WO2012013137A1 - 螺栓结合面单元全载荷静特性试验装置及试验方法 - Google Patents

螺栓结合面单元全载荷静特性试验装置及试验方法 Download PDF

Info

Publication number
WO2012013137A1
WO2012013137A1 PCT/CN2011/077583 CN2011077583W WO2012013137A1 WO 2012013137 A1 WO2012013137 A1 WO 2012013137A1 CN 2011077583 W CN2011077583 W CN 2011077583W WO 2012013137 A1 WO2012013137 A1 WO 2012013137A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
load
component
special screw
force sensor
Prior art date
Application number
PCT/CN2011/077583
Other languages
English (en)
French (fr)
Inventor
黄玉美
惠烨
杨新刚
尤艳
Original Assignee
西安理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安理工大学 filed Critical 西安理工大学
Priority to JP2013520956A priority Critical patent/JP5496421B2/ja
Publication of WO2012013137A1 publication Critical patent/WO2012013137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0078Testing material properties on manufactured objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • the invention belongs to the technical field of full load static characteristic test of component joint surface, and relates to a bolt joint surface unit full load static characteristic test device, and the invention also relates to a bolt joint surface unit full load static characteristic test method.
  • a machine consists of a large number of components.
  • the surface to which the components are connected is called the joint surface.
  • the joint surface characteristics have a great influence on the machine characteristics.
  • the joint surface stiffness of machine tools, coordinate measuring machines, robots, etc. accounts for 50% of the machine stiffness. Above, the damping accounts for 50%-80%.
  • the joint surface of the member and the member bolted together is called a bolt joint surface, and the bolt joint surface characteristic is combined by the joint surface of the two members, the screw joint surface of the bolt and one of the members, and the joint surface of the bolt and the other member.
  • the characteristics of the surface are determined.
  • the joint surface characteristics have nonlinear characteristics, so the test device and test method for obtaining the bolt joint surface characteristics are critical to the accuracy of the obtained bolt joint surface characteristics.
  • the joint faces of the two members may be large, and the number of connecting bolts may be plural.
  • the joint surface of one of the bolt joints is called a bolt joint surface unit, and the characteristics of the entire bolt joint surface depend on the characteristics of each bolt joint surface unit. And its distribution, if the characteristics of the bolt joint surface unit can be accurately obtained, and then the entire bolt joint surface characteristics can be obtained by analysis.
  • the bolt joint surface unit is part of the entire bolt joint surface, so the bolt joint surface unit may be subjected to both the normal preload and the working load (including normal force, tangential force, torque and bending moment). Load).
  • the current bolt joint surface static test device can only be limited to the normal preload characteristic test.
  • the technical solution adopted by the present invention is a bolt-bonding surface unit full-load static characteristic testing device, which comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left column and the right column;
  • the lower test piece is placed on the table top, and the upper test piece is placed on the lower test piece, and the pre-loading component is arranged between the upper test piece and the cross beam, and the pre-loading component is sequentially connected with the upper test piece and the lower test piece;
  • the upper test piece is sequentially connected;
  • Each of the two ends of the cantilever is symmetrically mounted with a loading component, which is respectively called a first loading component and a second loading component, and the first loading component and the second loading component are vertically connected to the beam respectively;
  • Each of the two ends of the cantilever end is provided with a connecting member, and the connecting member and the right column and the left column of the beam are respectively provided with an axial horizontal loading assembly, which are respectively referred to
  • the utility model comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left vertical column and the right vertical column; the lower test piece is placed on the table surface of the box body, and the upper test piece and the upper test piece are placed on the lower test piece.
  • a preloading component is arranged between the upward beam and the cross beam, and the preloading component is sequentially connected with the upper test piece and the lower test piece;
  • the structure of the preloading component comprises: a simulated bolt head, a force sensor, a gasket, a bearing, a special screw and Centering attachment, centering attachment consists of two stepped half rings for concentric mounting of special screws, bearings, gaskets, force sensors, simulated bolt heads, upper test pieces, lower test pieces, upper end of special screw It is a square head structure and has a horizontal force-applying hole through the shaft.
  • the special screw passes through the bearing, the gasket, the force sensor, the simulated bolt head, the axial hole of the upper test piece, and the lower end of the special screw from top to bottom. Threaded to the lower test piece;
  • the step of performing the vertical direction preload test is
  • the lower end of the special screw is sequentially passed down through the bearing, the gasket, the force sensor, and the hole of the simulated bolt head, so that the lower end of the special screw is screwed with the lower test piece, the centering attachment is removed, and the upper end square of the special screw is rotated.
  • the special screw presses the upper test piece and the lower test piece to apply the normal pre-tightening force; at this time, the pre-tightening force is detected by the force sensor, and each displacement sensor simultaneously detects the normal relative displacement of the upper test piece and the lower test piece.
  • the relative displacement of the normal direction is the pre-deformation of the bolt joint surface unit, and the special screw of the pre-loading component is adjusted to change the pre-tightening force, and the above process is repeated, that is, the relationship between the pre-tightening force of the bolt joint surface unit and the pre-deformation is obtained;
  • the utility model comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left vertical column and the right vertical column; the lower test piece is placed on the table surface of the box body, and the upper test piece and the upper test piece are placed on the lower test piece.
  • a preloading component is arranged between the upward beam and the cross beam, and the preloading component is sequentially connected with the upper test piece and the lower test piece; a loading component is respectively symmetrically mounted on the cantilever arms of the upper test piece, respectively called first loading The component, the second loading component, the first loading component and the second loading component are respectively vertically connected to the beam; the structure of the preloading component comprises: a simulated bolt head, a force sensor, a gasket, a bearing, a special screw And centering attachment, the centering attachment consists of two stepped half rings for the concentric installation of special screws, bearings, gaskets, force sensors, simulated bolt heads, upper test pieces and lower test pieces, special screw
  • the upper end is a square head structure, and a horizontal force-applying hole is opened through the shaft center.
  • the special screw passes through the bearing, the gasket, the force sensor, the simulated bolt head, the axial hole of the upper test piece, and the special screw from the top to the bottom.
  • Lower end and lower test piece pass the screw
  • the first loading component and the second loading component have the same structure and are vertically mounted, and each comprises a force sensor component, a front loading nut, a rear loading nut and a flange, and one end and the upper of each force sensor component
  • the cantilever arms at the two ends of the test piece are fixedly connected, and the other end of each force sensor assembly is connected with a corresponding flange mounted on the beam through its thread and the front load nut and the rear load nut;
  • the front loading nut and the rear loading nut are such that the vertically mounted first loading component and the second loading component apply the same normal working load, that is, the pulling or pressing load is applied as needed; the first loading component, the first Two-loaded component application method
  • the working load is detected by the respective force sensor assemblies of the first load-carrying component and the second load-carrying component, and the vertical displacement sensor detects the normal relative displacement of the upper test piece and the lower test piece due to the normal working load. That is, the normal deformation caused by the normal working load of the bolt joint surface unit, changing the normal working load applied by the first load carrying component and the second loading component, and repeating the above process, that is, the normal direction of the bolt joint surface unit is obtained.
  • the utility model comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left vertical column and the right vertical column; the lower test piece is placed on the box top surface, and the upper test piece is placed on the lower test piece, and the upper test piece is upward
  • a preloading component is arranged between the beam and the preloading component, and the upper test piece and the lower test piece are sequentially connected; a connecting piece is mounted on the cantilever end of the upper test piece, and an axial level is arranged between the connecting piece and the right vertical column of the beam.
  • the third loading component comprises: a simulated bolt head, a force sensor, a gasket, a bearing, a special screw and a centering attachment, and the centering attachment is composed of two stepped half rings,
  • the upper end of the special screw has a square head structure, and a horizontal force hole is opened through the shaft center.
  • the screw passes through the bearing, the gasket, the force sensor, the simulated bolt head and the shaft hole of the upper test piece in order from top to bottom, and the lower end of the special screw is screwed with the lower test piece;
  • the third load-carrying component is horizontally installed, Including force sensor a front load nut, a rear load nut and a flange, one end of the force sensor assembly is fixedly connected to one end of the upper test piece through a connecting member, and the other end of the force sensor assembly passes through the thread and the front load nut, and the rear application
  • the load nut is connected to a corresponding flange mounted on the right column;
  • the screw presses the upper test piece and the lower test piece to apply a normal pre-tightening force; a connecting piece and a third load-carrying component are horizontally mounted on one side of the upper test piece, and the axis S of the third load-carrying component passes through the upper test piece
