WO2012011399A1 - 受信装置および受信方法 - Google Patents
受信装置および受信方法 Download PDFInfo
- Publication number
- WO2012011399A1 WO2012011399A1 PCT/JP2011/065756 JP2011065756W WO2012011399A1 WO 2012011399 A1 WO2012011399 A1 WO 2012011399A1 JP 2011065756 W JP2011065756 W JP 2011065756W WO 2012011399 A1 WO2012011399 A1 WO 2012011399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- channel impulse
- impulse response
- estimation
- model
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0212—Channel estimation of impulse response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0222—Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/26524—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
- H04L27/26526—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
Definitions
- the present invention relates to a receiving apparatus and a receiving method.
- ISI Inter Symbol Interference
- the receiving apparatus transmits in advance a pilot symbol in which the amplitude value of the waveform (or its signal sequence) is stored from the transmitting apparatus to the receiving apparatus.
- the receiving apparatus transmits in advance a pilot symbol in which the amplitude value of the waveform (or its signal sequence) is stored from the transmitting apparatus to the receiving apparatus.
- Non-Patent Document 1 describes a technique for reducing the influence of noise and interference and improving estimation accuracy by selecting a path to be estimated in scattered pilot OFDM (Orthogonal Frequency Division Multiplexing).
- IFFT Inverse Fast Fourier Transform
- the power of the channel impulse response approximately obtained by performing IFFT is large.
- a path is extracted, and a delay time corresponding to the extracted path is selected as a tap delay time used for estimation.
- the approximate channel impulse response obtained by IFFT becomes a form that originally spreads from a place where there is a path. In this case, a delay time around the path to be estimated and a delay time that cannot improve the estimation accuracy is also selected, so there is a limit to improving the estimation accuracy.
- FIG. 1 shows an example of a propagation model when there is no path spread, where the horizontal axis represents the delay time axis and the vertical axis represents the path power.
- the horizontal axis represents the delay time axis
- the vertical axis represents the path power
- the path 101, path 102, and threshold 103 are the same as in FIG. Due to the spread 201 with respect to the path 101 and the spread 202 with respect to the path 102, extra paths 203 to 206 in addition to the path 101 and the path 102 are also selected as paths exceeding the threshold 103.
- Non-Patent Documents 2 and 3 describe techniques for evaluating which model can best represent the observed values actually obtained in a model having several parameters. Specifically, in the techniques described in Non-Patent Documents 2 and 3, the goodness of the model is based on the maximum log likelihood when an observation value is evaluated in a certain model and the penalty corresponding to the number of parameters of the model. To evaluate. By considering this model as a propagation path and a parameter as a path, these model selection criteria can be applied to propagation path estimation. In these techniques, since a path is selected based on a statistical information criterion instead of power, the problem as described in Non-Patent Document 1 can be reduced.
- Non-Patent Documents 2 and 3 are not optimized for propagation path estimation in wireless communication.
- the present invention has been made in view of such circumstances, and provides a receiving apparatus and a receiving method capable of highly accurate propagation path estimation.
- the receiving apparatus of the present invention includes a channel impulse response estimation unit that calculates a channel impulse response estimation value corresponding to each of a plurality of models having different paths, and the channel impulse response estimation that maximizes the channel estimation fitness. And a model comparison unit that selects a model corresponding to the value.
- the model comparison unit may calculate the propagation path estimation fitness based on a physical structure of a reference signal used for calculating the channel impulse response estimation value.
- the physical structure may be an arrangement frequency.
- the physical structure may be a time waveform.
- the reference signal may be a pilot symbol.
- the reference signal may be a determined data signal.
- the reception method of the present invention includes a channel impulse response estimation step for calculating a channel impulse response estimation value corresponding to each of a plurality of models having different paths, and the channel impulse response estimation that maximizes the channel estimation fitness. And a model comparison step of selecting a model corresponding to the value.
- the propagation path estimation accuracy can be greatly improved.
- FIG. 3 is a schematic block diagram showing the configuration of the transmission device a1 according to the first embodiment of the present invention.
- the transmission apparatus a1 includes a pilot generation unit a101, a coding unit a102, a modulation unit a103, a mapping unit a104, an IFFT unit a105, a GI insertion unit a106, a transmission unit a107, and a transmission antenna a108. Send a signal.
- the pilot generation unit a101 generates a pilot symbol in which the reception device b1 according to the first embodiment of the present invention stores the amplitude value of the waveform (or its signal sequence) in advance, and outputs the pilot symbol to the mapping unit a104.
- the receiving apparatus b1 performs propagation path estimation using the pilot symbol as a reference signal.
- the encoding unit a102 encodes information bits to be transmitted to the receiving apparatus b1 using an error correction code such as a convolutional code, a turbo code, and an LDPC (Low Density Parity Check) code, and encodes the encoded bit. Is generated.
- the encoding unit a102 outputs the generated encoded bits to the modulating unit a103.
- the modulation unit a103 modulates the coded bits input from the coding unit a102 using a modulation method such as PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation). Generate a symbol. Modulation section a103 outputs the generated modulation symbol to mapping section a104.
- a modulation method such as PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation).
- the mapping unit a104 maps the pilot symbol input from the pilot generation unit a101 and the modulation symbol input from the modulation unit a103 to a resource (time-frequency band) based on predetermined mapping information.
- a domain signal is generated, and the generated frequency domain signal is output to IFFT section a105.
- a resource is a unit in which a modulation symbol is arranged, which is composed of one subcarrier and one later-described FFT interval in a frame transmitted by the transmission apparatus a1.
- the mapping information is determined by the transmission device a1, and is notified in advance from the transmission device a1 to the reception device b1.
- FIG. 4 is an example of mapping between pilot symbols and modulated signals by the mapping unit a104.
- the IFFT unit a105 performs frequency-time conversion on the frequency domain signal input from the mapping unit a104 to generate a time domain signal.
- a time interval of a unit for performing IFFT is referred to as an FFT interval.
- the IFFT unit a105 outputs the generated time domain signal to the GI insertion unit a106.
- the GI insertion unit a106 adds a guard interval (GI) for each signal in the FFT interval to the time domain signal input from the IFFT unit a105.
- the guard interval is a known signal using a cyclic prefix (Cyclic Prefix: CP) that is a part of the rear of the signal in the FFT interval, zero padding in which the zero interval continues, a Golay code, or the like.
- CP Cyclic Prefix
- the GI insertion unit a106 adds such a signal to the front of the signal in the FFT interval.
- the FFT interval and the time interval of the guard interval (referred to as GI interval) added to the signal of the time interval by the GI insertion unit a106 are collectively referred to as an OFDM symbol interval.
- a signal in the OFDM symbol section is called an OFDM symbol.
- the GI insertion unit a106 outputs a signal with the guard interval added to the transmission unit a107.
- guard interval may be inserted behind the FFT interval.
- a part of the replica in front of the FFT interval is added behind the signal in the FFT interval.
- the periodicity may be maintained in the OFDM symbol period, and is not limited to the above.
- the transmission unit a107 performs digital-analog conversion on the signal input from the GI insertion unit a106, and shapes the converted analog signal.
- the transmission unit a107 upconverts the waveform-shaped signal from the baseband to the radio frequency band, and transmits the signal from the transmission antenna a108 to the reception device b1.
- FIG. 5 is a schematic block diagram showing the configuration of the receiving device b1 according to this embodiment.
- the reception device b1 includes a reception antenna b101, a reception unit b102, a GI removal unit b103, an FFT unit b104, a demapping unit b105, a propagation path estimation unit b106, a demodulation unit b107, and a decoding unit b108. .
- the reception unit b102 receives the signal transmitted from the transmission device a1 via the reception antenna b101.
- the receiving unit b102 performs frequency conversion and analog-digital conversion on the received signal.
- the GI removal unit b103 removes the guard interval from the reception signal input from the reception unit b102 and outputs the guard interval to the FFT unit b104.
- the FFT unit b104 performs time frequency conversion on the time domain signal input from the GI removal unit b103, and outputs the converted frequency domain signal to the demapping unit b105.
- the demapping unit b105 performs demapping on the frequency domain signal input from the FFT unit b104 based on the mapping information notified in advance from the transmission device a1, and the subcarriers to which the separated pilot symbols are transmitted.
- the received signal is output to the propagation path estimation unit b106.
- the reception signal of the subcarrier to which the data is transmitted is output to demodulation section b107.
- FIG. 6 is a schematic block diagram showing the configuration of the propagation path estimation unit b106.
- the propagation path estimation unit b106 includes a frequency response estimation unit b106-1, an IFFT unit b106-2, a channel impulse response estimation unit b106-3, a model comparison unit b106-4, and an FFT unit b106-5.
- the frequency response estimation unit b106-1 estimates a frequency response based on the received signal input from the demapping unit b105 and a pilot symbol stored in advance, and outputs the estimated frequency response to the IFFT unit b106-2.
- IFFT section b106-2 performs frequency-time conversion on the frequency response estimation value input from frequency response estimation section b106-1, and outputs the result to channel impulse response estimation section b106-3 and model comparison section b106-4.
- the channel impulse response estimation unit b106-3 estimates the channel impulse response for each propagation model assumed by the reception device b1, and outputs the estimated channel impulse response to the model comparison unit b106-4. This principle will be described later.
- the model comparison unit b106-4 selects the channel impulse response estimation value for each model input from the channel impulse response estimation unit b106-3, and selects the one that maximizes the propagation path estimation fitness, and the FFT unit b106-5 Output to.
- the propagation path estimation adaptability indicates the adaptability between the estimated value by the propagation path estimation method to be used and the received signal. This principle will be described later.
- the calculation of the propagation path estimation adaptability is performed using the physical structure of the reference signal used for estimating the channel impulse response. This is the same not only in this embodiment but also in other embodiments.
- a case where a pilot symbol is used as a reference signal will be described, and the position of a subcarrier in which a pilot symbol is arranged is used as a physical structure.
- the FFT unit b106-5 performs time-frequency conversion on the channel impulse response estimation value input from the model comparison unit b106-4, and outputs the result to the demodulation unit b107.
- the propagation path estimation unit b106 predetermines an assumed maximum delay time L.
- L since the path to be estimated is selected, L does not need to be accurate, and it is sufficient to have a margin so as to be larger than the actual maximum delay time.
- the receiving apparatus b1 In order to satisfy the condition that L is larger than the actual maximum delay time, the receiving apparatus b1 needs to set L based on the frequency and bandwidth to be used, the terrain in which the communication system is operated, and the like. This may be determined by conducting a detailed field survey before operating the communication system, or may be made variable at the design stage and updated when updating the firmware, software, etc. of the receiving device b1. May be.
- L may be estimated in the same manner as the propagation path without predetermining L.
