WO2012009973A1 - 一种含有抗帕金森病药物的微球组合药物及其应用 - Google Patents

一种含有抗帕金森病药物的微球组合药物及其应用 Download PDF

Info

Publication number
WO2012009973A1
WO2012009973A1 PCT/CN2011/071008 CN2011071008W WO2012009973A1 WO 2012009973 A1 WO2012009973 A1 WO 2012009973A1 CN 2011071008 W CN2011071008 W CN 2011071008W WO 2012009973 A1 WO2012009973 A1 WO 2012009973A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
benserazide
methyl ester
microsphere
levodopa methyl
Prior art date
Application number
PCT/CN2011/071008
Other languages
English (en)
French (fr)
Inventor
刘振国
袁伟恩
Original Assignee
上海交通大学医学院附属新华医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010230676 external-priority patent/CN101879143B/zh
Priority claimed from CN 201010230625 external-priority patent/CN101879153B/zh
Priority claimed from CN2010102306475A external-priority patent/CN101884624B/zh
Priority claimed from CN2010102306348A external-priority patent/CN101884622B/zh
Priority claimed from CN2010102306371A external-priority patent/CN101884623B/zh
Application filed by 上海交通大学医学院附属新华医院 filed Critical 上海交通大学医学院附属新华医院
Publication of WO2012009973A1 publication Critical patent/WO2012009973A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs

Definitions

  • the present invention relates to a microsphere composition, and more particularly to a microsphere combination drug containing an anti-Parkinson's disease drug and use thereof.
  • Parkinson's disease symptomatic Parkinson's disease is mainly treated with oral levodopa. It takes three times a day, but it is very inconvenient for such patients because they have problems with their actions and memories. If you can use a single medicine to achieve a week or even a month, this is a very good thing for them.
  • Chinese Patent Application No. 200910201414. X discloses a selegiline sustained release microsphere and a preparation method thereof.
  • Chinese Patent Application No. 200910201416. 9 discloses a rivastigmine sustained release microsphere and a preparation method thereof.
  • Chinese Patent Application No. 200410030559. 5 discloses a levodopa nano preparation and a preparation method thereof. Selegiline sustained release microspheres, rivastigmine sustained release microspheres and levodopa nano preparations are difficult to pass through the blood-brain barrier and are easily degraded by enzymes in the body. The blood concentration in the body is lower than oral administration.
  • the levodopa nano preparation is unstable, the nanoparticles are easy to aggregate, affecting its efficacy, and the excipients used in the levodopa nano preparation are not medicinal excipients, and have toxic side effects.
  • the object of the present invention is to provide a microsphere composition containing a drug resistant to Parkinson's disease in view of the deficiencies in the prior art.
  • the invention relates to a microsphere composition containing anti-Parkinson's disease medicine for preparing a medicament for preventing and treating diseases of Parkinson's disease and Parkinson's disease, wherein the microsphere composition containing anti-Parkinson's disease medicine is selected from benzylic acid Silk microspheres, levodopa methyl ester microspheres, levodopa methyl ester microspheres and benserazide microspheres or levodopa methyl ester and benserazide mixed drug microspheres.
  • the microsphere composition comprises, by weight percent, the composition consists of the following components:
  • the anti-Parkinson's disease drug is selected from one or a mixture of levodopa methyl ester or benserazide.
  • the degradable hydrophobic polymer is selected from the group consisting of polylactic acid-glycolic acid, polylactic acid or polycaprolactone or a mixture thereof.
  • the microsphere composition has a particle size of from 1 to 500 Mm.
  • the microsphere composition has a particle size of from 250 to 500 Mm.
  • the microsphere composition is by oil-in-water-in-water method (w/o/w), water-in-oil (0/V) method, oil-in-water-oil encapsulation method (s/o/w) Prepared by oil-in-oil-encapsulation (s/o/o) or spray drying.
  • the microsphere composition is prepared by an oil-in-water-water-in-oil method (w/o/w) or an oil-in-water-oil encapsulation method (s/o/w).
  • microsphere combination drug containing anti-Parkinson's disease drug is benserazide microsphere, levodopa methyl ester microsphere, levodopa methyl ester microsphere and benserazide microsphere or Levodopa methyl ester and benserazide mixed drug microspheres.
  • microspheres are composed of the following components by weight:
  • levodopa methyl ester microspheres are composed of the following components by weight:
  • the levodopa methyl ester microspheres and the benserazide microspheres are combined to form a drug microsphere, and the levodopa methyl ester microspheres are composed of the following components by weight:
  • the benserazide microspheres are composed of the following components by weight:
  • the levodopa methyl ester and the benserazide mixed drug microspheres comprise, by weight percentage, the microspheres consist of the following components:
  • the weight ratio of levodopa methyl ester to benserazide is 1 : 1 - 4 : 1 .
  • the invention utilizes oil-in-water method (W/0), oil-in-water-water-in-water method (W/0/W), oil-in-oil-encapsulation method (S/0/W) or oil-in-oil - Oil-encapsulation method (S/0/0) successfully developed a microsphere combination drug containing anti-Parkinson's disease drugs;
  • the microsphere combination drug containing anti-Parkinson's disease drug can have long-term effects by subcutaneous injection, intramuscular injection, intraperitoneal injection or intracranial injection; 3.
  • the microsphere combination drug containing anti-Parkinson's disease drug has obvious synergistic effect, and the AM score can be significantly reduced compared with the single use.
  • the combination of the two drugs can greatly reduce the treatment cost while improving the curative effect.
  • the present invention has opened up a new field of application for discovering new medical uses for microsphere combination drugs containing anti-Parkinson's disease drugs.
  • microsphere combination drug containing the anti-Parkinson's disease drug of the invention is safe and non-toxic, and has strong pharmacological action, indicating a good medicinal prospect.
  • Fig. 1 Scanning electron micrograph of PLGA microsphere composition of levodopa methyl ester and benserazide mixed drug sustained release.
  • Fig. 2 The release profile of levodopa methyl ester and benserazide mixed drug sustained release PLGA microsphere combined object.
  • Figure 3 Scanning electron micrograph of levodopa methyl ester sustained release PLA microsphere composition.
  • Fig. 4 is a graph showing the release of levodopa methyl ester sustained-release PLA microspheres.
  • Figure 5 Scanning electron micrograph of the benserazide sustained-release PLA microsphere composition prepared by the oil-in-oil-water-in-water method.
  • Fig. 6 is a graph showing the external release profile of the baize silkworm sustained release PLA microsphere combined object prepared by the oil-in-oil-water-in-oil method.
  • Fig. 7 Scanning electron micrograph of the benserazide sustained-release PLA microsphere composition prepared by the oil-in-oil-oil solid method.
  • Fig. 8 is a graph showing the external release profile of a benzyl silk guanidine sustained-release PLA microsphere combined object prepared by a water-in-oil-oil-solid method.
  • Figure 9 shows the release profile of Group A microspheres in rats in Example 20.
  • Figure 10 shows the release profile of group B microspheres in rats in column 20.
  • Figure 11 shows the release profile of group C microspheres in rats in column 20.
  • the emulsion obtained in the step (a) is separately added to the above-mentioned order, respectively, to a concentration of 1% sodium chloride and 1% of polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL, 5 % sodium chloride and 2.5% polyethylene glycol (PVA molecular weight of 500,000) aqueous solution 10mL, or 10% sodium chloride and 2.5% polyethylene glycol (PVA molecular weight is 10,000 , the formation of a double emulsion; 0) agitating, vortex or ultrasonic 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • microspheres obtained in the step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the scanning electron micrograph of the microspheres prepared above is shown in Fig. 1, the microspheres)
  • the surface is smooth, the particle size distribution is uniform, and the particle size is about 40-100 ⁇ m; the other particle diameters are about 60-150 ⁇ m and 200-500 ⁇ m, respectively, which are not shown in the figure).
  • the total plasma concentration of dextrozole in levodopa methyl ester and benserazide mixed drug sustained-release microspheres is higher than about 30% in oral administration; levodopa methyl ester and benserazide mixed drug sustained-release microspheres
  • the levodopa methyl ester of the microsphere dosage form was also found to be significantly better than the oral preparation, and the total plasma concentration in the body was higher than about 40% of oral administration.
  • lactic acid PLA molecular weight of 6000
  • 37. 5mg of poly lactic acid PLA molecular weight of 6000
  • Lactic acid PLA molecular weight of 250,000
  • 25mg of polylactic acid PLA molecular weight of 500,000
  • step (a) The emulsion obtained in step (a) is separately added to a concentration of 1% sodium chloride and 1% polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL, 5% sodium chloride and 2 5 % of polyethylene glycol (PVA has a molecular weight of 500,000) aqueous solution 10 mL, or 10% sodium chloride and 2.5 % polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10 mL and Stirring, vortexing or ultrasound 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • microspheres obtained in the step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 1 , micro The ball has a smooth surface and a uniform particle size distribution with a particle size of about 45-100 ⁇ m; the other particle sizes are about 60-170 ⁇ m and 250-500 ⁇ m, respectively, which are not shown in the figure).
  • microspheres prepared as a mixture of levodopa methyl ester and benserazide in an amount of 1% showed no burst release and incomplete release, and other similar results were shown but not shown.
  • the total plasma concentration of dextrozole in levodopa methyl ester and benserazide mixed drug sustained-release microspheres is higher than about 31% in oral administration; levodopa methyl ester and benserazide mixed drug sustained-release microspheres
  • the levodopa methyl ester of the microsphere dosage form was also found to be significantly better than the oral preparation, and the total plasma concentration in the body was higher than about 42% of oral administration.
  • step (a) The emulsion obtained in step (a) is separately added to a concentration of 1% sodium chloride and 1% polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL, 5% sodium chloride and 2 5 % of polyethylene glycol (PVA has a molecular weight of 500,000) aqueous solution 10 mL, or 10% sodium chloride and 2.5 % polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10 mL and Stirring, vortexing or ultrasound 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • microspheres obtained in the step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 1 , micro The surface of the ball is smooth, the particle size distribution is uniform, and the particle size is about 50-100 ⁇ m; the other particle diameters are about 65-150 ⁇ m and 250-500 ⁇ m, respectively, which are not shown in the figure).
  • microspheres prepared as a mixture of levodopa methyl ester and benserazide in an amount of 1% showed no burst release and incomplete release, and other similar results were shown but not shown.
  • the total plasma area of the levothol and the benserazide-mixed drug-released microspheres is higher than that of the oral administration of about 31.5%; levodopa methyl ester and benserazide mixed drug sustained release
  • the microspheres found that the levodopa methyl ester of the microsphere dosage form was also significantly better than the oral preparation, and the total area of the blood drug concentration in the body was higher than that of oral administration of about 42.5%.
  • polyglycolic acid-polylactic acid PLGA molecular weight of 20,000
  • PLA molecular weight of 50,000 15 mg
  • PCL molecular weight of 10,000 10mg
  • step (a) The emulsion obtained in step (a) is separately added to a concentration of 1% sodium chloride and 1% polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL, 5% sodium chloride and 2 5 % of polyethylene glycol (PVA has a molecular weight of 500,000) aqueous solution 10 mL, or 10% sodium chloride and 2.5 % polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10 mL and Stirring, vortexing or ultrasound 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • microspheres obtained in the step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 1 , micro The surface of the ball is smooth, the particle size distribution is uniform, and the particle size is about 55-100 ⁇ m; the other particle diameters are about 65-150 ⁇ m and 250-500 ⁇ m, respectively, which are not shown in the figure).
  • microspheres prepared as a mixture of levodopa methyl ester and benserazide in an amount of 1% showed no burst release and incomplete release, and other similar results were shown but not shown.
  • Examples 1, 2, 3, and 4 are preparations of levodopa methyl ester and benserazide mixed drug microsphere compositions.
  • Example 5 is preparations of levodopa methyl ester and benserazide mixed drug microsphere compositions.
  • the dopa methyl ester solution is mixed and stirred, vortexed or sonicated for 1 to 5 minutes to form a homogeneous suspension, ie water-in-oil (W/0) emulsion; the theoretical percentage of methyl ester prepared as levodopa is 25% Sustained release microspheres.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, a uniform particle size distribution, and a particle size of About 66-110 ⁇ ⁇ is as shown in Figure 3).
  • the prepared microsphere composition its actual PLA weight percentage was 75% and levodopa methyl ester was 25% at 37 °.
  • the release rate of the total amount of levodopa methyl ester in the phosphate buffer solution of ⁇ 2 was 20.63%, and the cumulative release after 14 days was 99.04%.
  • the release profile is shown in Fig. 4.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-22% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 4% less than the W/0 and S/0/0 methods - 11%.
  • Treatment effect For the same dose of levodopa methyl ester oral preparation and levodopa methyl ester microspheres, it was found that the microsphere dosage form was significantly better than the oral preparation, and the total blood concentration in the body was higher than that of oral administration. %.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 10% of 1000 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 60-140 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLA has a weight percentage of 99% and levodopa methyl ester is 1%, and the release amount of the first day of the shake in the phosphate buffer solution at 37 ° C and pH 3 accounts for the total left-handed spin.
  • the percentage of the methyl ester was 19.98%, and the cumulative release after 14 days was 92.23%.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-19% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 4% less than the W/0 and S/0/0 methods - 20%.
  • Treatment effect For the same dose of levodopa methyl ester oral preparation and levodopa methyl ester microspheres, it was found that the microsphere dosage form was significantly better than the oral preparation, and the total blood concentration in the body was higher than that of oral administration. %.
  • the emulsion obtained in the step (a) is added to the 10% by weight aqueous solution of 1% by weight of sodium chloride and 1% of polyethylene glycol (PVA molecular weight of 10,000, 000) in the order of the above. 5 % sodium chloride and 2. 5 % Polyethylene glycol (PVA has a molecular weight of 500,000) 10 mL of aqueous solution, or 10% sodium chloride and 2.5% of polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL and stirred, vortex Or ultrasound 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 3, micro The ball has a smooth surface and a uniform particle size distribution with a particle size of about 45-100 ⁇ m; the other particle sizes are about 60-170 ⁇ m and 250-500 ⁇ m, respectively, which are not shown in the figure).
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 4-12% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 2% less than the W/0 and S/0/0 methods - 12%.
  • the emulsion obtained in the step (a) is separately added to the above-mentioned order, respectively, to a concentration of 1% sodium chloride and 1% of polyethylene glycol (PVA molecular weight of 10,000,000) aqueous solution 10mL, 5 % sodium chloride and 2.5% polyethylene glycol (PVA molecular weight of 500,000) aqueous solution 10mL, or 10% sodium chloride and 2.5% polyethylene glycol (PVA molecular weight is 10,000 , the formation of a double emulsion; 0) agitating, vortex or ultrasonic 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain microspheres.
  • Composition The scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 3. The surface of the microsphere is smooth, the particle size distribution is uniform, and the particle size is about 50-100 ⁇ m; the other particle diameters are about 65-150 respectively. ⁇ m, and 250-500 ⁇ m, not shown on the graph).
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 4-13% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 2% less than the W/0 and S/0/0 methods - 12%.
  • the levodopa methyl ester solution obtained by 1 is separately weighed 0.2 mL, 0.5 mL or 1 mL and weighed 100 mg of polyglycolic acid-polylactic acid (PLGA molecular weight of 6000) and 200 mg of polylactic acid (PLA molecular weight of 6000). And 295 mg of polycaprolactone (PCL molecular weight of 10,000) a total of 595 mg of polymer mixture; 12. 5 mg of polyglycolic acid - polylactic acid
  • the emulsion obtained in the step (a) is separately added to the aqueous solution of 10% by weight of sodium chloride and 1% of polyethylene glycol (PVA molecular weight of 10,000, 000) in the above order. % sodium chloride and 2.5% polyethylene glycol (PVA has a molecular weight of 500,000) aqueous solution 10mL, or 10% sodium chloride and 2.5% polyethylene glycol (PVA has a molecular weight of 10,000 , the formation of a double emulsion; 0) agitating, vortex or ultrasonic 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to lOOOOmL sodium chloride solution at a concentration of 1%, 5% or 10% for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain microspheres.
  • Composition The scanning electron micrograph of the microsphere prepared above is similar to that shown in Fig. 3. The surface of the microsphere is smooth, the particle size distribution is uniform, and the particle size is about 55-100 ⁇ m; the other particle diameters are about 65-150 respectively. ⁇ m, and 250-500 ⁇ m, not shown on the graph).