  • the connecting surface with the lower test piece and the axis L of the special screw of the preloading assembly are perpendicularly intersected, and one end of the force sensor assembly of the horizontally mounted third loading component is fixedly connected to the right side of the connecting member, and the other end of the force sensor assembly is passed
  • the thread and the front load nut and the rear load nut are connected to the flange, and the flange is fixedly mounted on the right column; the front load nut and the rear load nut of the third load carrying component are adjusted to apply the tangential working load, and cut.
  • the working load is positive or negative according to the need, and the tangential working load applied by the third loading component is detected by the force sensor component of the third loading component, and the displacement sensor of the horizontal direction detects the upper test piece and the lower test piece.
  • the tangential relative displacement generated by the working load is the tangential deformation of the bolt joint surface unit due to the tangential working load, changing the tangential working load applied by the third loading component, and repeating the above process to obtain the bolt combination
  • the utility model comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left vertical column and the right vertical column; the lower test piece is placed on the box top surface, and the upper test piece is placed on the lower test piece, and the upper test piece is upward
  • a preloading component is disposed between the beam and the cross member, and the preloading component is sequentially connected with the upper test piece and the lower test piece;
  • a load carrying component is respectively symmetrically mounted on the cantilever arms of the upper test piece, respectively referred to as a first load carrying component.
  • the structure of the preloading component comprises: a simulated bolt head, a force sensor, a gasket, a bearing, a special screw and Centering attachment, centering attachment consists of two stepped half rings for concentric mounting of special screws, bearings, gaskets, force sensors, simulated bolt heads, upper test pieces, lower test pieces, upper end of special screw It is a square head structure and has a horizontal force-applying hole through the shaft.
  • the special screw passes through the bearing, the gasket, the force sensor, the simulated bolt head, the axial hole of the upper test piece, and the lower end of the special screw from top to bottom.
  • the first load-carrying component and the second load-carrying component have the same structure and are vertically mounted, and each includes a force sensor component, a front load nut, a rear load nut and a flange, and one end and the upper of each force sensor component
  • the cantilever arms at the two ends of the test piece are fixedly connected, and the other end of each force sensor assembly is connected with a corresponding flange mounted on the beam through its thread and the front load nut and the rear load nut;
  • the vertically mounted first loading component and the second loading component apply normal working loads of equal magnitude and opposite directions to apply a bending moment working load, the normal working load is vertically mounted first loading component, second loading
  • the force sensor component of the component detects and calculates the bending moment working load from the normal working load in two opposite directions; the vertical displacement sensor detects the relative displacement of the upper test piece and the lower test piece in the vertical direction.
  • the inclination of the bolt joint surface unit due to the bending moment working load is obtained from the relative displacement of the upper test piece and the lower test piece in the vertical direction, and the first load-carrying nut of the vertically mounted first load-carrying component and the second load-carrying component is adjusted. After the nut is loaded, the working load of the bending moment is changed, and the above process is repeated, that is, the relationship between the inclination deformation of the bolt joint surface unit and the working load of the bending moment is obtained;
  • the utility model comprises a box body, and a beam is arranged above the box body, and the beam is fixedly connected with the box body through the left vertical column and the right vertical column; the lower test piece is placed on the table surface of the box body, and the upper test piece and the upper test piece are placed on the lower test piece.
  • a preloading component is arranged between the upward and the cross beam, and the preloading component is sequentially connected with the upper test piece and the lower test piece; a connecting piece is installed at each of the cantilever ends of the upper test piece, and the right column and the left column of the connecting piece and the beam are connected.
  • Each of the axially disposed loading assemblies is respectively referred to as a third loading component and a fourth loading component;
  • the preloading component is configured to include a simulated bolt head, a force sensor, a gasket, a bearing, and a dedicated Screw and centering attachment, centering attachment consists of two stepped half rings for concentric installation of special screws, bearings, gaskets, force sensors, simulated bolt heads, upper test pieces and lower test pieces, special screw
  • the upper end is a square head structure, and a horizontal force-applying hole is opened through the shaft center.
  • the special screw passes through the bearing, the gasket, the force sensor, the simulated bolt head, the shaft hole of the upper test piece, and the special screw from top to bottom.
  • the third loading component and the fourth loading component have the same structure and are horizontally mounted, and both include a force sensor component, a front loading nut, a rear loading nut and a flange, and one end of each force sensor component passes through
  • the connecting member is fixedly connected to the two ends of the upper test piece, and the other end of each force sensor assembly is connected with the corresponding flange mounted on the left column and the right column through the thread and the front loading nut and the rear loading nut;
  • the four-loaded component axis S is to pass through the connecting surface of the upper test piece and the lower test piece, perpendicular to but not intersecting the axis L of the special screw, and the axes of the third and fourth load-carrying components of the left and right horizontal S is equidistant from the axis L of the special screw and opposite in position, one in front of the dedicated screw axis L and one behind the dedicated screw axis L; one end of the force sensor assembly of the third load-carrying component passes through the connector and the test Right side The other end is connected by the thread and the front load nut and the rear load nut to the flange fixedly mounted on the right column; the end of the force sensor assembly of the fourth load carrying component passes through the other connector and the upper test piece left.
  • the invention is characterized in that the relationship between the pre-tightening force and the pre-deformation of the bolt-joining surface unit can be completed, the relationship between the normal deformation and the normal working load is changed, and the tangential deformation changes with the tangential working load.
  • the relationship test of the change relationship, the relationship between the inclination deformation and the change of the working load of the bending moment, and the relationship between the deformation of the corner and the change of the torque working load, and the pre-tightening force and the full working load of the bolt joint unit are realized. Comprehensive static characteristics test.
  • Figure 1 is a schematic view showing the construction of a bolt joint surface unit
  • FIG. 2 is a schematic structural view of a full working load test device of the bolt joint unit of the present invention
  • Figure 3 is a schematic view showing the pre-tightening test installation in the method of the present invention.
  • Figure 4 is a schematic view showing the installation of the normal working load and the bending moment test in the method of the present invention
  • Figure 5 is a schematic view showing the installation of the tangential working load test in the method of the present invention.
  • Figure 6 is a schematic view showing the torque test installation in the method of the present invention.
  • Figure 7 is a schematic view showing the connection of the load-carrying assembly and the beam in the device of the present invention.
  • Figure 8 is a schematic view showing the connection of the connecting member, the loading assembly and the right column in the device of the present invention.
  • Figure 9 is a schematic view showing the distribution of respective displacement sensors in the apparatus of the present invention.
  • Figure 10 is a schematic illustration of the intersection of the method of the present invention in performing a torque static characteristic test.
  • L is dedicated The axis of the screw
  • S is the axis of the load-carrying component
  • a is the intersection of the axis S of the load-carrying component and the axis L of the special screw when the tangential static characteristic test is performed
  • b is the axis S of the right-hand load component and the axis of the special screw when the torque static characteristic test is performed.
  • the intersection of L, c is the intersection of the left load component axis S and the dedicated screw axis L during the torque static characteristic test.
  • the bolt joint surface unit characteristic is composed of two members 11 and a joint surface 13 of the member 12 (joining surface A), a threaded joint surface 14 of the bolt and one of the members 12 (bonding surface B), and a bolt and another
  • the connection surface 15 (bonding surface C) of the member 11 is determined by the characteristics of the three-part joint surface.
  • the experimental device of the present invention is configured to include a box body 1.
  • a beam 7 is disposed above the box body 1, and the beam 7 is fixedly connected to the box body 1 through the left column 4A and the right column 4B;
  • the lower test piece 2 is placed on the upper surface of the test piece 2, and the upper test piece 3 is placed on the lower test piece 2, and the preload assembly 6 is disposed between the upper test piece 3 and the cross beam 7, and the preload assembly 6 is used for the upper test piece 3
  • the lower test piece 2 is connected and applies a normal pre-tightening force;
  • the upper end of the upper test piece 3 is symmetrically mounted with a load-carrying component 5A, a load-carrying component 5B, the load-carrying component 5A, and the load-carrying component 5B upwardly
  • the beam 7 is connected for applying a normal working load or a bending moment;
  • a connecting member 8 is attached to each of the cantilever ends of the upper test piece 3, and the connecting member 8 and