- the propagation path estimation unit b106 uses a pilot symbol stored in advance, and measures noise power in a subcarrier (referred to as pilot subcarrier) in which the pilot symbol is arranged. A specific calculation method will be described later together with the operation principle.
- the demodulation unit b107 calculates filter coefficients such as a ZF (Zero Forcing) standard and an MMSE (Minimum Mean Square Error) standard using the frequency response and noise power input from the propagation path estimation unit b106.
- the demodulator b107 compensates for signal amplitude and phase fluctuations (referred to as propagation path compensation) using the calculated filter coefficients.
- the demodulation unit b107 outputs a bit log likelihood ratio (LLR: Log Likelihood Ratio) as a result of the demodulation process to the decoding unit b108.
- LLR Log Likelihood Ratio
- the decoding unit b108 for example, performs maximum likelihood decoding (MLD: Maximum Likelihood Decoding), maximum a posteriori probability (MAP), log-MAP, Max- for the demodulated symbols input from the demodulation unit b107.
- MLD Maximum Likelihood Decoding
- MAP maximum a posteriori probability
- log-MAP log-MAP
- Max- for the demodulated symbols input from the demodulation unit b107 Decoding processing is performed using log-MAP, SOVA (Soft Output Viterbi Algorithm), or the like.
- FIG. 7 is a schematic diagram illustrating an example of a received signal according to the present embodiment. In the example of this figure, it is assumed that the maximum delay does not exceed the GI length and there is no interference due to the previous OFDM symbol.
- the horizontal axis is a time axis, which is a discrete time divided by a predetermined time width.
- a hatched area with diagonal lines rising diagonally to the right indicates GI.
- the hatched area with the diagonally upward left diagonal lines represents the received signals of the preceding and succeeding OFDM symbols.
- N is the number of points in the FFT (Fast Fourier Transform) section (also the number of points in the IFFT (Inverse Fast Fourier Transform) section), and N g is the number of GI points.
- the number of points is the number of discrete times.
- FIG. 8 is a schematic diagram showing another example of the received signal according to the present embodiment. In the example of this figure, it is assumed that the maximum delay exceeds the GI length and interference due to the previous OFDM symbol occurs.
- Inter Carrier Interference Inter Carrier Interference: ICI
- the reception signal r i, k of the i-th symbol at the k-th discrete time received by the reception unit b102 is expressed by the following equations (1) and (2).
- D is the maximum delay time
- h i, d, k are the complex amplitudes at the k-th discrete time in the path of the propagation path number d of the i-th symbol (referred to as the d-th path)
- s i, k are the i-th symbol. It is a transmission signal in the time domain
- z i, k is noise in the time domain of the i th symbol.
- N is the number of points in the FFT interval
- S i, n is the modulation signal of the i-th symbol of the n-th subcarrier
- N g is the number of points in the GI interval (see FIG. 5)
- j is an imaginary unit.
- a signal R i, n after time-frequency conversion is performed on the received signal r i, k in the FFT section by the FFT unit b103 is expressed by the following equations (3) to (6).
- W i, n, m is the ICI coefficient of the signal from the mth subcarrier to the nth subcarrier
- V i, n, m is the ISI coefficient of the signal from the mth subcarrier to the nth subcarrier
- Z i and n are noises in the n-th subcarrier
- Z ′ i, n is the sum of noise, ICI and ISI.
- Wi, n, n when m n is the frequency response of the n-th subcarrier and is represented by the following Equations (7) and (8).
- c i, d is the time average of the channel impulse response that varies with time in the OFDM symbol.
- the propagation path estimation unit b106 estimates Wi , n, and n , which will be described later.
- the remaining functions of the receiving device b1 will be described assuming that an estimated value is obtained.
- the demodulator b107 calculates the demodulated symbol S ′ i, n using the following equation (9).
- Equation (9) ⁇ Z ' 2 is the power of Z' i, n and is expressed as in the following Equation (10).
- E [X] represents an ensemble average of X. This power can be calculated as in the following equation (11), and the result is used in equation (9) to calculate the demodulated symbol S ′ i, n .
- Equation (11) is an estimated value of ⁇ Z ′ 2
- P i is a set representing pilot subcarriers in the i-th symbol. Note that this is a calculation method using the fact that Equation (11) can be expressed by the following Equation (12) when it is assumed that a sufficient number of arithmetic calculations are equal to the ensemble average.
- the first term represents ISI and ICI power
- the second term represents noise power
- the pilot signal power is not 1, an adjustment factor for that amount may be introduced. Further, the normalization of the frequency response is caused by amplitude adjustment when analog-to-digital conversion is performed in the receiving unit b102.
- the demodulator b107 calculates a bit log likelihood ratio from the demodulated symbol S ′ i, n in Expression (9).
- An equivalent amplitude gain is used for this calculation process.
- the bit log likelihood ratio ⁇ is expressed by the following equations (15) and (16) with respect to the equivalent amplitude gain ⁇ i, n of the n-th subcarrier expressed by the following equation (14).
- the equations (15) and (16) are respectively expressed as log likelihood ratios ⁇ (b i, n, 0 ) of the first bit bits b i, n, 0 and the second bit bits b i, n, 1 . 0 ), ⁇ (b i, n, 1 ).
- the frequency response estimator b106-1 calculates an estimated value W ′ i, n, n of the frequency response based on the equation (3). Specifically, it is estimated as the following equation (17).
- the signal S i, n of the nth subcarrier needs to be known, but a pilot symbol or the like may be used.
- n 1 , n 2 ,. . . , N P are pilot subcarriers, and a frequency response estimation vector H P (H is bold) is defined as in the following equation (18).
- n 1 is the lowest subcarrier
- n 2 is the next subcarrier
- n 3 is the next subcarrier
- L 3.
- eight propagation path models can be considered as shown in FIG.
- Each model number q was set to 0-7.
- the synchronization position taken by the receiving unit b102 is perfect, and the path is surely present at the position of the delay time 0. This depends on the performance of the synchronization circuit used in the receiving device b1.
- a model having a path at the position of the negative delay time may be considered.
- (I is bold) is a unit matrix, and the size is the number of paths
- Y H (Y is bold) represents a complex conjugate transpose of Y (Y is bold).
- ⁇ q is a parameter that determines the accuracy of the estimated value, and the optimum value varies depending on ⁇ Z ′ 2 and the model.
- the representative value may be made variable at the design stage and updated when the firmware, software, etc. of the receiving device b1 are updated.
- F q (F is bold) is a Fourier transform matrix to pilot subcarriers in the case of model q.
- the IFFT unit b106-2 zero-pads other than the pilot subcarrier, performs frequency time conversion on the estimated frequency response value, and outputs it to the channel impulse response estimation unit b106-3 and the model comparison unit b106-4.
- the channel impulse response estimation unit b106-3 extracts a path position value corresponding to the model q from the inputs from the IFFT unit b106-2. This result agrees with F q H H p (F and second H are bold). Thereafter, the channel impulse response of the assumed number of models is estimated based on the equation (19), and is output to the model comparison unit b106-4.
- the model comparison unit b106-4 selects a model that maximizes the propagation path estimation fitness from the input impulse responses.
- the propagation path estimation fitness of model q is represented by model evidence M (q) as shown in the following equation (22).
- h q, t ) H and h are bold
- p (h q, t ) H and h are bold
- p (h q, t ) h is bold
- h q, t H is bold
- It is a variable vector showing a channel impulse response at the time of model q.
- ⁇ p 2 is pilot power.
- the first term is an amount resulting from an error between the estimated value and the observed value
- the second term is an amount representing a penalty for the complexity of q.
- the penalty of equation (22) is a penalty suitable for wireless communication when several (in this case, n 1 , n 2 ,..., N P ) frequency response estimates are obtained.
- the model comparison unit b106-4 outputs the selected estimated vector h q (h is bold) to the FFT unit b106-5.
- the parameter ⁇ q may be optimized at the same time. Specifically, it can be realized using an EM algorithm (Expectation-Maximization algorithm) or the like.
- the FFT unit b106-5 converts the selected channel impulse response estimation value into a frequency response by time-frequency conversion, and then outputs the frequency response to the demodulation unit b107.
- the frequency response estimation vector H q (H is bold) output at this time is expressed by the following equation (23).
- F q, A (F is bold) is a Fourier transform matrix for all subcarriers in the case of the model q.
- FIG. 10 is a flowchart showing the operation of the receiving device b1 according to this embodiment.
- the operation shown in this figure is a process after the reception unit b102 in FIG. 5 outputs the reception signal to the GI removal unit b103.
- step S101 the GI removal unit b103 removes the guard interval from the received signal. Thereafter, the process proceeds to step S102.
- step S102 the FFT unit b104 performs time frequency conversion on the signal obtained in step S101.
- the demapping unit b105 separates data and pilot from the obtained frequency domain signal. After outputting the received signal of the pilot subcarrier to the propagation path estimation unit b106, the process proceeds to step S103.
- step S103 the frequency response estimation unit b106-1 obtains an estimated value of the frequency response using the pilot subcarrier received signal obtained in step S102.
- the frequency response estimation value subjected to frequency time conversion is output to channel impulse response estimation section b106-3 and model comparison section b106-4. Thereafter, the process proceeds to step S104.
- step S104 the channel impulse response estimation unit b106-3 obtains channel impulse response estimation values for all assumed models using the frequency response estimation values obtained in step S103, and outputs the channel impulse response estimation values to the model comparison unit b106-4. To do. Thereafter, the process proceeds to step S105.
- step S105 the model comparison unit b106-4 uses the channel impulse response estimation value of each model obtained in step S104 to select a model that maximizes the propagation path estimation fitness, and the channel impulse corresponding to the model.
- the response estimated value is output to the FFT unit b106-5. Thereafter, the process proceeds to step S106.
- step S106 the FFT unit b106-5 performs time-frequency conversion on the channel impulse response estimation value obtained in step S105, and outputs the result to the demodulation unit b107. Thereafter, the process proceeds to step S107.
- step S107 the demodulation unit b107 performs demodulation processing using the frequency response estimation value obtained in step S106, and outputs the demodulation result to the decoding unit b108. Thereafter, the process proceeds to step S108.
- step S108 the decoding unit b108 performs decoding using the demodulation result obtained in step S107. Thereafter, the receiving device b1 ends the operation.
- the propagation path estimation unit b106 estimates channel impulse responses in a plurality of assumed models, and selects an optimal model according to model evidence suitable for wireless communication. Thereby, it is possible to limit the path to be estimated to only necessary ones, and it is possible to improve the propagation path estimation accuracy by increasing the noise and interference suppression effect.
- the frequency response is estimated using a pilot symbol for each OFDM symbol has been described.
- interpolation may be performed using pilot symbols of neighboring OFDM symbols.
- the position of the pilot subcarrier is the lowest subcarrier, the second subcarrier, the second subcarrier,. . .
