于传统独立结构的液压换向阀, 由于阀芯通 过阀套直接插入阀块的内孔中, 能够减少传统液压换向阀与阀块间的连接, 即减少泄 露环节, 控制和实现都非常方便, 且可通过阀块的设计来实现整个液压系统的合理布 局。 另外, 将阀芯集成到阀块可减小整个阀块组件的质量和体积, 材料成本大为降低。 可以理解, 本发明中的分体式阀芯、 阀套结构可以运用于带有控制管路的各种液 压控制系统中。 也即根据本发明可提供一种液压控制系统, 所述液压控制系统包括前 面所述的液压换向阀或液压换向阀组。 本发明的液压换向阀、 液压换向阀组可广泛地运用于各类工程机械中, 包括混凝 土机械、 筑路机械、 挖掘机械、 起重机械、 港口机械及桩工机械等。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种液压换向阀, 其特征在于包括:
阀体;
阀套, 设于所述阀体的腔体内, 所述阀套为分体式阀套, 至少包括第一阀 套 (21 ) 与第二阀套 (22);
阀芯, 设于所述阀套内, 所述阀芯为分体式阀芯, 至少包括第一阀芯(31 ) 与第二阀芯(32), 所述第一阀芯(31 )和所述第二阀芯(32)处于同步工作状 态;
所述液压换向阀上设置有至少三个通油口, 所述液压换向阀可实现至少二 个工作位。
2. 根据权利要求 1所述的液压换向阀, 其特征在于, 所述阀套为阶梯式阀套, 所 述阀体的腔体也设置为阶梯式, 与所述阀套的阶梯式结构相匹配。
3. 根据权利要求 1所述的液压换向阀, 其特征在于, 所述阀套上设置有与所述阀 体上的压力油口相对应的通油口, 所述阀套与阀体之间通过密封圈(40)密封。
4. 根据权利要求 1所述的液压换向阀, 其特征在于, 还包括:
第一跟随弹簧 (81 ), 直接与所述第一阀芯 (31 ) 的端部相抵接; 以及 第二跟随弹簧 (82), 直接与所述第二阀芯 (32) 的端部相抵接, 所述第一跟随弹簧(81 )与第二跟随弹簧(82)用于保持所述第一阀芯(31 ) 与第二阀芯 (32) 处于相抵靠状态。
5. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 还包括第三阀 芯(33 ), 所述第三阀芯(33 )设于所述第一阀芯(31 )与第二阀芯(32)之间。
6. 根据权利要求 5所述的液压换向阀, 其特征在于, 还包括第三阀套(23 ), 所述 第三阀套 (23 ) 与所述第三阀芯 (33 ) 相匹配。
7. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 所述液压换向 阀为电磁驱动式液压换向阀, 所述第一阀芯 (31 ) 的端部与第二阀芯 (32) 的 端部分别设有第一电磁铁(91 )与第二电磁铁(92),用于操纵所述阀芯的动作。
8. 根据权利要求 7所述的液压换向阀, 其特征在于, 所述液压换向阀为流量阀, 所述电磁铁为比例电磁铁, 用于对通过比例电磁铁的电流控制来控制通过流量 阀阀口的流量。
9. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 所述第一阀芯
(31 ) 的轴线与第二阀芯 (32) 的轴线不同轴。
10. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 所述第一阀芯
(31 ) 与第二阀芯 (32) 的外径不相同。
11. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 所述液压换向 阀为三位三通液压换向阀, 所述阀体与阀套上设有相对应的压力油口 P、 回油 口 1\ 第一工作油口 A, 所述回油口 T设置的位置相对于所述第一阀芯 (31 ) 与第二阀芯 (32) 之间。
12. 根据权利要求 1至 4中任一项所述的液压换向阀, 其特征在于, 所述液压换向 阀为三位四通液压换向阀, 所述阀体与阀套上设有相对应的压力油口 P、 回油 口 1\ 第一工作油口 A、 第二工作油口 B、 及泄油口 R, 所述泄油口 R设置的 位置相对于所述第一阀芯 (31 ) 与第二阀芯 (32) 之间。
13. 根据权利要求 6所述的液压换向阀, 其特征在于, 所述液压换向阀为三位六通 液压换向阀, 所述阀体与阀套上设有相对应的压力油口 P、 回油口 τ、 第一工 作油口 Α、 第二工作油口 Β、 第三工作油口 C、 第四工作油口 D、 及泄油口 R, 所述泄油口 R设置的位置相对于所述第一阀芯 (31 ) 与第三阀芯 (33 )之间以 及所述第二阀芯 (32) 与第三阀芯 (33 ) 之间。
14. 一种根据权利要求 1至 13中任一项所述的液压换向阀的控制方法,其特征在于, 所述阀体上的泄油口 R同时作为控制油口 K, 当阀芯在中位、 左位及右位时, 第一阀芯 (31 ) 与第二阀芯 (32)之间的泄漏油通过所述 Κ口泄出, 当所述 Κ 口引入压力油时, 第一阀芯 (31 ) 向左运动, 而第二阀芯 (32) 向右运动, 此 时阀体 (10) 上的 Ρ口与 Α口相通, 同时 P口与 B口相通, 实现四位功能。
15. 一种液压换向阀组, 其特征在于包括:
阀块;
阀套, 设于所述阀块的腔体内, 所述阀套为分体式阀套, 至少包括第一阀 套 (21 ) 与第二阀套 (22); 阀芯, 设于所述阀套内, 所述阀芯为分体式阀芯, 至少包括第一阀芯(31 ) 与第二阀芯(32), 所述第一阀芯(31 )和所述第二阀芯(32)处于同步工作状 态;
所述液压换向阀组上设置有至少三个通油口, 所述液压换向阀可实现至少 二个工作位。
16. 一种液压控制系统, 其特征在于, 所述液压控制系统包括根据权利要求 1至 13 中任一项所述的液压换向阀或权利要求 15所述的液压换向阀组。
17. 一种工程机械,其特征在于,所述工程机械上设置有根据权利要求 1至 13中任 一项所述的液压换向阀或根据权利要求 14所述的液压换向阀组。
PCT/CN2011/077822 2010-07-30 2011-07-29 液压换向阀、液压换向阀组及液压换向阀控制方法 WO2012013160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102408479A CN101893011A (zh) 2010-07-30 2010-07-30 液压阀、液压阀组及其控制方法
CN201010240847.9 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012013160A1 true WO2012013160A1 (zh) 2012-02-02