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 4-15% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 2% less than the W/0 and S/0/0 methods - 12%.
  • the present invention utilizes oil-in-water-oil-in-water (W/0/W) to prepare microspheres for further microencapsulation in a high molecular weight material having sustained release.
  • the surface of the prepared microspheres is smooth and round, the uniformity is good, the solution is regular and has no adhesion; the encapsulation efficiency is high, the sudden release is small, and the drug loading is high.
  • Examples 5, 6, 7, 8, 9 are preparations of levodopa methyl ester microsphere compositions.
  • the benzyl chloride of the above-mentioned 1 benzyl acid was added to the organic solution of the above-mentioned 1 benzyl alcohol.
  • the silk cocoon solution is mixed and stirred, vortexed or sonicated for 1 to 5 minutes to form a uniform suspension, that is, a water-in-oil (W/0) emulsion; the theoretical percentage of the prepared benserazide is 15% sustained release microspheres. .
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, a uniform particle size distribution, and a particle size of About 66-110 ⁇ ⁇ is as shown in Fig. 5).
  • the prepared microsphere composition the actual PLA weight percentage is 85% and the benserazide is 15%, and the release of the first hour in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benserazide. The percentage is 20.63%, the cumulative release after 4 days is 99.4%, and the release profile is as shown in Fig. 6.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-30% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 3% less than the W/0 and S/0/0 methods - 12%.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 10% of 1000 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 60-140 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLA weight percentage is 99% and the benserazide is 1%, and the release of the first hour in the phosphate buffer solution at 37 ° C and pH ⁇ 2 accounts for the total amount of benserazide. The percentage was 18.88%, and the cumulative release after 7 days was 91.23%.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-18% higher than that of the microsphere prepared by the W/0 method; the burst release ratio of the first day is 4% less than the W/0 and S/0/0 methods - 18%.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 66-110 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLGA weight percentage is 65% and the benserazide is 35%, and the release of the first hour in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benserazide. The percentage is 20.63%, and the cumulative release after 4 days is 99.4%.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-30% higher than that of the microsphere prepared by the W/0 method; the burst release ratio on the first day is 3% less than the W/0 and S/0/0 methods - 12%.
  • a) lOOOOmg of benserazide is formulated into an aqueous solution having a concentration of 2.5% by weight;
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%). 1 -5 ⁇ Aqueous solution 10mL and stirred, vortex or ultrasound 0. 1 -5 Forming a double emulsion in minutes;
  • step (c) adding the double emulsion of step (b) to a concentration of 10% of 1000 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 60-140 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLA has a weight percentage of 55% and benserazide of 45%, and the release of the first hour in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benserazide. The percentage was 18.88%, and the cumulative release after 7 days was 91.23%.
  • the encapsulation efficiency of the microsphere composition prepared by the method of the invention is 5-18% higher than that of the microsphere prepared by the W/0 method; the burst release ratio of the first day is 4% less than the W/0 and S/0/0 methods - 18%.
  • Examples 10, 11, 12, and 13 are a benzin microsphere composition prepared by an oil-in-water-in-oil method.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, a uniform particle size distribution, and a particle size of About 66-120 ⁇ m as shown in Figure 7).
  • the prepared microsphere composition the actual PLA has a weight percentage of 75% and benserazide of 25%, and the release of the first hour in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benserazide. The percentage is 10.63%, after 7 days The cumulative release was 98.34%, and the release profile is as described in FIG.
  • the encapsulation efficiency ratio of the microsphere composition prepared by the method of the present invention is 5-30% higher than that of the microspheres prepared by the W/0 and W/0/W methods, respectively; the burst ratio of the first day is W/0 and W/ The 0/W method and the S/0/0 method are 5%-20% less.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 1% sodium chloride and 2% polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000 and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 15% in 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 70-100 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLGA weight percentage is 99% and the benserazide is 1%, and the first hour of release in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benserazide. The percentage was 10.63%, and the cumulative release after 4 days was 95.23%.
  • the encapsulation ratio of the microsphere composition prepared by the method of the invention is 5%-30% higher than that of the microsphere prepared by the W/0 and W/0/W methods, respectively; the burst ratio W/0 and W of the first day The /0/W method and the S/0/0 method are 5%-20% less.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 5% by weight of sodium chloride and 1% of polyethylene glycol (PVA has a molecular weight of 146, 000-186, 000, and a degree of alcoholysis of 98-99%).
  • PVA polyethylene glycol
  • the emulsion is 10 mL and stirred, vortexed or sonicated for 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 10% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 60-120 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLGA weight percentage is 75% and the benserazide is 25%, and the release in the first hour of the shake in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total benza.
  • the percentage of ⁇ is 32. 88%, and the cumulative release after 4 days is 95. 25%.
  • the encapsulation efficiency ratio of the microsphere composition prepared by the method of the present invention is 5-30% higher than that of the microspheres prepared by the W/0 and W/0/W methods, respectively; the burst ratio of the first day is W/0 and W/ The 0/W method and the S/0/0 method are 5%-20% less.
  • step (b) The emulsion obtained in step (a) is separately added to a concentration of 1% sodium chloride and 1% polyethylene glycol (the molecular weight of PVA is 110,000-124,000, and the degree of alcoholysis is alcoholysis) 98-99%) aqueous solution 10mL and stirred, vortex or ultrasonic 0.1 to 5 minutes to form a double emulsion;
  • step (c) adding the double emulsion of step (b) to a concentration of 5% of 100 mL of sodium chloride solution for 1 to 4 hours;
  • step (d) The microspheres obtained in step (c) are collected by centrifugation and washed 3 to 5 times with water, and lyophilized to obtain a microsphere composition (the microspheres prepared above have a smooth surface, uniform particle size distribution, and a particle size of About 50-120 ⁇ ⁇ ).
  • the prepared microsphere composition the actual PLGA weight percentage is 50% and the benserazide is 50%, and the first hour of release in the phosphate buffer solution at 37 ° C and pH 2 accounts for the total amount of benza.
  • the percentage of sputum was 45.78%, and the cumulative release after 4 days was 95.83%.
  • the encapsulation efficiency ratio of the microsphere composition prepared by the method of the present invention is 5-30% higher than that of the microspheres prepared by the W/0 and W/0/W methods, respectively; the burst ratio of the first day is W/0 and W/ The 0/W method and the S/0/0 method are 5%-20% less.
  • Examples 14, 15, 16, and 17 are benzinium microsphere compositions prepared by an oil-in-water-solids method.
  • the grouping of drugs in each group is as follows:
  • Group A Levodopa methyl ester sustained-release microspheres were prepared by the method of W/0/W of the present invention, wherein the levodopa methyl ester content was 5% and the polymer adjuvant content was 95%.
  • Group B The benserazide sustained-release microspheres were prepared by the W/0/W method of the present invention, wherein the benserazide content was 5% and the polymer adjuvant content was 95%.
  • Benserazide sustained-release microspheres were prepared by the method of the present invention (S/0/W), wherein the content of benserazide was 5% and the content of polymeric excipient was 95%.
  • Group D levodopa methyl ester and benserazide mixed drug sustained-release microspheres (W/0/W) method, wherein benzyl The silk content is 2.5%, the levodopa methyl ester content is 2.5%, and the polymer adjuvant content is 95%.
  • the selegiline sustained-release microspheres were prepared by drying in the 01/02 emulsion, wherein the selegiline sustained-release microspheres had a carbamazepine content of 5% and a polymer adjuvant content of 95%.
  • Group F rivastigmine sustained release microspheres using Chinese patent application number 200910201416. 9 Patent literature reported
  • the valprozin sustained-release microspheres were prepared by drying in an emulsion of 01/02, wherein the content of rivastigmine in the rivastigmine sustained-release microspheres was 5%, and the content of the polymer adjuvant was 95%.
  • Group H The levodopa nano preparation was prepared by the method reported in the patent application No. 200410030559.
  • the spherical dosage form was significantly better at 13% visible light irradiation, and then recovered and tested in oral preparations, the total area of blood drug concentration in the body was higher than the content, and it was found that levodopa methyl ester was about 35% in oral administration.
  • the benserazide and the bensenic wire prepared by the invention are used for the same dose of the benzathine oral preparation and the benserazide micro 71 group microspheres while being exposed to visible light, and the ball is found to be significantly better than the oral dose.
  • the preparation 12%, was then recovered and tested. It was found that the total area of plasma in benzyl was higher than that of oral sputum, which decreased by 5-10%, 30% after one year.
  • the silkworm mixed drug was slowed down by 10%.
  • the silkworm mixed drug sustained-release microspheres were compared with the release microspheres. It was found that the microsphere dosage form was significantly better than the oral preparation.
  • levodopa methyl ester is about 30% in oral administration; levodopa methyl ester and benserazide mixed activity decreased by 6-10%, while microspheres and drug sustained release microspheres found microsphere dosage form
  • Levodopa is about 0-1.
  • Benserazide is also significantly better than oral preparations in a methyl ester, and its blood concentration decreases 5-10% in the future, while the total area of the microspheres is high. About 40% of oral administration.
  • E is generally stable, and the drug of the above-mentioned dosage form is difficult to pass through the blood-brain barrier and is easily protected by the body's 65-member group by about 5%. May be degraded by enzymes. Therefore, the blood concentration in the body is 10% lower than that of oral administration. 10% The result of difficult removal of the oil phase. Left and right; if the concentration of the brain effusion drug is determined to be greater than the present invention
  • the dosage form should be less than 10-40%.
  • the blood concentration in the body is 10% lower than that of oral administration. 12% The result of difficult removal of the oil phase. Still left and right; if the concentration of the brain effusion drug is determined to be more than the environmental pollution problem of the present invention.
  • the dosage form should be less than 10-40%.
  • H is unstable, the nanoparticles are easy to accumulate, and there are toxic side effects. It is not a pharmaceutical excipient, and this 20 ⁇ 7% group is effective. Drugs are difficult to pass through the blood-brain barrier and are easily degraded by enzymes in the body.
  • the blood concentration in the body is about 10% lower than oral administration.
  • Two target lesions were damaged on one side of the striatum to establish a model of lateral damage in PD rats.
  • the microsampler was injected with 6-0 HDA 4 ul per injection at an injection rate of 1 ul/min and the needle was left for 3 minutes.
  • Intraperitoneal injection of rats three weeks after surgery Apomorphine 0. 5mg/kg (prepared freshly with normal saline containing 1% ascorbic acid), induced to rotate to the healthy side, once a week, 30 minutes each time, for four consecutive weeks, the number of rotations is more than 7 times / min and Stabilization was considered as a model successful rat.
  • Parkinson rats Forty-eight successful model Parkinson rats were randomly divided into eight groups: 6 in each group.
  • Group 1 PD group (salt treatment, once a day for two consecutive weeks)
  • Group 2 benserazide group (10 mg/kg, s. c. once daily for two consecutive weeks)
  • Group 3 levodopa methyl ester group (10 mg/kg, s. c. once a day for two weeks),
  • Group 4 Levodopa methyl ester and benserazide group (5 mg of levodopa methyl ester / kg, s. c. and 5 mg of benserazide / kg, s. c. once a day for two weeks)
  • Group 6 Levodopa methyl ester microspheres (180 mg/kg, subcutaneous, intramuscular, intraperitoneal or intracranial), in which 180 mg of levodopa methylcellulose microspheres contain levodopa methyl ester 90 mg ) ,
  • Group 7 Levodopa methyl ester microspheres and benserazide microspheres (70 mg benserazide microspheres/kg, subcutaneous, intramuscular, intraperitoneal or intracranial injection, 70 mg of benserazide microspheres Contains benserazide 35 mg, 70 mg levodopa methyl ester microspheres/kg, subcutaneous, intramuscular, intraperitoneal or intracranial injection, in which 70 mg levodopa methyl ester microspheres contain levodopa methyl ester 35 mg),
  • Group 8 Levodopa methyl ester and benserazide mixed drug microspheres group (140 mg/kg, subcutaneous, intramuscular, intraperitoneal or intracranial injection, in which 140 mg of mixed drug microspheres contain benserazide 35 Mg and levodopa methyl ester 35 mg).
  • AM scores were performed on the 1st, 2nd, 4th, 6th, 8th, 12th, and 14th day of treatment. Each group of rats was given an AM score every 20 minutes after the corresponding treatment, for a total of 2 hours, each observation 1 minute. It is divided into 4 parts for scoring (upper limb AIM, oral facial AIM, axial AIM, and motor AIM). Each part is divided into 5 grades according to its presence and severity (0-4): 0: None; 1: AIM exists Less than 50% of observation time; 2: AM is greater than 50% of observation time; 3: persists, stimuli stop; 4: persists, stimuli can't stop it.
  • the abnormal involuntary movement (AM) scores of each group are shown in Table 1.
  • Levodopa methyl ester can pass the blood-brain barrier, but levodopa methyl ester, levodopa methyl ester micro-nano, levodopa methyl ester sustained-release microspheres are easily degraded by in vivo enzyme degradation. Although it can not pass the blood-brain barrier, it can prevent levodopa methyl ester from being degraded by enzymes in the body, and benserazide and levodopa methyl ester play a synergistic role.
  • Vortex Mixer (QL-901) Haimen City Linlin Bell Instrument Manufacturing Co., Ltd.
  • the experimental scheme is shown in Table 3.
  • the experimental microspheres were prepared by the S/0/W method.
  • group A only gave levodopa methyl ester microspheres
  • group B gave the same dose of levodopa methyl ester microspheres and benserazide microspheres
  • group C gave levodopa methyl ester and benserazide 1:1. Mix the microspheres.
  • the three groups of drugs were the same dose.
  • Rats were anesthetized with sodium pentobarbital. After shaving the back, the rats were cut open for about 1 cm. After the microspheres were placed, a small amount of physiological saline was added to suture the wound.
  • the release profile of levodopa methyl ester microspheres in group A is shown in Fig. 9.
  • the microspheres are released well from the curve and can achieve sustained release.
  • the first day releases about 15% of the total amount, and the sustained release is 14 days. Very small amount.
  • the experimental sampling points were parallel experiments of 3 rats, and the SD value was calculated to find that the deviation was small, thus demonstrating the feasibility of the experimental method and indicating the reproducibility of the release behavior.
  • levodopa methyl ester microspheres and benserazide microspheres were simultaneously administered.
  • the release curves of the two drugs are shown in Fig. 10.
  • the release curve of levodopa methyl ester microspheres is better, and there is no burst release on the first day. It lasted for 14 days with less residue.
  • the benserazide microspheres released faster on the first day, releasing more than 50%, followed by a slow release for 2 weeks with almost no residue.
  • Group C is given a mixture of levodopa methyl ester and benserazide for the purpose of preparing two microspheres to reduce the number of administrations, which is convenient for production and carrying. From Figure 11, both drugs can achieve sustained release. Levodopa methyl ester is released about 30% on the first day, and finally released slowly. The release amount is about 60% in one week, and the release amount is small in the second week. More than 20%. Benserazide released more than 60% on the first day, and finally released slowly for 2 weeks without residue. The two curves begin to exhibit the same release rate on the second day. The experimental repeatability was good from the SD value.

