WO2012008285A1 - 医療用薬液移送器 - Google Patents

医療用薬液移送器 Download PDF

Info

Publication number
WO2012008285A1
WO2012008285A1 PCT/JP2011/064574 JP2011064574W WO2012008285A1 WO 2012008285 A1 WO2012008285 A1 WO 2012008285A1 JP 2011064574 W JP2011064574 W JP 2011064574W WO 2012008285 A1 WO2012008285 A1 WO 2012008285A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical
transfer device
medical
flow path
check valve
Prior art date
Application number
PCT/JP2011/064574
Other languages
English (en)
French (fr)
Inventor
沖山忠
立▲崎▼斉
Original Assignee
株式会社ジェイ・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010157976A external-priority patent/JP2012019829A/ja
Priority claimed from JP2010246110A external-priority patent/JP5824798B2/ja
Application filed by 株式会社ジェイ・エム・エス filed Critical 株式会社ジェイ・エム・エス
Priority to US13/702,235 priority Critical patent/US20130079744A1/en
Priority to CN2011800343006A priority patent/CN102985050A/zh
Publication of WO2012008285A1 publication Critical patent/WO2012008285A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2096Combination of a vial and a syringe for transferring or mixing their contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2089Containers or vials which are to be joined to each other in order to mix their contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • A61J1/1481Inlet or outlet ports with connection retaining means, e.g. thread or snap-fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2006Piercing means
    • A61J1/201Piercing means having one piercing end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/202Separating means
    • A61J1/2037Separating means having valve means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2048Connecting means
    • A61J1/2055Connecting means having gripping means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2048Connecting means
    • A61J1/2058Connecting means having multiple connecting ports
    • A61J1/2062Connecting means having multiple connecting ports with directional valves