  • the preload assembly 6 is constructed to include a simulated bolt head 6-1, a force sensor 6-2, a gasket 6-3, a bearing 6-4, a dedicated screw 6-5, and a centering attachment 6- 6, centering attachment 6-6 consists of two stepped half rings, which can be used in special screw 6-5, bearing 6-4, gasket 6-3, force sensor 6-2, simulated bolt head 6-1, And the upper test piece 3 and the lower test piece 2 are removed after the concentric installation, the upper end of the special screw 6-5 is a square head structure, and a horizontal force hole is opened through the shaft center, and the special screw 6-5 is sequentially from top to bottom.
  • the load-carrying assemblies 5A, 5B, 5C, and 5D have the same structure, and each includes a force sensor assembly 5-1, a front load nut 5-2A, a rear load nut 5-2B, and a flange. 5-3, the vertically mounted load-carrying component 5A, the sensor assembly 5-1 of the load-carrying component 5B is fixedly connected to the cantilever of the upper test piece 3, and the other end passes through the thread and the front load nut 5-2A, and the rear application
  • the load nut 5-2B is connected to the flange 5-3, and the flange 5-3 is fixedly mounted on the beam 7; as shown in Fig.
  • one end of the sensor assembly 5-1 of the horizontally mounted load-carrying assembly 5C passes through the connector 8 is fixedly connected with the end of the upper test piece 3, and the other end is connected to the flange 5-3 through its thread and the front load nut 5-2A, the rear load nut 5-2B, and the flange 5 of the load assembly 5C. 3 is fixedly mounted on the right upright column 4B, and similarly, the flange 5-3 of the load carrying assembly 5D is fixedly mounted on the left upright column 4A.
  • Method 1 the step of performing the vertical direction pre-tightening test is: with reference to FIG. 3 and FIG. 9, the lower test piece 2 is fixed on the box body 1, and the upper test piece 3 is placed on the upper surface of the lower test piece 2, and the test is performed.
  • a plurality of vertical displacement sensors 9 are disposed on each measuring plane of the piece 2 and the upper test piece 3, and the lower end of the special screw 6-5 is sequentially passed downward through the bearing 6-4 by the concentric mounting action of the centering attachment 6-6. After the spacer 6-3, the force sensor 6-2, and the hole of the bolt head 6-1 are simulated, the lower end of the special screw 6-5 is screwed to the lower test piece 2, and the centering attachment 6-6 is removed.
  • Method 2 the step of performing the normal working load test is: with reference to FIG. 4 and FIG. 9, the lower test piece 2 is fixed on the case 1, and the upper test piece 3 is placed on the lower test piece 2, and the lower test piece 2 is placed on the lower test piece 2 and A plurality of vertical displacement sensors 9 are disposed on the respective measuring planes of the upper test piece 3, and the loading assembly 5A and the loading assembly 5B are mounted on the two cantilevers of the upper test piece 3; firstly, a certain method is applied by the special screw 6-5.
  • the step of applying the normal preload force to the preload force is the same as the step of the aforementioned preload force test; referring to FIG.
  • One end of the loading assembly 5A and the loading assembly 5B are fixedly connected to the cantilever of the upper test piece 3 respectively, and the other end of the loading assembly 5A and the loading assembly 5B is connected with the flange 5-3 on the beam 7 to adjust the loading assembly.
  • the vertically mounted loading assembly 5A and the loading assembly 5B apply the same normal working load, and the normal working load can be Positive or negative, that is, a tensile or compressive load can be applied;
  • the normal working load applied by the loading assembly 5A and the loading assembly 5B is detected by the respective force sensor assembly 5-1 of the loading assembly 5A and the loading assembly 5B,
  • the displacement sensor 9 in the vertical direction shown in FIG. 9 detects the normal relative displacement of the upper test piece 3 and the lower test piece 2 due to the normal working load, that is, the method in which the bolt joint surface unit is generated by the normal working load.
  • the relationship between the normal working load of the bolt joint surface unit and the normal deformation due to the normal working load can be obtained. .
  • the tangential working load test is performed.
  • the lower test piece 2 is fixed on the case 1, and the upper test piece 3 is placed on the lower test piece 2, and on the lower test piece 2 and A plurality of horizontal displacement sensors 9 are disposed on each measurement plane of the test piece 3; firstly, a certain normal preload force is applied by a special screw 6-5, a method of applying a normal preload force, and a method of the aforementioned preload force test The same; a connector 8 and a loading assembly 5C are horizontally mounted on one side (right side) of the upper test piece 3, and the axis S of the loading assembly 5C is passed through the connection surface of the upper test piece 3 and the lower test piece 2 and The dedicated screw axis L of the carrier assembly 6 is perpendicularly intersected (refer to intersection point a in Fig.
  • the front load nut 5-2A and the rear load nut 5-2B of the adjustment load carrying assembly 5C apply a tangential working load, and the tangential working load may be positive or negative, and the tangential working load applied by the loading assembly 5C is carried by
  • the force sensor assembly 5-1 of the assembly 5C detects that the tangential relative displacement of the upper test piece 3 and the lower test piece 2 due to the tangential working load is detected by the displacement sensor 9 in the horizontal direction, that is, the bolt joint surface unit
  • the tangential deformation caused by the tangential working load, changing the tangential working load applied by the loading assembly 5C, and repeating the above process, the tangential working load of the bolt joint surface unit and the tangential direction due to the tangential working load are obtained.
  • the step of applying the bending moment working load test is as follows. Referring to FIG. 4 and FIG. 9, the test device used in the bending moment working load test is the same as the test device in the normal working load test, and the method of applying the pre-tightening force is also the same; However, the applied normal working load is different, and the left and right vertically mounted load-carrying assemblies 5A, the front load-carrying nut 5-2A of the load-carrying assembly 5B, and the rear load-carrying nut 5-2B are applied to vertically and vertically mount the load.
  • the component 5A and the loading component 5B apply normal working loads of opposite magnitudes and opposite directions to apply a bending moment working load, which is detected by the vertically mounted loading component 5A and the force sensor 5-1 of the loading component 5B. And the bending moment working load is obtained from the normal working load of the opposite direction; the vertical displacement sensor 9 detects the relative displacement of the upper test piece 3 and the lower test piece 2 in the vertical direction, from the upper test piece 3, the lower part The relative displacement of the test piece 2 in the vertical direction is obtained by determining the inclination of the bolt joint surface unit due to the bending moment working load, and adjusting the vertically mounted load carrying assembly 5A, the front loading nut 5-2A of the loading assembly 5B, and the rear loading. Nut 5-2B, change The bending moment working load, repeating the above process, can obtain the relationship that the inclination deformation of the bolt joint surface unit changes with the bending moment working load.
  • the torque working load test is performed.
  • the lower test piece 2 is fixed on the casing 1, and the upper test piece 3 is placed on the lower test piece 2.
  • a certain normal preload is applied.
  • the device and method for applying the normal pre-tightening force are the same as the method for the pre-tightening force test; a connecting member 8 and a horizontal loading component 5C and a loading component 5D are mounted horizontally on the left and right sides of the upper test piece 3,
  • the axis S of the horizontal loading assembly 5C and the loading assembly 5D is to pass through the connecting surface of the upper test piece 3 and the lower test piece 2, perpendicular to the specific screw axis L of the preloading assembly but not intersecting, and the left and right horizontal loading
  • the axis S of the assembly 5C, the loading assembly 5D is equal to the distance from the dedicated screw axis L, and the position and direction are opposite, one in front of the screw axis L (as in the intersection b of FIG.
  • one end of the force sensor assembly 5-1 of the loading assembly 5C is fixedly connected to the right side of the upper test piece 3 through the connecting member 8, and the other end passes through the thread and the front loading nut 5-2A, and the rear application
  • the load nut 5-2B is connected to the flange 5-3, and the flange 5-3 of the load bearing assembly 5C is fixedly mounted on the right column 4B.
  • One end of the force sensor assembly 5-1 of the loading assembly 5D is fixedly connected to the left side of the upper test piece 3 through another connecting member 8, and the other end passes through the thread thereof and the front loading nut 5-2A and the rear loading nut 5-2B.
  • the flange 5-3 of the loading assembly 5D is fixedly mounted on the left column 4A, and the front loading nut 5-2A of the loading assembly 5D is adjusted by adjusting the horizontal loading assembly 5C, and then loading.
  • the nut 5-2B applies tangential working loads of equal magnitude and opposite direction; the tangential working load is detected by the horizontally mounted load carrying assembly 5C, the force sensor 5-1 of the load carrying assembly 5D, and is tangentially operated by two opposite directions
  • the load is used to obtain the torque working load; the horizontal displacement sensor 9 (the plurality of) detects the relative displacement of the upper test piece 3 and the lower test piece 2 in the horizontal direction, and the upper test piece 3 and the lower test piece 2 are horizontally oriented.
  • the relative displacement is used to obtain the corner deformation caused by the torque working load of the bolt joint surface unit, and the front load nut 5-2A and the rear load nut 5-2B of the load assembly of the horizontally mounted 5C and 5D are adjusted to change the torque operation.
  • Load repeat the above process, you can get the corner deformation of the bolt joint surface unit with the torque Make changes in the relationship between load changes.
  • the apparatus and method of the present invention can complete the relationship between the pre-tightening force and the pre-deformation of the bolt joint surface unit, and the relationship between the normal deformation and the change of the normal working load, and the tangential deformation
  • the relational test of the change of the tangential working load, the relationship between the inclination deformation and the change of the working load of the bending moment, and the relationship between the deformation of the corner and the change of the torque working load, and the pre-compression of the bolt joint surface unit Full static characteristics test of tightness and full working load.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