- a location that is not a pilot subcarrier may also be estimated using pilot symbols of OFDM symbols having different times.
- noise and interference can be reduced by using pilot symbols at different times. In this way, the propagation path estimation accuracy can be further improved.
- Equation (22) the amount of noise / interference that can be reduced at the stage of frequency response estimation is reflected in ⁇ ′ Z 2 .
- ⁇ ′ Z 2 is set to 1 ⁇ 2.
- pilot symbols are used as reference signals used for frequency response estimation.
- estimation may be performed using determined data. Specifically, it can be realized by feeding back the output of the demodulator b107 or the decoder b108 to the frequency response estimator b106-1.
- the communication system is described as performing multi-carrier signal communication.
- the present invention is not limited to this, and the present invention is also applicable to single-carrier signal communication using FFT. be able to.
- FIG. 11 is a schematic block diagram showing a configuration of a transmission device a2 according to the second embodiment of the present invention.
- the transmission device a2 includes a pilot generation unit a101, a coding unit a102, a modulation unit a103, a mapping unit a204, a transmission unit a107, and a transmission antenna a108.
- the processing of the mapping unit a204 is different from the mapping unit a104, and the IFF unit and GI insertion unit Does not exist.
- pilot generation unit a101, encoding unit a102, modulation unit a103, transmission unit a107, transmission antenna a108 are the same as those in the first embodiment.
- a description of the same functions as those in the first embodiment is omitted.
- the mapping unit a204 generates a time domain signal by mapping the pilot symbol input from the pilot generation unit a101 and the modulation symbol input from the modulation unit a103 to the time domain based on predetermined mapping information. Then, the generated time domain signal is output to the transmitter a107. Also, the mapping information is determined by the transmission device a2, and is notified in advance from the transmission device a2 to the reception device b2 according to the present embodiment.
- FIG. 12 is an example of mapping of information data symbols and pilot symbols by the mapping unit a204. In this figure, white squares represent information data symbols, and shaded squares represent pilot symbols. The pilot symbols are transmitted continuously in K symbols.
- FIG. 13 is a schematic block diagram showing the configuration of the receiving device b2 according to the second embodiment of the present invention.
- the reception device b2 includes a reception antenna b101, a reception unit b102, a demapping unit b205, a propagation path estimation unit b206, a demodulation unit b207, and a decoding unit b108.
- the receiving apparatus b2 FIG. 13
- the processes of the demapping unit b205, the propagation path estimating unit b206, and the demodulating unit b207 are respectively performed.
- the GI removal unit and the FFT unit do not exist.
- the functions of other components are the same as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
- the demapping unit b205 performs demapping on the received signal based on the mapping information notified in advance from the transmission device a2, and outputs the received signal at the time when the separated pilot symbol is transmitted to the propagation path estimating unit b206. Then, the reception signal at the time of data transmission is output to the demodulator b207.
- the propagation path estimation unit b206 estimates a channel impulse response based on the received signal input from the demapping unit b205 and a pilot symbol stored in advance.
- FIG. 14 is a schematic block diagram showing the configuration of the propagation path estimation unit b206.
- the propagation path estimation unit b206 includes a channel impulse response estimation unit b206-3 and a model comparison unit b206-4.
- the channel impulse response estimation unit b206-3 estimates the channel impulse response for each model assumed by the receiving apparatus b2 based on the received signal input from the demapping unit b205 and the pilot symbol stored in advance, and the model comparison unit b206-4.
- the model comparison unit b206-4 selects the channel impulse response estimation value for each model input from the channel impulse response estimation unit b206-3, and selects the one that maximizes the propagation path estimation fitness, and outputs it to the demodulation unit b207 To do.
- a pilot signal is used as a reference signal
- a time waveform of a pilot symbol is used as a physical structure.
- the propagation path estimation unit b206 predetermines the assumed maximum delay time L. The handling of this is the same as in the first embodiment. You may estimate L similarly to a propagation path, without predetermining. Moreover, the propagation path estimation part b206 measures noise power using the pilot symbol memorize
- the demodulation unit b207 performs demodulation processing using the received signal input from the demapping unit b205 and the channel impulse response estimation value input from the propagation path estimation unit b206. At this time, ISI due to multipath is compensated. For this, a known technique such as MMSE or MLSE (Maximum Likelihood Sequence Estimation) may be used.
- the reception signal r i of the i-th symbol received by the receiving unit b102 is expressed by the following equation (26).
- h i, d is the complex amplitude in the d-th path of the i-th symbol
- s i is the i-th transmission symbol
- z i is the noise of the i-th symbol.
- the channel impulse response estimation unit b206-3 estimates channel impulse responses corresponding to all assumed models, as in the first embodiment.
- s 1 ,. . . , S K ⁇ 1 are pilot symbols, and if the maximum delay time of model q is D q , then r Dq,. . . , R K ⁇ 1 is used for estimation.
- the received signal vector r q (r is bold) when the model q is used is expressed by the following equation (27).
- the channel impulse response estimation unit b206-3 estimates the channel impulse response of the assumed number of models and outputs it to the model comparison unit b206-4.
- the model comparison unit b206-4 selects a model that maximizes the channel estimation fitness from the input channel impulse responses.
- the propagation path estimation fitness of model q is expressed by model evidence M (q) of the following equation (31).
- ⁇ z 2 is the power of z i .
- FIG. 16 is a flowchart showing the operation of the receiving device b2 according to this embodiment. The operation shown in this figure is processing after the reception unit b102 in FIG. 13 outputs the reception signal to the demapping unit b205.
- step S201 the demapping unit b205 separates data and pilot from the input received signal.
- Channel impulse response estimation section b206-3 uses the obtained pilot symbol received signals to determine channel impulse responses for all assumed models and outputs the channel impulse responses to model comparison section b206-4. Thereafter, the process proceeds to step S202.
- step S202 the model comparison unit b206-4 uses the channel impulse response estimation value of each model obtained in step S201 to select a model that maximizes the propagation path estimation fitness.
- the channel impulse response estimated value corresponding to this model is output to demodulator b207. Thereafter, the process proceeds to step S203.
- step S203 the demodulation unit b207 performs demodulation processing using the channel impulse response estimation value obtained in step S202. Thereafter, the process proceeds to step S204.
- step S204 the decoding unit b108 performs decoding using the demodulation result obtained in step S203. Thereafter, the receiving device b1 ends the operation.
- the propagation path estimation unit b206 estimates channel impulse responses in a plurality of assumed models using pilot symbols transmitted in the time domain, and converts them into the shape of the pilot symbols. Choose the best model according to the appropriate model evidence. Thereby, it is possible to limit the path to be estimated to only necessary ones, and it is possible to improve the propagation path estimation accuracy by increasing the noise and interference suppression effect.
- the channel impulse response may be estimated using a plurality of K pilot symbol clusters.
- the channel impulse response may be estimated for each chunk and then averaged. The average at that time may be a weighted average considering time variation.
- equation (28) may be expanded and performed by a single calculation. In this case, (the r bold) received signal vector r i of formula (28) dimension is extended from K-D q an integer multiple of K-D q.
- the section of D q to K ⁇ 1 is the channel impulse response estimation section, but it may be extended. For example, 0 to K + D q ⁇ 1 may be used. In this case, the estimation is performed in all sections where pilot symbols are observed. However, it is necessary to add to noise power in consideration of the influence of ISI leaking into the estimation section.
- pilot symbols are mapped in the time domain.
- the present invention may also be applied when mapped in the frequency domain as in the first embodiment.
- the IFFT result is a known symbol sequence in the time domain.
- the data symbol can also be handled as a reference signal, and the IFFT result can be handled as a reference signal in the time domain.
- the present embodiment can be applied.
- the transmission apparatus a2 maps and transmits pilot symbols in the time domain
- the reception apparatus b2 estimates the goodness of the model when the channel impulse response is estimated based on the transmitted pilot symbol sequence. Determine and choose the channel impulse response estimated with the best model. In this case, the channel impulse response is estimated on a block basis.
- channel impulse response estimation is realized by updating with the passage of time.
- the transmission device a3 according to the present embodiment has the same configuration as the transmission device a2 (FIG. 11) according to the second embodiment, the description thereof is omitted.
- FIG. 18 is a schematic block diagram showing the configuration of the receiving device b3 according to the third embodiment of the present invention.
- the receiving apparatus b3 (FIG. 18) according to the present embodiment is compared with the receiving apparatus b2 (FIG. 13) according to the second embodiment, only the processing of the propagation path estimation unit b306 is the same as that of the second embodiment.
- the functions of other components are the same as those in the second embodiment. A description of the same functions as those in the second embodiment is omitted.
- FIG. 19 is a schematic block diagram showing the configuration of the propagation path estimation unit b306.
- the channel estimator b306 (FIG. 19) in the receiver b3 is compared with the channel estimator b206 (FIG. 14) in the receiver b2, the processing of the channel impulse response estimator b306-3 and the model comparator b306-4 Is different from that of the propagation path estimation unit b206.
- the channel impulse response estimation unit b306-3 estimates the channel impulse response for each model assumed by the receiving apparatus b3 based on the received signal input from the demapping unit b205 and the pilot symbol stored in advance, and the model comparison unit b306-4.
- the model comparison unit b306-4 selects, from the channel impulse response estimation values for each model input from the channel impulse response estimation unit b306-3, the one that maximizes the propagation path estimation fitness, and outputs it to the demodulation unit b207 To do.
- a pilot symbol is used as a reference signal
- a pilot symbol time waveform is used as a physical structure.
- the propagation path estimation unit b306 predetermines the assumed maximum delay time L. The handling of this is the same as in the first embodiment. You may estimate L similarly to a propagation path, without predetermining. Moreover, the propagation path estimation part b306 measures noise power using the pilot symbol memorize
- the channel impulse response estimation unit b306 in the reception device b3 performs estimation for each symbol instead of K blocks. Specifically, it can be realized by the following RLS (Recursive Last Squares) algorithm.
- estimation is performed at discrete times D q to K ⁇ 1.
- ⁇ (0 ⁇ ⁇ 1) is a forgetting factor
- u q (k) (u is bold) is the transposed k-th row vector of S q (S is bold).
- the receiving apparatus b3 may measure the propagation path fluctuation and assign an optimum representative value.
- the initial value of w q (k) (w is bold) is a zero vector
- the initial value of R q ⁇ 1 (k) (R is bold) is ⁇ I
- the initial value means a value at a discrete time 2.
- the model comparison unit b306-4 selects a model that maximizes the channel estimation fitness from the input channel impulse responses.
- the propagation path estimation fitness of model q is represented by model evidence M (q) of the following equation (37).
- ⁇ z 2 is the power of z i .