Definitions

  • the present invention relates to a medical chemical transfer device used when transferring a chemical solution in a chemical solution container such as an ampule or a vial to an infusion bag.
  • the drug solution in the drug solution container is usually preceded by a large-capacity infusion bag via a syringe.
  • the chemical solution is transferred by inserting a needle attached to the tip of the syringe into the chemical solution container and sucking the chemical solution in the chemical solution container into the syringe, and then piercing the needle into the rubber stopper of the port of the infusion bag to introduce the chemical solution into the infusion bag. It is done by injecting into.
  • the amount of drug solution to be administered to a patient is determined based on the patient's weight or body surface area.
  • the number of necessary chemical liquid containers is determined according to the determined amount of the chemical liquid.
  • the operator must transfer the necessary number of chemical solutions in the chemical solution container to the infusion bag. For example, when the drug solution is an anticancer drug, it is not uncommon for the number of drug solution containers to exceed ten.
  • JP 2004-483 A JP 2006-141714 A JP 2007-267986 A Japanese Patent No. 3103389 Japanese National Patent Publication No. 8-506881 International Publication No. 2010/061742 Pamphlet International Publication No. 2010/061743 Pamphlet Japanese Patent No. 3389983
  • An object of the present invention is to efficiently transfer a chemical solution in a chemical solution container to an infusion bag.
  • the medical chemical transfer device of the present invention comprises a chemical liquid flow path, a cylindrical body inserted into a chemical liquid container, a connection port to which a syringe is connected, a connector connected to a port of an infusion bag, and the chemical liquid flow
  • a transfer body having a channel, a connection port, and a cavity communicating with the connector formed therein, and a flow path between the chemical liquid flow path and the cavity; and from the chemical liquid flow path to the cavity
  • a first check valve that permits a flow of the chemical solution to be directed and restricts a flow of the chemical solution to the opposite direction; and a flow of the chemical solution that is provided on the flow path between the connector and the cavity, And a second check valve for restricting the flow of the chemical solution in the opposite direction.
  • the present invention it is not necessary to alternately insert the needle at the tip of the syringe into the drug solution container and the rubber stopper of the infusion bag as in the prior art, so that the drug solution in the drug solution container is efficiently transferred to the infusion bag. be able to.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a medical chemical transfer device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of a medical chemical transfer device according to a second embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing a schematic configuration of a bottle needle before puncturing a vial bottle and its surroundings in a medical liquid transfer device according to Embodiment 3 of the present invention
  • FIG. 3B is a bottle after puncturing the vial bottle. It is sectional drawing which showed schematic structure of the needle
  • FIG. 4 is a cross-sectional view showing another connector constituting the medical drug solution transfer device according to the present invention.
  • the cylindrical body is held by the transfer device body and the connection port is provided in the transfer device body.
  • the cylindrical body is a cannula
  • the plunger of the syringe can be easily pushed and pulled while the cannula is inserted into the ampule.
  • the cylindrical body is a bottle needle
  • it is easy to perform operations such as lifting the vial bottle upward while pushing the bottle needle through the rubber stopper of the vial bottle and pushing and pulling the plunger of the syringe. Can do.
  • the syringe is disposed coaxially with the cylindrical body.
  • the cylindrical body is a cannula
  • the position and posture of the cannula can be easily maintained when the plunger of the syringe is pushed and pulled.
  • the cylindrical body is a bottle needle
  • the operation of puncturing the bottle needle into the rubber stopper of the vial bottle is performed, and the conventional operation of puncturing the bottle needle attached to the tip of the syringe into the rubber stopper of the vial bottle. And can be done with substantially the same feeling.
  • connection port a male screw that engages with a female screw formed in a lock portion surrounding the male luer at the tip of the syringe is formed in the connection port.
  • the connector is connected to the transfer body through a flexible tube.
  • the infusion bag to which the connector is connected can be arranged at an arbitrary position to perform the chemical liquid transfer operation. Further, during the transfer operation, the position and posture of the chemical solution container and the syringe can be freely changed.
  • the connector includes a tubular body that can be inserted into a slit of a septum provided in the port of the infusion bag. Thereby, the connector can be repeatedly inserted into and removed from the port. Further, since no metal needle is used for the connector, coring can be prevented.
  • coring means that the material of the rubber stopper is scraped off by a sharp metal needle, enters the metal needle, and further mixes into the chemical solution.
  • the connector further includes a flexible tubular body shield that covers at least a tip of the tubular body.
  • a slit is formed in the portion of the tubular body shield facing the tip of the tubular body.
  • the connector includes an elastically displaceable lock lever having an engaging claw that engages with the port of the infusion bag.
  • At least one of the first check valve and the second check valve is a duckbill check valve. More preferably, both the first check valve and the second check valve are duckbill type check valves. By using the duckbill type check valve, a small medical drug solution transfer device can be realized.
  • the outer cylinder of the syringe may be integrally provided at the connection port. Thereby, possibility that a chemical
  • the cylindrical body may be a cannula inserted into an ampoule as the chemical solution container.
  • the cannula has flexibility. Thereby, it becomes easy to arbitrarily deform the cannula in the ampoule and suck all the chemical solution in the ampoule. Further, when the plunger of the syringe is pushed and pulled, the possibility that the cannula collides with the ampoule and the ampoule falls down and spills the chemical liquid can be reduced.
  • the cylindrical body may be a bottle needle that is pierced into a rubber stopper of a vial bottle as the chemical solution container.
  • the bottle needle preferably includes a gas flow path in addition to the chemical liquid flow path.
  • the chemical liquid flow path communicates with the inside of the vial bottle, and the inside of the vial bottle and the outside world pass through the gas flow path. It is preferable to communicate.
  • a third check valve is provided between the gas flow path and the outside world to allow a gas flow from the outside world to the gas flow path and to restrict the flow of the chemical solution going in the opposite direction.
  • a third check valve is provided between the gas flow path and the outside world to allow a gas flow from the outside world to the gas flow path and to restrict the flow of the chemical solution going in the opposite direction.
  • it is.
  • the third check valve is preferably a duckbill check valve.
  • a small medical drug solution transfer device can be realized.
  • a hydrophobic filter is provided between the gas flow path and the outside world so as to allow gas to pass but not allow chemicals to pass substantially. Thereby, possibility that the chemical
  • a flexible bottle needle shield that covers at least the tip of the bottle needle.
  • a slit is formed in a portion of the bottle needle shield facing the tip of the bottle needle.
  • the bottle needle may be divided into a chemical liquid needle having the chemical liquid flow path and a gas needle having the gas flow path, which are independent of each other.
  • the drug solution needle and the gas needle are respectively punctured into the rubber stoppers of the vials.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a medical chemical transfer device 1A according to Embodiment 1 of the present invention.
  • the medical chemical liquid transfer device 1A according to the first embodiment is suitable for transferring the chemical liquid 72 in the ampule 70 to the infusion bag 100.
  • the medical drug solution transfer device 1A includes a transfer device body 10 in which a cavity 11 and three flow paths communicating with the cavity 11 are formed.
  • One of the three channels is a channel that communicates the cavity 11 and the cannula 30 as a cylindrical body inserted into the ampoule 70, and the other channel communicates the cavity 11 and the syringe 40.
  • the last one is a flow channel that allows the cavity 11 and the connector 50 to communicate with each other.
  • the transfer body 10 includes a branch pipe 12 that connects three flow paths communicating with the cavity 11 in a substantially “T” shape.
  • a first cap 13 is attached to the first opening of the branch pipe 12, a second cap 14 is attached to the second opening, and a syringe 40 is connected to the third opening.
  • the material of the branch pipe 12, the first cap 13, and the second cap 14 constituting the transfer body 10 is not particularly limited.
  • a resin can be used, and specifically, a substantially rigid body such as polypropylene or polycarbonate. Examples of the resin that can be regarded as “a” can be given.
  • a first check valve 21 is provided on the channel between the chemical channel 31 of the cannula 30 and the cavity 11. The first check valve 21 is sandwiched between the first cap 13 and the branch pipe 12.
  • a second check valve 22 is provided on the flow path between the connector 50 and the cavity 11. The second check valve 22 is sandwiched between the second cap 14 and the branch pipe 12.
  • the cannula 30 is held at the tip of the first cap 13.
  • the cannula 30 is a tube that is inserted into the ampule 70 as a chemical solution container and sucks the chemical solution 72 in the ampule 70 toward the cavity 11.
  • a chemical liquid channel 31 is formed along the longitudinal direction of the cannula 30, and the chemical liquid 72 flows through the chemical channel 31.
  • the cannula 30 preferably has flexibility and is elastically deformable. If the cannula 30 has flexibility, the cannula 30 can be arbitrarily deformed in the ampoule 70. Therefore, the tip of the cannula 30 is brought into contact with the inner surface of the ampoule 70, and the drug solution 72 in the ampoule 70 is all sucked. It becomes easy.
  • the material of the cannula 30 is not particularly limited, and for example, a resin can be used, and specific examples include polyurethane and polyethylene.
  • the dimensions of the cannula 30 are not particularly limited, but the outer diameter is preferably 1 to 4 mm and the inner diameter is preferably 0.3 to 3 mm.
  • One end of the tube 59 is connected to the tip of the second cap 14, and the other end of the tube 59 is connected to the connector 50.
  • the tube 59 has flexibility and is preferably transparent or translucent.
  • the material of the tube 59 is not particularly limited, but for example, a resin can be used, and specific examples include polyvinyl chloride, polybutadiene, and polyethylene.
  • the infusion bag 100 (only part of which is shown in FIG. 1) is formed by superposing two flexible and transparent resin sheets having the same dimensions, and joining them at the peripheral sealing region 101 (for example, heat sealing). ).
  • the port body 105 including the port 110 and the auxiliary port 120 is attached to the infusion bag 100 while being sandwiched between two resin sheets.
  • the port 110 is a so-called needleless port provided with a disc-like rubber valve element (generally called “septum”) 111 having a straight slit (cut) formed in the center. It is.
  • the outer peripheral surface of the port 110 is a cylindrical surface, and an annular protrusion 112 that is continuous in the circumferential direction is formed on the outer peripheral surface.
  • the connector 50 is connected to the port 110.
  • the connector 50 includes a tubular body 51 that is inserted into the slit of the septum 111.
  • the tubular body 51 communicates with the tube 59.
  • the connector 50 further includes a pair of elastically swingable lock levers 52a and 52b arranged with the tubular body 51 interposed therebetween. Locking claws 53a and 53b are formed on the surfaces of the lock levers 52a and 52b on the sides facing each other.
  • the material of the connector 50 is not particularly limited. For example, a resin can be used, and specific examples include polypropylene and polycarbonate.
  • the tubular body 51 When the connector 50 is pushed into the port 110, as shown in FIG. 1, the tubular body 51 is inserted into the slit of the septum 111, and the annular protrusion 112 engages with the locking claws 53a and 53b (locked state). . Therefore, the state in which the tubular body 51 is inserted into the slit of the septum 111 can be stably maintained.
  • the lock levers 52a and 52b rotate elastically, The engagement with the locking claws 53a and 53b is released. If the connector 50 is pulled out from the port 110 in this state, the tubular body 51 can be removed from the septum 111. When the tubular body 51 is removed from the septum 111, the slit of the septum 111 is immediately closed. Thus, the septum 111 has resealability, and the tubular body 51 can be repeatedly inserted and removed.
  • the connector 50 having the elastically displaceable lock levers 52a and 52b having the engaging claws 53a and 53b engaged with the annular protrusion 112 of the port 110, and the configuration of the port 110 adapted to the connector 50 are as follows. For example, it is described in Patent Documents 1 to 3.
  • the syringe 40 includes an outer cylinder 41, a plunger 45 inserted into the outer cylinder 41 and capable of being pushed and pulled with respect to the outer cylinder 41, and a gasket 46 attached to the tip of the plunger 45.
  • a male luer 42 and a lock portion 43 surrounding the male luer 42 are provided at the tip of the outer cylinder 41.
  • the outer peripheral surface of the male luer 42 preferably has a 6/100 taper surface as defined in ISO594-1.
  • the male luer 42 is inserted into the connection port 15 of the branch pipe 12, and the female screw formed on the inner peripheral surface of the lock portion 43 is screwed with the male screw formed on the outer peripheral surface of the connection port 15 of the branch pipe 12.
  • connection port 15 is preferably formed with a regular 6/100 taper surface in ISO 594-1 so as to be in close contact with the taper surface formed on the outer peripheral surface of the male luer 42.
  • the first check valve 21 is provided on the flow path between the cannula 30 (particularly, its chemical liquid flow path 31) and the cavity 11, permits the flow of the chemical liquid from the cannula 30 to the cavity 11, and reverses the chemical liquid. Restrict (block) the flow of
  • the second check valve 22 is provided on the flow path between the connector 50 and the cavity 11, permits the flow of the chemical solution from the cavity 11 to the connector 50, and restricts (blocks) the flow of the chemical solution toward the opposite direction.
  • a so-called duck bill type check valve having a pair of lips made of an elastic material (for example, silicon rubber, isoprene rubber) is used.
  • the duckbill type check valve is described in Patent Documents 4 and 5, for example.
  • the syringe 40 is connected to the connection port 15, and the connector 50 is connected to the port 110 of the empty infusion bag 100.
  • the ampule 70 is opened, the cannula 30 is inserted into the ampule 70, and the tip of the cannula 30 is immersed in the chemical solution 72 in the ampule 70.
  • the plunger 45 of the syringe 40 is in a state of being deeply pushed into the outer cylinder 41.
  • the plunger 45 of the syringe 40 is pulled.
  • the chemical liquid 72 in the ampule 70 flows through the chemical liquid flow path 31 of the cannula 30, the first check valve 21, and the cavity 11 in order, and is sucked into the syringe 40.
  • the plunger 45 of the syringe 40 is pushed in.
  • the chemical solution in the syringe 40 flows into the cavity 11 contrary to the above.
  • the first check valve 21 restricts the chemical liquid from flowing from the cavity 11 to the cannula 30. Accordingly, the drug solution flows from the cavity 11 through the second check valve 22, the tube 59, the connector 50, and the port 110 in this order, and then flows into the infusion bag 100.
  • the pushing and pulling operation of the plunger 45 is repeated to transfer all the chemical solution 72 in the ampoule 70 into the infusion bag 100. Since the second check valve 22 restricts the flow of the chemical solution from the tube 59 to the cavity 11, the chemical solution in the tube 59 and the infusion bag 100 passes through the second check valve 22 when the plunger 45 is pulled. There is no backflow into the cavity 11 or the syringe 40.
  • the ampule 70 that has been emptied is replaced with a new ampule 70 and the above operation is repeated. Thereafter, the port 110 and the connector 50 are separated.
  • This injection operation may be performed using the medical drug solution transfer device 1A of the first embodiment, or may be performed using another instrument.
  • an infusion set (not shown) is connected to the infusion bag 100.
  • the connection method between the infusion bag 100 and the infusion set can be appropriately selected according to the configuration of the infusion set. For example, a metal needle provided at the upstream end of the infusion set may be punctured into the rubber stopper 121 provided in the auxiliary port 120 of the infusion bag 100. Alternatively, depending on the configuration of the infusion set, the upstream end of the infusion set may be connected not to the auxiliary port 120 but to the port 110 to which the connector 50 has been connected.
  • the patient's vein is punctured with the metal needle at the downstream end of the infusion set.
  • the infusion bag 100 is suspended from the Illrigator platform, and the infusion solution in the infusion bag 100 is administered to the patient via the infusion set.
  • the ampule 70 can be simply pushed and pulled while the tip of the cannula 30 is immersed in the drug solution 72 in the ampule 70.
  • the drug solution 72 inside can be transferred to the infusion bag 100. Therefore, it is not necessary to insert the metal needle at the tip of the syringe alternately into the ampoule and the rubber stopper of the infusion bag as in the prior art. Therefore, even when the chemical solution in the plurality of ampoules 70 is transferred to the infusion bag 100, the transfer operation of the chemical solution is simplified and the time required for the transfer can be shortened.
  • the chemical liquid 72 in the ampule 70 can be efficiently transferred to the infusion bag 100.
  • the chemical solution may leak from the tip of the metal needle after the drug solution in the ampoule is sucked into the syringe and before the metal needle of the syringe is punctured into the rubber stopper of the infusion bag.
  • some anticancer drugs are designated as powerful drugs, and there is a risk that such chemicals may accidentally adhere to the fingers of workers.
  • the cannula 30 is inserted into the ampoule 70 until the ampoule 70 becomes empty even when the capacity of the syringe 40 is relatively small. Therefore, the possibility that the chemical solution leaks from the tip of the cannula 30 is low.
  • the chemical liquid in the chemical liquid flow path 31 of the cannula 30 is allowed to pass through the first check valve 21 and the cavity 11 side. Can be moved to.
  • the cannula 30 is emptied from the empty ampule 70 after the chemical solution does not exist in the chemical solution flow path 31 of the cannula 30 as described above.
  • the cannula 30 is preferably inserted into a new ampule 70.
  • the first check valve 21 prevents the chemical liquid in the chemical liquid flow path 31 from flowing back. Therefore, even in such a case, there is a low risk that the chemical liquid leaks from the tip of the cannula 30 and adheres to the operator's finger or the like.
  • the medical chemical liquid transfer device 1A has high safety because the chemical liquid 72 is unlikely to leak to the outside during the transfer operation of the chemical liquid 72. This is particularly effective when the drug solution 72 includes, for example, an anticancer agent designated as a powerful drug.
  • the cannula 30 is used only for inserting into the ampule 70 and sucking the chemical solution. Therefore, the tip of the cannula 30 does not need to be sharp and can be formed of a flexible material. That is, the medical drug solution transfer device 1A of Embodiment 1 does not require a metal needle having a sharp tip.
  • the syringe used in the conventional chemical transfer work was equipped with a metal needle with a sharp tip to puncture the rubber stopper of the port of the infusion bag. There is a risk that a person accidentally punctures a finger or the like with a metal needle.
  • the metal needle since the metal needle is unnecessary, the problem of erroneous puncture of the metal needle in the conventional chemical liquid transfer operation is solved.
  • the chemical solution 72 in the ampule 70 can be efficiently and safely transferred to the infusion bag 100.
  • the cannula 30 and the syringe 40 are directly connected to the transfer body 10.
  • the cannula 30, the transfer body 10 and the syringe 40 can be handled as an integrated object. Therefore, for example, the plunger 45 can be easily pushed and pulled by holding the syringe 40 with both hands while the cannula 30 is inserted into the ampule 70.
  • the cannula 30 and the syringe 40 are arranged on the same axis. Therefore, it becomes easy to hold the position and posture of the cannula 30 when the plunger 45 of the syringe 40 is pushed and pulled.
  • the infusion bag 100 connected to the connector 50 can be arranged at an arbitrary position to perform the transfer operation of the chemical solution.
  • the position and posture of the ampoule 70 and the syringe 40 can be freely changed during the transfer operation, the transfer operation can be performed efficiently.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a medical chemical transfer device 1B according to Embodiment 2 of the present invention.
  • the medical chemical transfer device 1B of the second embodiment is suitable for transferring the chemical solution 82 in the vial 80 to the infusion bag 100.
  • the medical drug solution transfer device 1B includes a transfer device main body 10 in which a cavity 11 and three flow paths communicating with the cavity 11 are formed.
  • One of the three channels is a channel that communicates the cavity 11 and the drug solution channel 61 of the bottle needle 60 as a cylindrical body, and the other channel communicates the cavity 11 and the syringe 40.
  • the last one is a flow channel that allows the cavity 11 and the connector 50 to communicate with each other.
  • the transfer body 10 includes a branch pipe 12 that connects three flow paths communicating with the cavity 11 in a substantially “T” shape.