Family

ID=43102311

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/077809 WO2012013158A1 (zh) 2010-07-30 2011-07-29 液压阀、液压阀组及液压阀控制方法
PCT/CN2011/077822 WO2012013160A1 (zh) 2010-07-30 2011-07-29 液压换向阀、液压换向阀组及液压换向阀控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077809 WO2012013158A1 (zh) 2010-07-30 2011-07-29 液压阀、液压阀组及液压阀控制方法

Country Status (2)

Country Link
CN (3) CN101893011A (zh)
WO (2) WO2012013158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185619A3 (de) * 2014-06-03 2016-03-03 Voith Patent Gmbh Mehrwegeventil, insbesondere ein 6/2-wegeventil und mehrwegeventilanordnung

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893011A (zh) * 2010-07-30 2010-11-24 三一重工股份有限公司 液压阀、液压阀组及其控制方法
CN102116328B (zh) * 2011-03-10 2012-07-18 三一重工股份有限公司 M型机能换向阀
CN103511376A (zh) * 2012-06-19 2014-01-15 上海立新液压有限公司 一种高频响比例方向阀
CN102794598A (zh) * 2012-06-28 2012-11-28 宝钢不锈钢有限公司 一种液压滑阀的阀芯间隙磨损量的检修方法
CN103089731B (zh) * 2013-01-22 2015-09-09 浙江大学 一种内控式四通换向阀
CN103133448B (zh) * 2013-02-28 2015-04-15 北京理工大学 负载节流口可独立控制的节能型液压阀和液压阀控系统
GB201320192D0 (en) * 2013-11-15 2014-01-01 Blagdon Actuation Res Ltd Servo Valves
CN104295772B (zh) * 2014-10-16 2016-08-17 江苏恒立液压科技有限公司 换向阀阀芯两级液控结构
CN105422921B (zh) * 2016-01-08 2018-07-24 浙江大学 一种数字阀单元及其组合和控制方法
CN106594323A (zh) * 2016-12-30 2017-04-26 龙工(上海)精工液压有限公司 一种有效防止多路阀阀芯卡滞的结构
CN107830202A (zh) * 2017-10-25 2018-03-23 上海永瑞气动有限公司 多段可组合阀芯结构的电磁操作阀
CN109611406B (zh) * 2019-01-11 2020-11-17 西安理工大学 一种液压换向阀
CN109989956B (zh) * 2019-03-27 2024-03-22 银川市长城液压有限责任公司 一种液压阀和液压系统
US11143287B2 (en) * 2019-04-01 2021-10-12 GM Global Technology Operations LLC Hydraulic control valve
CN110388341B (zh) * 2019-07-22 2020-11-10 深圳东风汽车有限公司 液压系统的电磁阀无卡滞换向的控制方法
CN110485961B (zh) * 2019-08-14 2021-08-13 中国石油化工股份有限公司 一种液压整形管柱及套管整形工艺
CN110966418A (zh) * 2019-11-21 2020-04-07 中国航发西安动力控制科技有限公司 一种用于液压阀类部件的弹簧座
CN111188801B (zh) * 2020-01-13 2022-06-10 宝鸡石油机械有限责任公司 一种两位六通液控换向阀
JP6947879B1 (ja) * 2020-06-09 2021-10-13 株式会社ソディック 軽金属射出装置の逆流防止装置および軽金属射出装置の逆流防止方法
CN111852976B (zh) * 2020-07-16 2022-03-29 中国石油大学(北京) 两位三通液动换向阀
CN111946861B (zh) * 2020-09-27 2022-03-08 兰州理工大学 一种液压伺服阀中的抗冲蚀功率级滑阀
CN112833069B (zh) * 2020-12-31 2023-12-08 沈小荣 一种具有分离液体杂质功能的智能液压阀及其使用方法
CN112762042A (zh) * 2021-01-26 2021-05-07 中国矿业大学(北京) 一种具有特殊密封阀芯结构的滑阀式液压换向阀
CN112855647B (zh) * 2021-03-23 2021-12-31 同济大学 一种大流量轴配流伺服阀
CN112855648B (zh) * 2021-03-23 2021-12-31 同济大学 一种多冗余的轴配流伺服阀
CN113236620A (zh) * 2021-04-15 2021-08-10 中国矿业大学 一种三位四通电液比例换向阀
CN113175458B (zh) * 2021-05-14 2022-10-04 中国船舶重工集团公司第七0七研究所九江分部 一种多级阻尼低噪声换向阀
CN113623285B (zh) * 2021-10-09 2022-02-22 江苏恒立液压科技有限公司 一种过渡机能液压阀