Description

一种含有抗帕金森病药物的微球组合药物及其应用 技术领域
本发明涉及一种微球组合物, 具体地说, 是关于一种含有抗帕金森病药物的微球组 合药物及其应用。
背景技术
目前对帕金森病, 症状性帕金森综合症治疗主要有口服左旋多巴类药物, 每日需要 服用三次, 但是对于这类病人来说, 是十分不便的, 因为他们本来行动和记忆有问题, 如果能用一次药可以达到一个星期甚至一个月的效果, 这对于他们来说是非常好的一件 事情。
中国专利申请号 200910201414. X, 公开了一种司来吉兰缓释微球及其制备方法。 中 国专利申请号 200910201416. 9, 公开了一种卡巴拉汀缓释微球及其制备方法。 中国专利 申请号 200410030559. 5, 公开了左旋多巴纳米制剂及其制备方法。 司来吉兰缓释微球, 卡巴拉汀缓释微球和左旋多巴纳米制剂难于透过血脑屏障和容易被体内的酶降解, 体内 的血药浓度比口服还低。 左旋多巴纳米制剂不稳定, 纳米粒容易集聚, 影响其药效, 而 且左旋多巴纳米制剂所使用的辅料不是药用辅料, 存在毒副作用。
发明内容
本发明的目的是针对现有技术中的不足, 提供一种含有抗帕金森病药物的微球组合 物的用途。
本发明的再一的目的是, 提供一种含有抗帕金森病药物的微球组合药物。
为实现上述第一个目的, 本发明采取的技术方案是:
一种含有抗帕金森病药物的微球组合物在制备预防、 治疗帕金森病及帕金森病并发 症疾病药物中的应用, 所述的含有抗帕金森病药物的微球组合物选自苄丝肼微球、 左旋 多巴甲酯微球、左旋多巴甲酯微球和苄丝肼微球或左旋多巴甲酯和苄丝肼混和药物微球。
所述的微球组合物按重量百分比该组合物由以下组分组成:
可降解的疏水聚合物 50%-99%
抗帕金森病药物 1%-50%,
所述的抗帕金森病药物选自左旋多巴甲酯或苄丝肼一种或两种混合物。
所述的可降解的疏水聚合物选自聚乳酸 -羟基乙酸、 聚乳酸或聚己内酯一种或其混 合物。
所述的微球组合物粒径为 l-500Mm。
所述的微球组合物粒径为 250-500Mm。 所述的微球组合物是通过水包油-油包水法 (w/o/w)、 油包水 (0/V) 法、 水包油- 油包固法 (s/o/w)、 油包油-油包固法 (s/o/o ) 或喷雾干燥法制备得到。
所述的微球组合物是通过水包油-油包水法 (w/o/w) 或水包油-油包固法 (s/o/w) 制备得到。
为实现上述第二个目的, 本发明采取的技术方案是:
一种含有抗帕金森病药物的微球组合药物,所述的微球组合药物是苄丝肼微球、 左 旋多巴甲酯微球、 左旋多巴甲酯微球和苄丝肼微球或左旋多巴甲酯和苄丝肼混和药物微 球。
其中, 所述的苄丝肼微球, 按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 40%-99%
苄丝肼 1%-60%。
其中, 所述的左旋多巴甲酯微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
左旋多巴甲酯 1%-50%。
其中, 所述的由左旋多巴甲酯微球和苄丝肼微球组成混和药物微球, 所述的左旋多 巴甲酯微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
左旋多巴甲酯 1%-50%,
所述的苄丝肼微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
苄丝肼 1%-50%。
其中, 所述的左旋多巴甲酯和苄丝肼混和药物微球按重量百分比该微球由以下组分 组成:
可降解的疏水聚合物 50%-99%
左旋多巴甲酯和苄丝肼混和药物 1%-50%,
左旋多巴甲酯和苄丝肼的重量比为 1 : 1一 4 : 1 。
本发明优点在于:
1、本发明利用水包油法(W/0)、水包油一油包水法(W/0/W)、水包油-油包固法(S/0/W) 或油包油-油包固法 (S/0/0) 成功开发了一种含有抗帕金森病药物的微球组合药物;
2、 含有抗帕金森病药物的微球组合药物可以皮下注射、 肌肉注射、 腹腔注射或颅内 注射具有长期疗效; 3、含有抗帕金森病药物的微球组合药物有明显协同作用, 较单用可显著降低 AM评 分,两药组合在提高疗效的同时可大幅降低治疗费用。
4、 本发明对含有抗帕金森病药物的微球组合药物发掘了新的医疗用途,开拓了一个 新的应用领域。
5、本发明的含有抗帕金森病药物的微球组合药物安全无毒,药理作用强,预示着很好 的药用前景。
附图说明
图 1 左旋多巴甲酯和苄丝肼混和药物缓释 PLGA微球组合物扫描电镜图。
图 2 左旋多巴甲酯和苄丝肼混和药物缓释 PLGA微球组合物体外释放曲线图。
图 3 左旋多巴甲酯缓释 PLA微球组合物扫描电镜图。
图 4左旋多巴甲酯缓释 PLA微球组合物体外释放曲线图。
图 5 用水包油-油包水方法制备的苄丝肼缓释 PLA微球组合物扫描电镜图。
图 6用水包油-油包水方法制备的苄丝肼缓释 PLA微球组合物体外释放曲线图。 图 7用水包油 -油包固体方法制备的苄丝肼缓释 PLA微球组合物扫描电镜图。
图 8用水包油 -油包固体方法制备的苄丝肼缓释 PLA微球组合物体外释放曲线图。 图 9 实施列 20中 A组微球在大鼠体内释放曲线。
图 10实施列 20中 B组微球在大鼠体内释放曲线。
图 11实施列 20中 C组微球在大鼠体内释放曲线。
具体实施方式
下面结合附图对本发明提供的具体实施方式作详细说明。
实施例 1
①左旋多巴甲酯和苄丝肼混和药物溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯和苄丝肼混和药物(按照重量比为 1 : 1 ), 配制 成重量百分比浓度为 2. 5%;
②左旋多巴甲酯和苄丝肼混和药物缓释微球组合物制备
a)将①得的左旋多巴甲酯和苄丝肼混和药物溶液分别量取 0. 2mL、0. 5mL或 lmL和分 别称取 595mg的聚羟基乙酸-聚乳酸(PLGA分子量为 6000 )、 37. 5mg的聚羟基乙酸 -聚乳 酸(PLGA分子量为 250, 000 ) 或 25mg的聚羟基乙酸-聚乳酸 (PLGA分子量为 500, 000 ) 并分别配制成重量百分比浓度为 30%、 15%或 5%的二氯甲烷的有机溶液; 将用 30%浓度的 和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL的上述溶液的顺序一一对应混和并搅拌、漩涡或 超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成左旋多巴甲酯和苄 丝肼混和药物的百分含量为 1%、 25%或 50%缓释微球。
b) 把步骤 (a) 得乳液按照上述的顺序一一分别加到重量百分比浓度为 1 %氯化钠 和 1 %的聚乙二醇 (PVA的分子量为 1, 000, 000 ) 水溶液 10mL、 5 %氯化钠和 2. 5 %的聚 乙二醇(PVA的分子量为 500, 000 )水溶液 10mL、或 10 %氯化钠和 2. 5 %的聚乙二醇(PVA 的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1 -5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图如图 1所示, 微球的表面光滑、 粒径分布均匀, 粒径为约 40-100 μ m; 其它的粒径分别约为 60-150 μ m、和 200-500 μ m, 图上均未显示)。
制备成左旋多巴甲酯和苄丝肼混和药物的含量为 1%的微球在体外释放曲线如图 2所 示, 结果显示没有突释和不完全释放, 其它也有类似的结果但图上未显示。
稳定性试验考察: 把左旋多巴甲酯与苄丝肼和本发明制备的左旋多巴甲酯和苄丝肼 混和药物缓释微球同时放在可见光照射, 然后回收分别检测左旋多巴甲酯和苄丝肼的含 量, 发现左旋多巴甲酯在一年后活性下降 6-10%, 而微球几乎不变约 0-1. 0%; 苄丝肼在 一年后活性下降 5-10%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的左旋多巴甲酯与苄丝肼口服制剂和左旋多巴甲酯 和苄丝肼混和药物缓释微球比较, 发现微球剂型明显好于口服制剂, 左旋多巴甲酯和苄 丝肼混和药物缓释微球剂型的苄丝肼体内血药浓度的总面积高于口服的约 30%;左旋多巴 甲酯和苄丝肼混和药物缓释微球发现微球剂型的左旋多巴甲酯也明显好于口服制剂, 其 体内血药浓度的总面积高于口服的约 40%。
实施例 2
①左旋多巴甲酯和苄丝肼混和药物溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯和苄丝肼混和药物(按照重量比为 2 : 1 ), 配制 成重量百分比浓度为 2. 5%;
②左旋多巴甲酯和苄丝肼混和药物缓释微球组合物制备
a)将①得的左旋多巴甲酯和苄丝肼混和药物溶液分别量取 0. 2mL、0. 5mL或 lmL和分 别称取 595mg的聚乳酸 (PLA分子量为 6000 )、 37. 5mg的聚乳酸 (PLA分子量为 250, 000 ) 或 25mg的聚乳酸 (PLA分子量为 500, 000 ) 并分别配制成重量百分比浓度为 30%、 15% 或 5%的二氯甲烷的有机溶液; 将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL的 上述溶液的顺序一一对应混和并搅拌、漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包 水 (W/0) 乳液; 将制备成左旋多巴甲酯和苄丝肼混和药物的百分含量为 1%、 25%或 50% 缓释微球。
b) 把步骤(a)得乳液分别加到重量百分比浓度为 1 %氯化钠和 1 %的聚乙二醇(PVA 的分子量为 1, 000, 000 )水溶液 10mL、 5 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 500, 000 )水溶液 10mL、或 10 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1— 5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 1所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 45-100 μ m; 其它的粒径分别约为 60-170 μ m、和 250-500 μ m, 图上均未显 示)。
制备成左旋多巴甲酯和苄丝肼混和药物的含量为 1%的微球在体外释放结果显示没 有突释和不完全释放, 其它也有类似的结果但图上未显示。
稳定性试验考察: 把左旋多巴甲酯与苄丝肼和本发明制备的左旋多巴甲酯和苄丝肼 混和药物缓释微球同时放在可见光照射, 然后回收分别检测左旋多巴甲酯和苄丝肼的含 量, 发现左旋多巴甲酯在一年后活性下降 6-8%, 而微球几乎不变约 0-1. 0%; 苄丝肼在一 年后活性下降 5-9. 1%, 而微球几乎不变约 0-0. 78%。
体内血药浓度考察: 用于同剂量的左旋多巴甲酯与苄丝肼口服制剂和左旋多巴甲酯 和苄丝肼混和药物缓释微球比较, 发现微球剂型明显好于口服制剂, 左旋多巴甲酯和苄 丝肼混和药物缓释微球剂型的苄丝肼体内血药浓度的总面积高于口服的约 31%;左旋多巴 甲酯和苄丝肼混和药物缓释微球发现微球剂型的左旋多巴甲酯也明显好于口服制剂, 其 体内血药浓度的总面积高于口服的约 42%。
实施例 3
①左旋多巴甲酯和苄丝肼混和药物溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯和苄丝肼混和药物(按照重量比为 3 : 1 ), 配制 成重量百分比浓度为 2. 5%;
②左旋多巴甲酯和苄丝肼混和药物缓释微球组合物制备
a)将①得的左旋多巴甲酯和苄丝肼混和药物溶液分别量取 0. 2mL、0. 5mL或 lmL和分 别称取 595mg的聚己内酯 (PCL分子量为 10, 000 ) 、 37. 5mg的聚己内酯 (PCL分子量为 2, 500, 000 ) 或 25mg的聚己内酯 (PCL分子量为 5, 000, 000 ) 并分别配制成重量百分比 浓度为 30%、 15%或 5%的二氯甲烷的有机溶液; 将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL 或 5%的和 lmL的上述溶液的顺序一一对应混和并搅拌、漩涡或超声 1一 5分钟形成均匀得 混悬液, 即油包水 (W/0)乳液; 将制备成左旋多巴甲酯和苄丝肼混和药物的百分含量为 1%、 25%或 50%缓释微球。
b) 把步骤(a)得乳液分别加到重量百分比浓度为 1 %氯化钠和 1 %的聚乙二醇(PVA 的分子量为 1, 000, 000 )水溶液 10mL、 5 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 500, 000 )水溶液 10mL、或 10 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1— 5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 1所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 50-100 μ m; 其它的粒径分别约为 65-150 μ m、和 250-500 μ m, 图上均未显 示)。
制备成左旋多巴甲酯和苄丝肼混和药物的含量为 1%的微球在体外释放结果显示没 有突释和不完全释放, 其它也有类似的结果但图上未显示。
稳定性试验考察: 把左旋多巴甲酯与苄丝肼和本发明制备的左旋多巴甲酯和苄丝肼 混和药物缓释微球同时放在可见光照射, 然后回收分别检测左旋多巴甲酯和苄丝肼的含 量, 发现左旋多巴甲酯在一年后活性下降 6-7%, 而微球几乎不变约 0-1. 0%; 苄丝肼在一 年后活性下降 5-9. 5%, 而微球几乎不变约 0-0. 72%。
体内血药浓度考察: 用于同剂量的左旋多巴甲酯与苄丝肼口服制剂和左旋多巴甲酯 和苄丝肼混和药物缓释微球比较, 发现微球剂型明显好于口服制剂, 左旋多巴甲酯和苄 丝肼混和药物缓释微球剂型的苄丝肼体内血药浓度的总面积高于口服的约 31. 5%;左旋多 巴甲酯和苄丝肼混和药物缓释微球发现微球剂型的左旋多巴甲酯也明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 42. 5%。