  • a bottle needle 60 is attached to the first opening of the branch pipe 12
  • a cap 14 is attached to the second opening
  • a syringe 40 is connected to the third opening.
  • the material of the branch pipe 12 and the cap 14 constituting the transfer body 10 is not particularly limited.
  • a resin can be used, and specifically, a resin that can be regarded as a substantially rigid body such as polypropylene or polycarbonate is exemplified. be able to.
  • a first check valve 21 is provided on the flow path between the chemical flow path 61 and the cavity 11.
  • the first check valve 21 is sandwiched between the bottle needle 60 and the branch pipe 12.
  • a second check valve 22 is provided on the flow path between the connector 50 and the cavity 11.
  • the second check valve 22 is sandwiched between the cap 14 and the branch pipe 12.
  • the bottle needle 60 is punctured into a rubber stopper 81 of a vial 80 as a chemical container as shown in FIG.
  • a chemical liquid channel 61 and a gas channel 62 which are independent from each other are formed.
  • the chemical liquid channel 61 communicates with the inside of the vial 80 when the bottle needle 60 is punctured into the rubber stopper 81 of the vial 80.
  • the chemical liquid 82 in the vial 80 can be caused to flow into the cavity 11 through the chemical liquid flow path 61.
  • the gas flow path 62 allows the inside of the vial 80 to communicate with the outside when the bottle needle 60 is punctured into the rubber stopper 81 of the vial 80.
  • the bottle needle 60 has a sharp tip and mechanical strength that can puncture the rubber stopper 81.
  • the material of the bottle needle 60 is not particularly limited, but for example, a resin material such as polycarbonate or polyacetal can be used.
  • Each cross-sectional shape of the bottle needle 60, the chemical liquid flow channel 61, and the gas flow channel 62 may take any shape such as a circle or an ellipse.
  • the size of the bottle needle 60 is not particularly limited, but the outer diameter is preferably 3 to 6 mm in the maximum diameter direction, the inner diameter of the chemical liquid channel 61 is preferably 1 to 3 mm in the maximum diameter direction, and the inner diameter of the gas channel 62 is the maximum. 0.5 to 2 mm is preferable in the radial direction.
  • the third check valve 23 and the hydrophobic filter 25 are provided in this order from the gas channel 62 side on the channel between the gas channel 62 and the outside.
  • the third check valve 23 and the hydrophobic filter 25 are sandwiched between the cap 18 and the bottle needle 60.
  • the cap 18 has a through hole for communicating the gas flow path 62 and the outside world.
  • One end of the tube 59 is connected to the tip of the cap 14, and the other end of the tube 59 is connected to the connector 50.
  • the tube 59 has flexibility and is preferably transparent or translucent.
  • the material of the tube 59 is not particularly limited, but for example, a resin can be used, and specific examples include polyvinyl chloride, polybutadiene, and polyethylene.
  • the infusion bag 100 (only a part of which is shown in FIG. 2) is formed by superposing two resin sheets having the same dimensions, which are flexible and transparent, and joining them at a seal region 101 on the periphery (for example, heat sealing). ).
  • the port body 105 including the port 110 and the auxiliary port 120 is attached to the infusion bag 100 while being sandwiched between two resin sheets.
  • the port 110 is a so-called needleless port provided with a disc-shaped rubber valve element (generally called “septum”) 111 having a linear slit (cut) formed in the center. It is.
  • the outer peripheral surface of the port 110 is a cylindrical surface, and an annular protrusion 112 that is continuous in the circumferential direction is formed on the outer peripheral surface.
  • the connector 50 is connected to the port 110.
  • the connector 50 includes a tubular body 51 that is inserted into the slit of the septum 111.
  • the tubular body 51 communicates with the tube 59.
  • the connector 50 further includes a pair of elastically swingable lock levers 52a and 52b arranged with the tubular body 51 interposed therebetween. Locking claws 53a and 53b are formed on the surfaces of the lock levers 52a and 52b on the sides facing each other.
  • the material of the connector 50 is not particularly limited. For example, a resin can be used, and specific examples include polypropylene and polycarbonate.
  • the tubular body 51 When the connector 50 is pushed into the port 110, as shown in FIG. 2, the tubular body 51 is inserted into the slit of the septum 111, and the annular protrusion 112 engages with the locking claws 53a and 53b (locked state). . Therefore, the state in which the tubular body 51 is inserted into the slit of the septum 111 can be stably maintained.
  • the lock levers 52a and 52b rotate elastically, The engagement with the locking claws 53a and 53b is released. If the connector 50 is pulled out from the port 110 in this state, the tubular body 51 can be removed from the septum 111. When the tubular body 51 is removed from the septum 111, the slit of the septum 111 is immediately closed. Thus, the septum 111 has resealability, and the tubular body 51 can be repeatedly inserted and removed.
  • the connector 50 having the elastically displaceable lock levers 52a and 52b having the engaging claws 53a and 53b engaged with the annular protrusion 112 of the port 110, and the configuration of the port 110 adapted to the connector 50 are as follows. For example, it is described in Patent Documents 1 to 3.
  • the syringe 40 includes an outer cylinder 41, a plunger 45 inserted into the outer cylinder 41 and capable of being pushed and pulled with respect to the outer cylinder 41, and a gasket 46 attached to the tip of the plunger 45.
  • a male luer 42 and a lock portion 43 surrounding the male luer 42 are provided at the tip of the outer cylinder 41.
  • the outer peripheral surface of the male luer 42 preferably has a 6/100 taper surface as defined in ISO594-1.
  • the male luer 42 is inserted into the connection port 15 of the branch pipe 12, and the female screw formed on the inner peripheral surface of the lock portion 43 is screwed with the male screw formed on the outer peripheral surface of the connection port 15 of the branch pipe 12.
  • connection port 15 is preferably formed with a regular 6/100 taper surface in ISO 594-1 so as to be in close contact with the taper surface formed on the outer peripheral surface of the male luer 42.
  • the first check valve 21 is provided on the flow path between the chemical liquid flow path 61 and the cavity 11, allows the flow of the chemical liquid from the chemical liquid flow path 61 to the cavity 11, and restricts the flow of the chemical liquid toward the opposite direction. (Block).
  • the second check valve 22 is provided on the flow path between the connector 50 and the cavity 11, permits the flow of the chemical solution from the cavity 11 to the connector 50, and restricts (blocks) the flow of the chemical solution toward the opposite direction.
  • the third check valve 23 is provided on the flow path between the gas flow path 62 and the outside world, and allows the flow of gas from the outside world to the gas flow path 62 and restricts (blocks) the flow of the chemical solution going to the reverse side.
  • the second check valve 22 and the third check valve 23 a so-called duck bill type having a pair of lips made of an elastic material (for example, silicon rubber, isoprene rubber).
  • a check valve is used.
  • the duckbill type check valve is described in Patent Documents 4 and 5, for example.
  • the hydrophobic filter 25 is provided on the flow path between the gas flow path 62 and the outside.
  • the hydrophobic filter 25 has hydrophobicity and air permeability, and has a characteristic that allows a gas to pass therethrough but does not substantially pass a chemical solution (liquid).
  • the material of the hydrophobic filter 25 is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyolefin (polypropylene, polyethylene, etc.), polyvinylidene fluoride, and the like.
  • the hydrophobic filter 25 is preferably a flat membrane filter such as a porous layer or a nonwoven fabric using these materials.
  • the syringe 40 is connected to the connection port 15, and the connector 50 is connected to the port 110 of the empty infusion bag 100.
  • the bottle needle 60 is punctured into the rubber stopper 81 of the vial 80.
  • the plunger 45 of the syringe 40 is in a state of being deeply pushed into the outer cylinder 41.
  • the vial 80 is positioned higher than the cavity 11, and the opening of the chemical flow path 61 at the tip of the bottle needle 60 is immersed in the chemical 82. At this time, even if the chemical liquid 82 in the vial 80 flows into the gas flow path 62, the third check valve 23 and the hydrophobic filter 25 prevent the chemical liquid from flowing out to the cap 18 side. The chemical liquid 82 does not leak to the outside world. In this state, the plunger 45 of the syringe 40 is pulled. The chemical liquid 82 in the vial 80 flows through the chemical liquid flow path 61, the first check valve 21, and the cavity 11 in this order, and is sucked into the syringe 40.
  • the plunger 45 of the syringe 40 is pushed in.
  • the chemical solution in the syringe 40 flows into the cavity 11 contrary to the above.
  • the first check valve 21 restricts the chemical liquid from flowing from the cavity 11 to the chemical liquid flow path 61. Accordingly, the drug solution flows from the cavity 11 through the second check valve 22, the tube 59, the connector 50, and the port 110 in this order, and then flows into the infusion bag 100.
  • the pushing and pulling operation of the plunger 45 is repeated to transfer all of the drug solution 82 in the vial 80 into the infusion bag 100. Since the second check valve 22 restricts the flow of the chemical solution from the tube 59 to the cavity 11, the chemical solution in the tube 59 and the infusion bag 100 passes through the second check valve 22 when the plunger 45 is pulled. There is no backflow into the cavity 11 or the syringe 40.
  • This injection operation may be performed using the medical drug solution transfer device 1B of the second embodiment or may be performed using another instrument.
  • an infusion set (not shown) is connected to the infusion bag 100.
  • the connection method between the infusion bag 100 and the infusion set can be appropriately selected according to the configuration of the infusion set. For example, a metal needle provided at the upstream end of the infusion set may be punctured into the rubber stopper 121 provided in the auxiliary port 120 of the infusion bag 100. Alternatively, depending on the configuration of the infusion set, the upstream end of the infusion set may be connected not to the auxiliary port 120 but to the port 110 to which the connector 50 has been connected.
  • the patient's vein is punctured with the metal needle at the downstream end of the infusion set.
  • the infusion bag 100 is suspended from the Illrigator platform, and the infusion solution in the infusion bag 100 is administered to the patient via the infusion set.
  • the vial bottle 60 can be simply pushed and pulled while the bottle needle 60 is punctured into the rubber stopper 81 of the vial bottle 80.
  • the chemical solution 82 in 80 can be transferred to the infusion bag 100. Therefore, it is not necessary to insert the bottle needle at the tip of the syringe alternately into the vial bottle 80 and the infusion bag as in the prior art. Therefore, even when the drug solution 82 in the plurality of vials 80 is transferred to the infusion bag 100, the transfer operation of the drug solution is simplified and the time required for transfer can be shortened.
  • the chemical liquid 82 in the vial 80 can be efficiently transferred to the infusion bag 100.
  • the liquid medicine leaks from the tip of the bottle needle after the liquid medicine in the vial is sucked into the syringe and before the bottle needle of the syringe is punctured into the rubber stopper of the infusion bag.
  • some anticancer drugs are designated as powerful drugs, and there is a risk that such chemicals may accidentally adhere to the fingers of workers.
  • the vial needle 60 is moved until the vial 80 is emptied. Since the 80 rubber stoppers 81 may remain punctured, the possibility that the chemical solution leaks from the tip of the bottle needle 60 is low.
  • the chemical liquid in the chemical liquid flow path 61 is passed through the first check valve 16. It can be moved to the cavity 11 side.
  • the drug solution 82 in the plurality of vials 80 is repeatedly transferred to the infusion bag 100, after the drug solution does not exist in the drug solution flow path 61 as described above, the bottle needle is removed from the empty vial bottle 80. It is preferable to remove 60 and puncture a new vial bottle 80 with a bottle needle 60. Thereby, the danger that a chemical
  • the first check valve 21 prevents the chemical solution in the chemical solution channel 61 from flowing backward. Accordingly, even in such a case, there is a low risk that the chemical liquid leaks from the tip of the bottle needle 60 and adheres to the operator's finger or the like.
  • the medical chemical liquid transfer device 1B of the second embodiment has high safety because the chemical liquid 82 is unlikely to leak to the outside during the transfer operation of the chemical liquid 82. This is particularly effective when the drug solution 82 contains, for example, an anticancer drug designated as a powerful drug.
  • the bottle needle 60 and the syringe 40 are directly connected to the transfer body 10.
  • the bottle needle 60, the transfer device body 10, and the syringe 40 can be handled as an integrated object.
  • the syringe 40 can be held with both hands while the bottle needle 60 is pierced into the rubber stopper 81 of the vial 80, and the vial bottle 80 can be lifted upward to push and pull the plunger 45. That is, the chemical liquid transfer operation can be performed with substantially the same feeling as the conventional chemical liquid transfer operation in which the chemical liquid in the vial is sucked into the syringe via the bottle needle attached to the tip of the syringe.
  • the bottle needle 60 and the syringe 40 are arranged on the same axis. Therefore, the puncture operation of the bottle needle 60 with respect to the rubber stopper 81 of the vial bottle 80 can be performed with substantially the same feeling as the conventional puncture operation of puncturing the rubber stopper of the vial bottle with the bottle needle attached to the tip of the syringe. it can.
  • the infusion bag 100 connected to the connector 50 can be arranged at an arbitrary position to perform the transfer operation of the chemical solution. Moreover, since the position and posture of the vial bottle 80, the syringe 40, etc. can be freely changed during the transfer operation, the transfer operation can be performed efficiently.
  • FIG. 3A is a cross-sectional view showing a schematic configuration of the bottle needle 60 and its periphery before puncturing the rubber stopper 81 of the vial bottle 80 in the medical drug solution transfer device according to the third embodiment.
  • a bottle needle shield (hereinafter simply referred to as “shield”) 65 is provided on the bottle needle 60.
  • the shield 65 includes a bellows-shaped tubular portion 66 and a shield plate 67 provided at one end of the tubular portion 66.
  • the tip of the bottle needle 60 is in contact with or close to the inner surface of the shield plate 67.
  • a straight slit (cut) 68 is formed at a portion of the shield plate 67 where the tip of the bottle needle 60 faces.
  • the end of the cylindrical portion 66 opposite to the shield plate 67 is fixed to the bottle needle 60.
  • the shield 65 covers both openings of the chemical liquid channel 61 and the gas channel 62 at or near the tip of the bottle needle 60.
  • the shield 65 is made of a flexible material (for example, silicon rubber or isoprene rubber).
  • FIG. 3B is a cross-sectional view showing a state in which the bottle needle 60 is punctured into the rubber stopper 81 of the vial bottle 80.
  • the tip of the bottle needle 60 including the opening of the chemical liquid channel 61 and the opening of the gas channel 62 as shown in FIG. The vicinity thereof is always covered with the shield 65. Therefore, the possibility that the chemical liquid 82 leaks from the bottle needle 60 to the outside can be reduced. Therefore, the safety can be further improved as compared with the second embodiment.
  • the third embodiment is the same as the second embodiment except for the above, and has the same effect as described in the second embodiment.
  • the cylindrical body that is, the cannula 30 or the bottle needle 60
  • the transfer body 10 and the cylindrical body may be connected by, for example, a flexible tube.
  • the connection port 15 to which the syringe 40 is connected is provided in the transfer device main body 10, but the present invention is not limited to this.
  • a flexible tube may be connected to the transfer body 10 and the end of the tube may be the connection port 15 to which the syringe 40 is connected.
  • the connector 50 may be provided directly on the transfer body 10 without using the tube 59.
  • connection portion between the connection port 15 and the syringe 40 is not limited to the above first to third embodiments.
  • the luer lock mechanism for screwing the male screw and the female screw may not be provided as in the first to third embodiments.
  • the connection port 15 may include a septum, and the cavity 11 and the syringe 40 may communicate with each other by inserting a male luer at the tip of the syringe 40 into the slit of the septum.
  • the syringe 40 and the connection port 15 were separable.
  • an optimal syringe 40 can be selected and connected to the connection port 15 according to the capacity of the chemical solution container (that is, the ampoule 70 or the vial bottle 80), the type of the chemical solution, and the like for each chemical liquid transfer operation.
  • the present invention is not limited to this.
  • the outer cylinder 41 of the syringe 40 may be integrally formed in the connection port 15 by integral molding or the like. Thereby, it can prevent that a chemical
  • the duckbill type check valve is used as the first check valve 21, the second check valve 22, and the third check valve 23, but the present invention is not limited to this.
  • the first check valve 21 and the second check valve 22 any check valve capable of permitting the one-way flow of the chemical solution and prohibiting (blocking) the reverse-direction flow can be used.
  • the third check valve 23 any check valve capable of permitting a one-way flow of gas and restricting (blocking) a reverse flow of the chemical liquid can be used.
  • an umbrella type check valve can be used as the first check valve 21, the second check valve 22, and the third check valve 23, for example.
  • at least one of the first check valve 21, the second check valve 22, and the third check valve 23 may be a different type of check valve.
  • the first check valve 21 only needs to be provided on the chemical liquid flow path between the chemical liquid flow paths 31 and 61 and the cavity 11, and the installation position thereof is not limited to the above first to third embodiments.
  • the second check valve 22 only needs to be provided on the flow path of the chemical solution between the connector 50 and the cavity 11, and the installation position thereof is not limited to the first to third embodiments.
  • the second check valve 22 may be provided in the connector 50.
  • the third check valve 23 and the hydrophobic filter 25 are mounted on the bottle needle 60.
  • the third check valve 23 and the hydrophobic filter 25 are connected to the gas flow path 62 and the external environment.
  • the installation position is not limited to the above-described second and third embodiments.
  • the gas flow path 62 of the bottle needle 60 and the third check valve 23 and the hydrophobic filter 25 may be connected by a flexible tube or the like.
  • the hydrophobic filter 25 and the third check valve 23 may be arranged in this order from the gas flow path 62 side.
  • One or both of the third check valve 23 and the hydrophobic filter 25 may be omitted.
  • the configuration of the connector 50 is not limited to the first to third embodiments.
  • the distal end of the tubular body 51 may be covered with a tubular body shield 55 (hereinafter simply referred to as “shield”) (see, for example, Patent Documents 6 and 7).
  • the shield 55 includes a bellows-like cylindrical portion 56 and a shield plate 57 provided at one end of the cylindrical portion 56, similarly to the shield 65 described in the third embodiment.
  • the distal end of the tubular body 51 is in close contact with the shield plate 57.
  • a linear slit (cut) 58 is formed in a portion of the shield plate 57 facing the tip of the tubular body 51.
  • the shield 55 is made of a flexible material (for example, silicon rubber or isoprene rubber).
  • the shield plate 57 is pushed by the top surface 110a of the port 110, the cylindrical portion 56 is elastically compressed and deformed, and the tip of the tubular body 51 protrudes from the slit 58 through the slit 58.
  • the tubular body 51 is inserted into the slit 113 of the septum 111.
  • the cylindrical portion 56 is elastically recovered and returns to the initial state shown in FIG. 4, and the slit 58 is closed.
  • the configuration of the connector can be changed as appropriate according to the configuration of the port 110 provided in the infusion bag 100.
  • the lock mechanism for holding the connector connected to the port 110 is not limited to the lock levers 52a and 52b shown in the first to third embodiments.
  • the connector may be a so-called rotary connector as described in Patent Document 8.
  • the rotary connector has a lock connector that is rotatable with respect to the tubular body around the tubular body. The lock nut and the port can be engaged by rotating the lock nut in a state where the tubular body is inserted into the slit of the port septum.
  • the connector may not have a lock mechanism that engages with the port.
  • the connector may be composed only of a tubular body that can be inserted into the slit of the septum 111 of the port 110.
  • the port 110 provided in the infusion bag 100 does not need to be a needleless port provided with a septum 111.
  • the configuration of the port 110 is arbitrary, and the configuration of the connector can be appropriately selected according to the configuration of the port 110.
  • the configuration of the infusion bag 100 is not particularly limited. Moreover, there is no restriction
  • the chemical liquid flow path 61 and the gas flow path 62 independent from each other were formed in one bottle needle 60.
  • the bottle needle 60 may be divided into a chemical liquid needle in which a chemical liquid flow path 61 is formed and a gas needle in which a gas flow path 62 is formed, which are independent from each other.
  • the drug solution needle and the gas needle are arranged substantially parallel to each other, and are respectively punctured into the rubber stoppers of the vials.
  • the chemical liquid needle and the gas needle can be manufactured using a resin material or a metal material.
  • the field of use of the present invention is not particularly limited, but can be widely used as a medical chemical transfer device used for transferring a chemical solution in a chemical solution container such as an ampoule or a vial to an infusion bag.