- FIG. 20 is a flowchart showing the operation of the receiving device b3 according to this embodiment. The operation shown in this figure is processing after the receiving unit b102 in FIG. 18 outputs the received signal to the demapping unit b205.
- step S301 the demapping unit b205 separates data and pilot from the input received signal.
- Channel impulse response estimation section b 306-3 obtains channel impulse responses for all assumed models for each time using the obtained pilot symbol received signals, and outputs them to model comparison section b 306-4. Thereafter, the process proceeds to step S302.
- step S302 the model comparison unit b306-4 uses the channel impulse response estimation value of each model obtained in step S301 to select the model that maximizes the propagation path estimation fitness.
- the channel impulse response estimated value corresponding to this model is output to demodulator b207. Thereafter, the process proceeds to step S203.
- step S203 and step S204 are the same as in the second embodiment, description thereof is omitted.
- the propagation path estimation unit b306 estimates channel impulse responses in a plurality of assumed models for each time using pilot symbols transmitted in the time domain, and the pilot symbols
- the optimal model is selected according to the model evidence appropriate for the shape of the model.
- pilot symbols are mapped in the time domain.
- the present invention may also be applied when mapped in the frequency domain as in the first embodiment.
- the IFFT result is a known symbol sequence in the time domain.
- the data symbol can also be handled as a reference signal, and the IFFT result can be handled as a reference signal in the time domain. In these cases, the present embodiment can be applied.
- the model selection and the channel impulse response estimation are performed at the same time.
- the selected model is used for another propagation path estimation.
- the channel estimation unit b106 in the receiving apparatus b1 selects a model and estimates a channel impulse response at a certain time, and estimates the channel impulse response using the already selected model at the next estimation time. May be performed.
- the propagation path estimation unit b306 may be operated using the model selected by the propagation path estimation unit b106.
- the other propagation path estimation described above is applied to all estimation methods using path information, and is not limited to the propagation path estimation method described in this specification.
- the delay time of the delay path of the propagation path matches the sampling interval of the signal output from the receiving unit b102.
- N in Expression (20) or Expression (21) is changed to ⁇ N.
- the maximum delay time L assumed by the receiving apparatus b1 is ⁇ L.
- the channel impulse response estimation unit b106-3 and the model selection unit b106-4 are realized by a computer. You may do it.
- the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read and executed by a computer system.
- the “computer system” here is a computer system built in the transmission devices a1 and a2 or the reception devices b1 to b3, and includes hardware such as an OS and peripheral devices.
- the “computer-readable recording medium” refers to a storage device such as a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a hard disk built in the computer system.
- the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
- a volatile memory inside a computer system that serves as a server or a client may be included that holds a program for a certain period of time.
- the program may be for realizing a part of the above-described functions, and further, the program described above may be realized in combination with a program already recorded in the computer system. Good.
- part or all of the transmission devices a1 and a2 and the reception devices b1 to b3 in the first to third embodiments described above may be realized as an integrated circuit such as an LSI (Large Scale Integration).
- LSI Large Scale Integration
- Each functional block of the transmission devices a1 and a2 and the reception devices b1 to b3 may be individually made into a processor, or a part or all of them may be integrated into a processor.
- the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. Further, in the case where an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology may be used.
- the present invention can be used for a receiving apparatus and a receiving method.
- a1, a2 Transmitting device a101 Pilot generating unit a102 Encoding unit a103 Modulating unit a104, a204 Mapping unit a105 IFFT unit a106 GI inserting unit a107 Transmitting unit a108 Transmitting antenna b1, b2 Receiving device b101 Receiving antenna b102 Receiving unit b103 GI removing unit b104 FFT Unit b105, b205 demapping unit b106, b206, b306 propagation path estimation unit b107, b207 demodulation unit b108 decoding unit b106-1 frequency response estimation unit b106-2 IFFT unit b106-3, b206-3, b306-3 channel impulse response Estimation unit b106-4, b206-4, b306-4 Model comparison unit b106-5 FFT unit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
- Circuits Of Receivers In General (AREA)
Abstract
高精度な伝搬路推定が可能な受信装置および受信方法を提供する。 互いに異なるパスを持った複数のモデルの各々に対応するチャネルインパルス応答推定値を算出するチャネルインパルス応答推定部(b106-3)と、伝搬路推定適合度が最大となる前記チャネルインパルス応答推定値に対応するモデルを選択するモデル比較部(b106-4)と、を備える。
Description
本発明は、受信装置および受信方法に関する。
無線通信においては、特に広帯域伝送の場合、先行して受信するパスに加え、建物や山などの障害物からの反射を経由するなどして遅延して到来するパスが存在するため、シンボル間干渉(ISI:Inter Symbol Interference)が発生する。このように複数のパスが到来する環境を、マルチパス環境と呼ぶ。例えば、受信装置が時間領域の受信信号に対して復調処理を行う場合、時間領域の伝搬路であるチャネルインパルス応答が必要であり、周波数領域の受信信号に対して復調処理を行う場合、周波数領域の伝搬路である周波数応答が必要である。これらの伝搬路を推定するため、受信装置がその波形(あるいはその信号系列)の振幅値を記憶するパイロットシンボルを、送信装置から受信装置へ予め送信しておく方法がある。高精度な伝搬路推定値を得るためには、遅延パスの電力などの伝搬路の統計的性質を知っておく必要がある。