螺栓结合面单元全载荷静特性试验装置及试验方法 技术领域
本发明属于构件结合面全载荷静特性试验技术领域,涉及一种螺栓结合面单元全载荷静特性试验装置,本发明还涉及一种螺栓结合面单元全载荷静特性试验方法。
背景技术
一台机器由众多构件组成,构件与构件连接的表面称为结合面,结合面特性对机器整机特性影响很大,机床、坐标测量机、机器人等机器的结合面刚度占整机刚度50%以上,阻尼占到50%-80%。构件与构件用螺栓连接起来的结合面称为螺栓结合面,螺栓结合面特性由两个构件的连接面、螺栓与其中一个构件的螺纹连接面及螺栓与另一个构件的连接面等三部分结合面的特性决定。结合面特性具有非线性特征,因此获取螺栓结合面特性的试验装置及试验方法对所获取的螺栓结合面特性的准确性至关重要。
实际结构中两个构件的连接面可能很大,连接螺栓个数可能有多个,把其中一个螺栓连接的结合面称为螺栓结合面单元,整个螺栓结合面特性取决于各个螺栓结合面单元特性及其分布,如果螺栓结合面单元的特性能够准确获取,然后通过解析就可以求出整个螺栓结合面特性。螺栓结合面单元是整个螺栓结合面的一部分,因此螺栓结合面单元就可能既承受法向预紧力,还要承受工作载荷(包括法向力、切向力、转矩和弯矩等全工作载荷)。而目前的螺栓结合面静特性试验装置只能局限于法向预紧特性试验。
技术问题
本发明的目的是提供一种螺栓结合面单元全载荷静特性试验装置,能够进行螺栓结合面的法向力、切向力、转矩和弯矩全工作载荷静特性试验。本发明的另一个目的是提供一种螺栓结合面单元全载荷静特性试验方法,实现螺栓结合面的法向力、切向力、转矩和弯矩全工作载荷静特性试验。
技术解决方案
本发明所采用的技术方案是,一种螺栓结合面单元全载荷静特性试验装置,包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体的台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;上试件的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件、第二施载组件,第一施载组件、第二施载组件分别垂直向上与横梁连接;上试件的两端悬臂端头各安装一个连接件,连接件与横梁的右立柱、左立柱之间各设有一轴线水平的施载组件,分别称为第三施载组件、第四施载组件。
本发明所采用的另一技术方案是,利用上述装置,进行下述测量实验:
方式1,一种螺栓结合面单元全载荷静特性试验方法,利用下述的装置,其结构是,
包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体的台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;所述预载组件的结构是,包括模拟螺栓头、力传感器、垫片、轴承、专用螺杆及定心附件,定心附件由两个阶梯形半圆环组成,用于对专用螺杆、轴承、垫片、力传感器、模拟螺栓头、上试件、下试件的同心安装,专用螺杆的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆从上到下依次穿过轴承、垫片、力传感器、模拟螺栓头、上试件的轴心孔,专用螺杆的下端与下试件通过螺纹连接;
利用上述的装置,进行竖直方向预紧力试验的步骤是,
将下试件固定在箱体上,将上试件置于下试件上表面,在下试件和上试件的各个测量平面上设置若干垂直方向的位移传感器,利用定心附件的同心安装作用,将专用螺杆下端依次向下穿过轴承、垫片、力传感器、模拟螺栓头的孔后,使专用螺杆下端与下试件螺纹连接,撤走定心附件,转动专用螺杆的上端方头,专用螺杆压紧上试件、下试件,从而施加法向预紧力;此时,通过力传感器检测出预紧力,各个位移传感器同时检测出上试件、下试件的法向相对位移,该法向相对位移即是螺栓结合面单元的预变形,调整预载组件的专用螺杆改变预紧力,重复上述过程,即得到螺栓结合面单元的预紧力与预变形的关系;
方式2,一种螺栓结合面单元全载荷静特性试验方法,利用下述的装置,其结构是,
包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体的台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;上试件的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件、第二施载组件,第一施载组件、第二施载组件分别垂直向上与横梁连接;所述预载组件的结构是,包括模拟螺栓头、力传感器、垫片、轴承、专用螺杆及定心附件,定心附件由两个阶梯形半圆环组成,用于对专用螺杆、轴承、垫片、力传感器、模拟螺栓头、上试件、下试件的同心安装,专用螺杆的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆从上到下依次穿过轴承、垫片、力传感器、模拟螺栓头、上试件的轴心孔,专用螺杆的下端与下试件通过螺纹连接;所述第一施载组件、第二施载组件的结构相同,垂直安装,均包括力传感器组件、前施载螺母、后施载螺母及法兰,每个力传感器组件的一端与上试件两端悬臂分别固定连接,每个力传感器组件的另一端通过其螺纹及前施载螺母、后施载螺母与安装在横梁上的对应的法兰连接;
利用上述的装置,进行法向工作载荷试验的步骤是,
将下试件固定在箱体上,将上试件置于下试件上,在下试件和上试件的各个测量平面上设置若干垂直方向的位移传感器,在上试件的两个悬臂上安装第一施载组件、第二施载组件;利用定心附件的同心安装作用,将专用螺杆的下端依次向下穿过轴承、垫片、力传感器、模拟螺栓头的孔后,使专用螺杆的下端与下试件螺纹连接,撤走定心附件,转动专用螺杆的上端方头,专用螺杆压紧上试件、下试件从而施加法向预紧力;将第一施载组件、第二施载组件的一端与上试件悬臂分别固定连接,将第一施载组件、第二施载组件的另一端与横梁上的法兰连接,调整第一施载组件、第二施载组件的前施载螺母、后施载螺母,使垂直安装的第一施载组件、第二施载组件施加相同的法向工作载荷,即根据需要施加拉或压载荷;第一施载组件、第二施载组件施加的法向工作载荷由第一施载组件、第二施载组件各自的力传感器组件检测出,由垂直方向的位移传感器检测出上试件、下试件因法向工作载荷而产生的法向相对位移,即是螺栓结合面单元因法向工作载荷而产生的法向变形,改变第一施载组件、第二施载组件施加的法向工作载荷,重复上述过程,即得到螺栓结合面单元的法向工作载荷与因法向工作载荷而产生的法向变形的关系;
方式3,一种螺栓结合面单元全载荷静特性试验方法,利用下述的装置,其结构是,
包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;上试件一侧悬臂端头安装一个连接件,连接件与横梁的右立柱之间设有一轴线水平的第三施载组件;所述预载组件的结构是,包括模拟螺栓头、力传感器、垫片、轴承、专用螺杆及定心附件,定心附件由两个阶梯形半圆环组成,用于对专用螺杆、轴承、垫片、力传感器、模拟螺栓头、上试件、下试件的同心安装,专用螺杆的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆从上到下依次穿过轴承、垫片、力传感器、模拟螺栓头、上试件的轴心孔,专用螺杆的下端与下试件通过螺纹连接;所述第三施载组件水平安装,包括力传感器组件、前施载螺母、后施载螺母及法兰,力传感器组件的一端通过连接件与上试件的一端头固定连接,力传感器组件的另一端通过其螺纹及前施载螺母、后施载螺母与安装在右立柱上对应的法兰连接;
利用上述的装置,进行切向工作载荷试验的步骤是,
将下试件固定在箱体上,将上试件置于下试件上方,在下试件和上试件的各个测量平面上设置若干水平方向的位移传感器;利用定心附件的同心安装作用,将专用螺杆下端依次向下穿过轴承、垫片、力传感器、模拟螺栓头的孔后,使专用螺杆下端与下试件螺纹连接,撤走定心附件,转动专用螺杆的上端方头,专用螺杆压紧上试件、下试件从而施加法向预紧力;在上试件的一侧水平安装一个连接件及第三施载组件,第三施载组件的轴线S要通过上试件与下试件的连接面并与预载组件的专用螺杆的轴线L垂直相交,水平安装的第三施载组件的力传感器组件的一端与连接件右方固定连接,力传感器组件的另一端通过其螺纹及前施载螺母、后施载螺母与法兰连接,法兰固定安装在右立柱上;调整第三施载组件的前施载螺母、后施载螺母施加切向工作载荷,切向工作载荷根据需要为正或负,第三施载组件施加的切向工作载荷由第三施载组件的力传感器组件检测出,由水平方向的位移传感器检测出上试件与下试件因切向工作载荷而产生的切向相对位移,即是螺栓结合面单元因切向工作载荷而产生的切向变形,改变第三施载组件施加的切向工作载荷,重复上述过程,即得到螺栓结合面单元的切向工作载荷与因切向工作载荷而产生的切向变形的关系;
方式4,一种螺栓结合面单元全载荷静特性试验方法,利用下述的装置,其结构是,
包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;上试件的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件、第二施载组件,第一施载组件、第二施载组件分别垂直向上与横梁连接;所述预载组件的结构是,包括模拟螺栓头、力传感器、垫片、轴承、专用螺杆及定心附件,定心附件由两个阶梯形半圆环组成,用于对专用螺杆、轴承、垫片、力传感器、模拟螺栓头、上试件、下试件的同心安装,专用螺杆的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆从上到下依次穿过轴承、垫片、力传感器、模拟螺栓头、上试件的轴心孔,专用螺杆的下端与下试件通过螺纹连接;所述第一施载组件、第二施载组件的结构相同,垂直安装,均包括力传感器组件、前施载螺母、后施载螺母及法兰,每个力传感器组件的一端与上试件两端悬臂分别固定连接,每个力传感器组件的另一端通过其螺纹及前施载螺母、后施载螺母与安装在横梁上的对应的法兰连接;
利用上述的装置,进行弯矩工作载荷试验的步骤是,
将下试件固定在箱体上,将上试件置于下试件上方,在下试件和上试件的各个测量平面上设置若干位移传感器;利用定心附件的同心安装作用,将专用螺杆的下端依次向下穿过轴承、垫片、力传感器、模拟螺栓头的孔后,使专用螺杆的下端与下试件螺纹连接,撤走定心附件,转动专用螺杆的上端方头,专用螺杆压紧上试件、下试件,从而施加法向预紧力;调整左、右垂直安装的第一施载组件、第二施载组件的前施载螺母、后施载螺母使左、右垂直安装的第一施载组件、第二施载组件施加大小相等方向相反的法向工作载荷,从而施加弯矩工作载荷,法向工作载荷由垂直安装的第一施载组件、第二施载组件的力传感器组件检测出,并由两个方向相反的法向工作载荷求出弯矩工作载荷;由垂直方向的位移传感器检测出上试件、下试件垂直方向的相对位移,由上试件、下试件垂直方向的相对位移求出螺栓结合面单元因弯矩工作载荷而产生的倾角变形,调整垂直安装的第一施载组件、第二施载组件的前施载螺母、后施载螺母,改变弯矩工作载荷,重复上述过程,即得到螺栓结合面单元的倾角变形随着弯矩工作载荷变化而变化的关系;
方式5,一种螺栓结合面单元全载荷静特性试验方法,利用下述的装置,其结构是,
包括箱体,箱体的上方设置有横梁,横梁通过左立柱、右立柱与箱体固定连接;在箱体的台面上安放有下试件,下试件上放置有上试件,上试件向上与横梁之间设置有预载组件,预载组件与上试件、下试件依次连接;上试件的两端悬臂端头各安装一个连接件,连接件与横梁的右立柱、左立柱之间各设有一轴线水平的施载组件,分别称为第三施载组件、第四施载组件;所述预载组件的结构是,包括模拟螺栓头、力传感器、垫片、轴承、专用螺杆及定心附件,定心附件由两个阶梯形半圆环组成,用于对专用螺杆、轴承、垫片、力传感器、模拟螺栓头、上试件、下试件的同心安装,专用螺杆的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆从上到下依次穿过轴承、垫片、力传感器、模拟螺栓头、上试件的轴心孔,专用螺杆的下端与下试件通过螺纹连接;所述第三施载组件、第四施载组件的结构相同,水平安装,均包括力传感器组件、前施载螺母、后施载螺母及法兰,每个力传感器组件的一端通过连接件与上试件的两端头分别固定连接,每个力传感器组件的另一端通过其螺纹及前施载螺母、后施载螺母与安装在左立柱、右立柱上对应的法兰连接;
利用上述的装置,进行转矩工作载荷试验的步骤是,