Abstract

 薬液容器(70)に挿入される筒状体(30)、シリンジ(40)が接続される接続口(15)、及び輸液バッグ(100)のポート(110)に接続されるコネクタ(50)が、移送器本体(10)のキャビティ(11)と連通している。筒状体の薬液流路(31)とキャビティとの間の流路上に、薬液流路からキャビティへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第1逆止弁(21)が設けられている。コネクタとキャビティとの間の流路上に、キャビティからコネクタへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第2逆止弁(22)が設けられている。シリンジのプランジャ(45)を押し引きすることにより、薬液容器内の薬液(72)を輸液バッグに効率よく移送することができる。

Description

医療用薬液移送器
 本発明は、アンプルやバイアル瓶などの薬液容器内の薬液を輸液バッグに移送する際に使用される医療用薬液移送器に関する。
 アンプルやバイアル瓶などの薬液容器内の抗がん剤等の薬液を患者の静脈に点滴により投与する場合、通常、これに先立って、薬液容器内の薬液はシリンジを介して大容量の輸液バッグに移送され調製される。薬液の移送は、薬液容器にシリンジの先端に取り付けた針を挿入して薬液容器内の薬液をシリンジ内に吸引し、次いで、当該針を輸液バッグのポートのゴム栓に突き刺して薬液を輸液バッグ内に注入することで行われる。
 患者に投与する薬液の量は、患者の体重又は体表面積などに基づいて決定される。決定された薬液の量に応じて必要な薬液容器の数が決定される。作業者は、必要な数の薬液容器内の薬液を輸液バッグに移送しなければならない。例えば、薬液が抗がん剤である場合、薬液容器の数が10本を超えることは珍しくない。
 薬液の移送に小容量のシリンジを用いた場合には、薬液容器から輸液バッグへの薬液の移送作業回数が多くなる。即ち、シリンジの先端に取り付けた針を、薬液容器とゴム栓とに交互に刺し替える回数が多くなり、移送作業が煩雑となる。
 薬液の移送に大容量のシリンジを用いて、複数本の薬液容器内の薬液を連続してシリンジ内に吸引して、その後、輸液バッグに薬液をまとめて注入すれば、針を、薬液容器とゴム栓とに交互に刺し替える回数を少なくすることができる。しかしながら、大容量のシリンジは、一般にプランジャの押し引き操作に大きな力が必要であるので、作業者の肉体的負担が大きくなる。
特開2004-483号公報 特開2006-141714号公報 特開2007-267986号公報 特許第3103389号公報 特表平8-506881号公報 国際公開第2010/061742号パンフレット 国際公開第2010/061743号パンフレット 特許第3389983号公報
 本発明の目的は、薬液容器内の薬液を輸液バッグに効率良く移送することにある。
 本発明の医療用薬液移送器は、薬液流路を備え、薬液容器に挿入される筒状体と、シリンジが接続される接続口と、輸液バッグのポートに接続されるコネクタと、前記薬液流路、前記接続口、及び、前記コネクタと連通するキャビティが内部に形成された移送器本体と、前記薬液流路と前記キャビティとの間の流路上に設けられ、前記薬液流路から前記キャビティへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第1逆止弁と、前記コネクタと前記キャビティとの間の流路上に設けられ、前記キャビティから前記コネクタへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第2逆止弁とを備えたことを特徴とする。
 本発明によれば、従来のようにシリンジの先端の針を薬液容器と輸液バッグのゴム栓とに交互に刺し替える作業は不要であるので、薬液容器内の薬液を輸液バッグに効率良く移送することができる。
図1は、本発明の実施形態1に係る医療用薬液移送器の概略構成を示した断面図である。 図2は、本発明の実施形態2に係る医療用薬液移送器の概略構成を示した断面図である。 図3Aは本発明の実施形態3に係る医療用薬液移送器において、バイアル瓶に穿刺する前の瓶針及びその周辺の概略構成を示した断面図、図3Bはバイアル瓶に穿刺した後の瓶針及びその周辺の概略構成を示した断面図である。 図4は、本発明に係る医療用薬液移送器を構成する別のコネクタを示した断面図である。
 上記の本発明の医療用薬液移送器において、前記筒状体は前記移送器本体に保持され、前記接続口は前記移送器本体に設けられていることが好ましい。これにより、シリンジと移送器本体と筒状体とを一体物として取り扱う(ハンドリング)ことが可能となる。従って、例えば筒状体がカニューラである場合には、カニューラをアンプルに挿入したままシリンジのプランジャの押し引き操作を容易に行うことができる。また、例えば筒状体が瓶針である場合には、瓶針をバイアル瓶のゴム栓に穿刺したままバイアル瓶を上方に持ち上げてシリンジのプランジャの押し引きを行うなどの操作を容易に行うことができる。
 前記シリンジが前記筒状体と同軸上に配置されていることが好ましい。これにより、例えば筒状体がカニューラである場合には、シリンジのプランジャの押し引き操作時にカニューラの位置や姿勢の保持が容易となる。また、例えば筒状体が瓶針である場合には、バイアル瓶のゴム栓に瓶針を穿刺する作業を、シリンジの先端に装着された瓶針をバイアル瓶のゴム栓に穿刺する従来の作業と実質的に同じ感覚で行うことができる。
 前記接続口に、前記シリンジの先端のオスルアーを取り囲むロック部に形成された雌ネジと螺合する雄ネジが形成されていることが好ましい。これにより、接続口とシリンジとが分離可能な医療用薬液移送器において、接続口とシリンジとの接続部分で薬液が漏れる可能性を低減することができる。
 前記コネクタは柔軟性を有するチューブを介して前記移送器本体に接続されていることが好ましい。これにより、コネクタが接続された輸液バッグを任意の位置に配置して薬液の移送作業を行うことができる。また、移送作業中、薬液容器やシリンジ等の位置や姿勢を自由に変化させることができる。
 前記コネクタが、前記輸液バッグの前記ポートに設けられたセプタムのスリットに挿入可能な管状体を備えることが好ましい。これにより、コネクタをポートに繰り返し抜き差しすることができる。また、コネクタに金属針を用いないのでコアリングを防止できる。ここで、「コアリング」とは、鋭利な金属針によってゴム栓の材料が削り取られて金属針内に入り込み、更に薬液内に混入することをいう。
 上記において、前記コネクタが、前記管状体の少なくとも先端を覆う可撓性を有する管状体用シールドを更に備えることが好ましい。この場合、前記管状体の前記先端が対向する前記管状体用シールドの部分にはスリットが形成されていることが好ましい。これにより、コネクタが輸液バッグのポートに接続されていないときに、コネクタの管状体から薬液が漏れる可能性を低減することができる。
 前記コネクタが、前記輸液バッグの前記ポートと係合する係合爪を有する弾性変位可能なロックレバーを備えることが好ましい。これにより、ポートとコネクタとの接続状態を安定して維持することができる。従って、例えば外力などが加えられることによりコネクタがポートから外れて、薬液を漏らす可能性を低減することができる。
 前記第1逆止弁及び前記第2逆止弁のうちの少なくも一方はダックビル型逆止弁であることが好ましい。より好ましくは、第1逆止弁及び第2逆止弁の両方がダックビル型逆止弁である。ダックビル型逆止弁を用いることにより、小型の医療用薬液移送器を実現することができる。
 前記接続口にシリンジの外筒が一体的に設けられていてもよい。これにより、接続口と外筒との接続部分から薬液が漏れる可能性を低減することができる。
 前記筒状体が、前記薬液容器としてのアンプルに挿入されるカニューラであってもよい。これにより、従来のようにシリンジの先端の金属針をアンプルと輸液バッグのゴム栓とに交互に刺し替える作業は不要であるので、アンプル内の薬液を輸液バッグに効率良く移送することができる。また、筒状体として鋭利な先端を備えた金属針を用いないので、金属針の誤穿刺やコアリングが生じない。従って、アンプル内の薬液を輸液バッグに安全に移送することができる。
 前記カニューラが柔軟性を有することが好ましい。これにより、アンプル内でカニューラを任意に変形させてアンプル内の薬液を残らず吸引することが容易になる。また、シリンジのプランジャの押し引き操作時に、カニューラがアンプルに衝突してアンプルが倒れ、薬液をこぼす可能性を低減することができる。
 あるいは、前記筒状体が、前記薬液容器としてのバイアル瓶のゴム栓に穿刺される瓶針であってもよい。この場合、前記瓶針は、前記薬液流路に加えて気体流路を備えることが好ましい。そして、前記瓶針がバイアル瓶のゴム栓に穿刺されたとき、前記薬液流路と前記バイアル瓶の内部とが連通し、且つ、前記気体流路を介して前記バイアル瓶の内部と外界とが連通することが好ましい。これにより、従来のようにシリンジの先端の瓶針をバイアル瓶と輸液バッグとに交互に刺し替える作業は不要であるので、バイアル瓶内の薬液を輸液バッグに効率良く移送することができる。
 上記において、前記気体流路と前記外界との間に、前記外界から前記気体流路へ向かう気体の流れを許可し、その逆に向かう薬液の流れを制限する第3逆止弁が設けられていることが好ましい。これにより、気体流路を通過した薬液が外界に漏れ出す可能性を低減することができる。
 前記第3逆止弁はダックビル型逆止弁であることが好ましい。ダックビル型逆止弁を用いることにより、小型の医療用薬液移送器を実現することができる。
 前記気体流路と前記外界との間に、気体を通過させるが薬液を実質的に通過させない疎水性フィルターが設けられていることが好ましい。これにより、気体流路を通過した薬液が外界に漏れ出す可能性を低減することができる。
 前記瓶針の少なくとも先端を覆う可撓性を有する瓶針用シールドを更に備えることが好ましい。この場合、前記瓶針の前記先端が対向する前記瓶針用シールドの部分にはスリットが形成されていることが好ましい。これにより、瓶針をバイアル瓶に穿刺していないときに、薬液が瓶針から外界に漏れ出る可能性を低減することができる。
 前記瓶針が、互いに独立した、前記薬液流路を備えた薬液用針と前記気体流路を備えた気体用針とに分割されていてもよい。この場合、薬液用針及び気体用針は、バイアル瓶のゴム栓にそれぞれ穿刺される。薬液用針と気体用針の2本の針を用いることにより、針の設計や製作が容易になる可能性がある。
 以下に、本発明を好適な実施形態を示しながら詳細に説明する。但し、本発明は以下の実施形態に限定されないことはいうまでもない。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の部材を備え得る。また、以下の各図中の寸法は、実際の寸法および寸法比率等を忠実に表したものではない。
 (実施形態1)
 図1は、本発明の実施形態1に係る医療用薬液移送器1Aの概略構成を示した断面図である。本実施形態1の医療用薬液移送器1Aは、アンプル70内の薬液72を輸液バッグ100に移送するのに適している。
 医療用薬液移送器1Aは、キャビティ11と、キャビティ11に連通する3つの流路とが内部に形成された移送器本体10を備える。3つの流路のうちの1つは、キャビティ11とアンプル70に挿入される筒状体としてのカニューラ30とを連通させる流路であり、他の1つはキャビティ11とシリンジ40とを連通させる流路であり、最後の1つはキャビティ11とコネクタ50とを連通させる流路である。
 移送器本体10は、キャビティ11に連通する3つの流路を略「T」字状に接続する分岐管12を含む。分岐管12の第1開口には第1キャップ13が装着され、第2開口に第2キャップ14が装着され、第3開口にはシリンジ40が接続される。移送器本体10を構成する分岐管12、第1キャップ13、第2キャップ14の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリプロピレン、ポリカーボネート等の実質的に剛体と見なしうる樹脂を例示することができる。
 カニューラ30の薬液流路31とキャビティ11との間の流路上に第1逆止弁21が設けられている。第1逆止弁21は、第1キャップ13と分岐管12との間に挟持されている。また、コネクタ50とキャビティ11との間の流路上に第2逆止弁22が設けられている。第2逆止弁22は、第2キャップ14と分岐管12との間に挟持されている。
 第1キャップ13の先端にカニューラ30が保持されている。カニューラ30は、薬液容器としてのアンプル70に挿入されて、アンプル70内の薬液72をキャビティ11に向かって吸引するための管である。カニューラ30の長手方向に沿って薬液流路31が形成されており、この薬液流路31内を薬液72が流れる。カニューラ30は柔軟性を有し、弾性変形可能であることが好ましい。カニューラ30が柔軟性を有すると、カニューラ30をアンプル70内で任意に変形させることができるので、カニューラ30の先端をアンプル70の内面に接触させて、アンプル70内の薬液72を残らず吸引することが容易になる。また、シリンジ40のプランジャ45の押し引き操作時等に、カニューラ30がアンプル70に衝突してアンプル70を倒したりする危険を低減することができる。カニューラ30の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリウレタン、ポリエチレンを例示することができる。カニューラ30の寸法も特に制限はないが、外径は1~4mm、内径は0.3~3mmが好ましい。
 第2キャップ14の先端にチューブ59の一端が接続され、チューブ59の他端はコネクタ50に接続されている。
 チューブ59は柔軟性を有し、且つ、透明又は半透明であることが好ましい。チューブ59の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリ塩化ビニル、ポリブタジエン、ポリエチレンを例示することができる。
 輸液バッグ100(図1にはその一部のみが示されている)は、柔軟且つ透明な同一寸法の2枚の樹脂シートを重ね合わせて、その周縁のシール領域101にて接合(例えばヒートシール)してなる袋状物である。ポート110及び補助ポート120を含むポート本体105は、2枚の樹脂シートの間に挟まれた状態で輸液バッグ100に取り付けられている。
 本実施形態1では、ポート110は、中央部に直線状のスリット(切り込み)が形成された円板状のゴム製の弁体(一般に「セプタム」と呼ばれる)111を備えた、いわゆるニードルレスポートである。ポート110の外周面は円筒面であり、この外周面には、周方向に連続する環状突起112が形成されている。ポート110に、コネクタ50が接続される。
 コネクタ50は、セプタム111のスリットに挿入される管状体51を備える。管状体51はチューブ59と連通している。コネクタ50は、更に、管状体51を挟んで配置された、弾性的に揺動可能な一対のロックレバー52a,52bを備える。ロックレバー52a,52bの先端の互いに対向する側の面には、係止爪53a,53bが形成されている。コネクタ50の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリプロピレン、ポリカーボネートを例示することができる。
 ポート110にコネクタ50を押し込むと、図1に示されているように、セプタム111のスリットに管状体51が挿入され、環状突起112と係止爪53a,53bとが係合する(ロック状態)。従って、セプタム111のスリットに管状体51が挿入された状態を安定して維持することができる。
 ロックレバー52a,52bの係止爪53a,53bとは反対側の操作部54a,54bを、互いに接近するように把持すると、ロックレバー52a,52bが弾性的に回動して、環状突起112と係止爪53a,53bとの係合が解除される。この状態でポート110からコネクタ50を引き抜けば、管状体51をセプタム111から抜き去ることができる。セプタム111から管状体51が抜き去られるとセプタム111のスリットは直ちに閉じる。このようにセプタム111はリシール性を有し、管状体51を繰り返し抜き差しすることができる。
 上記のような、ポート110の環状突起112と係合する係合爪53a,53bを有する弾性変位可能なロックレバー52a,52bを備えたコネクタ50、及びこのコネクタ50に適合するポート110の構成は、例えば特許文献1~3に記載されている。