实施例 4
①左旋多巴甲酯和苄丝肼混和药物溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯和苄丝肼混和药物(按照重量比为 4 : 1 ), 配制 成重量百分比浓度为 2. 5%;
②左旋多巴甲酯和苄丝肼混和药物缓释微球组合物制备 a)将①得的左旋多巴甲酯和苄丝肼混和药物溶液分别量取 0. 2mL、0. 5mL或 lmL和分 别称取 lOOmg聚羟基乙酸-聚乳酸(PLGA分子量为 6000 ) 、 200mg聚乳酸(PLA分子量为 6000 ) 和 295mg聚己内酯 (PCL分子量为 10, 000 ) 共 595mg的聚合物混合物; 12. 5mg聚 羟基乙酸-聚乳酸(PLGA分子量为 20, 000 )、 15mg聚乳酸(PLA分子量为 50, 000 )和 10mg 聚己内酯 (PCL分子量为 10, 000 ) 共 37. 5mg的聚合物混合物; 或 5mg聚羟基乙酸 -聚乳 酸 (PLGA分子量为 50, 000 )、 7mg聚乳酸 (PLA分子量为 500, 000 )和 13mg聚己内酯 (PCL 分子量为 1, 000, 000 ) 共 25mg的聚合物混合物; 并分别配制成重量百分比浓度为 30%、 15%或 5%的二氯甲烷的有机溶液;将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL 的上述溶液的顺序一一对应混和并搅拌、漩涡或超声 1一 5分钟形成均匀得混悬液, 即油 包水(W/0)乳液; 将制备成左旋多巴甲酯和苄丝肼混和药物的百分含量为 1%、 25%或 50% 的缓释微球。
b) 把步骤(a)得乳液分别加到重量百分比浓度为 1 %氯化钠和 1 %的聚乙二醇(PVA 的分子量为 1, 000, 000 ) 水溶液 10mL、 5 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 500, 000 )水溶液 10mL、或 10 %氯化钠和 2. 5 %的聚乙二醇 (PVA的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1— 5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 1所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 55-100 μ m; 其它的粒径分别约为 65-150 μ m、和 250-500 μ m, 图上均未显 示)。
制备成左旋多巴甲酯和苄丝肼混和药物的含量为 1%的微球在体外释放结果显示没 有突释和不完全释放, 其它也有类似的结果但图上未显示。
稳定性试验考察: 把左旋多巴甲酯与苄丝肼和本发明制备的左旋多巴甲酯和苄丝肼 混和药物缓释微球同时放在可见光照射, 然后回收分别检测左旋多巴甲酯和苄丝肼的含 量, 发现左旋多巴甲酯在一年后活性下降 6-7%, 而微球几乎不变约 0-1. 0%; 苄丝肼在一 年后活性下降 5-8. 5%, 而微球几乎不变约 0-0. 72%。
体内血药浓度考察: 用于同剂量的左旋多巴甲酯与苄丝肼口服制剂和左旋多巴甲酯 和苄丝肼混和药物缓释微球比较, 发现微球剂型明显好于口服制剂, 左旋多巴甲酯和苄 丝肼混和药物缓释微球剂型的苄丝肼体内血药浓度的总面积高于口服的约 31. 7%;左旋多 巴甲酯和苄丝肼混和药物缓释微球发现微球剂型的左旋多巴甲酯也明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 43. 5%。
需要说明的是实施例 1, 2, 3, 4是左旋多巴甲酯和苄丝肼混和药物微球组合物制备。 实施例 5
①左旋多巴甲酯溶液制备
a)将 lOOmg左旋多巴甲酯, 配制成重量百分比浓度为 2. 5%的水溶液;
②左旋多巴甲酯缓释微球组合物制备
(a)将称取 37. 5mg的聚乳酸(PLA, 分子量为 90, 000-140, 000 )配制成重量百分比 浓度为 15%的二氯甲烷的有机溶液和量取 0. 5mL上述的①左旋多巴甲酯溶液混和并搅拌、 漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成左旋多巴甲 酯的理论百分含量为 25%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物(上述制备的微球的表面光滑、粒径分布均匀,粒径为约 66-110 μ πι如图 3所述)。
制备的微球组合物: 其实际 PLA的重量百分比为 75%和左旋多巴甲酯为 25%、 在 37 °。和 ρΗ2 的磷酸缓冲溶液中摇体外第 1 天的释放量占总的左旋多巴甲酯的百分比为 20. 63%、 14天后的累积释放 99. 04%, 释放曲线如图 4所述。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-22%; 第一天的 突释比 W/0和 S/0/0法少 4%-11%。
稳定性试验考察: 把左旋多巴甲酯和本发明制备的左旋多巴甲酯微球同时放在可见 光照射, 然后回收检测其含量, 发现左旋多巴甲酯在一年后活性下降 6-10%, 而微球几乎 不变约 0-1. 0%。
治疗效果考察: 用于同剂量的左旋多巴甲酯口服制剂和左旋多巴甲酯微球比较, 发 现微球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 35%。
实施例 6
①左旋多巴甲酯溶液制备
a)将 lOOmg左旋多巴甲酯, 配制成重量百分比浓度为 2. 5%的水溶液;
②左旋多巴甲酯缓释微球组合物制备
(a)将称取 295mg的聚乳酸 (PLA, 分子量为 90, 000-140, 000 ) 配制成重量百分比 浓度为 15%的二氯甲烷的有机溶液和量取 0. 2mL上述的①左旋多巴甲酯溶液混和并搅拌、 漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成左旋多巴甲 酯的理论百分含量为 1%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 10 %的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 60-140 μ πι)。
制备的微球组合物: 其实际 PLA的重量百分比为 99%和左旋多巴甲酯为 1%、在 37°C 和 pH3的磷酸缓冲溶液中摇体外第 1天的释放量占总的左旋多巴甲酯的百分比为 19. 98%、 14天后的累积释放 92. 23%。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-19%; 第一天的 突释比 W/0和 S/0/0法少 4%-20%。
稳定性试验考察: 把左旋多巴甲酯和本发明制备的左旋多巴甲酯微球同时放在可见 光照射, 然后回收检测其含量, 发现左旋多巴甲酯在一年后活性下降 5-8%, 而微球几乎 不变约 0-0. 8%。
治疗效果考察: 用于同剂量的左旋多巴甲酯口服制剂和左旋多巴甲酯微球比较, 发 现微球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 36%。
实施例 7
①左旋多巴甲酯溶液制备
a)将 lOOmg左旋多巴甲酯, 配制成重量百分比浓度为 2. 5%;
②左旋多巴甲酯缓释微球组合物制备
a)将①得的左旋多巴甲酯溶液分别量取 0. 2mL、0. 5mL或 lmL和分别称取 595mg的聚 乳酸 (PLA分子量为 6000 ) 、 37. 5mg的聚乳酸 (PLGA分子量为 250, 000 ) 或 25mg的聚 乳酸 (PLGA分子量为 500, 000 ) 并分别配制成重量百分比浓度为 30%、 15%或 5%的二氯 甲烷的有机溶液; 将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL的上述左旋多 巴甲酯溶液的顺序一一对应混和并搅拌、漩涡或超声 1一 5分钟形成均匀得混悬液, 即油 包水 (W/0) 乳液; 将制备成左旋多巴甲酯的百分含量为 1%或 50%缓释微球。
b) 把步骤 (a) 得乳液按照上述的顺序一一对应分别加到重量百分比浓度为 1 %氯 化钠和 1 %的聚乙二醇 (PVA的分子量为 1, 000 , 000 ) 水溶液 10mL、 5 %氯化钠和 2. 5 % 的聚乙二醇 (PVA的分子量为 500, 000 ) 水溶液 10mL、 或 10 %氯化钠和 2. 5 %的聚乙二 醇(PVA的分子量为 1, 000, 000 )水溶液 10mL并搅拌、漩涡或超声 0. 1 -5分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 3所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 45-100 μ m; 其它的粒径分别约为 60-170 μ m、和 250-500 μ m, 图上均未显 示)。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 4-12%; 第一天的 突释比 W/0和 S/0/0法少 2%-12%。
稳定性试验考察: 把左旋多巴甲酯和本发明制备的左旋多巴甲酯微球同时放在可见 光照射, 然后回收检测其含量, 发现左旋多巴甲酯在一年后活性下降 5-10%, 而微球几乎 不变约 0-0. 8%。
治疗效果考察: 用于同剂量的左旋多巴甲酯口服制剂和左旋多巴甲酯微球比较, 发 现微球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 20-36%。
实施例 8
①左旋多巴甲酯溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯, 配制成重量百分比浓度为 2. 5%;
②左旋多巴甲酯缓释微球组合物制备
a)将①得的左旋多巴甲酯溶液分别量取 0. 2mL、0. 5mL或 lmL和分别称取 595mg的聚 己内酯 (PCL分子量为 10, 000 )、 37. 5mg的聚己内酯 (PCL分子量为 2, 500, 000 )或 25mg 的聚己内酯 (PCL分子量为 5, 000, 000 ) 并分别配制成重量百分比浓度为 30%、 15%或 5% 的二氯甲烷的有机溶液; 将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL的上述 左旋多巴甲酯溶液的顺序一一对应混和并搅拌、漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成左旋多巴甲酯的百分含量为 1%、 25%或 50%缓释微球。
b) 把步骤 (a) 得乳液按照上述的顺序一一分别加到重量百分比浓度为 1 %氯化钠 和 1 %的聚乙二醇 (PVA的分子量为 1, 000, 000 ) 水溶液 10mL、 5 %氯化钠和 2. 5 %的聚 乙二醇(PVA的分子量为 500, 000 )水溶液 10mL、或 10 %氯化钠和 2. 5 %的聚乙二醇(PVA 的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1 -5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 3所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 50-100 μ m; 其它的粒径分别约为 65-150 μ m、和 250-500 μ m, 图上均未显 示)。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 4-13%; 第一天的 突释比 W/0和 S/0/0法少 2%-12%。
稳定性试验考察: 把左旋多巴甲酯和本发明制备的左旋多巴甲酯微球同时放在可见 光照射, 然后回收检测其含量, 发现左旋多巴甲酯在一年后活性下降 5-10%, 而微球几乎 不变约 0. 1-1. 0%。
治疗效果考察: 用于同剂量的左旋多巴甲酯口服制剂和左旋多巴甲酯微球比较, 发 现微球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 20-36%。
实施例 9
①左旋多巴甲酯溶液制备
a)将市场购买的 lOOmg左旋多巴甲酯, 配制成重量百分比浓度为 2. 5%;
②左旋多巴甲酯缓释微球组合物制备
a)将①得的左旋多巴甲酯溶液分别量取 0. 2mL、0. 5mL或 lmL和分别称取 lOOmg聚羟 基乙酸-聚乳酸 (PLGA分子量为 6000 ) 、 200mg聚乳酸 (PLA分子量为 6000 ) 和 295mg 聚己内酯(PCL分子量为 10, 000 )共 595mg的聚合物混合物; 12. 5mg聚羟基乙酸-聚乳酸
(PLGA分子量为 20, 000 ) 、 15mg聚乳酸 (PLA分子量为 50, 000 )和 10mg聚己内酯 (PCL 分子量为 10, 000 )共 37. 5mg的聚合物混合物; 或 5mg聚羟基乙酸-聚乳酸(PLGA分子量 为 50, 000 ) 、 7mg聚乳酸 (PLA分子量为 500, 000 ) 和 13mg聚己内酯 (PCL分子量为 1, 000, 000 )共 25mg的聚合物混合物; 并分别配制成重量百分比浓度为 30%、 15%或 5%的 二氯甲烷的有机溶液; 将用 30%浓度的和 0. 2mL、 15%的和 0. 5mL或 5%的和 lmL的上述左 旋多巴甲酯溶液的顺序一一对应混和并搅拌、 漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0)乳液; 将制备成左旋多巴甲酯的百分含量为 1%、 25%或 50%的缓释微球。
b) 把步骤 (a) 得乳液按照上述的顺序一一分别加到重量百分比浓度为 1 %氯化钠 和 1 %的聚乙二醇(PVA的分子量为 1, 000, 000 )水溶液 10mL、 5 %氯化钠和 2. 5 %的聚乙 二醇(PVA的分子量为 500, 000 )水溶液 10mL、 或 10 %氯化钠和 2. 5 %的聚乙二醇(PVA 的分子量为 1, 000, 000 ) 水溶液 10mL并搅拌、 漩涡或超声 0. 1 -5分钟形成复乳;