非特許文献1には、スキャッタード・パイロットOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)において、推定するパスを選択することで、雑音および干渉の影響を低減し、推定精度を向上させる技術が記載されている。非特許文献1に記載の技術では、具体的には、周波数応答の推定値をIFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)することで近似的に得られるチャネルインパルス応答のうち、電力の大きいパスを抽出し、それに対応した遅延時間を推定に用いるタップの遅延時間として選択する。しかしながら、この方法では、推定できる周波数応答の数に限りがある場合、IFFTで得られる近似チャネルインパルス応答は、本来パスのある場所から広がった形になる。この場合、推定すべきパスの周囲の遅延時間であって、推定精度を向上させることができない遅延時間も選択されてしまうため、推定精度の向上には限界がある。
このようなパスの広がりによる影響を、図1および2を用いて説明する。図1は、パスの広がりが無い場合の伝搬モデルの一例であり、横軸は遅延時間軸、縦軸はパスの電力である。図1の例では、パス101とパス102の2つのパスが存在している。このとき、しきい値103を超える電力のパスを選択すれば、パス101とパス102が選ばれる。一方、図2は、パスの広がりがある場合の伝搬モデルの一例である。図1と同様に、横軸は遅延時間軸、縦軸はパスの電力であり、パス101、パス102、しきい値103は、図1と同一のものである。パス101に対する広がり201と、パス102に対する広がり202のため、パス101およびパス102に加え、余分なパスである203~206も、しきい値103を超えたパスとして選択されてしまう。
非特許文献2および3には、いくつかのパラメータを持つモデルにおいて、どのようなモデルが実際に得られた観測値などを最もよく表すことができるかを評価する技術が記載されている。非特許文献2および3に記載の技術では、具体的には、あるモデルで観測値を評価した場合の最大対数尤度と、そのモデルのパラメータ数に応じたペナルティとに基づいて、モデルのよさを評価する。このモデルを伝搬路とし、パラメータをパスと考えることで、これらのモデル選択基準を伝搬路推定に応用することができる。これらの技術では、電力ではなく統計的な情報基準に基づいてパスを選択することになるため、非特許文献1のような問題は軽減できる。
しかしながら、非特許文献2および3のモデル選択方法は、無線通信における伝搬路推定には最適化されていないという問題がある。
加藤、須山、鈴木、府川、「スキャッタード・パイロットOFDM受信機に用いる繰り返し検出と適応タップ選択チャネル推定」、電子情報通信学会技術報告、RCS2006-76、2006年7月
H. Akaike, 「A new look at the statistical model identification」, IEEE Trans. Automat. Contr., Vol.19, pp.716-723, 1974
G. Schwarz, 「Estimating the dimension of a model」, Annals of Statistics, Vol.6, pp.461-464, 1978
本発明は、このような実情に鑑みてなされたものであり、高精度な伝搬路推定が可能な受信装置および受信方法を提供する。
本発明の受信装置は、互いに異なるパスを持った複数のモデルの各々に対応するチャネルインパルス応答推定値を算出するチャネルインパルス応答推定部と、伝搬路推定適合度が最大となる前記チャネルインパルス応答推定値に対応するモデルを選択するモデル比較部と、を備えることを特徴とする。
前記モデル比較部は、前記チャネルインパルス応答推定値を算出するために用いる参照信号の物理構造に基づいて前記伝搬路推定適合度を算出するようにしてもよい。
前記物理構造は配置周波数であってもよい。
前記物理構造は時間波形であってもよい。
前記参照信号はパイロットシンボルであってもよい。
前記参照信号は判定したデータ信号であってもよい。
本発明の受信方法は、互いに異なるパスを持った複数のモデルの各々に対応するチャネルインパルス応答推定値を算出するチャネルインパルス応答推定ステップと、伝搬路推定適合度が最大となる前記チャネルインパルス応答推定値に対応するモデルを選択するモデル比較ステップと、を有することを特徴とする。
本発明によれば、伝搬路推定精度を大幅に改善することができる。
<第1の実施形態>
図3は、本発明の第1の実施形態に係る送信装置a1の構成を示す概略ブロック図である。送信装置a1は、パイロット生成部a101と、符号部a102と、変調部a103と、マッピング部a104と、IFFT部a105と、GI挿入部a106と、送信部a107と、送信アンテナa108とを備え、OFDM信号を送信する。
図3は、本発明の第1の実施形態に係る送信装置a1の構成を示す概略ブロック図である。送信装置a1は、パイロット生成部a101と、符号部a102と、変調部a103と、マッピング部a104と、IFFT部a105と、GI挿入部a106と、送信部a107と、送信アンテナa108とを備え、OFDM信号を送信する。
パイロット生成部a101は、本発明の第1の実施形態に係る受信装置b1がその波形(あるいはその信号系列)の振幅値を予め記憶するパイロットシンボルを生成し、マッピング部a104に出力する。受信装置b1では、パイロットシンボルを参照信号として伝搬路推定を行う。
符号部a102は、受信装置b1に送信する情報ビットに対して畳込み符号、ターボ符号、LDPC(Low Density Parity Check:低密度パリティ検査)符号などの誤り訂正符号を用いて符号化し、符号化ビットを生成する。符号部a102は、生成した符号化ビットを変調部a103に出力する。
変調部a103は、符号部a102から入力された符号化ビットを、PSK(Phase Shift Keying:位相偏移変調)やQAM(Quadrature Amplitude Modulation:直交振幅変調)などの変調方式を用いて変調し、変調シンボルを生成する。変調部a103は、生成した変調シンボルをマッピング部a104に出力する。
マッピング部a104は、パイロット生成部a101から入力されたパイロットシンボルと、変調部a103から入力された変調シンボルとを、予め定められたマッピング情報に基づいてリソース(時間-周波数帯域)にマッピングして周波数領域の信号を生成し、生成した周波数領域の信号をIFFT部a105に出力する。なお、リソースとは、送信装置a1が送信するフレームにおいて、1つのサブキャリアと1つの後述するFFT区間とからなる、変調シンボルを配置する単位である。また、マッピング情報は、送信装置a1が決定し、送信装置a1から受信装置b1へ予め通知される。図4は、マッピング部a104によるパイロットシンボルと変調信号のマッピングの一例である。
IFFT部a105は、マッピング部a104から入力された周波数領域の信号を周波数-時間変換し、時間領域の信号を生成する。ここで、IFFTを行う単位の時間区間をFFT区間という。IFFT部a105は、生成した時間領域の信号をGI挿入部a106に出力する。
GI挿入部a106は、IFFT部a105から入力された時間領域の信号に対して、FFT区間の信号毎にガードインターバル(Guard Interval:GI)を付加する。ここで、ガードインターバルとは、FFT区間の信号の後方の一部を複製したものであるサイクリックプレフィックス(Cyclic Prefix:CP)やゼロ区間が続くゼロパディング、Golay符号等を用いた既知信号等であり、GI挿入部a106は、このような信号をこのFFT区間の信号の前方に付加する。
なお、FFT区間と、GI挿入部a106がその時間区間の信号に付加したガードインターバルの時間区間(GI区間という)とを併せてOFDMシンボル区間という。また、OFDMシンボル区間の信号をOFDMシンボルという。GI挿入部a106は、ガードインターバルを付加した信号を送信部a107に出力する。
なお、ガードインターバルをFFT区間の後方に挿入してもよい。例えば、サイクリックプレフィックスを用いる場合、FFT区間の前方の一部の複製をFFT区間の信号の後方に付加する。また、サイクリックプレフィックスの場合は、OFDMシンボル区間で周期性が保たれるようにすればよく、前記の限りではない。
送信部a107は、GI挿入部a106から入力された信号をデジタル-アナログ変換し、変換したアナログ信号を波形整形する。送信部a107は、波形整形した信号をベースバンド帯から無線周波数帯にアップコンバートし、送信アンテナa108から受信装置b1へ送信する。
図5は、本実施形態に係る受信装置b1の構成を示す概略ブロック図である。受信装置b1は、受信アンテナb101と、受信部b102と、GI除去部b103と、FFT部b104と、デマッピング部b105と、伝搬路推定部b106と、復調部b107と、復号部b108とを備える。
受信部b102は、送信装置a1が送信した信号を、受信アンテナb101を介して受信する。受信部b102は、受信した信号に対して、周波数変換およびアナログ-デジタル変換を行う。
GI除去部b103は、受信部b102から入力された受信信号から、ガードインターバルを除去し、FFT部b104へ出力する。
FFT部b104は、GI除去部b103から入力された時間領域の信号に対して時間周波数変換を行い、変換した周波数領域の信号をデマッピング部b105へ出力する。
デマッピング部b105は、FFT部b104から入力された周波数領域の信号に対し、送信装置a1から予め通知されたマッピング情報に基づいてデマッピングを行い、分離されたパイロットシンボルが送信されたサブキャリアの受信信号を伝搬路推定部b106に出力する。また、データが送信されたサブキャリアの受信信号を復調部b107に出力する。
図6は、伝搬路推定部b106の構成を示す概略ブロック図である。伝搬路推定部b106は、周波数応答推定部b106-1と、IFFT部b106-2と、チャネルインパルス応答推定部b106-3と、モデル比較部b106-4と、FFT部b106-5とを備える。
周波数応答推定部b106-1は、デマッピング部b105から入力された受信信号と、予め記憶するパイロットシンボルとに基づいて周波数応答を推定し、IFFT部b106-2に出力する。
IFFT部b106-2は、周波数応答推定部b106-1から入力された周波数応答の推定値に周波数時間変換を施し、チャネルインパルス応答推定部b106-3およびモデル比較部b106-4に出力する。
チャネルインパルス応答推定部b106-3は、受信装置b1が想定する伝搬モデル毎のチャネルインパルス応答を推定し、モデル比較部b106-4に出力する。この原理については後述する。
モデル比較部b106-4は、チャネルインパルス応答推定部b106-3から入力されたモデル毎のチャネルインパルス応答推定値のうち、伝搬路推定適合度を最大にするものを選択し、FFT部b106-5に出力する。ここで伝搬路推定適合度とは、用いる伝搬路推定方式による推定値と受信信号との適合の度合いを示す。この原理については後述する。
また、伝搬路推定適合度の算出は、チャネルインパルス応答の推定に用いる参照信号の物理構造を利用して行う。これは、本実施形態だけでなく、他の実施形態でも同様である。本実施形態では、参照信号としてパイロットシンボルを用いる場合について説明し、物理構造として、パイロットシンボルの配置されているサブキャリアの位置を用いる。
FFT部b106-5は、モデル比較部b106-4から入力されたチャネルインパルス応答推定値に時間周波数変換を施し、復調部b107に出力する。
また、伝搬路推定部b106は、想定する最大遅延時間Lを予め決めておくものとする。本発明では、推定するパスを選択するため、Lは正確である必要はなく、実際の最大遅延時間より大きくなるように余裕を持っていればよい。
なお、Lが実際の最大遅延時間より大きいという条件を満たすため、受信装置b1は、使用する周波数や帯域幅、通信システムを運用する地形等に基づいてLを設定しておく必要がある。これには、通信システムを運用する前に詳細な実地調査を行って決定してもよいし、設計段階では可変にしておき、受信装置b1のファームウェア、ソフトウェア等をアップデートするときに更新するなどしてもよい。
なお、Lを事前決定せず、伝搬路と同様に推定してもよい。
また、伝搬路推定部b106は、予め記憶するパイロットシンボルを用い、パイロットシンボルが配置されるサブキャリア(パイロットサブキャリアという)において、雑音電力を測定する。具体的な算出方法は、動作原理と併せて後述する。
復調部b107は、伝搬路推定部b106から入力された周波数応答および雑音電力を用いて、ZF(Zero Forcing)基準、MMSE(Minimum MeanSquare Error)基準等のフィルタ係数を算出する。復調部b107は、算出したフィルタ係数を用いて、信号の振幅と位相の変動の補償(伝搬路補償という)を行う。
復調部b107は、復調処理の結果のビット対数尤度比(LLR:Log Likelihood Ratio)を復号部b108に出力する。
復号部b108は、復調部b107から入力された復調シンボルに対して、例えば、最尤復号法(MLD:Maximum Likelihood Decoding)、最大事後確率(MAP:Maximum A posteriori Probability)、log-MAP、Max-log-MAP、SOVA(Soft Output Viterbi Algorithm)等を用いて、復号処理を行う。
図7は、本実施形態に係る受信信号の一例を示す概略図である。この図の例では、最大遅延はGI長を超えず、前のOFDMシンボルによる干渉は無いとする。
この図において、横軸は時間軸であり、予め定めた時間幅で区切られた離散時刻である。この図において、右斜め上がりの斜線でハッチングした領域はGIを示す。また、左斜め上がりの斜線でハッチングした領域は前後のOFDMシンボルの受信信号を表す。
また、NはFFT(Fast Fourier Transform:高速フーリエ変換)区間のポイント数(IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)区間のポイント数でもある)、NgはGIのポイント数である。ここで、ポイント数とは離散時刻の数である。