将下试件固定在箱体上,将上试件置于下试件上方,在下试件和上试件的各个测量平面上设置若干位移传感器;利用定心附件的同心安装作用,将专用螺杆的下端依次向下穿过轴承、垫片、力传感器、模拟螺栓头的孔后,使专用螺杆的下端与下试件螺纹连接,撤走定心附件,转动专用螺杆的上端方头,专用螺杆压紧上试件、下试件从而施加法向预紧力;在上试件左、右侧方各安装一个水平第三施载组件、第四施载组件,水平第三施载组件、第四施载组件轴线S要通过上试件、下试件的连接面,与专用螺杆的轴线L垂直但不相交,且左、右方水平的第三施载组件、第四施载组件的轴线S距专用螺杆的轴线L的距离相等而位置方向相反,一个在专用螺杆轴线L的前方,一个在专用螺杆轴线L的后方;第三施载组件的力传感器组件的一端通过连接件与上试件右方固定连接,另一端通过其螺纹及前施载螺母、后施载螺母与固定安装在右立柱上的法兰连接;第四施载组件的力传感器组件一端通过另一连接件与上试件左方固定连接,另一端通过其螺纹及前施载螺母、后施载螺母与左立柱上的法兰连接,通过调整水平的第三施载组件、第四施载组件的前施载螺母、后施载螺母,施加大小相等方向相反的切向工作载荷;由水平安装的第三施载组件、第四施载组件的力传感器组件检测到切向工作载荷,并由两个方向相反的切向工作载荷求出转矩工作载荷;由水平方向的位移传感器检测出上试件、下试件之间水平方向的相对位移,由上试件、下试件水平方向的相对位移求出螺栓结合面单元因转矩工作载荷而产生的转角变形,同时调整第三施载组件、第四施载组件的前施载螺母、后施载螺母,改变转矩工作载荷,重复上述过程,即得到螺栓结合面单元的转角变形随着转矩工作载荷变化而变化的关系。
有益效果
本发明的特点是:能够完成螺栓结合面单元的预紧力与预变形的关系试验、法向变形随着法向工作载荷变化而变化的关系试验、切向变形随着切向工作载荷变化而变化的关系试验、倾角变形随着弯矩工作载荷变化而变化的关系试验、以及转角变形随着转矩工作载荷变化而变化的关系试验,实现螺栓结合面单元的预紧力及全工作载荷的全面静特性试验。
附图说明
图1是螺栓结合面单元的构成示意图;
图2是本发明螺栓结合面单元的全工作载荷试验装置结构示意图;
图3是本发明方法中的预紧力试验安装示意图;
图4是本发明方法中的法向工作载荷及弯矩试验安装示意图;
图5是本发明方法中的切向工作载荷试验安装示意图;
图6是本发明方法中的转矩试验安装示意图;
图7是本发明装置中的施载组件与横梁连接示意图;
图8是本发明装置中的连接件与施载组件及右立柱的连接示意图;
图9是本发明装置中的各个位移传感器分布示意图;
图10是本发明方法进行转矩静特性试验时的交点示意图。
图中,1.箱体,2.下试件,3.上试件,4A.左立柱,4B.右立柱,5A.施载组件5A,5B.施载组件5B,5C.施载组件5C,5D.施载组件5D,6.预载荷组件,7.横梁,8.连接件,9.位移传感器,11.构件A,12. 构件B,13.结合面A,14.结合面B,15.结合面C,5-1.力传感器组件,5-2A.前施载螺母,5-2B.后施载螺母,5-3.法兰,6-1.模拟螺栓头,6-2.力传感器,6-3.垫片,6-4.轴承,6-5.专用螺杆,6-6.定心附件,L为专用螺杆轴线,S为施载组件轴线,a为切向静特性试验时施载组件轴线S与专用螺杆轴线L的交点,b为转矩静特性试验时右侧施载组件轴线S与专用螺杆轴线L的交点,c为转矩静特性试验时左侧施载组件轴线S与专用螺杆轴线L的交点。
本发明的实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
如图1所示,螺栓结合面单元特性由两个构件11和构件12的连接面13(结合面A)、螺栓与其中一个构件12的螺纹连接面14(结合面B)及螺栓与另一个构件11的连接面15(结合面C)三部分结合面的特性决定。
如图2所示,本发明实验装置的结构是,包括箱体1,箱体1的上方设置有横梁7,横梁7通过左立柱4A、右立柱4B与箱体1固定连接;在箱体1的台面上安放有下试件2,下试件2上放置有上试件3,上试件3向上与横梁7之间设置有预载组件6,预载组件6用于将上试件3、下试件2连接并施加法向预紧力;上试件3的两端悬臂上对称地各安装有一个施载组件5A、施载组件5B,施载组件5A、施载组件5B向上与横梁7连接,用于施加法向工作载荷或弯矩;上试件3的两端悬臂端头各安装一个连接件8,连接件8与横梁7的支柱(右立柱4B、左立柱4A)之间各设有一水平的施载组件5C、施载组件5D,施载组件5C、施载组件5D用于施加切向工作载荷或转矩。
如图3所示,预载组件6的结构是,包括模拟螺栓头6-1、力传感器6-2、垫片6-3、轴承6-4、专用螺杆6-5及定心附件6-6,定心附件6-6由两个阶梯形半圆环组成,可在专用螺杆6-5、轴承6-4、垫片6-3、力传感器6-2、模拟螺栓头6-1、及上试件3、下试件2同心安装结束后拆除,专用螺杆6-5的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆6-5从上到下依次穿过轴承6-4、垫片6-3、力传感器6-2、模拟螺栓头6-1的轴心孔,专用螺杆6-5的下端与下试件2通过螺纹连接,从而使得专用螺杆6-5压紧上试件3,实现施加法向预紧力。
如图7、图8所示,施载组件5A、5B、5C、5D的结构相同,均包括力传感器组件5-1、前施载螺母5-2A、后施载螺母5-2B及法兰5-3,垂直安装的施载组件5A、施载组件5B的传感器组件5-1的一端与上试件3的悬臂固定连接,另一端通过其螺纹及前施载螺母5-2A、后施载螺母5-2B与法兰5-3连接,该法兰5-3固定安装在横梁7上;如图8所示,水平安装的施载组件5C的传感器组件5-1的一端通过连接件8与上试件3的端头固定连接,另一端通过其螺纹及前施载螺母5-2A、后施载螺母5-2B与法兰5-3连接,施载组件5C的法兰5-3固定安装在右立柱4B上,同样,施载组件5D的法兰5-3固定安装在左立柱4A上。
本发明利用上述的测量装置,能够实现以下五种方式的特性试验测量:
方式1,进行竖直方向预紧力试验的步骤是,参照图3、图9,将下试件2固定在箱体1上,将上试件3置于下试件2上表面,在下试件2和上试件3的各个测量平面上设置若干垂直方向的位移传感器9,利用定心附件6-6的同心安装作用,将专用螺杆6-5的下端依次向下穿过轴承6-4、垫片6-3、力传感器6-2、模拟螺栓头6-1的孔后,使专用螺杆6-5的下端与下试件2螺纹连接,撤走定心附件6-6,转动专用螺杆6-5的上端方头,专用螺杆6-5压紧上试件3、下试件2,从而施加法向预紧力;此时,通过力传感器6-2检测出预紧力,各个垂直方向的位移传感器9同时检测出上试件3、下试件2的法向相对位移,该法向相对位移即是螺栓结合面单元的预变形,调整预载组件6的专用螺杆6-5改变预紧力,重复上述过程,即可得到螺栓结合面单元的预紧力与预变形的关系。
方式2,进行法向工作载荷试验的步骤是,参照图4、图9,将下试件2固定在箱体1上,将上试件3置于下试件2上,在下试件2和上试件3的各个测量平面上设置若干垂直方向的位移传感器9,在上试件3的两个悬臂上安装施载组件5A、施载组件5B;首先通过专用螺杆6-5施加一定的法向预紧力,施加法向预紧力的步骤与前述的预紧力试验的步骤相同;参照图7, 施载组件5A、施载组件5B的一端与上试件3的悬臂分别固定连接,施载组件5A、施载组件5B的另一端与横梁7上的法兰5-3连接,调整施载组件5A、施载组件5B的前施载螺母5-2A、后施载螺母5-2B,使垂直安装的施载组件5A、施载组件5B施加相同的法向工作载荷,法向工作载荷可为正或负,即,可施加拉或压载荷;施载组件5A、施载组件5B施加的法向工作载荷由施载组件5A、施载组件5B各自的力传感器组件5-1检测出,由图9所示的垂直方向的位移传感器9检测出上试件3、下试件2因法向工作载荷而产生的法向相对位移,即是螺栓结合面单元因法向工作载荷而产生的法向变形,改变施载组件5A、施载组件5B施加的法向工作载荷,重复上述过程,即可得到螺栓结合面单元的法向工作载荷与因法向工作载荷而产生的法向变形的关系。
方式3,进行切向工作载荷试验的步骤是,如图5所示,将下试件2固定在箱体1上,将上试件3置于下试件2上方,在下试件2和上试件3的各个测量平面上设置若干水平方向的位移传感器9;首先通过专用螺杆6-5施加一定的法向预紧力,施加法向预紧力的方法与前述的预紧力试验的方法相同;在上试件3的一侧(右方)水平安装一个连接件8及施载组件5C,施载组件5C的轴线S要通过上试件3与下试件2的连接面并与预载组件6的专用螺杆轴线L垂直相交(参照图10中交点a),水平安装的施载组件5C的力传感器组件5-1的一端与连接件8的右方固定连接,力传感器组件5-1的另一端通过其螺纹及前施载螺母5-2A、后施载螺母5-2B与法兰5-3连接,法兰5-3固定安装在右立柱4B上。调整施载组件5C的前施载螺母5-2A、后施载螺母5-2B施加切向工作载荷,切向工作载荷可为正或负,施载组件5C施加的切向工作载荷由施载组件5C的力传感器组件5-1检测出,由水平方向的位移传感器9检测出上试件3与下试件2因切向工作载荷而产生的切向相对位移,即是螺栓结合面单元因切向工作载荷而产生的切向变形,改变施载组件5C施加的切向工作载荷,重复上述过程,即可得到螺栓结合面单元的切向工作载荷与因切向工作载荷而产生的切向变形的关系。
方式4,进行施加弯矩工作载荷试验的步骤是,参照图4、图9,弯矩工作载荷试验采用的试验装置与法向工作载荷试验的试验装置相同,施加预紧力的方法也相同;但施加的法向工作载荷不同,调整左、右垂直安装的施载组件5A、施载组件5B的前施载螺母5-2A、后施载螺母5-2B使左、右垂直安装的施载组件5A、施载组件5B施加大小相等方向相反的法向工作载荷,从而施加弯矩工作载荷,法向工作载荷由垂直安装的施载组件5A、施载组件5B的力传感器5-1检测出,并由两个方向相反的法向工作载荷求出弯矩工作载荷;由垂直方向的位移传感器9检测出上试件3、下试件2垂直方向的相对位移,由上试件3、下试件2垂直方向的相对位移求出螺栓结合面单元因弯矩工作载荷而产生的倾角变形,调整垂直安装的施载组件5A、施载组件5B的前施载螺母5-2A、后施载螺母5-2B,改变弯矩工作载荷,重复上述过程,即可得到螺栓结合面单元的倾角变形随着弯矩工作载荷变化而变化的关系。
方式5,进行转矩工作载荷试验的步骤是,参照图6,下试件2固定在箱体1上,上试件3置于下试件2上方;首先施加一定的法向预紧力,施加法向预紧力的装置及方法与预紧力试验的方法相同;在上试件3的左、右侧方各水平安装一个连接件8及一个水平施载组件5C、施载组件5D,水平施载组件5C、施载组件5D的轴线S要通过上试件3、下试件2的连接面,与预载组件的专用螺杆轴线L垂直但不相交,且左、右方水平施载组件5C、施载组件5D的轴线S距专用螺杆轴线L的距离相等而位置、方向相反,一个在螺杆轴线L的前方(如图10中交点b),一个在螺杆轴线L的后方(如图10中交点c);施载组件5C的力传感器组件5-1的一端通过连接件8与上试件3的右方固定连接,另一端通过其螺纹及前施载螺母5-2A、后施载螺母5-2B与法兰5-3连接,施载组件5C的法兰5-3固定安装在右立柱4B上,施载组件5D的力传感器组件5-1的一端通过另一连接件8与上试件3左方固定连接,另一端通过其螺纹及前施载螺母5-2A、后施载螺母5-2B与法兰5-3连接,施载组件5D的法兰5-3固定安装在左立柱4A上,通过调整水平施载组件5C、施载组件5D的前施载螺母5-2A、后施载螺母5-2B施加大小相等方向相反的切向工作载荷;切向工作载荷由水平安装的施载组件5C、施载组件5D的力传感器5-1检测,并由两个方向相反的切向工作载荷求出转矩工作载荷;由水平方向的位移传感器9(有多个)检测出上试件3、下试件2水平方向的相对位移,由上试件3、下试件2水平方向的相对位移求出螺栓结合面单元因转矩工作载荷而产生的转角变形,调整水平安装5C、5D的施载组件的前施载螺母5-2A、后施载螺母5-2B,改变转矩工作载荷,重复上述过程,即可得到螺栓结合面单元的转角变形随着转矩工作载荷变化而变化的关系。
工业实用性
综上所述,本发明的装置及其方法,能够完成螺栓结合面单元的预紧力与预变形的关系试验、法向变形随着法向工作载荷变化而变化的关系试验、切向变形随着切向工作载荷变化而变化的关系试验、倾角变形随着弯矩工作载荷变化而变化的关系试验、以及转角变形随着转矩工作载荷变化而变化的关系试验,实现螺栓结合面单元的预紧力及全工作载荷的全面静特性试验。