(c) 把步骤(b ) 的复乳加到浓度为 1 %、 5%或 10 %的 lOOOmL氯化钠溶液固化 1一 4 小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的扫描电镜图类似如图 3所示, 微球的表面光滑、 粒径分布均 匀, 粒径为约 55-100 μ m; 其它的粒径分别约为 65-150 μ m、和 250-500 μ m, 图上均未显 示)。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 4-15%; 第一天的 突释比 W/0和 S/0/0法少 2%-12%。
稳定性试验考察: 把左旋多巴甲酯和本发明制备的左旋多巴甲酯微球同时放在可见 光照射, 然后回收检测其含量, 发现左旋多巴甲酯在一年后活性下降 5-10%, 而微球几乎 不变约 0. 1-1. 0%。
治疗效果考察: 用于同剂量的左旋多巴甲酯口服制剂和左旋多巴甲酯微球比较, 发 现微球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 26-37%。
本发明利用水包油一油包水(W/0/W)制备微球方法进一步微囊包在具有缓释的高分 子材料中。 使其制备的微球表面光滑圆整, 均匀度好, 溶液规整无粘连; 包封率高, 突 释小, 载药量高。
需要说明的是实施例 5, 6, 7, 8, 9是左旋多巴甲酯微球组合物制备。
实施例 10
①苄丝肼溶液制备
a)将 lOOmg苄丝肼, 配制成重量百分比浓度为 2. 5%的水溶液;
②苄丝肼缓释微球组合物制备
(a)将称取 37. 5mg的聚乳酸(PLA, 分子量为 90, 000-140, 000 )配制成重量百分比 浓度为 15%的二氯甲烷的有机溶液和量取 0. 5mL上述的①苄丝肼溶液混和并搅拌、漩涡或 超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成苄丝肼的理论百分 含量为 15%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物(上述制备的微球的表面光滑、粒径分布均匀,粒径为约 66-110 μ πι如图 5所述)。
制备的微球组合物:其实际 PLA的重量百分比为 85%和苄丝肼为 15%、在 37°C和 pH2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 20. 63%、 4天后的 累积释放 99. 04%, 释放曲线如图 6所述。 本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-30%; 第一天的 突释比 W/0和 S/0/0法少 3%-12%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-0. 8%。
体内血药浓度效果考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微 球剂型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 30%。
实施例 11
①苄丝肼溶液制备
a)将 lOOmg苄丝肼, 配制成重量百分比浓度为 2. 5%的水溶液;
②苄丝肼缓释微球组合物制备
(a)将称取 295mg的聚乳酸 (PLA, 分子量为 90, 000-140, 000 ) 配制成重量百分比 浓度为 15%的二氯甲烷的有机溶液和量取 0. 2mL上述的①苄丝肼溶液混和并搅拌、漩涡或 超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成苄丝肼的理论百分 含量为 1%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 10 %的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 60-140 μ πι)。
制备的微球组合物: 其实际 PLA的重量百分比为 99%和苄丝肼为 1%、 在 37°C和 ρΗ2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 18. 88%、 7天后的 累积释放 91. 23%。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-18%; 第一天的 突释比 W/0和 S/0/0法少 4%-18%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-8%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 30%。
实施例 12
①苄丝肼溶液制备 a)将 lOOmg苄丝肼, 配制成重量百分比浓度为 2. 5%的水溶液;
②苄丝肼缓释微球组合物制备
(a)将称取 37. 5mg的聚乳酸-羟基乙酸(PLGA, 分子量为 6000-500, 000 )配制成重 量百分比浓度为 15%的二氯甲烷的有机溶液和量取 0. 5mL上述的①苄丝肼溶液混和并搅 拌、 漩涡或超声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成苄丝肼 的理论百分含量为 35%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 66-110 μ πι)。
制备的微球组合物:其实际 PLGA的重量百分比为 65%和苄丝肼为 35%、在 37°C和 pH2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 20. 63%、 4天后的 累积释放 99. 04%。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-30%; 第一天的 突释比 W/0和 S/0/0法少 3%-12%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 30%。
实施例 13
①苄丝肼溶液制备
a)将 lOOOmg苄丝肼, 配制成重量百分比浓度为 2. 5%的水溶液;
②苄丝肼缓释微球组合物制备
(a)将称取 25mg的聚乳酸(PLA, 分子量为 90, 000-140, 000 )配制成重量百分比浓 度为 15%的二氯甲烷的有机溶液和量取 0. 2mL上述的①苄丝肼溶液混和并搅拌、漩涡或超 声 1一 5分钟形成均匀得混悬液, 即油包水 (W/0) 乳液; 将制备成苄丝肼的理论百分含 量为 45%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 10 %的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 60-140 μ πι)。
制备的微球组合物:其实际 PLA的重量百分比为 55%和苄丝肼为 45%、在 37°C和 pH2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 18. 88%、 7天后的 累积释放 91. 23%。
本发明的方法制备的微球组合物的包封率比用 W/0法制备微球高 5-18%; 第一天的 突释比 W/0和 S/0/0法少 4%-18%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-8%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 30%。
需要说明的是实施例 10, 11, 12, 13是苄丝肼微球组合物采用水包油-油包水方法制 备。
实施例 14
①将 lOOmg苄丝肼, 先用显微镜观察是否在 0. 4-10 μ πι, 如果不在可以用粉碎机粉 碎成 0. 4-5 μ m;
②苄丝肼缓释微球组合物制备
(a)将称取 37. 5mg的聚乳酸 (PLA, 分子量为 90, 000-140, 000 ) 配制成重量百分比 浓度为 15%的二氯甲烷的有机溶液和称取①得的苄丝肼微粒 12. 5mg混和并搅拌、 漩涡或 超声 1一 5分钟形成均匀得混悬液, 即油包固体 (S/0) 乳液; 将制备成苄丝肼的理论百 分含量为 25%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物(上述制备的微球的表面光滑、粒径分布均匀,粒径为约 66-120 μ m如图 7所述)。
制备的微球组合物:其实际 PLA的重量百分比为 75%和苄丝肼为 25%、在 37°C和 pH2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 10. 63%、 7天后的 累积释放 98. 34%, 释放曲线如图 8所述。
本发明的方法制备的微球组合物的包封率比分别比用 W/0和 W/0/W法制备微球高 5-30%; 第一天的突释比 W/0和 W/0/W法及 S/0/0法少 5%-20%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 28-48%。
实施例 15
①苄丝肼微粒制备
将 lOOmg苄丝肼, 先用显微镜观察是否在 0. 4-10 μ πι, 如果不在可以用粉碎机粉碎 成 0. 4-5 μ m;
②苄丝肼缓释微球组合物制备
(a) 将称取 495mg的聚羟基乙酸-聚乳酸 (PLGA, d, 1- lactide : 46 - 52% Mole 和 glycol ide 48 - 54% Mole; 分子量为 5000-6000 ) 配制成重量百分比浓度为 30%的 二氯甲烷的有机溶液和称取①得的苄丝肼微粒 5mg混和并搅拌、漩涡或超声 1一 5分钟形 成均匀得混悬液, 即油包固体(S/0)乳液; 将制备成苄丝肼的理论百分含量为 1%缓释微 球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 1 %氯化钠和 2 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 15%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 70-100 μ πι)。
制备的微球组合物:其实际 PLGA的重量百分比为 99%和苄丝肼为 1%、在 37°C和 pH2 的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 10. 63%、 4天后的 累积释放 95. 23%。
本发明的方法制备的微球组合物的包封率比分别比用 W/0和 W/0/W法制备微球高 5%-30%; 第一天的突释比 W/0和 W/0/W法及 S/0/0法少 5%-20%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-1%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 27-46%。
实施例 16
①苄丝肼微粒制备
将 lOOmg苄丝肼, 先用显微镜观察是否在 0. 4-10 μ πι, 如果不在可以用粉碎机粉碎 成 0. 4-5 μ m;
②苄丝肼缓释微球组合物制备
(a)将称取 37. 5mg 的聚羟基乙酸-聚乳酸 (PLGA, d, 1- lactide : 46 - 52% Mole 和 glycolide 48 - 54% Mole; 分子量为 5000-6000) 配制成重量百分比浓度为 15%的 二氯甲烷的有机溶液和称取①得的苄丝肼微粒 12. 5mg混和并搅拌、 漩涡或超声 1一 5分 钟形成均匀得混悬液, 即油包固体 (S/0) 乳液; 将制备成苄丝肼的理论百分含量为 25% 缓释微球。
(b) 把步骤 (a)得乳液分别加到重量百分比浓度为 5 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 146, 000-186, 000, 醇解度 98-99%)水溶液 10mL并搅拌、漩涡或超声 0. 1 -5 分钟形成复乳;
(c) 把步骤 (b) 的复乳加到浓度为 10 %的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 60-120 μ πι)。
制备的微球组合物:其实际 PLGA的重量百分比为 75%和苄丝肼为 25%、在 37°C和 pH 为 2的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 32. 88%、 4天 后的累积释放 95. 25%。
本发明的方法制备的微球组合物的包封率比分别比用 W/0和 W/0/W法制备微球高 5-30%; 第一天的突释比 W/0和 W/0/W法及 S/0/0法少 5%-20%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-0. 9%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 27-49%。
实施例 17
①将 lOOmg苄丝肼, 先用显微镜观察是否在 0. 4-10 μ πι, 如果不在可以用粉碎机粉 碎成 0. 4-5 μ m;
②苄丝肼缓释微球组合物制备
(a)将称取 25mg 的聚羟基乙酸-聚乳酸 (PLGA, d, 1-lactide : 46 - 52% Mole 和 glycol ide 48 - 54% Mole; 分子量为 6000 ) 配制成重量百分比浓度为 10%的二氯甲 烷的有机溶液和称取①得的苄丝肼微粒 25mg混和并搅拌、 漩涡或超声 1一 5分钟形成均 匀得混悬液, 即油包固体(S/0)乳液; 将制备成苄丝肼的理论百分含量为 50%缓释微球。
(b) 把步骤 ( a)得乳液分别加到重量百分比浓度为 1 %氯化钠和 1 %的聚乙二醇 (PVA 的分子量为 110, 000-124, 000, 醇解度为醇解度 98-99%)水溶液 10mL并搅拌、 漩涡或超 声 0. 1— 5分钟形成复乳;