CN116928240B (zh) * 2023-09-19 2023-12-12 陕西法士特汽车传动集团有限责任公司 两路自反馈液压控制阀、离合器液压控制系统及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254687A (en) * 1979-10-24 1981-03-10 The Cessna Aircraft Company Flow control valve
US4368750A (en) * 1978-04-28 1983-01-18 Sundstrand Corporation Ball-type feedback motor for servovalves
US4860792A (en) * 1987-09-10 1989-08-29 Diesel Kiki Co., Ltd. Electromagnetic control valve
US5385171A (en) * 1992-06-05 1995-01-31 Trinova Limited Two-stage hydraulic valves
CN2324355Y (zh) * 1998-02-24 1999-06-16 陆伯武 板式电磁换向阀
CN2869408Y (zh) * 2005-06-27 2007-02-14 湖州生力液压有限公司 负载反馈复合阀
CN201180810Y (zh) * 2008-03-04 2009-01-14 孙光锋 气控换向阀
CN101893011A (zh) * 2010-07-30 2010-11-24 三一重工股份有限公司 液压阀、液压阀组及其控制方法
CN201891688U (zh) * 2010-07-30 2011-07-06 三一重工股份有限公司 液压阀、液压阀组、液压控制系统及工程机械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818926A (en) * 1973-04-11 1974-06-25 D Wohlwend Hydraulic valve and system
DE3320879A1 (de) * 1983-06-09 1984-12-13 Robert Bosch Gmbh, 7000 Stuttgart Hydraulische steuereinrichtung
DE3515563C1 (de) * 1985-04-30 1986-11-06 Parker Hannifin "NMF" GmbH, 5000 Köln Hydraulisches Steuerventil in Kolben-Schieber-Bauweise
DE3935339C2 (de) * 1988-10-26 1996-02-08 Tiefenbach Gmbh Hydraulikventil
CN2160031Y (zh) * 1993-07-17 1994-03-30 史广成 高精度分流集流阀
DE4324939C2 (de) * 1993-07-24 1995-11-23 Festo Kg Kolbenschieberventil
DE4400760C2 (de) * 1994-01-13 1997-03-27 Festo Kg Mehrwegeventil
DE10116507B4 (de) * 2001-04-03 2005-02-10 Festo Ag & Co.Kg Ventilanordnung
DE10139534A1 (de) * 2001-08-10 2003-02-20 Bosch Rexroth Ag Schließkörper, insbesondere Ventilkegel für ein Stetigdruckventil
DE102006062432B4 (de) * 2006-12-27 2009-01-29 Robert Bosch Gmbh Modulares pneumatisches Schieberventil
CN201288869Y (zh) * 2008-10-28 2009-08-12 上海立新液压有限公司 一种平衡控制阀
CN201368227Y (zh) * 2009-03-24 2009-12-23 毛孟其 气控复位流量阀
CN201385696Y (zh) * 2009-04-21 2010-01-20 浙江江茂实业股份有限公司 动力转向器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368750A (en) * 1978-04-28 1983-01-18 Sundstrand Corporation Ball-type feedback motor for servovalves
US4254687A (en) * 1979-10-24 1981-03-10 The Cessna Aircraft Company Flow control valve
US4860792A (en) * 1987-09-10 1989-08-29 Diesel Kiki Co., Ltd. Electromagnetic control valve
US5385171A (en) * 1992-06-05 1995-01-31 Trinova Limited Two-stage hydraulic valves
CN2324355Y (zh) * 1998-02-24 1999-06-16 陆伯武 板式电磁换向阀
CN2869408Y (zh) * 2005-06-27 2007-02-14 湖州生力液压有限公司 负载反馈复合阀
CN201180810Y (zh) * 2008-03-04 2009-01-14 孙光锋 气控换向阀
CN101893011A (zh) * 2010-07-30 2010-11-24 三一重工股份有限公司 液压阀、液压阀组及其控制方法
CN201891688U (zh) * 2010-07-30 2011-07-06 三一重工股份有限公司 液压阀、液压阀组、液压控制系统及工程机械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185619A3 (de) * 2014-06-03 2016-03-03 Voith Patent Gmbh Mehrwegeventil, insbesondere ein 6/2-wegeventil und mehrwegeventilanordnung