Claims (9)

1、一种螺栓结合面单元全载荷静特性试验装置,其特征在于:
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
上试件(3)的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件(5A)、第二施载组件(5B),第一施载组件(5A)、第二施载组件(5B)分别垂直向上与横梁(7)连接;
上试件(3)的两端悬臂端头各安装一个连接件(8),连接件(8)与横梁(7)的右立柱(4B)、左立柱(4A)之间各设有一轴线水平的施载组件,分别称为第三施载组件(5C)、第四施载组件(5D)。
2、根据权利要求1所述的螺栓结合面单元全载荷静特性试验装置,其特征在于:所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心安装,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接。
3、根据权利要求2所述的螺栓结合面单元全载荷静特性试验装置,其特征在于:所述第一施载组件(5A)、第二施载组件(5B)的结构相同,垂直安装,均包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),每个力传感器组件(5-1)的一端与上试件(3)的两端悬臂分别固定连接,每个力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)分别与安装在横梁(7)上的对应的法兰(5-3)连接。
4、根据权利要求2所述的螺栓结合面单元全载荷静特性试验装置,其特征在于:所述第三施载组件(5C)、第四施载组件(5D)的结构相同,水平安装,均包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),每个力传感器组件(5-1)的一端通过连接件(8)与上试件(3)的两端头分别固定连接,每个力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)与安装在左立柱(4A)、右立柱(4B)上对应的法兰(5-3)连接。
5、一种螺栓结合面单元全载荷静特性试验方法,其特征在于,利用下述的装置,其结构是,
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心安装,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接;
利用上述的装置,进行竖直方向预紧力试验的步骤是,
将下试件(2)固定在箱体(1)上,将上试件(3)置于下试件(2)上表面,在下试件(2)和上试件(3)的各个测量平面上设置若干垂直方向的位移传感器(9),利用定心附件(6-6)的同心安装作用,将专用螺杆(6-5)的下端依次向下穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)的孔后,使专用螺杆(6-5)下端与下试件(2)螺纹连接,撤走定心附件(6-6),转动专用螺杆(6-5)的上端方头,专用螺杆(6-5)压紧上试件(3)、下试件(2),从而施加法向预紧力;此时,通过力传感器(6-2)检测出预紧力,各个由垂直方向的位移传感器(9)同时检测出上试件(3)、下试件(2)的法向相对位移,该法向相对位移即是螺栓结合面单元的预变形,调整预载组件(6)的专用螺杆(6-5)改变预紧力,重复上述过程,即得到螺栓结合面单元的预紧力与预变形的关系。
6、一种螺栓结合面单元全载荷静特性试验方法,其特征在于,利用下述的装置,其结构是,
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
上试件(3)的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件(5A)、第二施载组件(5B),第一施载组件(5A)、第二施载组件(5B)分别垂直向上与横梁(7)连接;
所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心定位,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接;
所述第一施载组件(5A)、第二施载组件(5B)的结构相同,垂直安装,均包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),每个力传感器组件(5-1)的一端与上试件(3)的两端悬臂分别固定连接,每个力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)分别与安装在横梁(7)上的对应的法兰(5-3)连接;
利用上述的装置,进行法向工作载荷试验的步骤是,
将下试件(2)固定在箱体(1)上,将上试件(3)置于下试件(2)上,在下试件(2)和上试件(3)的各个测量平面上设置若干垂直方向的位移传感器(9),在上试件(3)的两个悬臂上安装第一施载组件(5A)、第二施载组件(5B);利用定心附件(6-6)的同心安装作用,将专用螺杆(6-5)的下端依次向下穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)的孔后,使专用螺杆(6-5)的下端与下试件(2)螺纹连接,撤走定心附件(6-6),转动专用螺杆(6-5)的上端方头,专用螺杆(6-5)压紧上试件(3)、下试件(2),从而施加法向预紧力;将第一施载组件(5A)、第二施载组件(5B)的一端与上试件(3)的悬臂分别固定连接,将第一施载组件(5A)、第二施载组件(5B)的另一端与横梁(7)上的法兰(5-3)连接,调整第一施载组件(5A)、第二施载组件(5B)的前施载螺母(5-2A)、后施载螺母(5-2B),使垂直安装的第一施载组件(5A)、第二施载组件(5B)施加相同的法向工作载荷,即根据需要施加拉或压载荷;第一施载组件(5A)、第二施载组件(5B)施加的法向工作载荷由第一施载组件(5A)、第二施载组件(5B)各自的力传感器组件(5-1)检测出,由垂直方向的位移传感器(9)检测出上试件(3)、下试件(2)因法向工作载荷而产生的法向相对位移,即是螺栓结合面单元因法向工作载荷而产生的法向变形,改变第一施载组件(5A)、第二施载组件(5B)施加的法向工作载荷,重复上述过程,即得到螺栓结合面单元的法向工作载荷与因法向工作载荷而产生的法向变形的关系。
7、一种螺栓结合面单元全载荷静特性试验方法,其特征在于,利用下述的装置,其结构是,
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
上试件(3)的一侧悬臂端头安装一个连接件(8),连接件(8)与横梁(7)的右立柱(4B)之间设有一轴线水平的第三施载组件(5C);
所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心安装,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接;
所述第三施载组件(5C)水平安装,包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),力传感器组件(5-1)的一端通过连接件(8)与上试件(3)的一端头固定连接,力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)与安装在右立柱(4B)上的对应的法兰(5-3)连接;
利用上述的装置,进行切向工作载荷试验的步骤是,
将下试件(2)固定在箱体(1)上,将上试件(3)置于下试件(2)上方,在下试件(2)和上试件(3)的各个测量平面上设置若干水平方向的位移传感器(9);利用定心附件(6-6)的同心安装作用,将专用螺杆(6-5)的下端依次向下穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)的孔后,使专用螺杆(6-5)的下端与下试件(2)螺纹连接,撤走定心附件(6-6),转动专用螺杆(6-5)的上端方头,专用螺杆(6-5)压紧上试件(3)、下试件(2),从而施加法向预紧力;在上试件(3)的一侧水平安装一个连接件(8)及第三施载组件(5C),第三施载组件(5C)的轴线S要通过上试件(3)与下试件(2)的连接面并与预载组件(6)的专用螺杆(6-5)的轴线L垂直相交,水平安装的第三施载组件(5C)的力传感器组件(5-1)的一端与连接件(8)的右方固定连接,力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)与法兰(5-3)连接,法兰(5-3)固定安装在右立柱(4B)上;调整第三施载组件(5C)的前施载螺母(5-2A)、后施载螺母(5-2B)施加切向工作载荷,切向工作载荷为正或负,第三施载组件(5C)施加的切向工作载荷由第三施载组件(5C)的力传感器组件(5-1)检测出,由水平方向的位移传感器(9)检测出上试件(3)与下试件(2)因切向工作载荷而产生的切向相对位移,即是螺栓结合面单元因切向工作载荷而产生的切向变形,改变第三施载组件(5C)施加的切向工作载荷,重复上述过程,即得到螺栓结合面单元的切向工作载荷与因切向工作载荷而产生的切向变形的关系。
8、一种螺栓结合面单元全载荷静特性试验方法,其特征在于,利用下述的装置,其结构是,
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
上试件(3)的两端悬臂上对称地各安装有一个施载组件,分别称为第一施载组件(5A)、第二施载组件(5B),第一施载组件(5A)、第二施载组件(5B)分别垂直向上与横梁(7)连接;
所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心定位,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接;
所述第一施载组件(5A)、第二施载组件(5B)的结构相同,垂直安装,均包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),每个力传感器组件(5-1)的一端与上试件(3)的两端悬臂分别固定连接,每个力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)分别与安装在横梁(7)上的对应的法兰(5-3)连接;
利用上述的装置,进行弯矩工作载荷试验的步骤是,
将下试件(2)固定在箱体(1)上,将上试件(3)置于下试件(2)上方,在下试件(2)和上试件(3)的各个测量平面上设置若干位移传感器(9);利用定心附件(6-6)的同心安装作用,将专用螺杆(6-5)的下端依次向下穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)的孔后,使专用螺杆(6-5)的下端与下试件(2)螺纹连接,撤走定心附件(6-6),转动专用螺杆(6-5)的上端方头,专用螺杆(6-5)压紧上试件(3)、下试件(2),从而施加法向预紧力;调整左、右垂直安装的第一施载组件(5A)、第二施载组件(5B)的前施载螺母(5-2A)、后施载螺母(5-2B)使左、右垂直安装的第一施载组件(5A)、第二施载组件(5B)施加大小相等方向相反的法向工作载荷,从而施加弯矩工作载荷,法向工作载荷由垂直安装的第一施载组件(5A)、第二施载组件(5B)的力传感器组件(5-1)检测出,并由两个方向相反的法向工作载荷求出弯矩工作载荷;由垂直方向的位移传感器(9)检测出上试件(3)、下试件(2)垂直方向的相对位移,由上试件(3)、下试件(2)垂直方向的相对位移求出螺栓结合面单元因弯矩工作载荷而产生的倾角变形,调整垂直安装的第一施载组件(5A)、第二施载组件(5B)的前施载螺母(5-2A)、后施载螺母(5-2B),改变弯矩工作载荷,重复上述过程,即得到螺栓结合面单元的倾角变形随着弯矩工作载荷变化而变化的关系。
9、一种螺栓结合面单元全载荷静特性试验方法,其特征在于,利用下述的装置,其结构是,
包括箱体(1),箱体(1)的上方设置有横梁(7),横梁(7)通过左立柱(4A)、右立柱(4B)与箱体(1)固定连接;在箱体(1)的台面上安放有下试件(2),下试件(2)上放置有上试件(3),上试件(3)向上与横梁(7)之间设置有预载组件(6),预载组件(6)与上试件(3)、下试件(2)依次连接;
上试件(3)的两端悬臂端头各安装一个连接件(8),连接件(8)与横梁(7)的右立柱(4B)、左立柱(4A)之间各设有一轴线水平的施载组件,分别称为第三施载组件(5C)、第四施载组件(5D);
所述预载组件(6)的结构是,包括模拟螺栓头(6-1)、力传感器(6-2)、垫片(6-3)、轴承(6-4)、专用螺杆(6-5)及定心附件(6-6),定心附件(6-6)由两个阶梯形半圆环组成,用于对专用螺杆(6-5)、轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)、下试件(2)的同心定位,专用螺杆(6-5)的上端为方头结构,并通过轴心开有水平的加力孔,专用螺杆(6-5)从上到下依次穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)、上试件(3)的轴心孔,专用螺杆(6-5)的下端与下试件(2)通过螺纹连接;
所述第三施载组件(5C)、第四施载组件(5D)的结构相同,水平安装,均包括力传感器组件(5-1)、前施载螺母(5-2A)、后施载螺母(5-2B)及法兰(5-3),每个力传感器组件(5-1)的一端通过连接件(8)与上试件(3)的两端头分别固定连接,每个力传感器组件(5-1)的另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)分别与安装在左立柱(4A)、右立柱(4B)上对应的法兰(5-3)连接;
利用上述的装置,进行转矩工作载荷试验的步骤是,
将下试件(2)固定在箱体(1)上,将上试件(3)置于下试件(2)上方,在下试件(2)和上试件(3)的各个测量平面上设置若干位移传感器(9);利用定心附件(6-6)的同心安装作用,将专用螺杆(6-5)的下端依次向下穿过轴承(6-4)、垫片(6-3)、力传感器(6-2)、模拟螺栓头(6-1)的孔后,使专用螺杆(6-5)下端与下试件(2)螺纹连接,撤走定心附件(6-6),转动专用螺杆(6-5)的上端方头,专用螺杆(6-5)压紧上试件(3)、下试件(2),从而施加法向预紧力;在上试件(3)左、右侧方各安装一个水平施载组件,即第三施载组件(5C)、第四施载组件(5D),水平的第三施载组件(5C)、第四施载组件(5D)的轴线S要通过上试件(3)、下试件(2)的连接面,与专用螺杆(6-5)的轴线L垂直但不相交,且左、右方水平的第三施载组件(5C)、第四施载组件(5D)的轴线S距专用螺杆(6-5)的轴线L的距离相等而位置方向相反,一个在专用螺杆(6-5)的轴线L的前方,一个在专用螺杆(6-5)的轴线L的后方;第三施载组件(5C)的力传感器组件(5-1)的一端通过连接件(8)与上试件(3)的右方固定连接,另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)与固定安装在右立柱(4B)上的法兰(5-3)连接;第四施载组件(5D)的力传感器组件(5-1)一端通过另一连接件(8)与上试件(3)的左方固定连接,另一端通过其螺纹及前施载螺母(5-2A)、后施载螺母(5-2B)与左立柱(4A)上的法兰(5-3)连接,通过调整水平的第三施载组件(5C)、第四施载组件(5D)的前施载螺母(5-2A)、后施载螺母(5-2B),施加大小相等方向相反的切向工作载荷;由水平安装的第三施载组件(5C)、第四施载组件(5D)的力传感器组件(5-1)检测到切向工作载荷,并由两个方向相反的切向工作载荷求出转矩工作载荷;由水平方向的位移传感器(9)检测出上试件(3)、下试件(2)之间水平方向的相对位移,由上试件(3)、下试件(2)水平方向的相对位移求出螺栓结合面单元因转矩工作载荷而产生的转角变形,同时调整第三施载组件(5C)、第四施载组件(5D)的前施载螺母(5-2A)、后施载螺母(5-2B),改变转矩工作载荷,重复上述过程,即得到螺栓结合面单元的转角变形随着转矩工作载荷变化而变化的关系。
PCT/CN2011/077583 2010-07-26 2011-07-25 螺栓结合面单元全载荷静特性试验装置及试验方法 WO2012013137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520956A JP5496421B2 (ja) 2010-07-26 2011-07-25 ボルト接合面ユニットの全荷重の静特性試験装置及び試験方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010236266.8 2010-07-26
CN2010102362668A CN101886961B (zh) 2010-07-26 2010-07-26 螺栓结合面单元全载荷静特性试验装置及试验方法