 シリンジ40は、外筒41と、外筒41内に挿入され、外筒41に対して押し引き可能なプランジャ45と、プランジャ45の先端に取り付けられたガスケット46とを備える。外筒41の先端には、オスルアー42と、オスルアー42を取り囲むロック部43とが設けられている。オスルアー42の外周面は、ISO594-1に規定の100分の6テーパー面を有していると好ましい。オスルアー42を分岐管12の接続口15内に挿入し、ロック部43の内周面に形成された雌ネジを分岐管12の接続口15の外周面に形成された雄ネジと螺合させることで、シリンジ40と分岐管12とが結合される。これにより、接続口15とオスルアー42との接続部分で薬液が漏れる可能性を低減することができる。接続口15の内周面は、オスルアー42の外周面に形成されたテーパ面と密着できるように、ISO594-1に規定の100分の6テーパー面が形成されていることが好ましい。
 第1逆止弁21は、カニューラ30(特にその薬液流路31)とキャビティ11との間の流路上に設けられ、カニューラ30からキャビティ11へ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限(阻止)する。第2逆止弁22は、コネクタ50とキャビティ11との間の流路上に設けられ、キャビティ11からコネクタ50へ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限(阻止)する。本実施形態1では、第1逆止弁21及び第2逆止弁22として、弾性材料(例えばシリコンゴム、イソプレンゴム)からなる一対のリップを備えた、いわゆるダックビル型逆止弁を用いている。ダックビル型逆止弁は、例えば特許文献4,5に記載されている。
 以上のように構成された本実施形態1の医療用薬液移送器1Aを用いてアンプル70内の薬液72を輸液バッグ100に移送する方法の一例を以下に説明する。
 最初に、図1に示すように、接続口15にシリンジ40を接続し、また、コネクタ50を空の輸液バッグ100のポート110に接続する。次いで、アンプル70を開けてカニューラ30をアンプル70内に挿入し、カニューラ30の先端をアンプル70内の薬液72中に浸漬する。このとき、シリンジ40のプランジャ45は外筒41内に深く押し込んだ状態にある。
 次いで、シリンジ40のプランジャ45を引く。アンプル70内の薬液72は、カニューラ30の薬液流路31、第1逆止弁21、キャビティ11を順に流れて、シリンジ40内に吸い込まれる。
 次いで、シリンジ40のプランジャ45を押し込む。シリンジ40内の薬液は、上記とは逆にキャビティ11内に流れる。但し、第1逆止弁21は、薬液がキャビティ11からカニューラ30へ流れるのを制限する。従って、薬液は、キャビティ11から、第2逆止弁22、チューブ59、コネクタ50、ポート110を順に流れて、輸液バッグ100内に流れ込む。
 必要に応じてプランジャ45の押し引き操作を繰り返し、アンプル70内の薬液72を全て輸液バッグ100内に移送する。第2逆止弁22は、薬液がチューブ59からキャビティ11へ流れるのを制限するから、プランジャ45を引いたときに、チューブ59や輸液バッグ100内の薬液が第2逆止弁22を通ってキャビティ11やシリンジ40内に逆流することはない。
 複数本のアンプル70内の薬液を共通する輸液バッグ100に移送する場合には、空になったアンプル70を新しいアンプル70に交換して上記の操作を繰り返す。その後、ポート110とコネクタ50とを分離する。
 必要に応じてブドウ糖液や生理食塩水などを輸液バッグ100内に注入して、患者に投与する液状物(輸液)を調整する。この注入作業は、本実施形態1の医療用薬液移送器1Aを用いて行ってもよいし、他の器具を用いて行ってもよい。
 次いで、輸液バッグ100に輸液セット(図示せず)を接続する。輸液バッグ100と輸液セットの接続方法は、輸液セットの構成等に応じて適宜選択することができる。例えば、輸液バッグ100の補助ポート120に設けられたゴム栓121に輸液セットの上流側端に設けられた金属針を穿刺してもよい。あるいは、輸液セットの構成によっては、輸液セットの上流側端を、補助ポート120ではなく、コネクタ50が接続されていたポート110に接続してもよい。
 次いで、輸液セットの下流側端の金属針を患者の静脈に穿刺する。輸液バッグ100をイルリガートル台に吊り下げて、輸液セットを介して輸液バッグ100内の輸液を患者に投与する。
 以上のように、本実施形態1の医療用薬液移送器1Aによれば、カニューラ30の先端をアンプル70内の薬液72に浸漬した状態でシリンジ40のプランジャ45を押し引きするだけで、アンプル70内の薬液72を輸液バッグ100に移送することができる。従って、従来のようにシリンジの先端の金属針をアンプルと輸液バッグのゴム栓とに交互に刺し替える作業は不要である。従って、複数のアンプル70内の薬液を輸液バッグ100に移送する場合であっても、薬液の移送作業は簡単となり、移送に要する時間も短縮できる。
 従って、本実施形態1の医療用薬液移送器1Aによれば、アンプル70内の薬液72を輸液バッグ100に効率良く移送することができる。
 従来の薬液の移送方法では、アンプル内の薬液をシリンジ内に吸引した後、シリンジの金属針を輸液バッグのゴム栓に穿刺するまでの間に、薬液が金属針の先端から漏れ出てしまう可能性があった。例えば抗がん剤の中には劇薬に指定されているものがあり、このような薬液が誤って作業者の指などに付着してしまう危険があった。
 これに対して、本実施形態1の医療用薬液移送器1Aによれば、シリンジ40の容量が相対的に小さい場合であっても、アンプル70が空になるまで、カニューラ30をアンプル70に挿入したままでよいので、薬液がカニューラ30の先端から漏れ出る可能性は低い。
 カニューラ30をアンプル70に挿入した状態でシリンジ40のプランジャ45の押し引きを何度か繰り返すことにより、カニューラ30の薬液流路31内の薬液を第1逆止弁21を通過させてキャビティ11側に移動させることができる。複数のアンプル70内の薬液を繰り返して輸液バッグ100に移送する場合には、このようにカニューラ30の薬液流路31内に薬液が存在しない状態にした後に、空になったアンプル70からカニューラ30を抜き去り、新たなアンプル70にカニューラ30を挿入することが好ましい。これにより、カニューラ30の先端から薬液が漏れ出して作業者の指などに付着する危険を低減することができる。
 また、仮に薬液流路31内に薬液が存在している状態でプランジャ45を押し込んだとしても、第1逆止弁21が薬液流路31内の薬液が逆流するのを防止する。従って、このような場合であっても、カニューラ30の先端から薬液が漏れ出して作業者の指などに付着する危険性は低い。
 このように、本実施形態1の医療用薬液移送器1Aは、薬液72の移送作業中に薬液72が外界に漏れ出る可能性が低く、高い安全性を有している。これは、薬液72が、例えば劇薬に指定された抗がん剤を含む場合に特に有効である。
 カニューラ30は、アンプル70に挿入して薬液を吸引するためにのみ使用される。従って、カニューラ30の先端は鋭利である必要はなく、また、柔軟な材料で形成することが可能となる。即ち、本実施形態1の医療用薬液移送器1Aでは、先端が鋭利な金属針は不要である。
 従来の薬液の移送作業で用いていたシリンジには、輸液バッグのポートのゴム栓に穿刺するために、鋭利な先端が形成された金属針が取り付けられていたので、薬液の移送作業中に作業者が金属針を誤って指などに穿刺してしまう危険があった。本実施形態1では、金属針が不要であるので、従来の薬液の移送作業での、この金属針の誤穿刺の問題が解消される。
 また、従来の薬液の移送作業では、金属針を輸液バッグのゴム栓に突き刺す際に、鋭利な金属針によってゴム栓の材料が削り取られて金属針内に入り込み、更に薬液内に混入してしまう(これは「コアリング」と呼ばれる)危険があった。本実施形態1では、金属針が不要であるので、従来の薬液の移送作業でのコアリングの問題が解消される。
 従って、本実施形態1の医療用薬液移送器1Aによれば、アンプル70内の薬液72を輸液バッグ100に効率良く且つ安全に移送することができる。
 上記の実施形態1では、移送器本体10にカニューラ30及びシリンジ40が直接接続されている。これにより、カニューラ30と移送器本体10とシリンジ40とを一体物としてハンドリングできる。従って、例えばカニューラ30をアンプル70に挿入したままシリンジ40を両手で保持してプランジャ45の押し引き操作を容易に行うことができる。
 また、カニューラ30とシリンジ40とが同軸上に配置されている。従って、シリンジ40のプランジャ45の押し引き操作時にカニューラ30の位置や姿勢の保持が容易となる。
 一方、コネクタ50は、柔軟なチューブ59を介して移送器本体10と接続されているので、コネクタ50を接続した輸液バッグ100を任意の位置に配置して薬液の移送作業を行うことができる。また、移送作業中、アンプル70やシリンジ40等の位置や姿勢を自由に変化させることができるので、移送作業を効率よく行うことができる。
 (実施形態2)
 図2は、本発明の実施形態2に係る医療用薬液移送器1Bの概略構成を示した断面図である。本実施形態2の医療用薬液移送器1Bは、バイアル瓶80内の薬液82を輸液バッグ100に移送するのに適している。
 医療用薬液移送器1Bは、キャビティ11と、キャビティ11に連通する3つの流路とが内部に形成された移送器本体10を備える。3つの流路のうちの1つは、キャビティ11と筒状体としての瓶針60の薬液流路61とを連通させる流路であり、他の1つはキャビティ11とシリンジ40とを連通させる流路であり、最後の1つはキャビティ11とコネクタ50とを連通させる流路である。
 移送器本体10は、キャビティ11に連通する3つの流路を略「T」字状に接続する分岐管12を含む。分岐管12の第1開口には瓶針60が装着され、第2開口にキャップ14が装着され、第3開口にはシリンジ40が接続される。移送器本体10を構成する分岐管12及びキャップ14の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリプロピレン、ポリカーボネート等の実質的に剛体と見なしうる樹脂を例示することができる。
 薬液流路61とキャビティ11との間の流路上に第1逆止弁21が設けられている。第1逆止弁21は、瓶針60と分岐管12との間に挟持されている。また、コネクタ50とキャビティ11との間の流路上に第2逆止弁22が設けられている。第2逆止弁22は、キャップ14と分岐管12との間に挟持されている。
 瓶針60は、図2に示すように薬液容器としてのバイアル瓶80のゴム栓81に穿刺される。瓶針60内には、互いに独立した薬液流路61及び気体流路62が形成されている。薬液流路61は、瓶針60がバイアル瓶80のゴム栓81に穿刺されたとき、バイアル瓶80の内部と連通する。これにより、薬液流路61を通じてバイアル瓶80内の薬液82をキャビティ11に流入させることができる。また、気体流路62は、瓶針60がバイアル瓶80のゴム栓81に穿刺されたとき、バイアル瓶80の内部と外界とを連通させる。これにより、バイアル瓶80内の薬液82が薬液流路61を通じて流出するときに、外界から空気をバイアル瓶80内に流入させて、バイアル瓶80内が負圧になるのを防ぎ、薬液82のバイアル瓶80からの流出を容易にする。瓶針60は、ゴム栓81に穿刺することができる程度の鋭利な先端と機械的強度を有している。瓶針60の材料は、特に制限はないが、例えばポリカーボネート、ポリアセタール等の樹脂材料を用いることができる。瓶針60、薬液流路61、及び、気体流路62の各断面形状は、円形、楕円形など任意の形状を取り得る。瓶針60の寸法も特に制限はないが、外径は最大径方向において3~6mmが好ましく、薬液流路61の内径は最大径方向において1~3mmが好ましく、気体流路62の内径は最大径方向において0.5~2mmが好ましい。
 気体流路62と外界との間の流路上に、気体流路62側から、第3逆止弁23及び疎水性フィルター25がこの順に設けられている。第3逆止弁23及び疎水性フィルター25は、キャップ18と瓶針60との間に挟持されている。キャップ18は、気体流路62と外界とを連通させるための貫通孔を有している。
 キャップ14の先端にチューブ59の一端が接続され、チューブ59の他端はコネクタ50に接続されている。
 チューブ59は柔軟性を有し、且つ、透明又は半透明であることが好ましい。チューブ59の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリ塩化ビニル、ポリブタジエン、ポリエチレンを例示することができる。
 輸液バッグ100(図2にはその一部のみが示されている)は、柔軟且つ透明な同一寸法の2枚の樹脂シートを重ね合わせて、その周縁のシール領域101にて接合(例えばヒートシール)してなる袋状物である。ポート110及び補助ポート120を含むポート本体105は、2枚の樹脂シートの間に挟まれた状態で輸液バッグ100に取り付けられている。
 本実施形態2では、ポート110は、中央部に直線状のスリット(切り込み)が形成された円板状のゴム製の弁体(一般に「セプタム」と呼ばれる)111を備えた、いわゆるニードルレスポートである。ポート110の外周面は円筒面であり、この外周面には、周方向に連続する環状突起112が形成されている。ポート110に、コネクタ50が接続される。
 コネクタ50は、セプタム111のスリットに挿入される管状体51を備える。管状体51はチューブ59と連通している。コネクタ50は、更に、管状体51を挟んで配置された、弾性的に揺動可能な一対のロックレバー52a,52bを備える。ロックレバー52a,52bの先端の互いに対向する側の面には、係止爪53a,53bが形成されている。コネクタ50の材料は特に制限はないが、例えば樹脂を用いることができ、具体的にはポリプロピレン、ポリカーボネートを例示することができる。
 ポート110にコネクタ50を押し込むと、図2に示されているように、セプタム111のスリットに管状体51が挿入され、環状突起112と係止爪53a,53bとが係合する(ロック状態)。従って、セプタム111のスリットに管状体51が挿入された状態を安定して維持することができる。
 ロックレバー52a,52bの係止爪53a,53bとは反対側の操作部54a,54bを、互いに接近するように把持すると、ロックレバー52a,52bが弾性的に回動して、環状突起112と係止爪53a,53bとの係合が解除される。この状態でポート110からコネクタ50を引き抜けば、管状体51をセプタム111から抜き去ることができる。セプタム111から管状体51が抜き去られるとセプタム111のスリットは直ちに閉じる。このようにセプタム111はリシール性を有し、管状体51を繰り返し抜き差しすることができる。
 上記のような、ポート110の環状突起112と係合する係合爪53a,53bを有する弾性変位可能なロックレバー52a,52bを備えたコネクタ50、及びこのコネクタ50に適合するポート110の構成は、例えば特許文献1~3に記載されている。
 シリンジ40は、外筒41と、外筒41内に挿入され、外筒41に対して押し引き可能なプランジャ45と、プランジャ45の先端に取り付けられたガスケット46とを備える。外筒41の先端には、オスルアー42と、オスルアー42を取り囲むロック部43とが設けられている。オスルアー42の外周面は、ISO594-1に規定の100分の6テーパー面を有していると好ましい。オスルアー42を分岐管12の接続口15内に挿入し、ロック部43の内周面に形成された雌ネジを分岐管12の接続口15の外周面に形成された雄ネジと螺合させることで、シリンジ40と分岐管12とが結合される。これにより、接続口15とオスルアー42との接続部分で薬液が漏れる可能性を低減することができる。接続口15の内周面は、オスルアー42の外周面に形成されたテーパ面と密着できるように、ISO594-1に規定の100分の6テーパー面が形成されていることが好ましい。
 第1逆止弁21は、薬液流路61とキャビティ11との間の流路上に設けられ、薬液流路61からキャビティ11へ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限(阻止)する。第2逆止弁22は、コネクタ50とキャビティ11との間の流路上に設けられ、キャビティ11からコネクタ50へ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限(阻止)する。第3逆止弁23は、気体流路62と外界との間の流路上に設けられ、外界から気体流路62へ向かう気体の流れを許可し、その逆に向かう薬液の流れを制限(阻止)する。本実施形態2では、第1逆止弁21、第2逆止弁22、第3逆止弁23として、弾性材料(例えばシリコンゴム、イソプレンゴム)からなる一対のリップを備えた、いわゆるダックビル型逆止弁を用いている。ダックビル型逆止弁は、例えば特許文献4,5に記載されている。
 疎水性フィルター25は、気体流路62と外界との間の流路上に設けられる。疎水性フィルター25は、疎水性と通気性とを有しており、気体を通過させるが、薬液(液体)を実質的に通過させない特性を有している。疎水性フィルター25の材料としては特に制限はないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリオレフィン(ポリプロピレン、ポリエチレン他)、ポリフッ化ビニリデン等が挙げられる。疎水性フィルター25は、これらの材料を用いた多孔質層や不織布などの平膜フィルタであることが好ましい。