図8は、本実施形態に係る受信信号の他の例を示す概略図である。この図の例では、最大遅延がGI長を超えており、前のOFDMシンボルによる干渉が発生しているとする。
また、FFT区間内において、各パスの伝搬路値が大きく時間変動する場合、キャリア間干渉(Inter Carrier Interference:ICI)が発生する。
本発明は、上記のような干渉が存在する場合にも有効であるため、以下では干渉が存在するものとして説明する。
以下、受信装置b1の動作原理について、図5を参照しながら説明する。
ここで、Dは最大遅延時間、hi,d,kは第iシンボルの伝搬路番号dのパス(第dパスという)における第k離散時刻の複素振幅、si,kは第iシンボルの時間領域の送信信号であり、zi,kは第iシンボルの時間領域の雑音である。また、NはFFT区間のポイント数、Si,nは第nサブキャリアの第iシンボルの変調信号、NgはGI区間のポイント数(図5参照)、jは虚数単位である。なお、d=0~Dの複素振幅をまとめてチャネルインパルス応答という。
ここで、Wi,n,mは第mサブキャリアから第nサブキャリアへの信号のICI係数、Vi,n,mは第mサブキャリアから第nサブキャリアへの信号のISI係数、Zi,nは第nサブキャリアにおける雑音である。なお、Z’i,nは雑音とICIおよびISIの和である。また、式(5)において、m=nである場合のWi,n,nは、第nサブキャリアの周波数応答であり、次式(7)、(8)で表される。
なお、ci,dは、OFDMシンボル内で時間変動しているチャネルインパルス応答の時間平均である。伝搬路推定部b106においてWi,n,nの推定が行われるが、これについては後述する。ここでは、推定値が得られているものとして、受信装置b1の残りの機能を説明する。
ここで、σZ’’2はσZ’2の推定値であり、Piは第iシンボルにおいてパイロットサブキャリアを表す集合である。なお、これは十分な数の算術計算がアンサンブル平均に等しいと仮定した場合、式(11)が次式(12)のようにできることを利用した算出法である。
ここで、第1項がISIおよびICIの電力を表し、第2項が雑音電力を表している。この式は、パイロット信号の電力が1に正規化され、周波数応答の電力平均が1に正規化される場合のものである。すなわち、この式は次式(13)が満たされる場合のものである。
なお、パイロット信号の電力が1でない場合は、その分の調整係数を導入すればよい。また、周波数応答の正規化は、受信部b102にてアナログ-デジタル変換されるときの振幅調整に起因する。
復調部b107は、式(9)の復調シンボルS’i,nからビット対数尤度比を算出する。この算出処理には等価振幅利得が用いられる。具体的には、QPSKの場合、次式(14)で表される第nサブキャリアの等価振幅利得μi,nに対して、ビット対数尤度比λは、次式(15)、(16)で表される。ここで、式(15)、(16)は、それぞれ、1ビット目のビットbi,n,0、2ビット目のビットbi,n,1の対数尤度比λ(bi,n,0)、λ(bi,n,1)である。
これを行うためには、第nサブキャリアの信号Si,nが既知である必要があるが、パイロットシンボル等を用いればよい。
ここで、周波数応答の推定値からチャネルインパルス応答を推定する方法について説明する。n1,n2,...,nPをパイロットサブキャリアとし、周波数応答推定ベクトルHP(Hは太字)を次式(18)のように定義する。
ただし、太字はベクトル又は行列を表し、YT(Yは太字)はY(Yは太字)の転置を表す。なお、例えば図4における最初のOFDMシンボルを考えると、n1は一番低いサブキャリア、n2はそれより2つ先のサブキャリア、n3はさらに2つ先のサブキャリア、...、ということになる。
ここで、L=3の場合を考える。この場合、図9のように、8通りの伝搬路モデルを考えることができる。それぞれのモデル番号qを0~7とした。ただし、受信部b102で取られる同期位置が完全であり、遅延時間0の位置にパスは確実に存在するものとした。これは、受信装置b1に用いる同期回路の性能にもよる。また、負の遅延時間の位置にパスがあるモデルを考えてもよい。
ただし、I|q|(Iは太字)は単位行列であり、サイズはモデルqにおけるパス数|q|である。また、YH(Yは太字)はY(Yは太字)の複素共役転置を表す。また、αqは推定値の精度を決めるパラメータであり、σZ’2とモデルとによって最適値が変化する。αqはhq(hは太字)を計算するサイに最適化してもよいし、qによらずに一定(αq=α)とし、事前にσZ’2に応じた代表値を保持するようにしておいてもよい。代表値は、設計段階では可変にしておき、受信装置b1のファームウェア、ソフトウェア等をアップデートするときに更新するなどしてもよい。また、Fq(Fは太字)は、モデルqの場合のパイロットサブキャリアへのフーリエ変換行列であり、例えば、図9におけるq=1の場合は次式(20)、q=5の場合は次式(21)で表される。
IFFT部b106-2は、パイロットサブキャリア以外を0詰めした後、周波数応答の推定値に対して周波数時間変換を行い、チャネルインパルス応答推定部b106-3およびモデル比較部b106-4に出力する。
チャネルインパルス応答推定部b106-3は、IFFT部b106-2からの入力のうち、モデルqに対応するパス位置の値を抽出する。この結果は、Fq
HHp(Fと2番目のHは太字)に一致する。その後、式(19)に基づいて、想定するモデル数のチャネルインパルス応答を推定し、モデル比較部b106-4に出力する。
なお、p(HP|hq,t)(Hとhは太字)は尤度関数、p(hq,t)(hは太字)は事前確率、hq,t(hは太字)はモデルqのときのチャネルインパルス応答を表す変数ベクトルである。また、σp
2はパイロット電力である。第1項は推定値と観測値の誤差に起因する量、第2項はqの複雑さに対するペナルティを表す量である。式(22)のペナルティは、いくつか(この場合はn1,n2,...,nP)の周波数応答の推定値が求まる場合の無線通信に適したペナルティである。
モデル比較部b106-4は、選択した推定ベクトルhq(hは太字)をFFT部b106-5に出力する。
なお、パラメータαqの最適化を同時に行ってもよい。具体的には、EMアルゴリズム(Expectation-Maximization algorithm)等を用いて実現することができる。
なお、σZ’2を推定する方法を式(11)で示したが、ここでαqの最適化と同時に行ってもよい。その場合にもEMアルゴリズム等を用いればよい。
FFT部b106-5は、選択されたチャネルインパルス応答推定値を時間周波数変換により周波数応答に変換した後、復調部b107に出力する。この際に出力される周波数応答推定ベクトルHq(Hは太字)は、次式(23)で表される。
次に、受信装置b1の動作について説明する。図10は、本実施形態に係る受信装置b1の動作を示すフローチャートである。なお、この図が示す動作は、図5の受信部b102が受信信号をGI除去部b103に出力した後の処理である。
ステップS101において、GI除去部b103は、受信信号からガードインターバルを除去する。その後、ステップS102に進む。
ステップS102において、FFT部b104は、ステップS101で得られた信号に対して時間周波数変換を行う。デマッピング部b105は、得られた周波数領域の信号からデータとパイロットとを分離する。パイロットサブキャリアの受信信号を伝搬路推定部b106に出力した後、ステップS103へ進む。
ステップS103において、周波数応答推定部b106-1は、ステップS102で得られたパイロットサブキャリアの受信信号を用いて周波数応答の推定値を求める。周波数応答の推定値に周波数時間変換を施したものをチャネルインパルス応答推定部b106-3およびモデル比較部b106-4に出力する。その後、ステップS104へ進む。
ステップS104において、チャネルインパルス応答推定部b106-3は、ステップS103で得られた周波数応答の推定値を用い、想定するすべてのモデルに対するチャネルインパルス応答推定値を求め、モデル比較部b106-4に出力する。その後、ステップS105に進む。
ステップS105において、モデル比較部b106-4は、ステップS104で得られた各モデルのチャネルインパルス応答推定値を用いて、伝搬路推定適合度を最大にするモデルを選び、そのモデルに対応するチャネルインパルス応答推定値をFFT部b106-5に出力する。その後、ステップS106に進む。
ステップS106において、FFT部b106-5は、ステップS105で得られたチャネルインパルス応答推定値に対して時間周波数変換を行い、復調部b107に出力する。その後、ステップS107に進む。
ステップS107において、復調部b107は、ステップS106で得られた周波数応答推定値を用いて復調処理を行い、復調結果を復号部b108に出力する。その後、ステップS108に進む。
ステップS108において、復号部b108は、ステップS107で得られた復調結果を用いて復号を行う。その後、受信装置b1は動作を終了する。
このように、本実施形態によれば、伝搬路推定部b106は、想定される複数のモデルにおけるチャネルインパルス応答を推定し、無線通信に適したモデルエビデンスにしたがって最適なモデルを選択する。これにより、推定するパスを必要なものだけに制限することができ、雑音および干渉の抑圧効果を増加させることで、伝搬路推定精度を向上させることができる。
なお、以上の説明では、OFDMシンボル毎にパイロットシンボルを用いて周波数応答を推定する場合について説明したが、近傍のOFDMシンボルのパイロットシンボルを用いて補間してもよい。例えば、図4の最初のOFDMシンボルにおいては、パイロットサブキャリアの位置は一番低いサブキャリア、2つ先のサブキャリア、さらに2つ先のサブキャリア、...、となっているが、パイロットサブキャリアでない場所についても時刻の異なるOFDMシンボルのパイロットシンボルを用いて推定してもよい。また、パイロットシンボルのあるサブキャリアに関しても、異なる時刻のパイロットシンボルを用いることで、雑音・干渉を低減することができる。このようにすることで、伝搬路推定精度をさらに改善できる。具体的には、伝搬路変動が大きくない場合には算術平均を行ってもよいし、伝搬路変動に合わせて重み付け平均を行ってもよい。その際、式(22)において、周波数応答推定の段階で低減できた雑音・干渉の分は、σ’Z
2に反映させる。例えば、時間変動なしの場合において、2つの時刻の周波数応答を平均する場合は、σ’Z
2を1/2とする。
なお、以上の説明では、周波数応答の推定に用いる参照信号として、パイロットシンボルを用いて行ったが、判定したデータを用いて推定してもよい。具体的には、復調部b107または復号部b108の出力を周波数応答推定部b106-1にフィードバックすること等で実現できる。
なお、上記第1の実施形態において、複数のモデルに対するチャネルインパルス応答を用いてモデル選択を行う場合について説明したが、複数のモデルに対する周波数応答でもよい。その場合、式(19)で得られるチャネルインパルス応答推定値にFq(Fは太字)を乗算する。また、式(22)の(Fq
HHp)Hhq(Fと2番目のHとhは太字)の部分が、Hp
H(Fqhq)(最初のHとFとhは太字)になる。
なお、上記第1の実施形態において、通信システムはマルチキャリア信号の通信を行う場合について説明したが、本発明はこれに限らず、FFTを用いてシングルキャリア信号の通信を行う場合にも適用することができる。
<第2の実施形態>
以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。第1の実施形態では、送信装置a1が、パイロットシンボルを周波数領域にマッピングするマルチキャリア信号等を送信し、受信装置b1が、周波数応答を推定できるサブキャリアに基づいてチャネルインパルス応答を推定したときのモデルのよさを判定し、最もよいモデルで推定されたチャネルインパルス応答を選んだ。本実施形態では、パイロットシンボルが時間領域で連続して送信される場合のチャネルインパルス応答の推定方法について説明する。
以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。第1の実施形態では、送信装置a1が、パイロットシンボルを周波数領域にマッピングするマルチキャリア信号等を送信し、受信装置b1が、周波数応答を推定できるサブキャリアに基づいてチャネルインパルス応答を推定したときのモデルのよさを判定し、最もよいモデルで推定されたチャネルインパルス応答を選んだ。本実施形態では、パイロットシンボルが時間領域で連続して送信される場合のチャネルインパルス応答の推定方法について説明する。
図11は、本発明の第2の実施形態に係る送信装置a2の構成を示す概略ブロック図である。送信装置a2は、パイロット生成部a101と、符号部a102と、変調部a103と、マッピング部a204と、送信部a107と、送信アンテナa108とを備える。本実施形態に係る送信装置a2(図11)と第1の実施形態に係る送信装置a1(図3)とを比較すると、マッピング部a204の処理がマッピング部a104と異なり、IFF部およびGI挿入部が存在しない。しかし、その他の構成要素(パイロット生成部a101、符号部a102、変調部a103、送信部a107、送信アンテナa108)が持つ機能は、第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