Publications (1)

Publication Number Publication Date
WO2012013137A1 true WO2012013137A1 (zh) 2012-02-02

Family

ID=43072967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077583 WO2012013137A1 (zh) 2010-07-26 2011-07-25 螺栓结合面单元全载荷静特性试验装置及试验方法

Country Status (3)

Country Link
JP (1) JP5496421B2 (zh)
CN (1) CN101886961B (zh)
WO (1) WO2012013137A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644237A (zh) * 2017-01-20 2017-05-10 上海百若试验仪器有限公司 多功能螺栓紧固分析系统集成式压‑扭复合传感器测量装置
CN106950137A (zh) * 2017-03-22 2017-07-14 西安建筑科技大学 切向微动磨损试验装置及试验方法
CN107014609A (zh) * 2017-05-18 2017-08-04 东北大学 一种主轴箱疲劳试验机及主轴箱可靠性测试方法
CN108204876A (zh) * 2017-12-25 2018-06-26 烟台大学 一种螺栓装配过程中预紧力实时检测装置与方法
CN109187229A (zh) * 2018-10-31 2019-01-11 华北理工大学 栓钉拉剪试验装置及试验方法
CN109711024A (zh) * 2018-12-18 2019-05-03 国网内蒙古东部电力有限公司经济技术研究院 一种螺栓连接点受力优化分析方法
CN110398330A (zh) * 2019-07-03 2019-11-01 浙江华电器材检测研究所有限公司 一种紧固件横向振动试验装置
CN110926923A (zh) * 2019-11-25 2020-03-27 青海大学 一种测试螺栓扭拉特性的载荷可卸式试验系统
CN111238938A (zh) * 2020-03-09 2020-06-05 华侨大学 一种侧向限位加载装置及其使用方法
CN111751226A (zh) * 2020-07-06 2020-10-09 华侨大学 夯土与木梁节点抗弯承载与变形性能的测试装置及其使用方法
CN112113860A (zh) * 2020-09-18 2020-12-22 山东和富工程检测有限公司 测试建筑幕墙用槽式预埋组件锚固受剪承载力的试验装置
CN112591137A (zh) * 2020-11-13 2021-04-02 中国航空工业集团公司沈阳飞机设计研究所 一种飞机平尾大轴试验装置
CN112666009A (zh) * 2020-12-17 2021-04-16 宁波大学 一种用于多尺度试样直剪测试的剪切盒
CN113155428A (zh) * 2021-04-20 2021-07-23 沈阳航天新光集团有限公司 大承载非火工连接分离装置预紧力加载设备
CN113155346A (zh) * 2021-03-16 2021-07-23 青海大学 一种螺纹连接部位贴合预紧力的测量方法
CN113176150A (zh) * 2021-05-17 2021-07-27 哈尔滨汽轮机厂有限责任公司 一种鼠笼变形试验装置及方法
CN113607557A (zh) * 2021-08-04 2021-11-05 江苏宏泰石化机械有限公司 一种超高压非标准法兰实验装置及实验方法
CN113776769A (zh) * 2021-09-28 2021-12-10 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113820060A (zh) * 2021-10-27 2021-12-21 湖南中机申亿检测技术有限公司 一种轴力衰减的试验系统
CN113848101A (zh) * 2021-09-22 2021-12-28 中铁二十局集团第四工程有限公司 一种考虑平面应变状态下实现复合地层圆形隧道的相似模拟实验系统及使用方法
CN114018603A (zh) * 2021-10-29 2022-02-08 东风商用车有限公司 一种模拟车架圆管梁扭转工况的试验台架
CN115077774A (zh) * 2022-05-07 2022-09-20 山东交通学院 一种快速模拟锈蚀高强螺栓剩余夹紧力的定量评估方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393330B (zh) * 2011-09-01 2013-10-16 北京工业大学 一种测试结合面切向刚度特性的装置
CN102507175A (zh) * 2011-11-08 2012-06-20 北京工业大学 栓接结合面的法向静力学特性测试实验装置
CN102589865A (zh) * 2012-02-17 2012-07-18 北京工业大学 一种双螺栓结合面的法向刚度和迟滞特性测试实验装置
CN103226061A (zh) * 2013-03-16 2013-07-31 北京工业大学 单螺栓固定结合面的法向迟滞特性测试实验装置
CN103234741A (zh) * 2013-04-15 2013-08-07 北京工业大学 一种测试单螺栓结合面切向静态特性装置及方法
CN103994884B (zh) * 2014-05-14 2016-07-06 广西桂冠电力股份有限公司大化水力发电总厂 一种大型螺栓与螺母紧固咬合情况的检测装置
CN104019977B (zh) * 2014-06-17 2017-01-25 沈阳机床(集团)有限责任公司 一种机床固定结合面接触特性测试试验装置
CN104359595B (zh) * 2014-11-07 2017-01-18 大连理工大学 一种间接测量装配结合面应力分布的系统及方法
CN104792441A (zh) * 2015-04-02 2015-07-22 陈节庆 一种实验室轴力弯矩感应器
CN104865059B (zh) * 2015-05-20 2018-01-02 河南航天精工制造有限公司 螺纹紧固件头部韧性试验装置、试验方法及试验工装
CN104931215B (zh) * 2015-06-05 2017-08-25 西安交通大学 一种获取机械结合面扭转刚度的测试装置
CN105716843B (zh) * 2016-01-27 2018-06-19 北京工业大学 一种螺栓连接结合面刚度实验装置
CN107192494A (zh) * 2017-05-14 2017-09-22 北京工业大学 一种考虑结合面特性的测定轴向螺栓松弛的装置及方法
CN107505194A (zh) * 2017-08-10 2017-12-22 安徽六方重联机械股份有限公司 一种螺栓拉力测试夹具
CN109030213A (zh) * 2018-08-09 2018-12-18 山西省机电设计研究院 螺母保证载荷试验用工装
CN109269786A (zh) * 2018-10-22 2019-01-25 格力电器(武汉)有限公司 螺栓、螺钉头部坚固性测试设备、系统及方法
CN109596249A (zh) * 2018-11-29 2019-04-09 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种机械连接结构钉载分配测量试验方法
CN110044533B (zh) * 2019-04-11 2020-10-20 大连理工大学 一种基于emd能量熵与支持向量机相结合的螺栓预紧力监测方法
KR102248046B1 (ko) * 2019-10-02 2021-05-04 (주)센트랄모텍 볼 스크류 유격 측정장치
CN113091981A (zh) * 2021-03-16 2021-07-09 南京航空航天大学 一种设置预紧力的传感器及测量方法
CN113624389B (zh) * 2021-08-06 2023-03-14 福州外语外贸学院 一种螺栓拉力值计算尺机构及其使用方法
CN114060391A (zh) * 2021-11-01 2022-02-18 河南航天精工制造有限公司 一种螺纹紧固件的预紧力控制装置及控制方法
KR102469594B1 (ko) * 2022-04-26 2022-11-22 주식회사 구비테크 반도체 검사장비 모듈 강성 측정용 지그