(c) 把步骤 (b ) 的复乳加到浓度为 5%的 lOOOmL氯化钠溶液固化 1一 4小时;
(d) 把步骤 (c ) 得到的微球进行离心收集, 并用水洗涤 3— 5次, 冻干后得到微球 组合物 (上述制备的微球的表面光滑、 粒径分布均匀, 粒径为约 50-120 μ πι)。
制备的微球组合物:其实际 PLGA的重量百分比为 50%和苄丝肼为 50%、在 37°C和 pH 为 2的磷酸缓冲溶液中摇体外第 1小时的释放量占总的苄丝肼的百分比为 45. 78%、 4天 后的累积释放 95. 83%。
本发明的方法制备的微球组合物的包封率比分别比用 W/0和 W/0/W法制备微球高 5-30%; 第一天的突释比 W/0和 W/0/W法及 S/0/0法少 5%-20%。
稳定性试验考察: 把苄丝肼和本发明制备的苄丝肼微球同时放在可见光照射, 然后 回收检测其含量, 发现苄丝肼在一年后活性下降 5-10%, 而微球几乎不变约 0-0. 8%。
体内血药浓度考察: 用于同剂量的苄丝肼口服制剂和苄丝肼微球比较, 发现微球剂 型明显好于口服制剂, 其体内血药浓度的总面积高于口服的约 28-48%。
需要说明的是实施例 14, 15, 16, 17是苄丝肼微球组合物采用水包油-油包固体方法 制备。
实施例 18: 平行实验
为了科学评价以下各组药物的性能, 我们用平行试验的方法, 同时检测下列各组的 稳定性、 体内血药浓度和包封率。
各组药物分组情况如下:
A组: 左旋多巴甲酯缓释微球采用本发明 W/0/W的方法制备得到, 其中左旋多巴甲 酯含量为 5%, 高分子辅料含量为 95%。
B组: 苄丝肼缓释微球采用本发明的 W/0/W方法制备得到, 其中苄丝肼含量为 5%, 高分子辅料含量为 95%。
C 组: 苄丝肼缓释微球采用本发明的 (S/0/W) 方法制备得到, 其中苄丝肼含量为 5%, 高分子辅料含量为 95%。
D 组: 左旋多巴甲酯和苄丝肼混和药物缓释微球 (W/0/W) 方法制备得到, 其中苄 丝肼含量为 2. 5%, 左旋多巴甲酯含量为 2. 5%, 高分子辅料含量为 95%。
E 组: 司来吉兰缓释微球采用中国专利申请号 200910201414. X 专利文献报道的
01/02乳化液中干燥方法制备得到司来吉兰缓释微球,其中司来吉兰缓释微球中的卡巴拉 汀含量为 5%, 高分子辅料含量为 95%。
F 组: 卡巴拉汀缓释微球采用中国专利申请号 200910201416. 9 专利文献报道的
01/02乳化液中干燥方法制备得到卡巴拉汀缓释微球,其中卡巴拉汀缓释微球中的卡巴拉 汀含量为 5%, 高分子辅料含量为 95%。
H组: 左旋多巴纳米制剂采用中国专利申请号 200410030559. 5专利文献报道的方 法制备得到左旋多巴纳米制剂。
各组药物实验结果如下:
稳定性试验考察 体内血药浓度考察 包封率
A 把左旋多巴甲酯和本发明制备 用于同剂量的左旋多巴甲酯口服制剂和左 72 士 组 的左旋多巴甲酯微球同时放在 旋多巴甲酯微球比较,发现微球剂型明显好 13% 可见光照射, 然后回收检测其 于口服制剂,其体内血药浓度的总面积高于 含量, 发现左旋多巴甲酯在一 口服的约 35%。
年后活性下降 6-10%,而微球几
乎不变约 0-1. 0%。
B 把苄丝肼和本发明制备的苄丝 用于同剂量的苄丝肼口服制剂和苄丝肼微 71 士 组 肼微球同时放在可见光照射, 球比较, 发现微球剂型明显好于口服制剂, 12% 然后回收检测其含量, 发现苄 其体内血药浓度的总面积高于口服的约 丝肼在一年后活性下降 5-10%, 30%。
而微球几乎不变约 0-0. 8%。
C 把苄丝肼和本发明制备的苄丝 用于同剂量的苄丝肼口服制剂和苄丝肼微 76 士 组 肼微球同时放在可见光照射, 球比较, 发现微球剂型明显好于口服制剂, 11% 然后回收检测其含量, 发现苄 其体内血药浓度的总面积高于口服的约 丝肼在一年后活性下降 5-10%, 28-48%。
而微球几乎不变约 0-0. 8%。
D 把左旋多巴甲酯与苄丝肼和本 用于同剂量的左旋多巴甲酯与苄丝肼口服 70 士 组 发明制备的左旋多巴甲酯和苄 制剂和左旋多巴甲酯和苄丝肼混和药物缓 10% 丝肼混和药物缓释微球同时放 释微球比较,发现微球剂型明显好于口服制 在可见光照射, 然后回收分别 齐 U,左旋多巴甲酯和苄丝肼混和药物缓释微 检测左旋多巴甲酯和苄丝肼的 球剂型的苄丝肼体内血药浓度的总面积高 含量, 发现左旋多巴甲酯在一 于口服的约 30%; 左旋多巴甲酯和苄丝肼混 年后活性下降 6-10%,而微球几 和药物缓释微球发现微球剂型的左旋多巴 乎不变约 0-1. 0%; 苄丝肼在一 甲酯也明显好于口服制剂,其体内血药浓度 年后活性下降 5-10%,而微球几 的总面积高于口服的约 40%。
乎不变约 0-0. 8%。
E 稳定性一般, 比上述的剂型的 这个药难于透过血脑屏障和容易被体内的 65 士 组 保护效果低 5%左右。 可能是由 酶降解。故体内的血药浓度比口服还低 10% 10% 于油相的难于除去的结果。 左右;如果测定脑积液药的浓度比本发明的
剂型要低于 10-40%。
F 稳定性一般, 比上述的剂型的 这个药难于透过血脑屏障和容易被体内的 64 士 组 保护效果低 5%左右。 可能是由 酶降解。故体内的血药浓度比口服还低 10% 12% 于油相的难于除去的结果。 还 左右;如果测定脑积液药的浓度比本发明的 存在对环境的污染问题。 剂型要低于 10-40%。
H 不稳定, 纳米粒容易集聚, 影 存在毒副作用,还不是药用辅料, 同时这个 20 ± 7% 组 响其药效。 药难于透过血脑屏障和容易被体内的酶降
解。 故体内的血药浓度比口服还低 10%左 右。
实施例 19 用途实验
1. 偏侧帕金森病大鼠模型的制作
SD大鼠 (180-220 g) 3%戊巴比妥醛麻醉后, 剃毛刀剪去头部的毛, 先后用 2 %碘 酒与 75 %酒精棉球消毒头部皮肤。 沿矢状缝作 6cm长切口, 小心剥离筋膜和肌肉, 推开 骨膜,暴露骨缝,用 3 %的双氧水洗洁,然后插入耳棒,先将一侧的耳棒轻轻插入外耳道, 碰到骨性外耳道底后将耳棒固定, 然后把另一侧耳棒同样插入同定, 调整上颌固定器的 螺丝, 将大鼠的上门齿塞进上齿固定板的槽内, 并装好两侧眼眶固定杆, 最后旋紧全部 螺丝。 参照 Paxinos和 Watson的大鼠全脑立体定位图谱, 坐标为(1) 前囟后 3. 7 讓, 矢 状缝右侧 1. 7 讓, 颅骨骨膜下 7. 8 讓, 门齿线 -2. 4 讓; (2)前囟后 4. 4 讓, 矢状缝右侧 1. 2 mm, 颅骨骨膜下 7. 8 mm, 门齿线 -2. 4 mm。 6-0HDA (无菌生理盐水新鲜配制, 含 0. 2 %抗坏血酸, 浓度为 4mg/ml )二靶点毁损一侧纹状体建立 PD大鼠偏侧毁损模型。微量进 样器每点注射 6-0HDA 4 ul , 注射速度 1 ul/min, 留针 3分钟。 术后三周大鼠腹腔内注 射阿朴吗啡 0. 5mg/kg (用含 1 %抗坏血酸的生理盐水新鲜配制) , 诱导其向健侧旋转, 每周一次, 每次 30分钟, 连续四周, 旋转次数在 7次 /分以上并保持稳定者视为建模成 功大鼠。
2. 实验分组
将 48只制模成功帕金森大鼠随机分成八组: 每组 6只。
第一组: PD组 (生理盐水治疗, 每天一次, 连续两周)
第二组: 苄丝肼组 (10 mg/kg, s. c. 每天一次, 连续两周)
第三组: 左旋多巴甲酯组(10 mg/kg, s. c. 每天一次, 连续两周),
第四组: 左旋多巴甲酯和苄丝肼组 (5 mg的左旋多巴甲酯 /kg, s. c.和 5 mg的苄丝 肼 /kg, s. c. 每天一次, 连续两周)
第五组: 苄丝肼微球组 180mg/kg, 皮下注射、肌肉注射、腹腔注射或颅腔注射一次, 其中 180mg苄丝肼微球中含有苄丝肼 90 mg) ,
第六组: 左旋多巴甲酯微球组(180 mg/kg, 皮下注射、 肌肉注射、 腹腔注射或颅腔 注射一次, 其中 180 mg左旋多巴甲酯微球中含有左旋多巴甲酯 90 mg) ,
第七组: 左旋多巴甲酯微球和苄丝肼微球组 (70 mg苄丝肼微球 /kg, 皮下注射、肌肉 注射、 腹腔注射或颅腔注射一次, 其中 70 mg苄丝肼微球中含有苄丝肼 35 mg, 70 mg左 旋多巴甲酯微球 /kg, 皮下注射、 肌肉注射、 腹腔注射或颅腔注射一次, 其中 70 mg左旋 多巴甲酯微球中含有左旋多巴甲酯 35 mg) ,
第八组: 左旋多巴甲酯和苄丝肼混和药物微球组(140 mg/kg, 皮下注射、 肌肉注射、 腹腔注射或颅腔注射一次, 其中 140 mg混和药物微球中含有苄丝肼 35 mg和左旋多巴甲 酯 35 mg)。
3. 异常不自主运动 (AM) 评分
在治疗的第 1, 2, 4, 6, 8, 10, 12, 14天进行 AM评分, 每组大鼠给予相应治疗后 每隔 20分钟进行一次 AM评分, 共进行 2小时, 每次观察 1分钟。 共分成 4部分进行评分(上 肢 AIM、 口面部 AIM、 轴性 AIM和运动 AIM), 每部分又根据其有无和严重程度分 5个等级 (0-4): 0: 无; 1: AIM存在不到观察时间的 50%; 2: AM存在大于观察时间的 50%; 3: 持续存在, 剌激使停止; 4: 持续存在, 剌激不能使之停止。 各组异常不自主运动 (AM) 评分结果见表 1
表 1 : 各组异常不自主运动 (AM) 评分结果
各组 上肢 AM 口面部 AIM 轴性 AIM 运动 AM 心刀
第一组 4 4 4 4 16 第二组 4 4 4 4 16
第三组 3 3 3 3 12
第四组 3 2 3 2 10
第五组 4 4 4 4 16
第六组 3 2 2 2 9
第七组 2 1 2 1 6
第八组 1 1 1 2 5
4. 前肢功能测定
我们进行大鼠前肢功能测定。 方法如下: 实验者一手固定大鼠躯体后半部和后肢, 使其离地, 另一手固定一侧前肢使另一前肢着地, 以大鼠正手方向斜向一侧移动大鼠 (5 s 内移动 90 cm) , 记录移动时着地侧前肢步数。 交替测量两侧上肢的跨步数。 前肢功能 测定结果见表 2
表 2前肢功能测定结果
Figure imgf000023_0001
5.结果
从表 1的结果可知: 微球皮下注射降低各种类型的 AIM评分。 从表 2的结果可知: 6-0HDA损伤后大鼠的前肢协调能力下降, 微球皮下注射后其协调能力上升, 这表明左旋 多巴引起的异动症阻碍了大鼠的协调功能。 但微球皮下注射明显减轻大鼠协调能力的下 降。
左旋多巴甲酯能通过血脑屏障, 但是左旋多巴甲酯, 左旋多巴甲酯微纳米, 左旋多 巴甲酯缓释微球容易被体内酶降解而失活。 苄丝肼虽然不能通过血脑屏障, 但是可以防 止左旋多巴甲酯, 被体内的酶降解, 苄丝肼和左旋多巴甲酯起到协同的作用。 从表 1 的 结果可知: 两药 (第七组: 左旋多巴甲酯微球和苄丝肼微球组, 第八组: 左旋多巴甲酯 和苄丝肼混和药物微球组) 有明显协同作用, 较单用 (第五组: 苄丝肼微球组,第六组: 左旋多巴甲酯微球组)可显著降低 AM评分,两药组合在提高疗效的同时可大幅降低治疗 费用。
实施列 20 (着重考察左旋多巴甲酯和苄丝肼微球在大鼠体内释放行为)
一, 仪器与试剂
超纯水仪器 (Milli-Q) Millipore公司
电子天平 (Sartorius-BSllOS) 北京赛多利斯仪器系统有限公司
冰箱 (Haier 4°C, Siemens -23 °C ) Haier, Siemens公司
旋涡混合器 (QL-901 ) 海门市其林贝尔仪器制造有限公司 液相紫外检测器 (SPD-20A) 日本岛津公司
液相溶剂输送泵 (LC-20AT) 日本岛津公司
C18反相色谱柱 (4.6x250mm) Agilent公司
生理盐水 上海华源长富药业 (集团) 有限公司 无水乙醇 (分析醇) 常熟市杨园化工有限公司
戊巴比妥钠 Sigma公司
二, 实验方法
实验方案如表 3, 实验用微球都采用 S/0/W 法制备, 高分子为 PLA : PLGA3A50/50=3:2, 药物与高分子比例为 1 : 10。 其中 A组只给左旋多巴甲酯微球; B组 给相同剂量的左旋多巴甲酯微球和苄丝肼微球; C组给左旋多巴甲酯和苄丝肼 1 : 1制备的 混合微球。 三组药物剂量相同。
表 3 混合微球的处方
Figure imgf000024_0001
动物实验步骤
1 ) Wistar雄性大鼠, 400±20g, 分组标记, 给予正常饮食;
2) 戊巴比妥钠麻醉大鼠, 在背部剃毛后剪开约 lcm长, 将微球置入后加少量生理盐水, 缝合伤口;
3 )在 1, 3, 5, 7, 10, 14 天将大鼠麻醉致死, 剪开伤口, 取出微球和周边组织, 用二氯甲烷
+释放液萃取后测微球内药物残留。
4) 检测方法用 HPLC检测。
实验结果与讨论 A组左旋多巴甲酯微球体内释放曲线如图 9所示, 从曲线看微球释放良好, 能实现 缓释作用, 第一天释放出总量的 15%左右, 持续释放 14天, 残留量很少。 而且实验取样 点为 3只大鼠平行实验, 计算 SD值得知偏差较小, 因此证明本实验方法的可行性, 同 时表明释放行为可重复性。
B组同时给予左旋多巴甲酯微球和苄丝肼微球, 两种药物释放曲线如图 10所示, 左 旋多巴甲酯微球释放曲线较好, 在第一天没有突释, 释放持续 14天, 残留较少。 苄丝肼 微球在第一天释放较快, 释放量超过 50%, 随后进行缓慢释放达 2周, 几乎没有残留。 从第二天开始左旋多巴甲酯和苄丝肼微球的释放曲线接近平行, 说明两种药物释放量成 比例, 并持续 2周, 这能使左旋多巴甲酯达到最佳疗效, 也利于调节两种药物的释放比 例。
C 组给予左旋多巴甲酯和苄丝肼的混合微球, 目的是将两种药物制备到一个微球处方 能减少给药次数, 方便生产和携带。 从图 11看两种药物都能实现缓释作用, 左旋多巴甲 酯在第一天释放约 30%, 最后缓慢释放, 一周释放量在 60%左右, 在第二周释放量较少, 残留超过 20%。 苄丝肼在第一天突释达 60%以上, 最后缓慢释放 2周, 没有残留。 两条 曲线在第二天开始呈现相同的释放速率。 从 SD值看实验重复性良好。
本实施列考察左旋多巴甲酯和苄丝肼微球的体内释放行为, 结果表明此处方两种药 物微球在大鼠体内能实现很好的缓释作用, 与体外释放行为一致, 能实现突释小, 残留 少的缓慢释放。