 以上のように構成された本実施形態2の医療用薬液移送器1Bを用いてバイアル瓶80内の薬液82を輸液バッグ100に移送する方法の一例を以下に説明する。
 最初に、図2に示すように、接続口15にシリンジ40を接続し、また、コネクタ50を空の輸液バッグ100のポート110に接続する。次いで、バイアル瓶80のゴム栓81に瓶針60を穿刺する。このとき、シリンジ40のプランジャ45は外筒41内に深く押し込んだ状態にある。
 キャビティ11よりもバイアル瓶80を高い位置にして、瓶針60の先端の薬液流路61の開口を薬液82中に浸漬させる。このとき、バイアル瓶80内の薬液82が、万が一、気体流路62内に流入したとしても、第3逆止弁23及び疎水性フィルター25が薬液のキャップ18側への流出を阻止するので、薬液82が外界に漏れ出ることはない。この状態で、シリンジ40のプランジャ45を引く。バイアル瓶80内の薬液82は、薬液流路61、第1逆止弁21、キャビティ11を順に流れて、シリンジ40内に吸い込まれる。このとき、バイアル瓶80からの薬液82の流出量に応じた空気が、疎水性フィルター25、第3逆止弁23、気体流路62を順に通ってバイアル瓶80内に流入する。従って、バイアル瓶80内が負圧になることはない。
 次いで、シリンジ40のプランジャ45を押し込む。シリンジ40内の薬液は、上記とは逆にキャビティ11内に流れる。但し、第1逆止弁21は、薬液がキャビティ11から薬液流路61へ流れるのを制限する。従って、薬液は、キャビティ11から、第2逆止弁22、チューブ59、コネクタ50、ポート110を順に流れて、輸液バッグ100内に流れ込む。
 必要に応じてプランジャ45の押し引き操作を繰り返し、バイアル瓶80内の薬液82を全て輸液バッグ100内に移送する。第2逆止弁22は、薬液がチューブ59からキャビティ11へ流れるのを制限するから、プランジャ45を引いたときに、チューブ59や輸液バッグ100内の薬液が第2逆止弁22を通ってキャビティ11やシリンジ40内に逆流することはない。
 複数本のバイアル瓶80内の薬液を共通する輸液バッグ100に移送する場合には、空になったバイアル瓶80を新しいバイアル瓶80に交換して上記の操作を繰り返す。その後、ポート110とコネクタ50とを分離する。
 必要に応じてブドウ糖液や生理食塩水などを輸液バッグ100内に注入して、患者に投与する液状物(輸液)を調整する。この注入作業は、本実施形態2の医療用薬液移送器1Bを用いて行ってもよいし、他の器具を用いて行ってもよい。
 次いで、輸液バッグ100に輸液セット(図示せず)を接続する。輸液バッグ100と輸液セットの接続方法は、輸液セットの構成等に応じて適宜選択することができる。例えば、輸液バッグ100の補助ポート120に設けられたゴム栓121に輸液セットの上流側端に設けられた金属針を穿刺してもよい。あるいは、輸液セットの構成によっては、輸液セットの上流側端を、補助ポート120ではなく、コネクタ50が接続されていたポート110に接続してもよい。
 次いで、輸液セットの下流側端の金属針を患者の静脈に穿刺する。輸液バッグ100をイルリガートル台に吊り下げて、輸液セットを介して輸液バッグ100内の輸液を患者に投与する。
 以上のように、本実施形態2の医療用薬液移送器1Bによれば、瓶針60をバイアル瓶80のゴム栓81に穿刺した状態でシリンジ40のプランジャ45を押し引きするだけで、バイアル瓶80内の薬液82を輸液バッグ100に移送することができる。従って、従来のようにシリンジの先端の瓶針をバイアル瓶80と輸液バッグとに交互に刺し替える作業は不要である。従って、複数のバイアル瓶80内の薬液82を輸液バッグ100に移送する場合であっても、薬液の移送作業は簡単となり、移送に要する時間も短縮できる。
 従って、本実施形態1の医療用薬液移送器1Bによれば、バイアル瓶80内の薬液82を輸液バッグ100に効率良く移送することができる。
 従来の薬液の移送方法では、バイアル瓶内の薬液をシリンジ内に吸引した後、シリンジの瓶針を輸液バッグのゴム栓に穿刺するまでの間に、薬液が瓶針の先端から漏れ出てしまう可能性があった。例えば抗がん剤の中には劇薬に指定されているものがあり、このような薬液が誤って作業者の指などに付着してしまう危険があった。
 これに対して、本実施形態2の医療用薬液移送器1Bによれば、シリンジ40の容量が相対的に小さい場合であっても、バイアル瓶80が空になるまで、瓶針60をバイアル瓶80のゴム栓81に穿刺したままでよいので、薬液が瓶針60の先端から漏れ出る可能性は低い。
 瓶針60をバイアル瓶80のゴム栓81に穿刺した状態でシリンジ40のプランジャ45の押し引きを何度か繰り返すことにより、薬液流路61内の薬液を第1逆止弁16を通過させてキャビティ11側に移動させることができる。複数のバイアル瓶80内の薬液82を繰り返して輸液バッグ100に移送する場合には、このように薬液流路61内に薬液が存在しない状態にした後に、空になったバイアル瓶80から瓶針60を抜き去り、新たなバイアル瓶80に瓶針60を穿刺することが好ましい。これにより、瓶針60の先端から薬液が漏れ出して作業者の指などに付着する危険を低減することができる。
 また、仮に薬液流路61内に薬液が存在している状態でプランジャ45を押し込んだとしても、第1逆止弁21が薬液流路61内の薬液が逆流するのを防止する。従って、このような場合であっても、瓶針60の先端から薬液が漏れ出して作業者の指などに付着する危険性は低い。
 このように、本実施形態2の医療用薬液移送器1Bは、薬液82の移送作業中に薬液82が外界に漏れ出る可能性が低く、高い安全性を有している。これは、薬液82が、例えば劇薬に指定された抗がん剤を含む場合に特に有効である。
 上記の実施形態2では、移送器本体10に瓶針60及びシリンジ40が直接接続されている。これにより、瓶針60と移送器本体10とシリンジ40とを一体物としてハンドリングできる。従って、例えば瓶針60をバイアル瓶80のゴム栓81に穿刺したままシリンジ40を両手で保持してバイアル瓶80を上方に持ち上げてプランジャ45の押し引き操作を行うことができる。即ち、シリンジの先端に装着された瓶針を介してバイアル瓶内の薬液をシリンジに吸引する従来の薬液の移送作業と実質的に同じ感覚で薬液の移送作業を行うことができる。
 また、瓶針60とシリンジ40とは同軸上に配置されている。従って、バイアル瓶80のゴム栓81に対する瓶針60の穿刺作業も、シリンジの先端に装着された瓶針をバイアル瓶のゴム栓に穿刺する従来の穿刺作業と実質的に同じ感覚で行うことができる。
 一方、コネクタ50は、柔軟なチューブ59を介して移送器本体10と接続されているので、コネクタ50を接続した輸液バッグ100を任意の位置に配置して薬液の移送作業を行うことができる。また、移送作業中、バイアル瓶80やシリンジ40等の位置や姿勢を自由に変化させることができるので、移送作業を効率よく行うことができる。
 (実施形態3)
 以下、本発明の実施形態3に係る医療用薬液移送器1Bを、実施形態2と異なる点を中心に説明する。以下の説明で参照する図において、実施形態2において参照した図2に示された部材と同じ部材には同一の符号が付されており、それらについての重複する説明を省略する。
 図3Aは、本実施形態3に係る医療用薬液移送器において、バイアル瓶80のゴム栓81に穿刺する前の瓶針60及びその周辺の概略構成を示した断面図である。本実施形態3では、瓶針60に瓶針用シールド(以下、単に「シールド」という)65が設けられている。シールド65は、蛇腹状の筒状部66と、筒状部66の一端に設けられたシールド板67とを備える。瓶針60の先端は、シールド板67の内面に当接又は近接している。シールド板67の瓶針60の先端が対向する部分には、直線状のスリット(切り込み)68が形成されている。筒状部66のシールド板67とは反対側の端部は、瓶針60に固定されている。シールド65は、瓶針60の先端又はその近傍の薬液流路61及び気体流路62の両開口を覆っている。シールド65は可撓性(柔軟性)を有する材料(例えばシリコンゴム、イソプレンゴム)で構成されている。
 上記のようにシールド65が装着された瓶針60をバイアル瓶80のゴム栓81に穿刺する。図3Bは、瓶針60をバイアル瓶80のゴム栓81に穿刺した状態を示した断面図である。シールド板67がゴム栓81に当接した状態で、瓶針60の先端がシールド板67のスリット68を通過し、ゴム栓81に突き刺さっている。筒状部66は弾性的に圧縮変形している。
 この状態から、瓶針60をゴム栓81から引き抜くと、筒状部66はその弾性回復力によって伸長し、スリット68から瓶針60が抜き去られ、スリット68が閉じ、図3Aに示す初期状態に戻る。
 本実施形態3の薬液82の移送操作は、実施形態2のそれと同じである。
 本実施形態3によれば、瓶針60をバイアル瓶80に穿刺していないときは、図3Aに示すように薬液流路61の開口及び気体流路62の開口を含む瓶針60の先端及びその近傍部分は、常にシールド65で覆われる。従って、薬液82が瓶針60から外界に漏れ出る可能性を低減することができる。従って、実施形態2よりも更に安全性を向上させることができる。
 本実施形態3は、上記を除いて実施形態2と同じであり、実施形態2で説明したのと同様の効果を奏する。
 上記の実施形態1~3は例示に過ぎず、本発明はこれに限定されず、適宜変更することができる。
 例えば、上記の実施形態1~3では、キャビティ11が形成された移送器本体10に筒状体(即ち、カニューラ30又は瓶針60)が保持されていたが、本発明はこれに限定されない。移送器本体10と筒状体(カニューラ30又は瓶針60)とが例えば柔軟なチューブで接続されていてもよい。また、上記の実施形態1~3では、シリンジ40が接続される接続口15は移送器本体10に設けられていたが、本発明はこれに限定されない。例えば、移送器本体10に柔軟なチューブを接続し、当該チューブの終端をシリンジ40が接続される接続口15としてもよい。また、コネクタ50は、チューブ59を介することなく、移送器本体10に直接設けられていていもよい。
 接続口15とシリンジ40との接続部分の構成は上記の実施形態1~3に限定されない。例えば、上記の実施形態1~3のように雄ネジと雌ネジとを螺合させるルアーロック機構を備えていなくてもよい。接続口15がセプタムを備え、シリンジ40の先端のオスルアーをセプタムのスリットに挿入することで、キャビティ11とシリンジ40とを連通させてもよい。
 上記の実施形態1~3では、シリンジ40と接続口15とは分離可能であった。これにより、薬液の移送作業ごとに、薬液容器(即ち、アンプル70又はバイアル瓶80)の容量や薬液の種類などに応じて最適なシリンジ40を選択して接続口15に接続することができる。但し、本発明はこれに限定されず、例えば、接続口15にシリンジ40の外筒41を一体成形等により一体的に形成してもよい。これにより、接続口15とシリンジ40との接続部分から薬液が漏れるのを防止することができる。
 上記の実施形態1~3では、第1逆止弁21、第2逆止弁22、第3逆止弁23としてダックビル型逆止弁を用いたが、本発明はこれに限定されない。第1逆止弁21及び第2逆止弁22としては、薬液の一方向の流れを許可し、逆方向の流れを禁止(阻止)することができる任意の逆止弁を使用することができる。また、第3逆止弁23としては、気体の一方向の流れを許可し、薬液の逆方向の流れを制限(阻止)することができる任意の逆止弁を使用することができる。第1逆止弁21、第2逆止弁22、第3逆止弁23として、例えばアンブレラタイプの逆止弁を使用することができる。また、第1逆止弁21、第2逆止弁22、第3逆止弁23のうちの少なくとも1つが他と異なるタイプの逆止弁であってもよい。
 第1逆止弁21は、薬液流路31,61とキャビティ11との間の薬液の流路上に設けられていればよく、その設置位置は上記の実施形態1~3に限定されない。同様に、第2逆止弁22は、コネクタ50とキャビティ11との間の薬液の流路上に設けられていればよく、その設置位置は上記の実施形態1~3に限定されない。例えば、第2逆止弁22がコネクタ50内に設けられていてもよい。
 上記の実施形態2,3では、第3逆止弁23及び疎水性フィルター25は瓶針60に搭載されていたが、第3逆止弁23及び疎水性フィルター25は、気体流路62と外界との間の流路上に設けられていればよく、その設置位置は上記の実施形態2,3に限定されない。例えば、瓶針60の気体流路62と第3逆止弁23及び疎水性フィルター25との間を柔軟なチューブ等で接続してもよい。上記の実施形態2,3とは逆に、気体流路62側から疎水性フィルター25、第3逆止弁23の順に配置してもよい。第3逆止弁23及び疎水性フィルター25のうちの一方又は両方を省略してもよい。
 コネクタ50の構成は上記の実施形態1~3に限定されない。例えば、図4に示すように、管状体51の先端を管状体用シールド55(以下、単に「シールド」という)で覆ってもよい(例えば特許文献6,7参照)。シールド55は、実施形態3で説明したシールド65と同様に、蛇腹状の筒状部56と、筒状部56の一端に設けられたシールド板57とを備える。管状体51の先端はシールド板57に密着する。管状体51の先端が対向するシールド板57の部分には直線状のスリット(切り込み)58が形成されている。シールド55は可撓性(柔軟性)を有する材料(例えばシリコンゴム、イソプレンゴム)で構成されている。ポート110にコネクタ50を押し込むと、ポート110の頂面110aによってシールド板57が押され、筒状部56が弾性的に圧縮変形し、管状体51の先端がスリット58を通ってこれから突き出し、次いで、管状体51がセプタム111のスリット113に挿入される。ポート110からコネクタ50を引き抜くと、管状体51はセプタム111から抜き去られ、筒状部56が弾性回復して図4に示す初期状態に戻り、スリット58が閉じる。このように、コネクタ50の管状体51の先端をスリット58が形成されたシールド55で覆うことにより、コネクタ50をポート110に接続していないときに管状体51から薬液が漏れる可能性を低減することができる。
 コネクタの構成は輸液バッグ100に設けられたポート110の構成に応じて適宜変更することができる。コネクタをポート110に接続した状態を保持するためのロック機構は、上記の実施形態1~3に示したロックレバー52a,52bに限定されない。例えば、コネクタが、特許文献8に記載されているような、いわゆる回転式コネクタであってもよい。回転式コネクタは、管状体の周囲に、管状体に対して回転可能なロックコネクタを有している。ポートのセプタムのスリットに管状体を挿入した状態でロックナットを回転させてロックナットとポートとを係合させることができる。
 コネクタは、ポートと係合するロック機構を備えていなくてもよい。例えば、コネクタが、ポート110のセプタム111のスリットに挿入可能な管状体のみで構成されていてもよい。
 輸液バッグ100に設けられるポート110は、セプタム111を備えたニードルレスポートである必要はない。ポート110の構成は任意であり、ポート110の構成に応じてコネクタの構成を適宜選択することができる。
 輸液バッグ100の構成は特に限定はない。また、輸送される薬液の種類にも制限はない。
 上記の実施形態2,3では、1本の瓶針60内に互いに独立した薬液流路61及び気体流路62が形成されていた。この瓶針60を、互いに独立した、薬液流路61が形成された薬液用針と気体流路62が形成された気体用針とに分割してもよい。薬液用針及び気体用針は、互いに略平行に配置され、バイアル瓶のゴム栓にそれぞれ穿刺される。薬液用針及び気体用針は、樹脂材料又は金属材料を用いて作製することができる。
 本発明の利用分野は特に制限はないが、アンプルやバイアル瓶などの薬液容器内の薬液を輸液バッグに移送する際に使用される医療用薬液移送器として広範囲に利用することができる。
1A,1B 医療用薬液移送器
10 移送器本体
11 キャビティ
15 接続口
21 第1逆止弁
22 第2逆止弁
23 第3逆止弁
25 疎水性フィルター
30 カニューラ(筒状体)
31 薬液流路
40 シリンジ
41 外筒
42 オスルアー
43 ロック部
45 プランジャ
50 コネクタ
51 管状体
52a,52b ロックレバー
53a,53b 係止爪
55 管状体用シールド
56 筒状部
57 シールド板
58 スリット
59 チューブ
60 瓶針(筒状体)
61 薬液流路
62 気体流路
65 瓶針用シールド
66 筒状部
67 シールド板
68 スリット
70 アンプル(薬液容器)
72 薬液
80 バイアル瓶(薬液容器)
81 バイアル瓶のゴム栓
82 薬液
100 輸液バッグ
110 ポート
111 セプタム
113 セプタムのスリット