マッピング部a204は、パイロット生成部a101から入力されたパイロットシンボルと、変調部a103から入力された変調シンボルとを、予め定められたマッピング情報に基づいて時間領域にマッピングして時間領域の信号を生成し、生成した時間領域の信号を送信部a107に出力する。また、マッピング情報は、送信装置a2が決定し、送信装置a2から本実施の形態に係る受信装置b2へ予め通知される。図12は、マッピング部a204による情報データシンボルとパイロットシンボルのマッピングの一例である。この図において、白の四角形は情報データシンボルを表し、網掛けの四角形はパイロットシンボルを表す。パイロットシンボルは、Kシンボル連続で送信される。
図13は、本発明の第2の実施形態に係る受信装置b2の構成を示す概略ブロック図である。受信装置b2は、受信アンテナb101と、受信部b102と、デマッピング部b205と、伝搬路推定部b206と、復調部b207と、復号部b108とを備える。本実施形態に係る受信装置b2(図13)と第1の実施形態に係る受信装置b1(図5)とを比較すると、デマッピング部b205、伝搬路推定部b206、復調部b207の処理が各々デマッピング部b105、伝搬路推定部b106、復調部b107の処理と異なり、GI除去部およびFFT部が存在しない。しかし、その他の構成要素(受信アンテナb101、受信部b102、復号部b108)が持つ機能は、第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
デマッピング部b205は、送信装置a2から予め通知されたマッピング情報に基づいて受信信号に対してデマッピングを行い、分離されたパイロットシンボルが送信された時刻の受信信号を伝搬路推定部b206に出力し、データ送信された時刻の受信信号を復調部b207に出力する。
伝搬路推定部b206は、デマッピング部b205から入力された受信信号と、予め記憶されたパイロットシンボルとに基づいてチャネルインパルス応答を推定する。
図14は、伝搬路推定部b206の構成を示す概略ブロック図である。この図において、伝搬路推定部b206は、チャネルインパルス応答推定部b206-3と、モデル比較部b206-4とを備える。
チャネルインパルス応答推定部b206-3は、デマッピング部b205から入力された受信信号と、予め記憶するパイロットシンボルに基づいて、受信装置b2が想定するモデル毎のチャネルインパルス応答を推定し、モデル比較部b206-4に出力する。
モデル比較部b206-4は、チャネルインパルス応答推定部b206-3から入力されたモデル毎のチャネルインパルス応答推定値のうち、伝搬路推定適合度を最大にするものを選択し、復調部b207に出力する。本実施形態では、参照信号としてパイロット信号を用いる場合について説明し、物理構造としてパイロットシンボルの時間波形を用いる。
伝搬路推定部b206は、想定する最大遅延時間Lを予め決めておくものとする。これの扱いは第1の実施形態と同様である。Lを事前決定せず、伝搬路と同様に推定してもよい。また、伝搬路推定部b206は、予め記憶するパイロットシンボルを用い、雑音電力を測定する。
復調部b207は、デマッピング部b205から入力される受信信号と、伝搬路推定部b206から入力されるチャネルインパルス応答推定値とを用いて、復調処理を行う。この際、マルチパスによるISIを補償する。これには、MMSEやMLSE(最尤系列推定:Maxmum Likelihood Sequence Estimation)等の既知技術を用いればよい。
以下、受信装置b2の動作原理について、図13を参照しながら説明する。
ここで、hi,dは第iシンボルの第dパスにおける複素振幅、siは第i送信シンボル、ziは第iシンボルの雑音である。
次に、伝搬路推定部b206の動作を説明する。チャネルインパルス応答推定部b206-3は、第1の実施形態と同様に、想定するすべてのモデルに対応するチャネルインパルス応答を推定する。説明の簡単化のため、s1,...,sK-1をパイロットシンボルであるとすると、モデルqの最大遅延時間がDqである場合、rDq,...,rK-1を用いて推定を行う。図15は、Dq=2、K=12の場合の一例である。伝搬路推定区間の先頭の離散時刻をDqにすることで、伝搬路推定区間に漏れ込むISIを防ぐことができる。
チャネルインパルス応答推定部b206-3は、想定するモデル数のチャネルインパルス応答を推定し、モデル比較部b206-4に出力する。
ただし、σz
2はziの電力である。
図16は、本実施形態に係る受信装置b2の動作を示すフローチャートである。なお、この図が示す動作は、図13の受信部b102が受信信号をデマッピング部b205に出力した後の処理である。
ステップS201において、デマッピング部b205は、入力された受信信号からデータとパイロットを分離する。チャネルインパルス応答推定部b206-3は、得られたパイロットシンボルの受信信号を用い、想定するすべてのモデルに対するチャネルインパルス応答を求め、モデル比較部b206-4に出力する。その後、ステップS202に進む。
ステップS202において、モデル比較部b206-4は、ステップS201で得られた各モデルのチャネルインパルス応答推定値を用いて、伝搬路推定適合度を最大にするモデルを選ぶ。このモデルに対応するチャネルインパルス応答推定値を復調部b207に出力する。その後、ステップS203に進む。
ステップS203において、復調部b207は、ステップS202で得られたチャネルインパルス応答推定値を用いて復調処理を行う。その後、ステップS204に進む。
ステップS204において、復号部b108は、ステップS203で得られた復調結果を用いて復号を行う。その後、受信装置b1は動作を終了する。
このように、本実施形態によれば、伝搬路推定部b206は、想定される複数のモデルにおけるチャネルインパルス応答を、時間領域で送信されたパイロットシンボルを用いて推定し、そのパイロットシンボルの形状に適したモデルエビデンスにしたがって最適なモデルを選択する。これにより、推定するパスを必要なものだけに制限することができ、雑音および干渉の抑圧効果を増加させることで、伝搬路推定精度を向上させることができる。
なお、以上の説明では、K個のパイロットシンボルの1かたまりだけを用いてチャネルインパルス応答を推定する場合について説明したが、K個のパイロットシンボルのかたまりを複数用いてチャネルインパルス応答を推定してもよい。例えば、図12における最初のKシンボルと、次の連続データに続くKシンボルの、2かたまりを用いてもよい。具体的には、かたまり毎にチャネルインパルス応答を推定し、その後平均してもよい。その際の平均は、時間変動を考慮しての重み付け平均でもよい。また、式(28)を拡張して一度の計算で行ってもよい。その場合、式(28)の受信信号ベクトルri(rは太字)の次元が、K-DqからK-Dqの整数倍に拡張される。
なお、以上の説明では、図15のように、Dq~K-1の区間をチャネルインパルス応答推定区間としたが、拡張してもよい。例えば、0~K+Dq-1でもよい。この場合、パイロットシンボルが観測される全区間における推定ということになるが、推定区間に漏れ込むISIの影響を考慮し、雑音電力に加算する必要がある。
なお、以上の説明では、時間領域にパイロットシンボルがマッピングされた場合について説明したが、第1の実施形態のように、周波数領域にマッピングされた場合にも適用できることがある。例えば、図17のようにすべてのサブキャリアにパイロットシンボルがマッピングされるOFDMシンボルがある場合、そのIFFT結果は時間領域で既知のシンボル系列となる。あるいは、一度復号を行うことで、データシンボルも参照信号として扱うこともできるので、そのIFFT結果は時間領域で参照信号として扱うことができる。これらのような場合は、本実施形態が適用できる。
<第3の実施形態>
以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。第2の実施形態では、送信装置a2が、パイロットシンボルを時間領域にマッピングして送信し、受信装置b2が、送信されたパイロットシンボル系列に基づいてチャネルインパルス応答を推定したときのモデルのよさを判定し、最もよいモデルで推定されたチャネルインパルス応答を選ぶ。その際のチャネルインパルス応答の推定は、ブロック単位で行っている。本実施形態では、チャネルインパルス応答の推定を、時間の経過と共に更新していくことで実現する場合について説明する。
以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。第2の実施形態では、送信装置a2が、パイロットシンボルを時間領域にマッピングして送信し、受信装置b2が、送信されたパイロットシンボル系列に基づいてチャネルインパルス応答を推定したときのモデルのよさを判定し、最もよいモデルで推定されたチャネルインパルス応答を選ぶ。その際のチャネルインパルス応答の推定は、ブロック単位で行っている。本実施形態では、チャネルインパルス応答の推定を、時間の経過と共に更新していくことで実現する場合について説明する。
本実施形態に係る送信装置a3は、第2の実施形態に係る送信装置a2(図11)と構成が同じため、説明を省略する。
図18は、本発明の第3の実施形態に係る受信装置b3の構成を示す概略ブロック図である。本実施形態に係る受信装置b3(図18)と、第2の実施形態に係る受信装置b2(図13)とを比較すると、伝搬路推定部b306の処理だけが第2の実施形態のものと異なる。しかし、その他の構成要素(受信アンテナb101、受信部b102、デマッピング部b205、復調部b207、復号部b108)が持つ機能は、第2の実施形態と同じである。第2の実施形態と同じ機能の説明は省略する。
図19は、伝搬路推定部b306の構成を示す概略ブロック図である。受信装置b3における伝搬路推定部b306(図19)と、受信装置b2における伝搬路推定部b206(図14)とを比較すると、チャネルインパルス応答推定部b306-3とモデル比較部b306-4の処理が伝搬路推定部b206のものと異なる。
チャネルインパルス応答推定部b306-3は、デマッピング部b205から入力された受信信号と、予め記憶するパイロットシンボルに基づいて、受信装置b3が想定するモデル毎のチャネルインパルス応答を推定し、モデル比較部b306-4に出力する。
モデル比較部b306-4は、チャネルインパルス応答推定部b306-3から入力されたモデル毎のチャネルインパルス応答推定値のうち、伝搬路推定適合度を最大にするものを選択し、復調部b207に出力する。本実施形態では、参照信号としてパイロットシンボルを用いる場合について説明し、物理構造としてパイロットシンボルの時間波形を用いる。
伝搬路推定部b306は、想定する最大遅延時間Lを予め決めておくものとする。これの扱いは、第1の実施形態と同様である。Lを事前決定せず、伝搬路と同様に推定してもよい。また、伝搬路推定部b306は、予め記憶するパイロットシンボルを用い、雑音電力を測定する。
以下、受信装置b3における伝搬路推定部b306の動作原理について、図19を参照しながら説明する。チャネルインパルス応答推定部b306-3は、第2の実施形態のチャネルインパルス応答推定部b206-3と異なり、K個のブロック単位ではなく、1シンボル毎の推定を行う。具体的には、以下に示すRLS(Recursive Least Squares:逐次最小2乗)アルゴリズムで実現できる。
第2の実施形態と同様に、離散時刻Dq~K-1において推定を行う。本実施形態においては、離散時刻毎の推定値が求まる。つまり、図15においては、離散時刻k=2~11のチャネルインパルス応答を推定することになる。離散時刻kにおけるqのチャネルインパルス応答推定ベクトルをhq(k)(hは太字)とすると、次式(32)のようになる。
ここで、λ(0<λ≦1)は忘却係数であり、uq(k)(uは太字)はSq(Sは太字)の第k行ベクトルを転置したものである。λが小さいほど伝搬路変動への追従性が向上する。実際に用いるλとしては、受信装置b3が伝搬路変動を測定し、最適な代表値を割当てればよい。また、wq(k)(wは太字)の初期値はゼロベクトル、Rq
-1(k)(Rは太字)の初期値はαI|q|(Iは太字)とする。図15の場合、初期値は離散時刻2のときの値を意味する。チャネルインパルス応答推定部b306-3は、想定するモデル数のチャネルインパルス応答を推定し、モデル比較部b306-4に出力する。この際に出力するのは、最後に更新されるものを出力すればよい。すなわち、図15の例においては、k=11の値を出力すればよい。
第2の実施形態と同様に、σz
2はziの電力である。
図20は、本実施形態に係る受信装置b3の動作を示すフローチャートである。なお、この図が示す動作は、図18の受信部b102が受信信号をデマッピング部b205に出力した後の処理である。
ステップS301において、デマッピング部b205は、入力された受信信号からデータとパイロットを分離する。チャネルインパルス応答推定部b306-3は、得られたパイロットシンボルの受信信号を用い、想定するすべてのモデルに対するチャネルインパルス応答を時刻毎に求め、モデル比較部b306-4に出力する。その後、ステップS302に進む。
ステップS302において、モデル比較部b306-4は、ステップS301で得られた各モデルのチャネルインパルス応答推定値を用いて、伝搬路推定適合度を最大にするモデルを選ぶ。このモデルに対応するチャネルインパルス応答推定値を、復調部b207に出力する。その後、ステップS203に進む。
ステップS203とステップS204は、第2の実施形態と同様のため、説明を省略する。
このように、本実施形態によれば、伝搬路推定部b306は、想定される複数のモデルにおけるチャネルインパルス応答を、時間領域で送信されたパイロットシンボルを用いて時刻毎に推定し、そのパイロットシンボルの形状に適したモデルエビデンスにしたがって、最適なモデルを選択する。これにより、推定するパスを必要なものだけに制限することができ、雑音および干渉の抑圧効果を増加させることで、伝搬路推定精度を向上させることができる。