Claims

权 利 要 求
1. 一种含有抗帕金森病药物的微球组合物在制备预防、治疗帕金森病及帕金森病并 发症疾病药物中的应用, 其特征在于, 所述的含有抗帕金森病药物的微球组合物选自苄 丝肼微球、 左旋多巴甲酯微球、 左旋多巴甲酯微球和苄丝肼微球或左旋多巴甲酯和苄丝 肼混和药物微球。
2. 根据权利要求 2所述的应用, 其特征在于: 所述的微球组合物按重量百分比该组 合物由以下组分组成:
可降解的疏水聚合物 50%-99%
抗帕金森病药物 1%-50%,
所述的抗帕金森病药物选自左旋多巴甲酯或苄丝肼一种或两种混合物。
3. 根据权利要求 2所述的应用, 其特征在于: 所述的可降解的疏水聚合物选自聚乳 酸 -羟基乙酸、 聚乳酸或聚己内酯一种或其混合物。
4. 根据权利要求 2所述的应用, 其特征在于: 所述的微球组合物粒径为 l_500Mffl。
5. 根据权利要求 2所述的应用,其特征在于:所述的微球组合物粒径为 250-500Mffl。
6. 根据权利要求 1所述的应用, 其特征在于: 所述的微球组合物是通过水包油-油 包水法(w/o/w)、油包水(o/w)法、水包油-油包固法(s/o/w)、油包油-油包固法(s/o/o ) 或喷雾干燥法制备得到。
7. 根据权利要求 5所述的应用, 其特征在于: 所述的微球组合物是通过水包油-油 包水法 (w/o/w) 或水包油-油包固法 (s/o/w) 制备得到。
8. 一种含有抗帕金森病药物的微球组合药物,其特征在于, 所述的微球组合药物是 苄丝肼微球、 左旋多巴甲酯微球、 左旋多巴甲酯微球和苄丝肼微球或左旋多巴甲酯和苄 丝肼混和药物微球。
9. 根据权利要求 8所述的微球组合药物, 其特征在于, 所述的苄丝肼微球, 按重量 百分比该微球由以下组分组成:
可降解的疏水聚合物 40%-99%
苄丝肼 1%-60%。
10. 根据权利要求 8所述的微球组合药物, 其特征在于, 所述的左旋多巴甲酯微 可降解的疏水聚合物 50%-99%
左旋多巴甲酯 1%_50%。
11. 根据权利要求 8所述的所述的微球组合药物, 其特征在于, 所述的由左旋多 巴甲酯微球和苄丝肼微球组成混和药物微球,
所述的左旋多巴甲酯微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
左旋多巴甲酯 1%-50%,
所述的苄丝肼微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
苄丝肼 1%- 50%。
12. 根据权利要求 8所述的所述的微球组合药物, 其特征在于, 所述的左旋多巴 甲酯和苄丝肼混和药物微球按重量百分比该微球由以下组分组成:
可降解的疏水聚合物 50%-99%
左旋多巴甲酯和苄丝肼混和药物 1%_50%,
PCT/CN2011/071008 2010-07-20 2011-02-16 一种含有抗帕金森病药物的微球组合药物及其应用 WO2012009973A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN 201010230676 CN101879143B (zh) 2010-07-20 2010-07-20 一种含有抗帕金森病药物的微球组合药物及其应用
CN201010230676.1 2010-07-20
CN 201010230625 CN101879153B (zh) 2010-07-20 2010-07-20 一种左旋多巴甲酯和苄丝肼混和药物缓释微球组合物及其制备方法
CN2010102306475A CN101884624B (zh) 2010-07-20 2010-07-20 一种长效苄丝肼缓释微球组合物及其制备方法
CN201010230647.5 2010-07-20
CN201010230625.9 2010-07-20
CN201010230637.1 2010-07-20
CN201010230634.8 2010-07-20
CN2010102306348A CN101884622B (zh) 2010-07-20 2010-07-20 一种苄丝肼缓释微球组合物及其制备方法
CN2010102306371A CN101884623B (zh) 2010-07-20 2010-07-20 一种左旋多巴甲酯缓释微球组合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2012009973A1 true WO2012009973A1 (zh) 2012-01-26

Family

ID=45496482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071008 WO2012009973A1 (zh) 2010-07-20 2011-02-16 一种含有抗帕金森病药物的微球组合药物及其应用

Country Status (1)

Country Link
WO (1) WO2012009973A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648096A (en) * 1992-10-26 1997-07-15 Schwarz Pharma Ag Process for the production of microcapsules
CN101623278A (zh) * 2008-07-09 2010-01-13 北京德众万全药物技术开发有限公司 一种含有左旋多巴和盐酸苄丝肼的药物组合物
CN101810586A (zh) * 2010-04-29 2010-08-25 上海交通大学 左旋多巴甲酯缓释微球组合物及其制备方法
CN101879143A (zh) * 2010-07-20 2010-11-10 上海交通大学医学院附属新华医院 一种含有抗帕金森病药物的微球组合药物及其应用
CN101879153A (zh) * 2010-07-20 2010-11-10 上海交通大学医学院附属新华医院 一种左旋多巴甲酯和苄丝肼混和药物缓释微球组合物及其制备方法
CN101884622A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种苄丝肼缓释微球组合物及其制备方法
CN101884623A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种左旋多巴甲酯缓释微球组合物及其制备方法
CN101884624A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种长效苄丝肼缓释微球组合物及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648096A (en) * 1992-10-26 1997-07-15 Schwarz Pharma Ag Process for the production of microcapsules
CN101623278A (zh) * 2008-07-09 2010-01-13 北京德众万全药物技术开发有限公司 一种含有左旋多巴和盐酸苄丝肼的药物组合物
CN101810586A (zh) * 2010-04-29 2010-08-25 上海交通大学 左旋多巴甲酯缓释微球组合物及其制备方法
CN101879143A (zh) * 2010-07-20 2010-11-10 上海交通大学医学院附属新华医院 一种含有抗帕金森病药物的微球组合药物及其应用
CN101879153A (zh) * 2010-07-20 2010-11-10 上海交通大学医学院附属新华医院 一种左旋多巴甲酯和苄丝肼混和药物缓释微球组合物及其制备方法
CN101884622A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种苄丝肼缓释微球组合物及其制备方法
CN101884623A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种左旋多巴甲酯缓释微球组合物及其制备方法
CN101884624A (zh) * 2010-07-20 2010-11-17 上海交通大学医学院附属新华医院 一种长效苄丝肼缓释微球组合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BETUL ARICA ET AL.: "Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats", JOURNAL OF CONTROLLED RELEASE, 23 December 2004 (2004-12-23), Retrieved from the Internet <URL:www.sciencedirect.com> *
N. POPOVIC ET AL.: "Therapeutic potential of controlled drug delivery systems in Neurodegenerative diseases", INTERNATIONAL JOURNAL OF PHARMACEUTICS, 10 March 2006 (2006-03-10), Retrieved from the Internet <URL:www.sciencedirect.com> *

Similar Documents

Publication Publication Date Title
JP6736275B2 (ja) 手術後の慢性の痛みのための薬物充填マイクロスフェア
US20180021485A1 (en) Method for manufacturing drug-containing biodegradable fiber material by electrospinning
CN102438600A (zh) 用于改善生物活性物质溶出度特征的方法
CN102740835A (zh) 包封的纳米颗粒在工业规模的制备
WO2015023770A1 (en) Methods for fine particle manufacture
US8475823B2 (en) Baclofen formulation in a polyorthoester carrier
Bragagni et al. Improving the therapeutic efficacy of prilocaine by PLGA microparticles: Preparation, characterization and in vivo evaluation
EP2910242B1 (en) Durable analgetic sebacoyl dinalbuphine ester-plga controlled release formulation
KR20170056573A (ko) 치료제의 고도로 국소화된 방출을 위한 주입가능한 미립자
JP2001527040A (ja) 神経系の脳血管性疾患を治療、抑制及び防止するためのテトラサイクリン及び/又はテトラサイクリン誘導体
TW202302094A (zh) 用於治療激躁之方法及組合物
Liu et al. Preparation of ropivacaine-loaded mesoporous bioactive glass microspheres and evaluation of their efficacy for sciatic nerve block
JP5425890B2 (ja) 難溶性薬物を含む均一なサイズの高分子ナノ粒子製造方法
TW200820992A (en) Nanoparticulate formulations of modafinil
JP2017533943A (ja) 急性、術後、または慢性疼痛を治療する組成物およびその使用方法
Wang et al. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury
US20140112957A1 (en) Analegisic (Sebacoyl dinalbuphine ester) PLGA controlled release formulation form
PL218200B1 (pl) System o kontrolowanym uwalnianiu obejmujący temozolomid oraz sposób wytwarzania tabletek temozolomidu o kontrolowanym uwalnianiu
US20170202848A1 (en) Afobazole nanoparticles formulation for enhanced therapeutics
WO2022271951A1 (en) Sustained release formulations comprising a selective androgen receptor modulator
WO2017197970A1 (zh) 含有布比卡因的药物组合物及其制备方法和用途
Wang et al. The impact of dexmedetomidine-loaded nano-microsphere combined with percutaneous acupoint electrical stimulation on the postoperative cognitive function of elderly patients with hip fracture
WO2012009973A1 (zh) 一种含有抗帕金森病药物的微球组合药物及其应用
CN101879143B (zh) 一种含有抗帕金森病药物的微球组合药物及其应用
WO2013010238A1 (pt) Composições farmacêuticas microparticuladas contendo antiparasitarios para terapia subcutânea prolongada, uso das ditas composições farmacêuticas para a produção de um medicamento e método de tratamento de parasitoses.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809162

Country of ref document: EP

Kind code of ref document: A1