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717143A (en) * 1996-06-14 1998-02-10 Electric Power Research Institute, Inc. Apparatus for illustrating bolt preloads
CN201083575Y (zh) * 2007-10-26 2008-07-09 东风汽车有限公司 螺栓组预紧力测量装置
CN101498609A (zh) * 2008-02-03 2009-08-05 姚建民 螺栓紧固力矩伸长量测定器
CN201293697Y (zh) * 2008-11-13 2009-08-19 湘电风能有限公司 一种螺栓预紧力检测装置
CN101655402A (zh) * 2009-08-31 2010-02-24 重庆长安汽车股份有限公司 一种测试发动机连杆螺栓预紧力的方法及其专用工具
CN201532316U (zh) * 2009-05-08 2010-07-21 中能风电设备有限公司 螺栓套静力测试试验台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036184A (zh) * 1973-07-09 1975-04-05
JPS6060525A (ja) * 1983-09-14 1985-04-08 Nhk Spring Co Ltd トルク係数測定装置
JPH07117478B2 (ja) * 1985-06-24 1995-12-18 実 小松 ねじの衝撃振動試験方法およびねじの衝撃振動試験装置
CA2300894C (en) * 1997-08-19 2006-06-06 Stanley Ceney Load indicating fastener systems method and apparatus
WO2001059417A1 (de) * 2000-02-07 2001-08-16 K.K. Holding Ag Prüfgerät zur ermittlung der reib- und vorspannwerte von schraubenverbindungen
CN2577032Y (zh) * 2002-11-08 2003-10-01 徐文峰 螺纹联接预紧结构
US7260998B2 (en) * 2005-03-18 2007-08-28 The Boeing Company Apparatuses and methods for structurally testing fasteners
JP2006343216A (ja) * 2005-06-09 2006-12-21 Osamu Tamura ねじの特性試験装置とその装置を用いた体験学習方法及び実技教育方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717143A (en) * 1996-06-14 1998-02-10 Electric Power Research Institute, Inc. Apparatus for illustrating bolt preloads
CN201083575Y (zh) * 2007-10-26 2008-07-09 东风汽车有限公司 螺栓组预紧力测量装置
CN101498609A (zh) * 2008-02-03 2009-08-05 姚建民 螺栓紧固力矩伸长量测定器
CN201293697Y (zh) * 2008-11-13 2009-08-19 湘电风能有限公司 一种螺栓预紧力检测装置
CN201532316U (zh) * 2009-05-08 2010-07-21 中能风电设备有限公司 螺栓套静力测试试验台
CN101655402A (zh) * 2009-08-31 2010-02-24 重庆长安汽车股份有限公司 一种测试发动机连杆螺栓预紧力的方法及其专用工具

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644237A (zh) * 2017-01-20 2017-05-10 上海百若试验仪器有限公司 多功能螺栓紧固分析系统集成式压‑扭复合传感器测量装置
CN106644237B (zh) * 2017-01-20 2024-02-06 上海百若试验仪器有限公司 多功能螺栓紧固分析系统集成式压-扭复合传感器测量装置
CN106950137A (zh) * 2017-03-22 2017-07-14 西安建筑科技大学 切向微动磨损试验装置及试验方法
CN106950137B (zh) * 2017-03-22 2023-09-05 西安建筑科技大学 切向微动磨损试验装置及试验方法
CN107014609A (zh) * 2017-05-18 2017-08-04 东北大学 一种主轴箱疲劳试验机及主轴箱可靠性测试方法
CN107014609B (zh) * 2017-05-18 2023-04-07 东北大学 一种主轴箱疲劳试验机及主轴箱可靠性测试方法
CN108204876A (zh) * 2017-12-25 2018-06-26 烟台大学 一种螺栓装配过程中预紧力实时检测装置与方法
CN108204876B (zh) * 2017-12-25 2024-04-16 烟台大学 一种螺栓装配过程中预紧力实时检测装置与方法
CN109187229A (zh) * 2018-10-31 2019-01-11 华北理工大学 栓钉拉剪试验装置及试验方法
CN109711024A (zh) * 2018-12-18 2019-05-03 国网内蒙古东部电力有限公司经济技术研究院 一种螺栓连接点受力优化分析方法
CN109711024B (zh) * 2018-12-18 2024-04-05 国网内蒙古东部电力有限公司经济技术研究院 一种螺栓连接点受力优化分析方法
CN110398330A (zh) * 2019-07-03 2019-11-01 浙江华电器材检测研究所有限公司 一种紧固件横向振动试验装置
CN110926923A (zh) * 2019-11-25 2020-03-27 青海大学 一种测试螺栓扭拉特性的载荷可卸式试验系统
CN111238938A (zh) * 2020-03-09 2020-06-05 华侨大学 一种侧向限位加载装置及其使用方法
CN111751226A (zh) * 2020-07-06 2020-10-09 华侨大学 夯土与木梁节点抗弯承载与变形性能的测试装置及其使用方法
CN112113860A (zh) * 2020-09-18 2020-12-22 山东和富工程检测有限公司 测试建筑幕墙用槽式预埋组件锚固受剪承载力的试验装置
CN112113860B (zh) * 2020-09-18 2023-12-08 山东和富工程检测有限公司 测试建筑幕墙用槽式预埋组件锚固受剪承载力的试验装置
CN112591137A (zh) * 2020-11-13 2021-04-02 中国航空工业集团公司沈阳飞机设计研究所 一种飞机平尾大轴试验装置
CN112591137B (zh) * 2020-11-13 2023-11-28 中国航空工业集团公司沈阳飞机设计研究所 一种飞机平尾大轴试验装置
CN112666009B (zh) * 2020-12-17 2024-05-17 宁波大学 一种用于多尺度试样直剪测试的剪切盒
CN112666009A (zh) * 2020-12-17 2021-04-16 宁波大学 一种用于多尺度试样直剪测试的剪切盒
CN113155346A (zh) * 2021-03-16 2021-07-23 青海大学 一种螺纹连接部位贴合预紧力的测量方法
CN113155346B (zh) * 2021-03-16 2023-01-24 青海大学 一种螺纹连接部位贴合预紧力的测量方法
CN113155428A (zh) * 2021-04-20 2021-07-23 沈阳航天新光集团有限公司 大承载非火工连接分离装置预紧力加载设备
CN113176150B (zh) * 2021-05-17 2024-04-12 哈尔滨汽轮机厂有限责任公司 一种鼠笼变形试验装置及方法
CN113176150A (zh) * 2021-05-17 2021-07-27 哈尔滨汽轮机厂有限责任公司 一种鼠笼变形试验装置及方法
CN113607557A (zh) * 2021-08-04 2021-11-05 江苏宏泰石化机械有限公司 一种超高压非标准法兰实验装置及实验方法
CN113848101A (zh) * 2021-09-22 2021-12-28 中铁二十局集团第四工程有限公司 一种考虑平面应变状态下实现复合地层圆形隧道的相似模拟实验系统及使用方法
CN113848101B (zh) * 2021-09-22 2024-04-19 中铁二十局集团第四工程有限公司 一种考虑平面应变状态下实现复合地层圆形隧道的相似模拟实验系统及使用方法
CN113776769B (zh) * 2021-09-28 2023-06-06 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113776769A (zh) * 2021-09-28 2021-12-10 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113820060A (zh) * 2021-10-27 2021-12-21 湖南中机申亿检测技术有限公司 一种轴力衰减的试验系统
CN114018603B (zh) * 2021-10-29 2023-09-19 东风商用车有限公司 一种模拟车架圆管梁扭转工况的试验台架
CN114018603A (zh) * 2021-10-29 2022-02-08 东风商用车有限公司 一种模拟车架圆管梁扭转工况的试验台架
CN115077774A (zh) * 2022-05-07 2022-09-20 山东交通学院 一种快速模拟锈蚀高强螺栓剩余夹紧力的定量评估方法

Also Published As

Publication number Publication date
JP5496421B2 (ja) 2014-05-21
JP2013535670A (ja) 2013-09-12
CN101886961B (zh) 2011-11-16
CN101886961A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2012013137A1 (zh) 螺栓结合面单元全载荷静特性试验装置及试验方法
CN105588669A (zh) 一种轴销式三向测力传感器
CN109084982B (zh) 一种大推力火箭发动机三向力测量装置及测量方法
CN101303813A (zh) 结构力学组合实验装置
CN100337105C (zh) 并联六维力传感器标定装置
CN102749168B (zh) 一种无耦合六维力传感器的组合式标定装置
WO2012016534A2 (zh) 加工中心多轴联动变位加载装置及静刚度分布的检测方法
WO2021258568A1 (zh) 一种适用于扭矩法和转角法的螺栓各关键摩擦系数通用测量装置
CN106644324A (zh) 一种可用于轻钢框架梁柱节点受力性能试验的试验装置
US20080276725A1 (en) Sensor Assembly for Measuring Forces and/or Torques and Use of Said Assembly
CN110715798B (zh) 一种测量螺栓自行松脱的试验装置及试验方法
KR102183179B1 (ko) 스트레인게이지 방식의 다축 힘토크센서
Li et al. A novel parallel piezoelectric six-axis heavy force/torque sensor
CN110132739B (zh) 一种微动疲劳试验法向载荷加载装置及方法
CN103884495A (zh) 一种大型结构件多维受力测试的封闭式加载框架
AU2020101725A4 (en) A self-balance truss joint test device and a test method thereof
CN111122051A (zh) 一种六维力传感器测试平台
CN109029818B (zh) 具有镶嵌式自对中解耦测力分支的六维测力平台
CN212722435U (zh) 一种基于单轴疲劳试验机的法向载荷加载装置
CN210513529U (zh) 一种多轴力传感器精密校准的加载装置
CN108444635B (zh) 高精度车轮螺母紧固测试系统
CN104236783A (zh) 液压扭矩扳手的检测小车
CN112067219B (zh) 一种用于抗震试验的梁端活动铰接试验装置及其试验方法
CN210571430U (zh) 一种五轴机床加载测试装置
CN110595901B (zh) 一种新型桁架节点自平衡试验装置及其试验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811838

Country of ref document: EP

Kind code of ref document: A1