Also Published As

Publication number Publication date
CN101893011A (zh) 2010-11-24
CN102297172A (zh) 2011-12-28
CN102297171B (zh) 2012-07-11
WO2012013158A1 (zh) 2012-02-02
CN102297171A (zh) 2011-12-28
CN102297172B (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2012013160A1 (zh) 液压换向阀、液压换向阀组及液压换向阀控制方法
CN102650305B (zh) 2d液压助力电液比例换向阀
WO2006050673A1 (fr) Soupape de regulation a trois voies de reduction de rapport de pression
CN108019535B (zh) 阀芯采用密封锥面的两位三通换向阀
CN201368227Y (zh) 气控复位流量阀
CN108005982B (zh) 过渡位置无泄漏的大流量电磁球阀
US3954275A (en) Machine tool chucks
CN104632738B (zh) 一种三位四通电磁球式换向阀
CN102434515A (zh) 方波状阀芯的液压旋转阀
JPH11351422A (ja) ボ―ル・ポペット空気圧制御弁
CN211852969U (zh) 一种锥阀型电磁换向阀
CN201891688U (zh) 液压阀、液压阀组、液压控制系统及工程机械
US20080035224A1 (en) Sleeved spool fluid power control valve
US4513783A (en) Directional control valve
CN211449246U (zh) 换向阀
CN211117765U (zh) 一种电磁阀及机械设备
CN103206553A (zh) 一种间隙补偿转动阀
CN101082348A (zh) 先导式二(三)位四通集成换向阀
CN108757623B (zh) 一种稳定型两通比例节流阀
US4787412A (en) Cartridge valve
CN110259746B (zh) 全桥式液压阀导控机构
CN212337762U (zh) 液压多路手柄控制阀
CN214093147U (zh) 分段式阀芯阀套大通径液控换向阀
CN103352992B (zh) 一种随车起重机用手动控制换向阀
JP4117636B2 (ja) 省エネルギ駆動用電磁弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811861

Country of ref document: EP

Kind code of ref document: A1