Claims (18)

  1.  薬液流路を備え、薬液容器に挿入される筒状体と、
     シリンジが接続される接続口と、
     輸液バッグのポートに接続されるコネクタと、
     前記薬液流路、前記接続口、及び、前記コネクタと連通するキャビティが内部に形成された移送器本体と、
     前記薬液流路と前記キャビティとの間の流路上に設けられ、前記薬液流路から前記キャビティへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第1逆止弁と、
     前記コネクタと前記キャビティとの間の流路上に設けられ、前記キャビティから前記コネクタへ向かう薬液の流れを許可し、その逆に向かう薬液の流れを制限する第2逆止弁と
     を備えたことを特徴とする医療用薬液移送器。
  2.  前記筒状体は前記移送器本体に保持され、前記接続口は前記移送器本体に設けられている請求項1に記載の医療用薬液移送器。
  3.  前記シリンジが前記筒状体と同軸上に配置されている請求項1又は2に記載の医療用薬液移送器。
  4.  前記接続口に、前記シリンジの先端のオスルアーを取り囲むロック部に形成された雌ネジと螺合する雄ネジが形成されている請求項1~3のいずれかに記載の医療用薬液移送器。
  5.  前記コネクタは柔軟性を有するチューブを介して前記移送器本体に接続されている請求項1~4のいずれかに記載の医療用薬液移送器。
  6.  前記コネクタが、前記輸液バッグの前記ポートに設けられたセプタムのスリットに挿入可能な管状体を備える請求項1~5のいずれかに記載の医療用薬液移送器。
  7.  前記コネクタが、前記管状体の少なくとも先端を覆う可撓性を有する管状体用シールドを更に備え、前記管状体の前記先端が対向する前記管状体用シールドの部分にはスリットが形成されている請求項6に記載の医療用薬液移送器。
  8.  前記コネクタが、前記輸液バッグの前記ポートと係合する係合爪を有する弾性変位可能なロックレバーを備える請求項1~7のいずれかに記載の医療用薬液移送器。
  9.  前記第1逆止弁及び前記第2逆止弁のうちの少なくも一方はダックビル型逆止弁である請求項1~8のいずれかに記載の医療用薬液移送器。
  10.  前記接続口にシリンジの外筒が一体的に設けられている請求項1~9のいずれかに記載の医療用薬液移送器。
  11.  前記筒状体が、前記薬液容器としてのアンプルに挿入されるカニューラである請求項1~10のいずれかに記載の医療用薬液移送器。
  12.  前記カニューラが柔軟性を有する請求項11に記載の医療用薬液移送器。
  13.  前記筒状体が、前記薬液容器としてのバイアル瓶のゴム栓に穿刺される瓶針であり、
     前記瓶針は、前記薬液流路に加えて気体流路を備え、
     前記瓶針がバイアル瓶のゴム栓に穿刺されたとき、前記薬液流路と前記バイアル瓶の内部とが連通し、且つ、前記気体流路を介して前記バイアル瓶の内部と外界とが連通する請求項1~10のいずれかに記載の医療用薬液移送器。
  14.  前記気体流路と前記外界との間に、前記外界から前記気体流路へ向かう気体の流れを許可し、その逆に向かう薬液の流れを制限する第3逆止弁が設けられている請求項13に記載の医療用薬液移送器。
  15.  前記第3逆止弁はダックビル型逆止弁である請求項14に記載の医療用薬液移送器。
  16.  前記気体流路と前記外界との間に、気体を通過させるが薬液を実質的に通過させない疎水性フィルターが設けられている請求項13~15のいずれかに記載の医療用薬液移送器。
  17.  前記瓶針の少なくとも先端を覆う可撓性を有する瓶針用シールドを更に備え、前記瓶針の前記先端が対向する前記瓶針用シールドの部分にはスリットが形成されている請求項13~16のいずれかに記載の医療用薬液移送器。
  18.  前記瓶針が、互いに独立した、前記薬液流路を備えた薬液用針と前記気体流路を備えた気体用針とに分割されている請求項13~17のいずれかに記載の医療用薬液移送器。
PCT/JP2011/064574 2010-07-12 2011-06-24 医療用薬液移送器 WO2012008285A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/702,235 US20130079744A1 (en) 2010-07-12 2011-06-24 Drug solution delivery device for medical use
CN2011800343006A CN102985050A (zh) 2010-07-12 2011-06-24 医疗用药液移送器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010157976A JP2012019829A (ja) 2010-07-12 2010-07-12 医療用薬液移送器
JP2010-157976 2010-07-12
JP2010-246110 2010-11-02
JP2010246110A JP5824798B2 (ja) 2010-11-02 2010-11-02 医療用薬液移送器

Publications (1)

Publication Number Publication Date
WO2012008285A1 true WO2012008285A1 (ja) 2012-01-19

Family

ID=45469295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064574 WO2012008285A1 (ja) 2010-07-12 2011-06-24 医療用薬液移送器

Country Status (3)