なお、以上の説明では、過去から未来に向かうRLSアルゴリズムを用いる場合について説明したが、未来からの値でスムージングしてもよい。具体的には、未来から過去に向かうRLSアルゴリズムを動作させて両方の値を見てもよいし、順方向アルゴリズムで得られた時刻毎のチャネルインパルス応答に対し、未来から過去に向かって平滑化処理を行ってもよい。これらの処理を、モデル毎に行ってもよいし、モデル選択は順方向のRLSアルゴリズムで行い、未来から過去への処理は選択されたモデルのみに行ってもよい。
なお、以上の説明では、時間領域にパイロットシンボルがマッピングされた場合について説明したが、第1の実施形態のように、周波数領域にマッピングされた場合にも適用できることがある。例えば、図17のように、すべてのサブキャリアにパイロットシンボルがマッピングされるOFDMシンボルがある場合、そのIFFT結果は時間領域で既知のシンボル系列となる。あるいは、一度復号を行うことで、データシンボルも参照信号として扱うこともできるので、そのIFFT結果は時間領域で参照信号として扱うことができる。これらの場合は、本実施形態が適用できる。
なお、上述した第1乃至第3の実施形態における受信装置b1、b2、b3では、モデルの選択とチャネルインパルス応答の推定を同時に行っているが、選択したモデルを別の伝搬路推定に用いてもよい。例えば、受信装置b1における伝搬路推定部b106が、ある時刻においてモデルの選択とチャネルインパルス応答の推定をし、次に推定を行う時刻では、既に選択されているモデルを用いてチャネルインパルス応答の推定を行ってもよい。あるいは、伝搬路推定部b106と伝搬路推定部b306とを持つ受信装置があった場合に、伝搬路推定部b106が選択したモデルを用いて伝搬路推定部b306を動作させてもよい。なお、上述した別の伝搬路推定とは、パス情報を用いる推定方法すべてに適用され、本明細書中で説明した伝搬路推定方法に限らない。
なお、上述した第1乃至第3の実施形態における受信装置b1、b2、b3では、伝搬路の遅延パスの遅延時間は、受信部b102が出力する信号のサンプリング間隔と一致すると仮定しているが、サンプリング間隔の間にパスが存在するとしてもよい。例えば、第1の実施形態において、通常のFFTのサンプリング間隔のβ倍のサンプリング間隔でパスを検出する場合、式(20)や式(21)のNをβNに変更する。その際、受信装置b1が想定する最大遅延時間Lは、βLとなる。
なお、上述した第1乃至第3の実施形態における送信装置a1、a2および受信装置b1~b3の一部、例えば、チャネルインパルス応答推定部b106-3、モデル選択部b106-4をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行させることによって実現してもよい。
なお、ここでいう「コンピュータシステム」とは、送信装置a1、a2又は受信装置b1~b3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。さらに、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
また、上述した第1乃至第3の実施形態における送信装置a1、a2および受信装置b1~b3の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。送信装置a1、a2および受信装置b1~b3の各機能ブロックは、個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法は、LSIに限らず、専用回路または汎用プロセッサで実現してもよい。また、半導体技術の進歩により、LSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲において様々な設計変更等をすることが可能である。
本発明は、受信装置および受信方法に利用可能である。
a1、a2 送信装置
a101 パイロット生成部
a102 符号部
a103 変調部
a104、a204 マッピング部
a105 IFFT部
a106 GI挿入部
a107 送信部
a108 送信アンテナ
b1、b2 受信装置
b101 受信アンテナ
b102 受信部
b103 GI除去部
b104 FFT部
b105、b205 デマッピング部
b106、b206、b306 伝搬路推定部
b107、b207 復調部
b108 復号部
b106-1 周波数応答推定部
b106-2 IFFT部
b106-3、b206-3、b306-3 チャネルインパルス応答推定部
b106-4、b206-4、b306-4 モデル比較部
b106-5 FFT部
a101 パイロット生成部
a102 符号部
a103 変調部
a104、a204 マッピング部
a105 IFFT部
a106 GI挿入部
a107 送信部
a108 送信アンテナ
b1、b2 受信装置
b101 受信アンテナ
b102 受信部
b103 GI除去部
b104 FFT部
b105、b205 デマッピング部
b106、b206、b306 伝搬路推定部
b107、b207 復調部
b108 復号部
b106-1 周波数応答推定部
b106-2 IFFT部
b106-3、b206-3、b306-3 チャネルインパルス応答推定部
b106-4、b206-4、b306-4 モデル比較部
b106-5 FFT部
Claims (8)
- 互いに異なるパスを持った複数のモデルの各々に対応するチャネルインパルス応答推定値を算出するチャネルインパルス応答推定部と、
伝搬路推定適合度が最大となる前記チャネルインパルス応答推定値に対応するモデルを選択するモデル比較部と、
を備えることを特徴とする受信装置。 - 前記モデル比較部は、前記チャネルインパルス応答推定値を算出するために用いる参照信号の物理構造に基づいて前記伝搬路推定適合度を算出することを特徴とする請求項1に記載の受信装置。
- 前記物理構造は配置周波数であることを特徴とする請求項2に記載の受信装置。
- 前記物理構造は時間波形であることを特徴とする請求項2に記載の受信装置。
- 前記参照信号はパイロットシンボルであることを特徴とする請求項2乃至4のいずれか1項に記載の受信装置。
- 前記参照信号は判定したデータ信号であることを特徴とする請求項2乃至4のいずれか1項に記載の受信装置。
- 互いに異なるパスを持った複数のモデルの各々に対応するチャネルインパルス応答推定値を算出するチャネルインパルス応答推定ステップと、
伝搬路推定適合度が最大となる前記チャネルインパルス応答推定値に対応するモデルを選択するモデル比較ステップと、
を有することを特徴とする受信方法。 - 請求項7に記載の受信方法をコンピュータに実行させるプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010165960A JP2012029043A (ja) | 2010-07-23 | 2010-07-23 | 受信装置および受信方法 |
JP2010-165960 | 2010-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011399A1 true WO2012011399A1 (ja) | 2012-01-26 |
Family
ID=45496826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065756 WO2012011399A1 (ja) | 2010-07-23 | 2011-07-11 | 受信装置および受信方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012029043A (ja) |
WO (1) | WO2012011399A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013061900A1 (ja) * | 2011-10-25 | 2013-05-02 | シャープ株式会社 | 受信装置、受信方法、通信システムおよび通信方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03278724A (ja) * | 1990-03-28 | 1991-12-10 | Matsushita Electric Ind Co Ltd | データ受信装置 |
JP2002009731A (ja) * | 2000-06-26 | 2002-01-11 | Toshiba Corp | Ofdm復調回路とofdm受信装置 |
JP2002527997A (ja) * | 1998-10-09 | 2002-08-27 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | タップの数を可変にできるチャネル推定器 |
-
2010
- 2010-07-23 JP JP2010165960A patent/JP2012029043A/ja active Pending
-
2011
- 2011-07-11 WO PCT/JP2011/065756 patent/WO2012011399A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03278724A (ja) * | 1990-03-28 | 1991-12-10 | Matsushita Electric Ind Co Ltd | データ受信装置 |
JP2002527997A (ja) * | 1998-10-09 | 2002-08-27 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | タップの数を可変にできるチャネル推定器 |
JP2002009731A (ja) * | 2000-06-26 | 2002-01-11 | Toshiba Corp | Ofdm復調回路とofdm受信装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013061900A1 (ja) * | 2011-10-25 | 2013-05-02 | シャープ株式会社 | 受信装置、受信方法、通信システムおよび通信方法 |
US8983007B2 (en) | 2011-10-25 | 2015-03-17 | Sharp Kabushiki Kaisha | Receiver apparatus, reception method, communication system, and communication method |
Also Published As
Publication number | Publication date |
---|---|
JP2012029043A (ja) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012105291A1 (ja) | 受信装置、受信方法、通信システムおよび通信方法 | |
WO2011111583A1 (ja) | 受信装置、受信方法、受信プログラム、及びプロセッサ | |
JP5539832B2 (ja) | 受信装置、受信方法、受信プログラム | |
JP5428788B2 (ja) | 受信装置、受信方法、及び受信プログラム | |
JP2011515993A (ja) | 低減された次数のfft及びハードウェア補間器を使用する広帯域パイロットチャネル推定 | |
JP2007037151A (ja) | Ofdm伝送システムのチャネルを推定する装置、方法、及びコンピュータプログラム | |
JP4352035B2 (ja) | Ofdm復調装置、方法およびプログラム | |
JP2013168853A (ja) | 受信装置、受信方法および受信プログラム | |
JP5347203B2 (ja) | マルチパスチャネルの遅延スプレッドを推定する方法及び装置 | |
WO2006038052A1 (en) | Receiver-site restoration of clipped signal peaks | |
JP2010130355A (ja) | 受信装置および受信方法 | |
JP6272583B1 (ja) | 通信装置および受信信号処理方法 | |
WO2012011399A1 (ja) | 受信装置および受信方法 | |
WO2011158727A1 (ja) | 無線通信装置、受信方法およびそのプログラム | |
KR101853184B1 (ko) | 하나 이상의 수신된 무선 신호를 처리하는 장치 및 방법 | |
JP5837797B2 (ja) | 受信装置、受信方法、通信システムおよび通信方法 | |
JP5371722B2 (ja) | 受信装置、受信方法、及び受信プログラム | |
Chen et al. | Fractional Cosine Transform (FrCT)-Turbo based OFDM for underwater acoustic communication | |
JP2013223177A (ja) | 受信装置、受信方法および受信プログラム | |
WO2012169303A1 (ja) | 受信装置、受信方法、制御プログラムおよび集積回路 | |
JP2010278850A (ja) | 受信装置、受信方法、及び受信プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11809573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11809573 Country of ref document: EP Kind code of ref document: A1 |