Country Link
US (1) US20130079744A1 (ja)
CN (1) CN102985050A (ja)
WO (1) WO2012008285A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141137A1 (ja) * 2012-03-23 2013-09-26 株式会社ジェイ・エム・エス カバー付き瓶針
WO2013150580A1 (ja) * 2012-04-02 2013-10-10 株式会社メディカルクリエーション 薬剤移送装置
JP2013212333A (ja) * 2012-03-09 2013-10-17 Otsuka Techno Kk 混合装置、混合支援装置及び混合方法
JP2015512751A (ja) * 2012-04-09 2015-04-30 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 薬瓶投薬システムおよび方法
JP2018034037A (ja) * 2013-03-15 2018-03-08 ベクトン ディキンソン アンド カンパニー リミテッド カニューレ用の封止システム
JP2019088811A (ja) * 2013-03-15 2019-06-13 ドクター ピー インスティチュート エルエルシー 制御された非分離充填器具および方法
US10857287B2 (en) 2017-01-06 2020-12-08 Trustees Of Boston University Infusion system and components thereof
US10881789B2 (en) 2013-10-24 2021-01-05 Trustees Of Boston University Infusion system for preventing mischanneling of multiple medicaments
US11278661B2 (en) 2020-03-10 2022-03-22 Beta Bionics, Inc. Infusion system and components thereof
US11331463B2 (en) 2015-07-08 2022-05-17 Trustees Of Boston University Infusion system and components thereof
US11571507B2 (en) 2019-07-16 2023-02-07 Beta Bionics, Inc. Ambulatory device and components thereof
US11674614B2 (en) 2020-10-09 2023-06-13 Icu Medical, Inc. Fluid transfer device and method of use for same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101717B2 (en) * 2013-03-12 2015-08-11 Carefusion 303, Inc. Non-vented vial access syringe
US9597260B2 (en) 2013-03-15 2017-03-21 Becton Dickinson and Company Ltd. System for closed transfer of fluids
JP6446438B2 (ja) * 2013-09-23 2018-12-26 ベクトン ディキンソン アンド カンパニー リミテッド 容器アクセス装置のための穿刺部材
EP4289453A3 (en) * 2013-09-23 2024-03-06 Becton Dickinson and Company Limited Piercing member for container access device
CN106413799B (zh) 2013-11-06 2019-12-06 贝克顿·迪金森有限公司 带锁定机构的液体封闭转移系统
CA2929473C (en) 2013-11-06 2019-06-04 Becton Dickinson and Company Limited Medical connector having locking engagement
JP2016535636A (ja) 2013-11-06 2016-11-17 ベクトン ディキンソン アンド カンパニー リミテッド コネクタを有する流体閉鎖移送システム
WO2015069643A1 (en) 2013-11-06 2015-05-14 Becton Dickinson and Company Limited Connection apparatus for a medical device
DE102013020864A1 (de) * 2013-12-12 2015-06-18 Fresenius Medical Care Deutschland Gmbh Konnektor mit Lippenventil
CA2945533C (en) 2014-04-16 2018-10-16 Becton Dickinson and Company Limited Fluid transfer device with axially and rotationally movable portion
CA2946563C (en) 2014-04-21 2019-03-12 Becton Dickinson and Company Limited Vial stabilizer base with connectable vial adapter
EP3134059B1 (en) 2014-04-21 2020-03-04 Becton Dickinson and Company Limited Fluid transfer device and packaging therefor
EP3134055B1 (en) 2014-04-21 2018-06-27 Becton Dickinson and Company Limited System with adapter for closed transfer of fluids
JP6466967B2 (ja) 2014-04-21 2019-02-06 ベクトン ディキンソン アンド カンパニー リミテッド 接続解除フィードバック機構を備えたシリンジアダプタ
EP4233827A3 (en) 2014-04-21 2023-11-01 Becton Dickinson and Company Limited System for closed transfer of fluids
CN106413663B (zh) 2014-04-21 2019-02-12 贝克顿迪金森有限公司 具有复合运动脱离接合的注射器适配器
EP3714861A1 (en) 2014-04-21 2020-09-30 Becton Dickinson and Company Limited System for closed transfer of fluids and membrane arrangements for use thereof
JP6356828B2 (ja) 2014-04-21 2018-07-11 ベクトン ディキンソン アンド カンパニー リミテッド 流体移送デバイスおよびそのためのパッケージング
US10085915B2 (en) * 2015-04-07 2018-10-02 Ent Solutions Group, Llc Safety fluid dispenser
EP3307228A4 (en) * 2015-06-14 2018-12-26 Dali Medical Devices Ltd. Systems for interfacing between a syringe, a drug vial, and a needle
WO2017051536A1 (ja) * 2015-09-24 2017-03-30 テルモ株式会社 医療用コネクタ
HUE054412T2 (hu) 2016-05-16 2021-09-28 Haemonetics Corp Tömítõ nélküli plazmapalack és felsõrész ugyanahhoz
US11648179B2 (en) 2016-05-16 2023-05-16 Haemonetics Corporation Sealer-less plasma bottle and top for same
US11197803B2 (en) * 2017-03-24 2021-12-14 Carefusion 303, Inc. Needleless cartridge for automatic drug compounder
US11116696B2 (en) * 2017-08-10 2021-09-14 Baxter International Inc. Reconstitution device, system, and method to administer a drug in a moderate bolus
MX2020011047A (es) 2018-04-19 2021-01-15 Becton Dickinson & Co Ltd Adaptador de jeringa con conjunto de aspiracion.
US11224555B2 (en) 2018-04-23 2022-01-18 Hospira, Inc. Access and vapor containment system for a drug vial and method of making and using same
WO2021062417A1 (en) * 2019-09-29 2021-04-01 F3 Biodesigns, Llc Enteral feeding device and method of using the same
USD1010112S1 (en) 2021-07-03 2024-01-02 KAIRISH INNOTECH Private Ltd. Vial adapter with valve

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55173339U (ja) * 1979-05-30 1980-12-12
JPH07369U (ja) * 1992-11-14 1995-01-06 勉 中辻 配合用注射器
JPH0767934A (ja) * 1993-08-02 1995-03-14 Becton Dickinson & Co バイアル及びアンプルのための薬液アクセス組立体
JPH07171198A (ja) * 1993-12-17 1995-07-11 Nissho Corp 薬液混注用チューブ
JPH08506881A (ja) 1992-12-07 1996-07-23 ヴァーネイ ラボラトリーズ インク 小型ダックビル弁
JPH10504736A (ja) * 1994-06-24 1998-05-12 アイシーユー メディカル、インコーポレイティッド 流体移送デバイス及び使用方法
JP3103389B2 (ja) 1990-04-09 2000-10-30 ヴァーネィ・ラボラトリーズ・インコーポレーテッド 片方向ダックビル逆止め弁
JP2002516725A (ja) * 1998-06-05 2002-06-11 アボット・ラボラトリーズ 薬剤を保存、混合および投与するためのシステム
JP3389983B2 (ja) 1997-10-23 2003-03-24 株式会社ジェイ・エム・エス 医療用混注ポート
JP2004000483A (ja) 2002-02-25 2004-01-08 Jms Co Ltd 隔壁付き接続口部材との連通用ロックコネクタ
JP2006141714A (ja) 2004-11-19 2006-06-08 Jms Co Ltd 流路連通用ロックコネクタ装置
JP2007267986A (ja) 2006-03-31 2007-10-18 Jms Co Ltd 連通部材、およびそれを用いた医療用容器、並びに輸液調剤用具セット
JP2009536085A (ja) * 2006-05-04 2009-10-08 インドゥストリー・ボルラ・ソシエタ・ペル・アチオニ 通気式注入アクセス装置
WO2010061743A1 (ja) 2008-11-25 2010-06-03 株式会社ジェイ・エム・エス コネクタ
WO2010061742A1 (ja) 2008-11-25 2010-06-03 株式会社ジェイ・エム・エス コネクタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973758A (en) * 1956-12-27 1961-03-07 Invenex Pharmaceuticals Apparatus for manufacturing parenteral solutions
US4944736A (en) * 1989-07-05 1990-07-31 Holtz Leonard J Adaptor cap for centering, sealing, and holding a syringe to a bottle
JP4372310B2 (ja) * 2000-04-10 2009-11-25 ニプロ株式会社 混注用アダプター
US8562583B2 (en) * 2002-03-26 2013-10-22 Carmel Pharma Ab Method and assembly for fluid transfer and drug containment in an infusion system
ES2496968T3 (es) * 2005-11-07 2014-09-22 Industrie Borla Spa Adaptador para frascos de manejo seguro de descarga
WO2009146088A1 (en) * 2008-04-01 2009-12-03 Yukon Medical, Llc Dual container fluid transfer device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55173339U (ja) * 1979-05-30 1980-12-12
JP3103389B2 (ja) 1990-04-09 2000-10-30 ヴァーネィ・ラボラトリーズ・インコーポレーテッド 片方向ダックビル逆止め弁
JPH07369U (ja) * 1992-11-14 1995-01-06 勉 中辻 配合用注射器
JPH08506881A (ja) 1992-12-07 1996-07-23 ヴァーネイ ラボラトリーズ インク 小型ダックビル弁
JPH0767934A (ja) * 1993-08-02 1995-03-14 Becton Dickinson & Co バイアル及びアンプルのための薬液アクセス組立体
JPH07171198A (ja) * 1993-12-17 1995-07-11 Nissho Corp 薬液混注用チューブ
JPH10504736A (ja) * 1994-06-24 1998-05-12 アイシーユー メディカル、インコーポレイティッド 流体移送デバイス及び使用方法
JP3389983B2 (ja) 1997-10-23 2003-03-24 株式会社ジェイ・エム・エス 医療用混注ポート
JP2002516725A (ja) * 1998-06-05 2002-06-11 アボット・ラボラトリーズ 薬剤を保存、混合および投与するためのシステム
JP2004000483A (ja) 2002-02-25 2004-01-08 Jms Co Ltd 隔壁付き接続口部材との連通用ロックコネクタ
JP2006141714A (ja) 2004-11-19 2006-06-08 Jms Co Ltd 流路連通用ロックコネクタ装置
JP2007267986A (ja) 2006-03-31 2007-10-18 Jms Co Ltd 連通部材、およびそれを用いた医療用容器、並びに輸液調剤用具セット
JP2009536085A (ja) * 2006-05-04 2009-10-08 インドゥストリー・ボルラ・ソシエタ・ペル・アチオニ 通気式注入アクセス装置
WO2010061743A1 (ja) 2008-11-25 2010-06-03 株式会社ジェイ・エム・エス コネクタ
WO2010061742A1 (ja) 2008-11-25 2010-06-03 株式会社ジェイ・エム・エス コネクタ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212333A (ja) * 2012-03-09 2013-10-17 Otsuka Techno Kk 混合装置、混合支援装置及び混合方法
WO2013141137A1 (ja) * 2012-03-23 2013-09-26 株式会社ジェイ・エム・エス カバー付き瓶針
WO2013150580A1 (ja) * 2012-04-02 2013-10-10 株式会社メディカルクリエーション 薬剤移送装置
JP2015512751A (ja) * 2012-04-09 2015-04-30 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 薬瓶投薬システムおよび方法
US10569018B2 (en) 2012-04-09 2020-02-25 Becton, Dickinson And Company Vial dosing systems and methods
JP2018034037A (ja) * 2013-03-15 2018-03-08 ベクトン ディキンソン アンド カンパニー リミテッド カニューレ用の封止システム
JP2019088811A (ja) * 2013-03-15 2019-06-13 ドクター ピー インスティチュート エルエルシー 制御された非分離充填器具および方法
US10881789B2 (en) 2013-10-24 2021-01-05 Trustees Of Boston University Infusion system for preventing mischanneling of multiple medicaments
US11357911B2 (en) 2013-10-24 2022-06-14 Trustees Of Boston University Infusion pump and system for preventing mischanneling of multiple medicaments
US11331463B2 (en) 2015-07-08 2022-05-17 Trustees Of Boston University Infusion system and components thereof
US10857287B2 (en) 2017-01-06 2020-12-08 Trustees Of Boston University Infusion system and components thereof
US11771821B2 (en) 2017-01-06 2023-10-03 Trustees Of Boston University Infusion system and components thereof
US11571507B2 (en) 2019-07-16 2023-02-07 Beta Bionics, Inc. Ambulatory device and components thereof
US11633535B2 (en) 2019-07-16 2023-04-25 Beta Bionics, Inc. Ambulatory device and components thereof
US11278661B2 (en) 2020-03-10 2022-03-22 Beta Bionics, Inc. Infusion system and components thereof
USD1022185S1 (en) 2020-03-10 2024-04-09 Beta Bionics, Inc. Medicament infusion pump device
US11674614B2 (en) 2020-10-09 2023-06-13 Icu Medical, Inc. Fluid transfer device and method of use for same

Also Published As

Publication number Publication date
CN102985050A (zh) 2013-03-20
US20130079744A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
WO2012008285A1 (ja) 医療用薬液移送器
US11684548B2 (en) Pooling device for single or multiple medical containers
CN106413799B (zh) 带锁定机构的液体封闭转移系统
US8844556B2 (en) Connector and infusion tube set
EP2881138B1 (en) Infusion set and method for using same
US8267127B2 (en) Method and apparatus for contamination-free transfer of a hazardous drug
EP1883386B1 (en) Access port with safety tab and fluid container employing same
JP5607637B2 (ja) 接続器具および輸液チューブセット
JP2018164817A (ja) バイアル・アクセス・キャップ及び重力アシスト・バルブを有するシリンジ
CN110167508A (zh) 用来与原封未动的单独的注射小瓶释放工具一起使用的液体药物转移装置
WO2007148708A1 (ja) 薬液調製用キット
JP6747080B2 (ja) 空気吸引用キャップ
IL142461A (en) Injection system through a gate without a needle with low reflux that can be cleaned
JP5824798B2 (ja) 医療用薬液移送器
JP5411729B2 (ja) 薬剤投与具
US20060058741A1 (en) Infusion apparatus for infusion bags
JP2012019829A (ja) 医療用薬液移送器
JP2002248166A (ja) 薬液注入具
JPH1033675A (ja) 注射器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034300.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13702235

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011806616

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE