WO2012006956A1 - 一种胰岛素的脂质复合物及其制备方法和制剂 - Google Patents

一种胰岛素的脂质复合物及其制备方法和制剂 Download PDF

Info

Publication number
WO2012006956A1
WO2012006956A1 PCT/CN2011/077152 CN2011077152W WO2012006956A1 WO 2012006956 A1 WO2012006956 A1 WO 2012006956A1 CN 2011077152 W CN2011077152 W CN 2011077152W WO 2012006956 A1 WO2012006956 A1 WO 2012006956A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
solution
lipid
solvent
complex
Prior art date
Application number
PCT/CN2011/077152
Other languages
English (en)
French (fr)
Inventor
刘玉玲
周翠萍
宋智慧
李琳
王洪亮
夏学军
汪仁芸
董武军
金笃嘉
Original Assignee
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院药物研究所 filed Critical 中国医学科学院药物研究所
Priority to CA2805325A priority Critical patent/CA2805325C/en
Priority to JP2013518942A priority patent/JP6051157B2/ja
Priority to US13/810,098 priority patent/US20130338064A1/en
Priority to EP11806298.3A priority patent/EP2594281B1/en
Priority to CN201180002259.4A priority patent/CN102573889B/zh
Priority to KR1020137003805A priority patent/KR101801426B1/ko
Publication of WO2012006956A1 publication Critical patent/WO2012006956A1/zh
Priority to US15/895,282 priority patent/US10611852B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier

Definitions

  • the present invention relates to an insulin lipoplex and a preparation method thereof, and to an oil solution comprising an insulin lipoplex and the use thereof in the preparation of a sustained release injection and a non-injection route preparation, and to the inclusion of insulin lipid Novel vesicles (liposomes) of complexes and their use in the preparation of non-injection routes of administration are in the field of pharmaceutical preparations.
  • Background technique insulin lipid Novel vesicles (liposomes) of complexes and their use in the preparation of non-injection routes of administration are in the field of pharmaceutical preparations.
  • phospholipid complex was discovered by the Italian scholar Bombarddli in the study of liposomes. Most of the drugs involved in the early phospholipid complex research were flavonoids or polyphenols containing phenolic hydroxyl groups. Later studies confirmed that in addition to phenolic hydroxyl groups, Some polar groups such as alcoholic hydroxyl groups, amide groups or carbonyl groups may form complexes with the hydrophilic end of phospholipids or other lipid materials (such as cholesterol, sodium cholate, etc.) through intermolecular hydrogen bonds or van der Waals forces. Spheroid. Whether it is a hydrophilic drug or a lipophilic drug, a lipid complex can be formed as long as it contains a polar group capable of recombination. The formation of a lipid complex can significantly improve the lipophilicity and oil solubility of the drug.
  • the composition and structure of the phospholipid complex are significantly different in structure from the vesicles (also called liposomes) which are also composed of phospholipids.
  • the liposome is a vesicle structure surrounded by a bimolecular membrane formed by the hydrophilic end of the phospholipid molecule and the hydrophobic end inward.
  • the phospholipid complex is characterized in that the polar group of the active ingredient and the hydrophilic end of the phospholipid are immobilized by intermolecular interaction, and the hydrophilic part of the phospholipid is encapsulated, and the hydrophobic end does not participate in the complex reaction, and can be freely moved and formed.
  • a lipophilic spheroid A lipophilic spheroid.
  • a liposome vesicle may be surrounded by hundreds or even thousands of phospholipid molecules, bimolecular Both the outer and inner layers of the membrane are the hydrophilic end of the phospholipid, while the intermediate interlayer is the hydrophobic end.
  • lipophilic drugs they can be encapsulated in the interlayer of the bilayer membrane (blue square in the figure), the encapsulation efficiency is usually high and stable, and it is not easy to leak; and the hydrophilic drug can only be dispersed in the bimolecular membrane.
  • the vesicle core or periphery, because the drug enters the core is difficult, in fact, most of the hydrophilic drugs are distributed in the periphery, the stability is poor and prone to leakage. In terms of mucosal permeability, liposomes of lipophilic drugs are often significantly superior to liposomes of hydrophilic drugs.
  • hydrophilic drugs such as preparing a lipid complex to improve lipophilicity, and then preparing vesicles
  • the encapsulation efficiency and stability can be improved, and mucosal transport properties can be improved.
  • Insulin is easily damaged by gastric acid and various proteolytic enzymes in the digestive tract, and it is difficult to penetrate the gastrointestinal mucosal barrier due to its large molecular weight. Conventional oral preparations are ineffective. Subcutaneous injection is still the most important route of administration at present, and patients with long-term frequent injections are responsive. Poor sex. In the past few decades, domestic and foreign medical workers have carried out a lot of research to overcome the problem of compliance with frequent injections.
  • the preparation of intermediate-effect and long-acting insulin has prolonged the maintenance of drug efficacy and reduced
  • the number of injections is the preparation of liposomes, nanoparticles, microspheres, microemulsions or oil solutions by pharmacy techniques to improve the stability of the drug against acid and alkali and biological enzymes, and promote the transport of drugs through the epithelial mucosa.
  • Absorption providing a drug delivery vehicle for the development of non-injectable formulations such as oral, transdermal, mucosal, and pulmonary inhalation.
  • Insulin liposome is the most reported particulate carrier at home and abroad, but due to its high molecular weight and hydrophilicity, most of the drugs exist in the periphery of phospholipid bilayer membranes, with low encapsulation efficiency, easy to leak, and gastrointestinal stability.
  • the improvement of mucosal permeability is limited; while the preparation of nanoparticles and microspheres is mostly carried out in an organic solvent system, and insulin is hardly soluble in organic solvents, the encapsulation efficiency is extremely low, and it is only adsorbed on the surface of the particles, and is administered.
  • the microemulsion or self-microemulsion reported in the literature dissolves insulin in the aqueous phase, and the contact of the drug with gastric acid and biological enzyme cannot be avoided, which is not conducive to improving the stability in the gastrointestinal environment.
  • the insulin molecule contains a large number of polar groups such as acylamino group, phenolic hydroxyl group, hydroxyl group and carbonyl group, which may interact with the hydrophilic end of the lipid material to form a lipid complex, thereby improving its lipophilicity and breaking through.
  • polar groups such as acylamino group, phenolic hydroxyl group, hydroxyl group and carbonyl group, which may interact with the hydrophilic end of the lipid material to form a lipid complex, thereby improving its lipophilicity and breaking through.
  • Limitations on the preparation of particulate carriers In recent years, research on insulin lipid complexes has become a hot topic at home and abroad. However, the lipophilicity of insulin is poor, which also limits the preparation of lipid complexes. Domestic and foreign literature reports and patents generally have the defects of low recombination rate and unstable quality.
  • Insulin 3 ⁇ 4A, B consists of two peptide chains with a molecular weight close to 6,000, between the polypeptide and the protein. Insul in Human A chain has 11 kinds of 21 amino acids, B chain has 15 kinds of 30 amino acids, and a total of 26 kinds of 51 amino acids. Insulin is insoluble in water and organic solvents, but soluble in acid dilute alcohol, pH 7.4 phosphate buffer, dilute acid and dilute alkali.
  • Insulin contains a large number of polar groups that may interact with the hydrophilic end of the lipid material, and has conditions for forming a lipid complex.
  • the protein structure and physical and chemical properties of insulin make the preparation of lipid complex extremely difficult.
  • the biggest obstacle is the choice of complex solvent.
  • Organic solvents are beneficial to the complex reaction, but insulin is insoluble in organic solvents, and organic solvents may cause insulin degradation or conformational changes. Therefore, simple organic solvents cannot prepare insulin complexes, and have not been reported in the literature. If PH7.
  • insulin contains 53 acylamino groups, 4 phenolic hydroxyl groups, and 12 alcoholic hydroxyl groups. These groups are likely to be complexed with phospholipids.
  • One mole of the drug theoretically requires about 70 moles of phospholipids (weight ratio is about 1). : 10).
  • the amount of lipid material should be slightly higher than the theoretical value. According to the theoretical amount of 1.5 times, the maximum amount of lipid material should not exceed 15 times the mass of the drug, that is, the amount of phospholipid should be controlled in insulin. 15 times the quality is more economical and reasonable.
  • the weight ratio of insulin to phospholipid determined is from 1:1 to 1:20, preferably from 1:2 to 1:8, but no composite rate evaluation result is provided.
  • 01140047 patent is difficult to obtain a composite with a high recombination rate using water as a solvent, it is not difficult to speculate that most of the drugs prepared by the patented conditions of the 97,196,069 patent may not be complexed with phospholipids.
  • the inventor of the present invention verified the patented method of 97196069. Firstly, based on the characteristics that the insulin complex is soluble in cycloheximide and the free insulin is insoluble, a method for determining the complex ratio (HPLC method) is established. According to the patent method of 97196069, the insulin phospholipid complex is prepared. When the insulin/phospholipid mass ratio is 1:2, the compounding rate is less than 8%; when the mass ratio is 1:8, the compounding rate is less than 21%; the mass ratio is 1:12. At the time, the compounding rate did not exceed 25%.
  • the complex with a phospholipid mass ratio of 1:8 and 1:12 is dissolved in the medium chain oil, and a medium chain oil solution having a drug concentration of 1.5 mg/g is prepared by stirring, and left at room temperature for one month and in a refrigerator (2-8°).
  • the invention provides an insulin lipid complex which is compounded by an insulin and a lipid material in an organic solvent system containing a low boiling point acid, wherein the mass ratio of the insulin to the lipid material is 1:3 ⁇ 1. :15; preferably 1:4 to 1:12; more preferably 1:5 to 1:10. .
  • the insulin may be selected from the group consisting of natural insulin, porcine insulin, bovine insulin, recombinant human insulin, and various medium and long-acting insulins, preferably recombinant human insulin;
  • the lipid material is selected from natural phospholipids, synthetic One or a mixture of phospholipids, cholesterol, cholic acid and salts thereof, preferred lipid materials are selected from natural phospholipids, and preferred natural phospholipids are selected from the group consisting of egg yolk phospholipids or soybean phospholipids.
  • the insulin lipid complex of the present invention may further comprise one or more other ingredients selected from the group consisting of antioxidants, metal chelators, and protease inhibitors.
  • the complex solvent used is an organic solvent containing a low boiling point acid, wherein the low boiling point acid is selected from one or a mixture of trifluoroacetic acid and hydrogen chloride gas, and the organic solvent is methanol.
  • the organic solvent is methanol.
  • the insulin lipid complex of the present invention can be prepared by the following method:
  • Method 1 Take an organic solvent, first add appropriate amount of trifluoroacetic acid or pass an appropriate amount of hydrogen chloride gas, then add insulin and lipid material, stir and mix the two to form a clear and transparent solution, and remove the organic solvent by rotary evaporation or spray drying. The residue is dried.
  • Method 2 taking an organic solvent, dissolving the lipid material first, then adding insulin, slowly adding an appropriate amount of hydrogen chloride gas or adding an appropriate amount of trifluoroacetic acid under stirring, until the insulin is completely dissolved to form a clear and transparent solution, and stirring at normal temperature. Or sonication for a certain period of time, the insulin and the lipid material are fully compounded, and the organic solvent is removed by rotary evaporation or spray drying, and the residue is obtained by drying.
  • Method 3 Dissolving insulin in solvent A containing appropriate amount of trifluoroacetic acid or hydrogen chloride gas to prepare a clarified insulin solution, and the lipid material is dissolved in an appropriate amount of solvent B to prepare a clarified lipid solution, and the insulin solution and lipid are prepared. After the quality solution is uniformly mixed, the water bath is steamed under reduced pressure, and then drained by a water pump to obtain a dry state.
  • Method 4 Dissolving insulin in Solvent A containing an appropriate amount of trifluoroacetic acid or hydrogen chloride gas,
  • the clarified insulin solution is prepared, and the lipid material is dissolved in an appropriate amount of solvent B to prepare a clarified lipid solution.
  • the solution is steamed under reduced pressure in a water bath at a certain temperature, and distilled in a solvent. In the process, add an appropriate amount of solvent B in portions, continue to steam, pump the solvent, and dry.
  • the "organic solvent” is selected from one of methanol, tetrahydrofuran and DMSO or a mixture thereof, preferably methanol.
  • the amount of trifluoroacetic acid added or the amount of hydrogen chloride gas introduced is such that the added insulin is completely dissolved.
  • the concentration of the acid in the organic solvent is 0.01 to 0.5%, preferably 0.05 to 0.1%.
  • the "solvent A” may be selected from any one of methanol, tetrahydrofuran or DMSO or a mixture thereof, preferably methanol;
  • the "solvent B” may be selected from one of trichloromethane, dichloromethane or diethyl ether or a mixture thereof, preferably dichloromethane.
  • the concentration of trichloroacetic acid or hydrogen chloride gas in the solvent A is about 0.01 to 0.5%, preferably 0.05 to 0.1%.
  • the solvent B is used in an amount of about 3 to 8 times, preferably 4 to 6 times, that of the solvent A.
  • the concentration of insulin should be controlled at 0.5 ⁇ 30mg/ml, preferably 1.0 ⁇ 10.0mg/ml.
  • Normal temperature condition in “stirring or sonicating for a certain period of time under normal temperature conditions” means controlled at 15 ° C ⁇ 30 ° C, for example, 1 5 ° C, 20 V,
  • the method for removing the organic solution may be a rotary evaporation method or a freeze drying method, and other methods for removing the solvent may be employed as long as the solvent can be removed and the drug is not affected. The stability is sufficient. When the solvent is removed by rotary evaporation, it should be carried out at a temperature not exceeding 40 ° C, specifically 35 ° C, 30 ° C or 25 ° C.
  • the present invention also provides an insulin oil. a formulation of a solution comprising the islets of the invention Lipid complexes and oils.
  • the oil is selected from the group consisting of long-chain triglycerides (long-chain oils), medium-chain glycerides (medium chain oils), glycerol monooleate, monoglyceride, ethyl oleate, and isopropyl myristate.
  • long-chain oils long-chain oils
  • medium-chain glycerides medium chain oils
  • glycerol monooleate monoglyceride
  • ethyl oleate ethyl oleate
  • isopropyl myristate is selected from the group consisting of long-chain triglycerides (long-chain oils), medium-chain glycerides (medium chain oils), glycerol monooleate, monoglyceride, ethyl oleate, and isopropyl myristate.
  • esters or a mixture thereof.
  • the oil solution containing the insulin lipoplex of the present invention characterized in that the oil may optionally be added with one or more selected from the group consisting of Tween 80, Span 20, Takizawa, and polyoxyethylene hydrogenation.
  • Emulsifier for castor oil (Cremphor RH40), polyoxyethylene castor oil (Cremphor EL35) and Labmsal.
  • the oil solution comprising the insulin lipoplex of the present invention is characterized in that one or more auxiliary emulsifiers selected from the group consisting of propylene glycol, PEG400, and Transcutol P are optionally added to the oil.
  • the oil solution containing the insulin lipoplex of the present invention may have a drug content of 12 mg/g, 10 mg/g, 8 mg/g, 6 mg/g, 5 mg/g, 4 mg/g, 2 mg/g or less.
  • the insulin lipoplex prepared by the present invention is used in the preparation of an insulin sustained release injection.
  • an oil solution comprising an insulin lipoplex of the present invention for the preparation of a non-injectable preparation for oral administration of insulin, transdermal, mucosal and pulmonary inhalation.
  • the invention also provides a novel insulin vesicle comprising the insulin lipid complex of the invention and a phospholipid, and an appropriate amount of one or more mixed surfactants such as Tween20, Span60, etc., having an average particle diameter of about 20 nm. -200 nm.
  • the present invention comprises a novel vesicle of an insulin lipid complex, which may be an aqueous dispersion, or may be freeze-dried or spray-dried to form a solid powder.
  • the novel vesicle comprising the insulin complex of the present invention is used for preparing a non-injectable preparation for oral administration of insulin, transdermal, mucosal and pulmonary inhalation.
  • the composite of the present invention has the following advantages over prior art methods: 1) Organic solvent system containing low boiling point acid as composite solvent: no water in the composite solvent, low boiling point trifluoroacetic acid and hydrogen chloride gas are easy to be distilled off, which not only provides an acidic environment for the dissolution of insulin, but also shortens the evaporation of organic solvent.
  • the selected organic solvent can ensure the clarification of the complex solution of insulin and lipid material, its polarity can ensure the complex stability of insulin and lipid material, and does not affect the quality of insulin, and the obtained complex has no acidic substance. Or water residue, the compounding rate is above 90%, and there is no significant change in the drug content during preparation and storage.
  • Figure 1 Oil solution containing insulin lipid complex and novel vesicle hypoglycemic curve
  • Figure 2 Schematic diagram of phospholipid complex and liposome structure Preparation Example 1.
  • the above methanol, tetrahydrofuran and DMSO treatment methods were used to remove the solvent, and then dissolved into a test solution containing 0.1 mg/ml of insulin with 5 mM PBS (pH 7.4), and the test solution was placed in a light by circular dichroism.
  • a test solution containing 0.1 mg/ml of insulin with 5 mM PBS (pH 7.4)
  • the test solution was placed in a light by circular dichroism.
  • the quartz sample cell with a diameter of 0.1 cm measured in the far ultraviolet region (190 nm to 250 nm), the characteristic peak position and the lowest ellipticity of the secondary structure map were recorded; the test solution was placed in a 1 cm sample cell at near ultraviolet The region (250 nm to 350 nm) was measured, and the characteristic negative peak position and the lowest ellipticity of the tertiary structure map were recorded.
  • Glacial acetic acid has a high boiling point and spin evaporation takes a long time. As the organic solvent is removed, the concentration of glacial acetic acid becomes more and more concentrated, leading to degradation or denaturation of insulin. In particular, the residual glacial acetic acid in the final composite cannot be removed, which deteriorates the storage stability of the composite. This compound with a high residual amount of glacial acetic acid, even if it is dissolved in an oil solution, will have a significant decrease in the drug content, and the content usually decreases in the first 24 hours.
  • the present inventors have selected methanol having no effect on the insulin content as a complex solvent, adding 1-5% glacial acetic acid, preparing a complex with a drug/phospholipid mass ratio of 1:10, and removing the solvent by a rotary evaporation method at 35 ° C, vacuum condition After drying for 48 hours, the obtained composite was measured, and the compounding ratio was 98% or more, but the residual amount of glacial acetic acid was determined by gas chromatography to exceed 0.5%. After the prepared compound was stored at 2-8 ° C for 4 weeks, the insulin content decreased by about 20% compared with the initial content. The complex was dissolved in a medium chain oil and allowed to stand at room temperature for 24 hours, which was reduced by about 15% compared to the initial content. This suggests that the residue of glacial acetic acid has a very significant effect on product stability.
  • the inventors further tested the methanol solution containing dilute hydrochloric acid as a reaction solvent, and the rotary evaporation method at 35 ° C (the temperature reached 50 ° C has a significant effect on the quality of insulin, usually needs to be controlled below 40 ° C, and the time should not be too Long), it was found that it was more difficult to remove the solvent due to the introduction of a certain amount of water, and the composite was not formed well.
  • the residual amount of hydrochloric acid was determined by gas chromatography to be about 0.2%, and after storage for 4 weeks at 2-8 ° C, the insulin content in the composite was reduced by about 10% compared with the initial content.
  • the complex was dissolved in a medium chain oil and allowed to stand at room temperature for 24 hours, and the content was reduced by about 5% compared with the initial content.
  • ⁇ Complex ratio (encapsulation ratio): The complex ratio was determined by using the insulin complex to be easily dissolved in the cyclohexane ring, and the free insulin was insoluble in the cyclohexene ring.
  • Determination of total drug content of the complex Accurately weigh the appropriate amount of insulin phospholipid complex, dissolve it in methanol containing 1% glacial acetic acid and dilute to the mark, shake it up, as the test solution; and accurately weigh the appropriate amount of insulin reference substance, using PBS ( pH 7.4) The solution was dissolved to prepare a solution having a concentration of 1 mg/ml, and diluted with a solution containing 1% glacial acetic acid to a solution having a concentration of 0.2 mg/mL as a control solution.
  • Determination of drug content in combination with phospholipids in the complex Accurately weigh the appropriate amount of insulin phospholipid complex (containing about 10mg of insulin), put it in a 10mL volumetric flask, add cyclohexanil to dissolve and dilute to volume, shake well, filter through 0.45 ⁇ organic membrane Except for the uncompressed free insulin, accurately take 2mL of the filtrate in a 10 mL volumetric flask, remove the solvent by nitrogen, add to the methanol containing 1% glacial acetic acid, dilute to the mark, shake well, and measure according to the above HPLC method. Calculate the drug content in the solution according to the external standard method, and record it as W complex
  • ⁇ Solubility in oil Take appropriate amount of insulin and phospholipid complex, add soybean oil or medium chain oil, place in a magnetic stirrer at 30 °C, stir for 6 hours to fully mix and dissolve, and let stand at 30 °C for 24 hours to observe whether the drug is precipitated. If no drug is precipitated, add an appropriate amount of insulin phospholipid complex, and operate in the same way until the drug is precipitated. Sampling 5 mL, filtering through a 0.45 ⁇ filter, and taking the filtrate The appropriate multiples were diluted with 1% acetic acid in methanol, and the apparent solubility in soybean oil and medium chain oil was calculated according to HPLC.
  • the content of the drug increases with the decrease of the proportion of insulin in the system; when the mass ratio of insulin to phospholipid is 1: 5, the two are basically compounded completely, but when the ratio is greater than 1:15, the compounding rate decreases.
  • the solubility in the medium chain oil increases with the proportion of phospholipids in the system. When the ratio of the two is greater than 1:7.5, the solubility tends to be stable.
  • the methanol concentration (with appropriate amount of hydrogen chloride gas) was used as the solvent, and the drug concentration was set to 2 mg/ml.
  • the ratio of insulin to soybean phospholipid was 1:1, 1:3, 1:5, 1:7.5, 1: 10,, 1: 15 and 1: 20 (w/w) 0 Dissolve insulin and liposome together in methanol, stir at room temperature for 10 minutes to dissolve the lipid material and drug into the solution, and transfer to steaming.
  • Bottle The solvent was removed by rotary evaporation at 35 ° C, and vacuum-dried at room temperature for 12 hours or more under vacuum.
  • the compounding rate and the solubility in the medium chain oil were determined according to the method under 3.3 above. The results are as follows: Effect of the ratio of drug to phospholipid on the complex
  • the selected solvent system can simultaneously satisfy the following conditions: 1) Both the lipid material and the insulin can dissolve to form a clear and transparent solution; 2) The system does not contain water, and the polarity is small, which is beneficial to the complexation between the insulin and the lipid material molecules. 3) Solvent system has high evaporation efficiency, easy to remove, no acid component or moisture residue; 4) insulin is stable during preparation.
  • Example 1 Preparation of insulin complex containing different proportions of soybean phospholipid
  • Example 2 Preparation of insulin complexes containing different proportions of egg yolk phospholipids
  • Example 3 Preparation of insulin complexes containing different ratios of soybean phospholipids
  • soybean phospholipids are 0.6g, lg, 1.2g, 1.4g, 1.6g, 1.8g, 2.0g, 2.4g and 3.0g, and the appropriate amount of methylene chloride is added (about the amount of methanol) 3-6 times), 37 °C water bath decompression steaming, can be added to the dichloromethane (about 1-2 times the amount of methanol) in the rotary steaming process. After basically drying, switch to the pump for 10 minutes.
  • Example 4 Preparation of insulin complexes containing different proportions of egg yolk phospholipids
  • Example 5 Preparation of insulin complexes containing different ratios of sodium deoxycholate
  • Example 6 Preparation of an insulin complex containing different ratios of sodium deoxycholate
  • Example 7 Preparation of insulin lipoplex prepared by replacing DMSO with DMSO
  • Example 9 Oil solution containing insulin/phospholipid complex
  • the composites of Examples 1 to 4 were weighed (the ratio of the drug fats was selected to be 1:10, W / w), and each of the examples was taken in two portions, and the medium chain triglyceride (medium chain oil) and the long were added respectively.
  • the chain triglyceride (long-chain oil) was quantified to 10 g, stirred and dissolved, and an oil solution having a drug loading of 1 mg/g, 2 mg/g, 3 mg/g, and 5 mg/g, respectively, was prepared.
  • Example 3 Example 4 amount of complex HOmg 220 mg 330 mg 550 mg Drug loading lmg / g 2 mg / g 3 mg / g 5 mg / g were added separately Chain oil or long-chain oil is quantified to 10g, prepared into 8 samples. The above oil solution is allowed to stand at room temperature for 24 hours, and the solution is clarified. The remaining content of HPLC is above 98.5 % when it is zero, indicating that the drug has not degraded; Store at 4 ° C for 6 months, dissolve The liquid was clarified, and the remaining content was determined by HPLC, which was 99.4% or more at the initial time, and the quality was stable.
  • Example 10 Oil solution containing insulin/phospholipid complex (containing emulsifier)
  • medium chain triglyceride medium chain oil
  • 2g and 4g Tween 80 respectively, and mix to prepare the oil phase containing emulsifier
  • Tween 80 ig 2g 4g Weigh the appropriate amount of the complexes of Examples 5 to 7 (all ratios of drug fat: l:10, w/w), a total of 3 parts, respectively added to the oil phase of the above three different emulsifiers Each of 9.45 g was stirred and dissolved to obtain an oil solution having a drug loading of 5 mg/g, which was obtained by filtration.
  • Prescription composition prescription 1 prescription 2 prescription 3 compound are 550mg
  • Example 5 Example 6
  • Example 7 Oil phase is 9.45g Oil phase 1 Oil phase 2 Oil phase 3
  • the above oil solution is allowed to stand at room temperature for 24 hours, the solution is clarified, HPLC determination The remaining content was above 98.3 % when it was zero, indicating that the drug did not degrade. After storage at 2-4 ° C for 6 months, the solution was clarified, and the remaining content by HPLC was 97.7% or more at the initial stage, and the quality was stable.
  • Example 11 Oil solution containing insulin/phospholipid complex (containing emulsifier)
  • medium chain triglyceride medium chain oil
  • Cremphor RH40 1 g, 2g and 4g respectively, and mix to prepare three different emulsifier ratio oil phases;
  • Cremphor RH40 ig 2g 4g Weigh the appropriate amount of the complexes of Examples 2 to 4 (all ratios of 1:10, w/w), 3 parts in total, and add the oil phases of the above three different emulsifiers. Each of 9.12 g was stirred to dissolve, and an oil solution having a drug loading of 8 mg/g was obtained, which was obtained by filtration.
  • Prescription composition prescription 1 prescription 2 prescription 3 compound are 880mg
  • Example 2 Example 3
  • Oil phase is 9.12g Oil phase 1 Oil phase 2 Oil phase 3
  • HPLC determination The remaining content was 98.6% or more when it was zero, indicating that the drug did not degrade.
  • the above oil solution contains an emulsifier, 50 times of water, and can be emulsified by magnetic stirring for 3 minutes, and the average particle size after emulsification is 1 ⁇ ⁇ .
  • Example 12 Oil solution containing insulin/phospholipid complex (containing emulsifier and co-emulsifier) Weigh the appropriate amount of the complexes of Examples 1 to 4 (the ratio of drug to fat is 1:10, W / w) 4 parts, add oil, emulsifier and co-emulsifier according to the following prescription, stir to dissolve, and obtain drug loading
  • the 4 groups of oil solution were allowed to stand at room temperature for 24 hours, the solution was clarified, and the remaining content was determined by HPLC, which was above 98.3 % when it was zero. After storage at -4 ° C for 6 months, the solution was clarified, and the remaining content by HPLC was 97.8 at the initial time. Above %, the quality is stable.
  • the four groups of oil solution contain emulsifier and co-emulsifier. Adding 5-500 times of water, dilute hydrochloric acid or buffer of pH 6.8 can be emulsified instantaneously. The average particle size after emulsification is 20 by laser particle size analyzer. ⁇ 50nm range.
  • Example 13 Vesicle solution containing insulin/phospholipid complex
  • Example 14 vesicle solution containing insulin/phospholipid complex
  • Example 15 Vesicle powder containing insulin/phospholipid complex
  • Test Example 1 Stability of an oil solution containing an insulin complex in a gastrointestinal bioenzyme environment
  • Test sample insulin solution (INS)
  • Insulin complex (Phytosome) is dissolved in water to make a suspension.
  • test sample Place the test sample in artificial gastric juice containing 1% (w/v, g/ml) pepsin, incubate in a 37 ° C water bath, vortex and mix for 1 minute, 5 minutes and 30 minutes and 60 minutes. #0.5ml, add cold Tris solution (take 600s of Tris reagent, add water to 500ml) 0.1ml, vortex and mix, centrifuge, lOOOOrpm, 5min, take the supernatant according to the above HPLC method to determine the residual percentage of insulin according to the law, the result as follows:
  • Test Example 2 Stability of vesicle solution containing insulin complex in gastrointestinal bioenzyme environment Sample: Insulin solution (INS)
  • Insulin normal vesicle insulin normal vesicle (insulin instead of insulin complex, prepared by the same method)
  • test sample Place the test sample in artificial gastric juice containing 1% (w/v, g/ml) pepsin, incubate in a 37 ° C water bath, vortex and mix, take 1 minute, 5 minutes and 30 minutes and 60 minutes to take # 0.5 Ml, cold-packed Tris solution (take 600s of Tris reagent, add water to 500ml) 0.1ml, vortex and mix, centrifuge, lOOOOrpm, 5min, take the supernatant according to the above HPLC method to determine the residual percentage of insulin according to the law, the results are as follows:
  • Test Example 3 Vesicle solution containing insulin complex Caco-2 cell permeability
  • Test sample insulin solution (INS)
  • Insulin common vesicles insulin instead of insulin complex, prepared by the same method
  • Novel vesicles comprising the complex of Example 13
  • Test Example 4 Oil solution of insulin complex and hypoglycemic effect of new pouch
  • a normal male rat weighing 200 ⁇ 20 g was used. After fasting for 12 hours (overnight), 10 mg/ml of streptozotocin citrate-trisodium citrate buffer solution (pH 0.45 or so) was intraperitoneally injected at a dose of 60 mg/kg. , stable for one week, take blood sugar level greater than 16. 7 ol / l is judged as a diabetes model.
  • Rats were fasted for one night before the test, and they were not allowed to drink water. They were free to drink during the experiment. Thirty rats were randomly divided into 5 groups and administered according to the following grouping scheme. Blood was taken from the tip of the tail at different time points, and the blood glucose meter was used to measure the blood glucose level.
  • Group 2 Ordinary vesicles of insulin, orally administered at a dose of 70 IU/kg
  • Example 9 Prescription 1 Oil solution prepared from medium chain oil, orally administered at a dose of 70 IU/kg
  • the fourth group The novel nano vesicles prepared in Example 13 were used to calculate the percentage of blood glucose at each time point of each animal at a dose of 70 IU/kg, with the percentage of hypoglycemic as the ordinate and the time as the abscissa, and the hypoglycemic effect curve was drawn. See Figure 1

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Endocrinology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供的是一种胰岛素脂质复合物及其制备方法和制剂。所述胰岛素脂质复合物是由胰岛素与脂质材料在含有低沸点酸的有机溶剂系统中复合并干燥来制备的。所述复合物中胰岛素与脂质材料的质量比为1:3~1:20。还提供了胰岛素脂质复合物的油溶液和含有胰岛素的囊泡。

Description

一种胰岛素的脂质复合物及其制备方法和制剂
技术领域
本发明涉及一种胰岛素脂质复合物及其制备方法, 还涉及包含胰岛 素脂质复合物的油溶液及其在制备缓释注射剂和非注射给药途径制剂中 的用途, 又涉及包含胰岛素脂质复合物的新型囊泡 (脂质体) 及其在制 备非注射给药途径制剂中的用途, 属医药制剂技术领域。 背景技术
1、 脂质复合物研究进展及背景介绍
1.1 复合物的构造特点及形成机制
磷脂复合物是由意大利学者 Bombarddli在研究脂质体时发现的, 早期磷脂复合物研究涉及的药物大多是含有酚羟基的黄酮或多酚类成 分, 后期更多的研究证实, 除酚羟基外, 一些醇羟基、 酰胺基或羰基等 极性基团均有可能与磷脂或其他脂质材料 (如胆固醇、 胆酸钠等) 的亲 水端通过分子间氢键或范德华力等相互作用形成复合物球状体。 不论是 亲水性药物还是亲脂性药物, 只要含有能复合的极性基团, 都可形成脂 质复合物。 脂质复合物的形成, 可显著提高药物亲脂性和油溶性。
如附图 2所示,磷脂复合物的组成、结构与同样由磷脂构成的囊泡 (又称脂质体) 在构造上明显不同。 脂质体是磷脂分子的亲水端向外、 疏水端向内形成的双分子膜围成的囊泡结构。 而磷脂复合物则是活性成 分的极性基团与磷脂的亲水端部位通过分子间相互作用而被固定, 将磷 脂的亲水部位包裹, 而疏水端不参与复合反应, 可自由移动, 形成一个 亲脂性的球状体。 一个脂质体囊泡可能有成百甚至上千个磷脂分子包围而成, 双分子 膜的外层和内层均为磷脂的亲水端, 而中间夹层则为疏水端。 对于亲脂 性药物, 可被包封于双分子膜的夹层中(图中蓝色方块), 包封率通常较 高且稳定, 不易泄漏; 而亲水性药物只能分散在双分子膜围成的囊泡内 核或外围, 由于药物进入内核比较困难, 实际上亲水性药物大多数分布 在外围, 稳定性较差且易发生泄漏。 在粘膜透过性方面, 亲脂性药物的 脂质体往往明显优于亲水性药物的脂质体。
因此, 对于亲水性药物, 如先制备脂质复合物提高亲脂性, 再制备 囊泡, 可提高包封率和稳定性, 改善粘膜转运特性。 2、 胰岛素脂质复合物研究背景及现有技术的缺陷
2.1胰岛素脂质复合物研究背景
胰岛素易受胃酸及消化道各种蛋白水解酶的破坏, 且因分子量大难 以穿透胃肠粘膜屏障, 常规口服制剂无效, 皮下注射仍是目前最主要的 给药途径, 长期频繁的注射患者顺应性差。 在过去的几十年中, 国内外 医药工作者为克服频繁注射的顺应性问题, 开展了大量研究, 一方面是 通过结构修饰, 制备中效和长效胰岛素, 延长了药效维持时间, 减少注 射次数, 另一方面是通过药剂学技术方法, 制备脂质体、 纳米粒、 微球、 微乳或油溶液, 提高药物对抗酸碱及生物酶的稳定性、 促进药物经上皮 粘膜的转运与吸收, 为口服、 经皮、 粘膜、 肺部吸入等非注射给药制剂 的发展提供释药载体。
由于胰岛素亲脂性差, 限制了微粒载体的制备与发展。 胰岛素脂质 体是国内外报道最多的微粒载体, 但由于胰岛素分子量大, 亲水性强, 药物大多存在于磷脂双分子膜的外围, 包封率低, 易发生泄漏, 对胃肠 稳定性及粘膜透过性的改善程度有限; 而纳米粒、 微球的制备大多是在 有机溶剂系统中进行的, 而胰岛素难溶于有机溶剂, 包封率极低, 且仅 吸附于微粒表面, 给药后药物易发生突释, 稳定化效果同样较差; 现有 文献报道的微乳或自微乳, 均将胰岛素溶于水相, 无法避免药物与胃酸 及生物酶的接触, 不利于提高胃肠环境中的稳定性。
胰岛素分子中含有大量的酰氨基、酚羟基、羟基、羰基等极性基团, 均有可能与脂质材料的亲水端发生分子间相互作用形成脂质复合物, 从 而改善其亲脂性, 突破微粒载体制备的限制。 近年来, 关于胰岛素脂质 复合物的研究成为国内外关注的热点。 但胰岛素的亲脂性较差, 同样限 制了脂质复合物的制备, 国内外文献报道和专利普遍存在复合率低、 质 量不稳定的缺陷。
2.2现有技术的不足与缺陷
胰岛素 ¾A、 B两个肽链组成, 分子量接近 6千, 介于多肽和蛋白质之 间。 人胰岛素(Insul in Human) A链有 11种 21个氨基酸, B链有 15种 30个氨 基酸, 共 26种 51个氨基酸组成。 胰岛素不溶于水及有机溶剂, 但可溶于 酸性稀醇、 PH7. 4的磷酸盐缓冲液、 稀酸和稀碱中。
胰岛素中含有大量的可能与脂质材料亲水端发生分子间相互作用的 极性基团, 具备形成脂质复合物的条件。 但胰岛素的蛋白质类结构特征 及理化性质特点, 使得脂质复合物的制备极其困难, 最大的障碍就是复 合溶剂的选择。
有机溶剂尤其是非质子传递溶剂有利于复合反应, 但胰岛素在有机 溶剂中不溶, 且有机溶剂有可能导致胰岛素降解或构象变化, 因此, 单 纯的有机溶剂无法制备胰岛素复合物, 至今未见文献报道。 如果选用 PH7. 4 的磷酸盐缓冲液, 虽然胰岛素具有一定的溶解度且质量稳定, 但 脂质材料不能够溶解成澄清透明的溶液, 再加上水的极性太大, 制得的 复合物包封率极低,且分子间作用力极弱,质量不稳定。沃维汉 [ 袭 , 重组人胰岛素复合物、 其制备方法及包含该复合物的药物组合物, 中国 专利: 01140047, ^^- -i^]采用磷酸盐缓冲液为溶剂, 将胰岛素和磷 脂分别溶于或混悬于水溶液中, 混合均匀, 冷冻干燥去除水分制备磷脂 复合物, 结果发现, 当磷脂与药物的质量比为 25: 1 (摩尔比约为 185: 1) 时, 复合率仅 21.35%, 150: 1 (摩尔比约为 1110: 1) 时复合率为 72.0%。 理论上分析, 胰岛素含 53个酰氨基, 4个酚羟基, 12个醇羟基, 这 些基团都有可能与磷脂复合, 则 1摩尔的药物理论上需要约 70摩尔的 磷脂 (重量比约为 1: 10)。 通常, 为确保药物复合完全, 脂质材料的 投料量应略高于理论值, 按理论量的 1.5倍计算, 脂质材料最大用量应 不超过药物质量的 15倍,即磷脂用量应控制在胰岛素质量的 15倍以下 比较经济合理。但 01140047专利技术中,磷脂的质量高达胰岛素的 150 倍时, 仍未能完全复合, 提示以水为溶剂复合效率太低。 另一公开文件 [RR CNew, 包含中链单酸甘油酯的疏水性制剂, 中 国专利: 97196069, 1999-07-28] 被称为 Macrosol技术, 提供了一种含 脂质复合物的胰岛素油溶液, 其脂质复合物的制备方法也是将药物与双 亲性的脂质材料共同溶于缓冲盐的水相溶剂中, 经旋转蒸发或冻干技术 除去溶剂, 再溶于油相中制得油溶液 (或将复合溶液直接与油混合, 再 进行冷冻干燥) 。 其确定的胰岛素与磷脂的重量比为 1:1至 1:20, 优选 1:2至 1:8, 但未提供复合率评价结果。 鉴于 01140047专利以水为溶剂 难以获得高复合率的复合物, 不难推测, 97196069专利条件制备的复合 物, 大部分药物可能并未与磷脂复合。
本专利发明人对 97196069专利方法进行了验证。首先根据胰岛素复 合物在环己垸中易溶、 而游离胰岛素不溶的特点, 建立了复合率测定方 法(HPLC方法定量)。根据 97196069专利方法制备胰岛素磷脂复合物, 当胰岛素 /磷脂质量比为 1:2时, 复合率低于 8%; 质量比为 1:8时, 复合 率未超过 21%; 质量比为 1:12时, 复合率未超过 25%。进一步将胰岛素 /磷脂质量比为 1:8和 1:12的复合物溶于中链油中,搅拌制备药物浓度为 1.5mg/g的中链油溶液, 室温下放置 1个月和冰箱 (2-8°C ) 条件下放置 3个月, 均出现混浊现象。
虽然 97196069专利确定的胰岛素 /磷脂质量比例与理论值接近, 但 由于其制备方法中以水为复合溶剂, 因此复合率极低, 这与 01140047 专利技术结果相吻合。
综合以上两项专利, 以水为溶剂制备胰岛素脂质复合物,复合率低, 存在明显缺陷。
后续一些专利或报道, 均在 97196069 基础上对溶剂系统进行了改 进, 选用含有冰醋酸的乙醇、 含有冰醋酸的 DMSO、 或含有稀盐酸溶液 的乙醚等为复合反应的溶剂。与水溶液相比,有机溶剂的极性相对较小, 而酸的加入是为了增加胰岛素的溶解度, 提高复合效率。 本专利发明人 也进行了验证试验, 结果表明, 由于冰醋酸和盐酸的酸性较强, 且不易 挥除干净, 制备过程中胰岛素含量下降约 5-10% , 贮存过程中含量继续 下降至 20%或更多。
综上所述, 关于胰岛素脂质复合物的制备, 现有的专利或文献方法 因溶剂系统选择的缺陷导致复合效率低、药物在制备过程中易发生降解、 酸性成分或水分的残留影响贮存过程中的质量稳定性。 此外, 对药物 / 脂质材料用量比例未经科学优化, 最终获得的复合物因复合率低而导致 油中溶解度的改善程度有限, 制成的油溶液载药量低且贮存过程中易出 现混浊等不稳定现象。 发明内容:
本发明提供了一种胰岛素脂质复合物, 由胰岛素和脂质材料在含低 沸点酸的有机溶剂系统中复合而成, 复合物中, 胰岛素与脂质材料的质 量比为 1 :3~1 :15; 优选地为 1 :4~1 :12; 更优选地为 1 :5~1 :10。。 本发明的胰岛素脂质复合物,胰岛素可选自天然胰岛素、猪胰岛素、 牛胰岛素、 重组人胰岛素及各类中、 长效胰岛素, 优选地为重组人胰岛 素; 脂质材料选自天然磷脂、 合成磷脂、 胆 醇、 胆酸及其盐类的一种 或它们的混合物, 优选的脂质材料选自天然磷脂, 优选的天然磷脂选自 蛋黄磷脂或大豆磷脂。
本发明的胰岛素脂质复合物, 还可包含一种或多种选自抗氧化剂、 金属螯合剂和蛋白酶抑制剂的其它成分。
本发明的胰岛素脂质复合物, 所使用的复合溶剂为含低沸点酸的有 机溶剂, 其中, 低沸点酸选自三氟乙酸和氯化氢气体中的一种或它们的 混合物, 有机溶剂为甲醇、 四氢呋喃、 DMSO、 三氯甲垸、 二氯甲垸和 乙醚中的一种或其混合物。 本发明的胰岛素脂质复合物, 可采用如下方法制备:
方法 1 ) 取有机溶剂, 先加入适量三氟醋酸或通入适量氯化氢气体, 再加入胰岛素和脂质材料,搅拌使两者充分复合至形成澄清透明的溶液, 旋转蒸法或喷雾干燥除去有机溶剂, 残余物干燥即得。
方法 2) 取有机溶剂, 将脂质材料先溶于其中, 再加入胰岛素, 搅 拌条件下缓慢通入适量氯化氢气体或加入适量三氟醋酸, 至胰岛素完全 溶解形成澄清透明的溶液, 常温条件下搅拌或超声处理一定时间, 使胰 岛素与脂质材料充分复合, 旋转蒸法或喷雾干燥除去有机溶剂, 残余物 经干燥即得。
方法 3 ) 将胰岛素溶于含适量三氟乙酸或氯化氢气体的溶剂 A中, 制成澄清的胰岛素溶液, 脂质材料溶于适量的溶剂 B中制成澄清的脂质 溶液, 将胰岛素溶液与脂质溶液混合均匀后, 水浴减压旋蒸, 再经水泵 抽干处理, 干燥即得。
方法 4) 将胰岛素溶于含适量三氟乙酸或氯化氢气体的的溶剂 A中, 制成澄清的胰岛素溶液, 脂质材料溶于适量的溶剂 B中制成澄清的脂质 溶液, 将胰岛素溶液与脂质溶液混合均匀后, 在一定温度下水浴减压旋 蒸, 在溶剂蒸除过程中, 分次加入适量的溶剂 B , 继续旋蒸, 水泵抽除 溶剂, 干燥即得。
上述的方法 1 )及方法 2) 中, 所述的 "有机溶剂"选自甲醇、 四氢 呋喃和 DMSO中的一种或其混合物,优选地为甲醇。三氟乙酸的加入量 或氯化氢气体的通入量, 以能使加入的胰岛素完全溶解为准, 优选地, 酸在有机溶剂中的浓度为 0.01-0.5%,优选 0.05-0.1%。(重量 /体积, g/ml) 在上述方法 3 )及方法 4) 中, 所述的 "溶剂 A"可选自甲醇、 四氢 呋喃或 DMSO中的任一种溶剂或它们的混合物, 优选甲醇; 所述的 "溶 剂 B"可选自三氯甲垸、 二氯甲垸或乙醚中的一种或其混合物, 优选二 氯甲垸。 三氯醋酸或氯化氢气体在溶剂 A中的浓度约为 0.01-0.5%, 优 选 0.05-0.1%。 溶剂 B的用量约为溶剂 A的 3-8倍, 优选 4-6倍。 胰岛素与脂质材料的复合溶液中, 胰岛素的浓度应控制在 0.5~30mg/ml, 优选 1 .0~1 0.0mg/ml。 "常温条件下搅拌或超声处理一定 时间" 中的 "常温条件" 系指控制在 1 5°C~30°C, 例如 1 5°C、 20 V、
25°C或 30 °C ; "—定时间"是指控制在 30分钟以内, 例如 30分钟、 20 分钟、 1 0分钟或 5分钟。 " 在本发明的制备方法中, 去除有机溶的方法可以是旋转蒸发法, 也 可以是冷冻干燥法, 还可采用其它挥除溶剂的方法, 只要能够将溶剂挥 除干净, 并且不影响药物的稳定性即可。 旋转蒸发法去除溶剂时, 应在 不超过 40 °C的条件下进行, 具体地说, 可以是 35°C、 30 °C或 25°C。 本发明还提供一种胰岛素油溶液的制剂, 其包含本发明所述的胰岛 素脂质复合物和油。 其中, 油选自长链甘油三酸酯(长链油)、 中链甘油 酸三酯(中链油)、 甘油单油酸酯、 甘油单甘酯、 油酸乙酯、 肉豆蔻酸异 丙酯中的一种或它们的混合物。
本发明的包含胰岛素脂质复合物的油溶液, 其特征在于, 油中还可 任选地加入选地加入一种或多种选自吐温 80、 司盘 20、 汴泽、 聚氧乙 烯氢化蓖麻油 (Cremphor RH40)、 聚氧乙烯蓖麻油 (Cremphor EL35) 和 Labmsal的乳化剂。
本发明的包含胰岛素脂质复合物的油溶液, 其特征在于, 油中还可 任选地加入一种或多种选自丙二醇、 PEG400、 Transcutol P 中的助乳 化剂。
本发明的包含胰岛素脂质复合物的油溶液, 药物含量可以是 12mg/g, 10mg/g, 8mg/g, 6mg/g, 5mg/g, 4mg/g, 2mg/g或更低。
本发明制备的胰岛素脂质复合物, 在制备胰岛素缓释注射剂中的应 用。
本发明的包含胰岛素脂质复合物的油溶液, 在制备胰岛素口服、 经 皮、 粘膜和肺部吸入等非注射给药制剂中的应用。 本发明还提供了一种胰岛素新型囊泡, 其包含本发明的胰岛素脂质 复合物和磷脂, 还可加入适量的 Tween20, Span60等一种或几种混合表 面活性剂, 平均粒径约为 20nm-200 nm。
本发明包含胰岛素脂质复合物的新型囊泡, 可以是水分散液, 还可 以经冷冻干燥或喷雾干燥后制成固体粉末。
本发明的包含胰岛素复合物的新型囊泡,在制备胰岛素口服、经皮、 粘膜和肺部吸入等非注射给药制剂中的应用。 与现有技术方法相比, 本发明的复合物具有以下优点: 1 )含低沸点酸的有机溶剂系统作为复合溶剂:复合溶剂中不含水, 低沸点的三氟醋酸和氯化氢气体易于蒸除, 既为胰岛素的溶解提供了酸 性环境, 又缩短了有机溶剂挥除时间; 选择的有机溶剂可保证胰岛素与 脂质材料的复合溶液澄清, 其极性可确保胰岛素与脂质材料的复合稳定 性, 且不影响胰岛素的质量稳定, 制得的复合物中无酸性物质或水分残 留, 复合率在 90%以上, 制备及贮存过程中药物含量无明显变化。
2)药物 /脂质材料用量合理: 基于复合溶剂的突破, 胰岛素与脂质 材料的质量比为 1 :3~1 :15, 即可获得复合完全的复合物。 脂质材料用量 与理论推测值相吻合。
3 ) 制备稳定的油溶液: 复合物显著改善了胰岛素的油溶性, 制得 的油溶液不仅载药量高, 且稳定性好, 长期放置不发生混浊, 物理性质 和化学性质均较稳定。
4) 制备稳定的新型囊泡: 复合物显著改善了胰岛素的亲脂性, 使 药物分布在囊泡的双分子膜夹层中, 药物在胃肠液中的稳定性及粘膜转 运速率均明显改善。
在本发明中, 如果没有特别地指出, 本文所用的科学和技术术语以 及名称都具有与本发明所属领域普通技术人员常规理解相同的意思; 并 且, 如果没有特别地指出, 其中所采用的物质及其含量或比例、 装置、 仪器、 制备条件等都是本领域技术人员所熟知的或者其根据本发明的描 述可得知的。 附图说明
附图 1 : 包含胰岛素脂质复合物的油溶液及新型囊泡降血糖曲线 附图 2: 磷脂复合物与脂质体结构示意图 制备实施例 1.前期探索性研究结果
1.1有机溶剂对药物化学性质及空间结构的影响考察
本发明人在前期研究工作中, 对不同的有机溶剂进行了系统考察, 具体方法如下: 取胰岛素溶液 (pH7.4PBS) 适量, 加入适量的甲醇、 乙 醇、 丙酮、 四氢呋喃、 乙酸乙酯、 乙醚、 氯仿, 充分混匀放置 1小时, 氮吹吹干, 加入 pH7.4的 PBS溶液复溶, 过滤后进行 HPLC测定, 以相 同浓度的胰岛素对照品 PBS溶液为对照, 依法测定, 计算胰岛素含量的 变化, 结果显示, 甲醇中药物含量无明显变化, 最为稳定, 其次为四氢 呋喃, 而乙醇和丙酮则使药物含量下降约 5-10% , 乙醚下降约 15 % , 乙 酸乙酯、 氯仿和四氢呋喃中下降更为明显, 约 30-40%, 提示在甲醇和四 氢呋喃中胰岛素化学性质比较稳定。 此外还考察了 DMSO和 DMF, 由 于 DMSO和 DMF沸点太高, 氮吹法难以吹干, 因此采用冷冻干燥法去 除溶剂, 再加入 pH7.4的 PBS溶液复溶, 过滤后同上法进行 HPLC测定 并计算胰岛素含量, 结果显示, DMF使胰岛素含量明显下降, 可能与其 碱性条件有关, 而 DMSO质量相对比较稳定。
进一步按上述甲醇、 四氢呋喃和 DMSO处理方法操作, 去除溶剂后 用 5mM PBS (pH7.4)溶解成含胰岛素 0.1mg/ml的供试溶液, 照圆二色 谱测定法, 将供试溶液置于光径 0.1cm 的石英样品池中, 于远紫外区 ( 190nm〜250nm) 测定, 记录二级结构图谱的特征峰峰位及最低椭圆 率; 另将供试溶液置于 1cm的样品池, 于近紫外区 (250nm〜350nm) 测定, 记录三级结构图谱的特征负峰峰位及最低椭圆率。 结果表明, 三 种溶剂处理后的胰岛素, 二级图谱均显示两个负峰, 分别在 210nm和 223nm左右, 最低椭圆率分别为 -10.63和 -8.45左右; 三级图谱中均有一 个负峰, 峰位在 274.5nm左右, 最低椭圆率约为 -2.26。 与未经有机溶剂 处理的胰岛素 PBS结果相比,无明显变化,提示甲醇、四氢呋喃和 DMSO 不会导致空间结构的改变。 1.2冰醋酸和盐酸的加入对复合物质量的影响
现有文献中, 为了使胰岛素形成澄清透明的溶液, 大多在有机溶剂 中加入冰醋酸或盐酸。
冰醋酸沸点高, 旋转蒸发耗时长, 随着有机溶剂的挥除, 冰醋酸浓 度越来越浓, 导致胰岛素降解或变性。 尤其是最终的复合物中残留的冰 醋酸无法去除, 会使复合物贮存稳定性变差。 这种冰醋酸残留量较高的 复合物, 即使溶于油溶液中, 药物含量仍会明显下降, 在最初的 24小时 含量通常下降。
本发明人曾选用对胰岛素含量没有影响的甲醇为复合溶剂, 加入 1-5 %的冰醋酸, 以药物 /磷脂质量比为 1 : 10制备复合物, 35°C旋转蒸 发法去除溶剂, 真空条件下干燥 48小时, 对制得的复合物进行测定, 复 合率达 98 %以上, 但气相色谱法测定冰醋酸残留量超出 0.5%。 制得的 复合物在 2-8°C条件下贮存 4周后, 与初始含量相比, 胰岛素含量下降 约 20%。 将复合物溶于中链油中, 室温放置 24小时, 与初始含量相比, 含量下降约 15 %。 由此提示, 冰醋酸的残留对产品稳定性有极为显著的 影响。
本发明人进一步用含有稀盐酸的甲醇溶液作为反应溶剂进行试验, 35°C旋转蒸发法(温度达到 50°C即对胰岛素质量产生明显影响, 通常需 控制在 40°C以下、且时间不宜过长), 结果发现, 因引入了一定的水分, 去除溶剂更加困难, 复合物成形不好。 气相色谱法测定盐酸残留量约 0.2%, 在 2-8°C条件下贮存 4周后, 与初始含量相比, 复合物中的胰岛 素含量下降约 10%。 将复合物溶于中链油中, 室温放置 24小时, 与初 始含量相比, 含量下降约 5 %。
1.3 以甲醇 (含 0.1%三氟乙酸) -二氯甲垸为复合溶剂的考察 以甲醇 (含 0. 1%三氟乙酸) -二氯甲垸为溶剂, 设定药物质量浓度为 1. 5mg/ml , 胰岛素与大豆磷脂的投料比分别为 1: 1, 1 : 3, 1 : 5, 1 : 7. 5, 1: 10, 1: 15和 1 : 20 (w/w) 0 将胰岛素溶于甲醇中, 磷脂加入二氯甲 垸中, 然后将两者混合, 旋转蒸发除去溶剂, 水浴温度为 37 °C, 氮吹。
照如下方法测定复合率及油中溶解度
►复合率(包封率): 利用胰岛素复合物在环己环中易溶, 而游离胰 岛素不溶于环己环的特征, 进行复合率测定。
复合物药物总含量测定: 精密称取胰岛素磷脂复合物适量, 用含 1% 冰醋酸的甲醇溶解并稀释至刻度, 摇匀, 作为供试液; 另精密称取胰岛 素对照品适量, 用 PBS (pH7.4 ) 溶液溶解制成浓度为 lmg/ml的溶液, 再用含 1%冰醋酸的甲醇稀释成浓度为 0.2mg/mL的溶液作为对照液。分 别精密量取供试液和对照液各 ΙΟμ 照 HPLC方法, 以 0.2%TFA: 乙 腈 =70: 30为流动相, 柱温 30°C, 流速 1 mL/min, 波长 214 nm, 色谱 柱为 Agilent ZORBAX 300 SB-C8, 依法测定, 根据峰面积按外标法计算 复合中的药物总含量, 记为 W 。
复合物中与磷脂结合的药物含量测定: 精密称取胰岛素磷脂复合物 适量 (含胰岛素约 10mg), 置 10mL容量瓶中, 加环己垸溶解并定容, 摇匀, 经 0.45μιη有机膜滤除未被复合的游离胰岛素, 精密量取续滤液 2mL于 10 mL容量瓶中, 氮吹除去溶剂, 加入含 1%冰醋酸的甲醇溶解 并稀释至刻度, 摇匀, 照上述 HPLC方法依法测定, 按外标法计算溶液 中的药物含量, 记为 W复
复合率按下式计算: 复合率%= (W ^AV ,S ) χ100 %
►油中溶解度: 分别取适量的胰岛素及磷脂复合物, 加入大豆油或 中链油, 置 30°C磁力搅拌器中, 搅拌 6h使充分混合、 溶解, 30°C放置 24h, 观察药物是否析出, 如无药物析出, 再加适量胰岛素磷脂复合物, 同法操作, 直至药物析出。 取样 5mL, 用 0.45μιη滤膜过滤, 取续滤液 用 1%醋酸甲醇稀释适宜倍数, 照 HPLC依法测定, 计算大豆油及中链 油中的表观溶解度。
7组复合物测定结果如下表所示:
药物与磷脂比例对复合物的影响
胰岛素: 磷脂 含量 (%) 复合率 (%) 中链油中溶解度
(mg/ g)
1: 1 86.34 4.48 0.116
1: 3 91.23 9.76 1.492
1: 5 94.77 98.5 2.39
1: 7.5 96.17 97.3 7.83
1: 10 98.31 96.0 7.09
1: 15 98.74 96.6 6.59
1: 20 97.82 93.2 6.71
结果表明: 药物与磷脂的投料比例对药物的含量、 复合率及溶解度 影响较为显著。 药物的含量随胰岛素在体系中所占比例的降低而增加; 当胰岛素与磷脂质量比为 1: 5时, 两者基本复合完全, 但比例大于 1: 15时, 复合率有下降趋势。在中链油中溶解度随磷脂在体系中所占比例 的增加而增加, 当两者比例大于 1: 7.5时, 溶解度趋于稳定。
1.4 以甲醇 (通入氯化氢气体)为复合溶剂的考察
以甲醇(通入适量氯化氢气体)为溶剂, 设定药物质量浓度为 2mg/ml , 考察胰岛素与大豆磷脂的投料比分别为 1:1, 1:3, 1:5, 1:7.5, 1: 10,, 1: 15和 1: 20 (w/w)0 将胰岛素和脂质体料一同溶于甲醇中, 室温条件下搅拌 10分钟使脂质材料和药物溶解至溶液澄清,移至旋蒸瓶 中, 在 35°C条件下旋转蒸发去除溶剂, 室温下减压真空干燥 12小时以 上。 照上述 3.3项下的方法测定复合率和中链油中溶解度, 结果如下: 药物与磷脂比例对复合物的影响
胰岛素: 磷脂 含量 (%) 复合率 (%) 中链油中溶解度
(mg/ g)
1: 1 82. 55 4. 16 0. 12
1: 3 90. 12 8. 83 1. 45
1: 5 92. 57 97. 3 2. 72
1: 7. 5 94. 68 98. 7 7. 32
1: 10 98. 72 97. 9 8. 51
1: 15 97. 29 97. 5 7. 33
1: 20 96. 33 94. 1 6. 43
本发明的目的, 是选择合适的复合溶剂系统, 提高胰岛素与脂质材 料的复合效率和质量稳定性。所选择的溶剂系统可同时满足以下条件: 1 ) 脂质材料和胰岛素都能够溶解形成澄清透明的溶液 ; 2 )系统中不含水分, 极性小, 有利于胰岛素与脂质材料分子间的复合; 3 )溶剂系统蒸发效率 高, 易挥除, 无酸性成分或水分残留; 4 ) 制备过程中胰岛素性质稳定。 实施例 1: 含不同比例大豆磷脂的胰岛素复合物的制备
将独立的 9份 0.2g胰岛素称至锥形小瓶中,分别加入大豆磷脂 0.6g、 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入含氯化氢气体(浓 度 0.1%, 重量 /体积, g/ml) 的甲醇溶液 20ml, 室温条件下搅拌 10分钟 使脂质材料和药物溶解至溶液澄清, 移至旋蒸瓶中, 在 35 °C条件下旋转 蒸发去除溶剂, 室温下减压真空干燥 12小时以上, 得药物 /磷脂重量比 为 1:3~1:15的 9组复合物粉末。
9组复合物经气相色谱法测定, 均未见氯化氢气体的残留。 实施例 2: 含不同比例蛋黄磷脂的胰岛素复合物的制备
将独立的 8份 0.2g胰岛素称至锥形小瓶中,分别加入蛋黄磷脂 0.6g、 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入含氯化氢气体(浓 度 0.1%, 重量 /体积, g/ml) 的甲醇溶液 20ml, 室温条件下搅拌 10分钟 使脂质材料和药物溶解至溶液澄清, 移至旋蒸瓶中, 在 35 °C条件下旋转 蒸发去除溶剂, 室温下减压真空干燥 12小时以上, 得药物 /磷脂重量比 为 1:3~1:15的 9组复合物粉末。
9组复合物经气相色谱法测定, 均未见氯化氢气体的残留。 实施例 3: 含不同比例大豆磷脂的胰岛素复合物的制备
将独立的 9份 0.2g胰岛素称至锥形小瓶中, 加入甲醇 (含 0.1%,Wv 三氟醋酸) 适量, 使胰胰岛素浓度控制在 10mg/ml~2mg/ml, 室温条件 下搅拌使脂质材料和药物溶解至溶液澄清;另取大豆磷脂 0.6g、 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入二氯甲垸适量 (约为甲醇用 量的 3-6倍), 37 °C水浴减压旋蒸, 旋蒸过程可再次加入二氯甲垸 (约 为甲醇用量的 1-2倍), 基本干燥后, 换用水泵抽 lOmin, 即得。
9组复合物经气相色谱法测定, 均未见三氟醋酸的残留。 实施例 4: 含不同比例蛋黄磷脂的胰岛素复合物的制备
将独立的 9份 0.2g胰岛素称至锥形小瓶中,加入甲醇含 0.1%,Wv三 氟醋酸) 适量, 使胰胰岛素浓度控制在 10mg/ml~2mg/ml, 室温条件下 搅拌使脂质材料和药物溶解至溶液澄清; 另取蛋黄磷脂 0.6g、 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入二氯甲垸适量 (约为甲醇用 量的 3-6倍), 37 °C水浴减压旋蒸, 旋蒸过程可再次加入二氯甲垸 (约 为甲醇用量的 1-2倍), 基本干燥后, 换用水泵抽 lOmin, 即得。
9组复合物经气相色谱法测定, 均未见三氟醋酸的残留。 实施例 5: 含不同比例脱氧胆酸钠的胰岛素复合物的制备
将独立的 8份 0.2g胰岛素称至锥形小瓶中,分别加入脱氧胆酸钠 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入含氯化氢气体 (浓度 0.1% , 重量 /体积, g/ml) 的四氢呋喃溶液 20ml, 室温条件下搅拌反应 5 分钟, 移至旋转蒸发仪中, 在 35 °C条件下蒸除溶剂, 室温下减压真空干 燥 12小时以上, 得 1:5~1: 15的 8组复合物粉末。
8组复合物经气相色谱法测定, 均未见氯化氢气体的残留。 实施例 6: 含不同比例脱氧胆酸钠的胰岛素复合物的制备
将独立的 9份 0.2g胰岛素称至锥形小瓶中, 甲醇(含 0.1%,Wv三氟 醋酸) 适量, 使胰胰岛素浓度控制在 10mg/ml~2mg/ml, 室温条件下搅 拌使脂质材料和药物溶解至溶液澄清; 另取脱氧胆酸钠 0.6g、 lg、 1.2g、 1.4g、 1.6g、 1.8g、 2.0g、 2.4g和 3.0g, 加入二氯甲垸适量 (约为甲醇用 量的 3-6倍), 37 °C水浴减压旋蒸, 旋蒸过程可再次加入二氯甲垸 (约 为甲醇用量的 1-2倍), 基本干燥后, 换用水泵抽 lOmin, 即得。
9组复合物经气相色谱法测定, 均未见氯化氢气体的残留。 实施例 7: 以 DMSO代替甲醇制备胰岛素脂质复合物制备
将独立的 3份 0.2g胰岛素称至锥形小瓶中, 分别加入大豆磷脂酰胆 碱、 蛋黄磷脂酰胆碱和脱氧胆酸钠各 2.0g, 加入含氯化氢气体 (浓度 0.1%, 重量 /体积, g/ml) 的 DMSO溶液 15ml, 室温条件下搅拌反应 15 分钟, -40°C以下预冻, 经冷冻干燥法去除溶剂, 得 3组复合物粉末。 3组复合物经气相色谱法测定, 均未见氯化氢气体的残留 实施例 8: 包含胰岛素 /磷脂复合物的油溶液
取大豆磷脂酰胆碱 1.8g, 加入甲醇溶液 30ml, 搅拌使溶解, 加入胰 岛素 0.2g, 通入氯化氢气体至溶液澄清透明, 室温条件下搅拌 5分钟, 35 °C条件下旋转蒸发蒸除溶剂,室温下减压真空干燥 12小时以上,制得 复合物。
分别称取复合物 0.3g, 共 5份, 分别加入甘油单油酸酯、 中链甘油 酸三酯 (中链油)、 油酸乙酯和肉豆蔻酸异丙酯各 2.7g, 搅拌使溶解, 制得载药量为 10mg/g的油溶液, 过滤即得。
上述油溶液室温放置 24小时, 溶液澄清, HPLC测定剩余含量, 为 零时的 99.7 % , 提示药物未发生降解; 在 2-8°C条件下贮存 6个月, 溶 液澄清, HPLC测定剩余含量, 为初始时的 99.1 % , 质量稳定。 实施例 9: 包含胰岛素 /磷脂复合物的油溶液
称取实施例 1至 4的复合物(均选取药脂比例为 l:10,W/w), 每个实 施例各取两份, 分别加入中链甘油酸三酯 (中链油) 和长链甘油酸三酯 (长链油)定量至 1 0g,搅拌使溶解,分别制备成载药量为 lmg/g、2mg/g、 3mg/g和 5mg/g的油溶液。
处方组成 处方 1 处方 2 处方 3 处方 4 复合物 实施例 1 实施例 2 实施例 3 实施例 4 复合物的量 HOmg 220mg 330mg 550mg 载药量 lmg/g 2mg/g 3mg/g 5mg/g 分别加入中链油或长链油定量至 1 0g, 制备成 8份样品 上述油溶液室温放置 24小时, 溶液澄清, HPLC测定剩余含量, 均 为零时的 98.5 %以上, 提示药物未发生降解; 于 2-4°C贮存 6个月, 溶 液澄清, HPLC测定剩余含量, 均为初始时的 99.4%以上, 质量稳定。 实施例 10: 包含胰岛素 /磷脂复合物的油溶液 (含乳化剂)
取中链甘油酸三酯(中链油) 10g, 共三份, 分别加入 1 g、 2g和 4g 吐温 80, 混匀, 制得含乳化剂的油相;
处方组成 油相 1 油相 2 油相 3 中链甘油酸三酯 l og 10g 10g
吐温 80 ig 2g 4g 称取实施例 5至 7的复合物适量(均选取药脂比例为 l:10,w/w), 共 3份, 分别加入上述 3种不同乳化剂配比的油相各 9.45g, 搅拌使溶解, 制得载药量为 5mg/g的油溶液, 过滤即得。
处方组成 处方 1 处方 2 处方 3 复合物均为 550mg 实施例 5 实施例 6 实施例 7 油相均为 9.45g 油相 1 油相 2 油相 3 上述油溶液室温放置 24小时, 溶液澄清, HPLC测定剩余含量, 均 为零时的 98.3 %以上, 提示药物未发生降解; 于 2-4°C贮存 6个月, 溶 液澄清, HPLC测定剩余含量, 均为初始时的 97.7%以上, 质量稳定。
上述油溶液含有乳化剂,加 50倍的水,磁力搅拌 3分种可发生乳化, 乳化后的平均粒径 1 μ πι。 实施例 11: 包含胰岛素 /磷脂复合物的油溶液 (含乳化剂)
取中链甘油酸三酯 (中链油) 10g, 分别加入 Cremphor RH40 1 g、 2g和 4g, 混匀制得 3种不同乳化剂配比的油相; 处方组成 油相 1 油相 2 油相 3 中链甘油酸三酯 l og 10g 10g
Cremphor RH40 ig 2g 4g 称取实施例 2至 4的复合物适量 (均选取药脂比例为 l:10,w/w),, 共 3份, 分别加入上述 3种不同乳化剂配比的油相各 9.12g, 搅拌使溶 解, 制得载药量为 8mg/g的油溶液, 过滤即得。
处方组成 处方 1 处方 2 处方 3 复合物均为 880mg 实施例 2 实施例 3 实施例 4 油相均为 9.12g 油相 1 油相 2 油相 3 上述油溶液室温放置 24小时, 溶液澄清, HPLC测定剩余含量, 均 为零时的 98.6%以上, 提示药物未发生降解; 于 2-4°C贮存 6个月, 溶 液澄清, HPLC测定剩余含量, 均为初始时的 99.2%以上, 质量稳定。
上述油溶液中含有乳化剂, 加 50倍的水, 磁力搅拌 3分种可发生乳 化, 乳化后的平均粒径均 1 μ πι。
实施例 12: 包含胰岛素 /磷脂复合物的油溶液(含乳化剂和助乳化剂) 称取实施例 1至 4的复合物适量(均选取药脂比例为 l:10,W/w), 共 4 份, 按如下处方加入油、 乳化剂和助乳化剂, 搅拌使溶解, 制得载药
Figure imgf000020_0001
处方组成 处方 1 处方 2 处方 3 处方 4 复合物 llOOmg 实施例 1 实施例 2 实施例 3 实施例 4
Cremphor RH40 4g 4g 4g 4g 丙二醇 5g 1 1 1 Transcutol P I 4.5g 4g 3.5g 加入中链油 /长链油 (1: 1)溶液至 10g
4组油溶液室温放置 24小时, 溶液澄清, HPLC测定剩余含量, 均 为零时的 98.3 %以上; 于 -4°C贮存 6个月, 溶液澄清, HPLC测定剩余 含量, 均为初始时的 97.8 %以上, 质量稳定。
4组油溶液中含乳化剂和助乳化剂,加 5-500倍的水、稀盐酸或 pH6.8 的缓冲液, 均可瞬间发生乳化, 激光粒度仪测定, 乳化后的平均粒径在 20~50nm范围内。 实施例 13: 包含胰岛素 /磷脂复合物的囊泡溶液
称取实施例 1至 3的复合物适量(均选取药脂比例为 l: 10,w/w),至 圆底烧瓶中,再加入适量游离磷脂 (游离磷脂与复合物中的磷脂量相当), 加入二氯甲垸 20ml, 使复合物及磷脂溶解, 胰岛素浓度控制在 Img/mL-lOmg/mL真空旋蒸, 水浴温度为 37度, 待其挥干形成薄膜后, 加入 lOmLPBS溶液水化 lh, 形成多室囊泡, 再通过超声波破碎或者高压 均质的方法处理, 得到粒径为 50nm左右的单室囊泡。
处方组成 处方 1 处方 2 处方 3 复合物 (实施例 1-3 ) 实施例 1 实施例 2 实施例 3
HOmg 220mg 550mg 游离磷脂 lOOmg 200mg 500mg 实施例 14: 包含胰岛素 /磷脂复合物的囊泡溶液
称取实施例 1至 8的复合物适量(均选取药脂比例为 l: 10,w/w),至 圆底烧瓶中, 加入适量游离磷脂 (游离磷脂与复合物中的磷脂量相当), 再加入 Tween20或 Span60等一种或几种混合表面活性剂适量, 加入二 氯甲垸 20ml,使复合物及磷脂溶解,胰岛素浓度控制在 Img/mL-lOmg/mL 真空旋蒸, 水浴温度为 37度, 待其挥干形成薄膜后, 加入 lOmLPBS溶液 水化 lh, 形成多室囊泡, 再通过超声波破碎或者高压均质的方法处理, 得到粒径为 50nm左右的单室囊泡。
处方组成 处方 1 处方 2 处方 3 复合物 (实施例 1-3 ) 实施例 1 实施例 2 实施例 3
HOmg 220mg 550mg 游离磷脂 lOOmg 200mg 500mg
Tween20 200mg 400mg 600mg 处方组成 处方 1 处方 2 处方 3 复合物 (实施例 1-3 ) 实施例 1 实施例 2 实施例 3
HOmg 220mg 550mg 游离磷脂 lOOmg 200mg 500mg
Span60 200mg 400mg 600mg
实施例 15: 包含胰岛素 /磷脂复合物的囊泡粉末
将实施例 13和 14的囊泡溶液, 经冷冻干燥, 即得。 试验例
试验例 1 : 含胰岛素复合物的油溶液在胃肠生物酶环境中的稳定性
试验样品: 胰岛素溶液 (INS )
胰岛素复合物 (Phytosome ) 溶于水中制成混悬液 实施例 8-实施例 12的油溶液
将试验样品置于含有 1% (重量 /体积, g/ml) 胃蛋白酶的人工胃液, 置 37°C水浴中孵育, 涡旋混匀, 1分钟、 5分钟和 30分钟和 60分钟取 # 0.5ml, 加冷的 Tris溶液 (取 Tris试剂 6.07g, 加水至 500ml) 0.1ml, 涡旋混匀后, 离心, lOOOOrpm, 5min, 取上清液照前述 HPLC法依法测 定胰岛素残余百分比, 结果如下:
Figure imgf000023_0001
试验例 2: 含胰岛素复合物的囊泡溶液在胃肠生物酶环境中的稳定性 试验样品: 胰岛素溶液 (INS )
胰岛素普通囊泡 (胰岛素代替胰岛素复合物, 同法制备) 实施例 13的包含复合物的新型囊泡
将试验样品置于含有 1% (重量 /体积, g/ml) 胃蛋白酶的人工胃液, 置 37°C水浴中孵育, 涡旋混匀, 1分钟、 5分钟和 30分钟和 60分钟取 # 0.5ml, 加冷的 Tris溶液 (取 Tris试剂 6.07g, 加水至 500ml) 0.1ml, 涡旋混匀后, 离心, lOOOOrpm, 5min, 取上清液照前述 HPLC法依法测 定胰岛素残余百分比, 结果如下:
Figure imgf000023_0002
试验例 3: 含胰岛素复合物的囊泡溶液 Caco-2细胞透过性
试验样品: 胰岛素溶液 (INS )
胰岛素普通囊泡 (胰岛素代替胰岛素复合物, 同法制备) 实施例 13的包含复合物的新型囊泡
精密量取 0.5mL同浓度的胰岛素溶液、胰岛素普通囊泡和胰岛素磷 脂复合物囊泡 (实施例 13 ), 加至培养在 12孔板的 Caco-2细胞上, 在 细胞下面加入 1.5mL的 HBSS溶液作为接受介质, 37度空气浴中孵育, 于 30 60 120 180 240min取样 200 μ 1 HPLC方法测定, 计算累计 透过量, 结果如下:
Figure imgf000024_0001
试验例 4: 胰岛素复合物的油溶液及新型囊包降血糖效果
选用体重 200 ± 20g正常雄性大鼠, 禁食 12h后 (过夜) , 按 60mg/kg 剂量腹腔注射 10 mg/ml的链脲佐菌素柠檬酸-柠檬酸三钠缓冲溶液 (PH4. 5左右) , 稳定一周, 取血糖水平大于 16. 7 ol/l 判定为糖尿病 模型。
大鼠试验前禁食一夜, 不禁水, 实验期间自由饮水。 大鼠 35只, 随 机分成 5组, 按以下分组方案给药, 于不同时间点尾尖取血, 血糖仪测 定血糖值。
第一组: 不给药空白对照,
第二组: 胰岛素普通囊泡, 按剂量 70IU/kg口服
第三组: 实施例 9处方 1中链油制备的油溶液, 按剂量为 70IU/kg 口服
第四组: 实施例 13制备的新型纳米囊泡, 按剂量为 70IU/kg口服 计算每只动物各个时间点的血糖百分比, 以降糖百分比为纵坐标, 时间为横坐标, 绘制降糖效果曲线, 见附图 1

Claims

权 利 要 求
1、 一种胰岛素脂质复合物, 其特征在于, 所述的胰岛素脂质复合 物由胰岛素和脂质材料复合而成, 复合物中胰岛素与脂质材料的质量比 例为 1 :3~1 :20。
2、 根据权利要求 1 的胰岛素脂质复合物, 其特征在于,
所述的胰岛素选自天然胰岛素、 猪胰岛素、 牛胰岛素、 重组人胰岛 素及各类中、 长效胰岛素中至少一种;
所述的脂质材料选自天然磷脂、 合成磷脂、 胆 醇、 胆酸及其盐类 中至少一种。
3、 根据权利要求 2的胰岛素脂质复合物, 其特征在于,
所述的胰岛素选自重组人胰岛素, 所述的脂质材料选自天然磷脂, 并且胰岛素与天然磷脂的质量比为 1 :5~1 :10。
4、根据权利要求 1 -3中任一项的胰岛素脂质复合物,其特征在于,, 所述的胰岛素还包含选自抗氧化剂、 金属螯合剂或蛋白酶抑制剂中至少 一种。
5、 根据权利要求 1 -4中任一项的胰岛素脂质复合物, 其特征在于, 所述胰岛素脂质复合物在制备过程中采用含低沸点酸的有机溶剂系统为 复合溶剂;
6、 根据权利要求 5的胰岛素脂质复合物, 其特征在于,
所述的低沸点酸选自三氟乙酸和氯化氢气体中的一种或它们的混合 物, 所述的有机溶剂选自甲醇、 四氢呋喃、 DMSO、 三氯甲垸、 二氯甲 垸和乙醚中的一种或其混合物。
7、 一种胰岛素脂质复合物油溶液, 其特征在于, 含有权利要求 1 -6 中任一项的胰岛素脂质复合物和油。
8、 根据权利要求 7 的胰岛素脂质复合物油溶液, 其特征在于, 所 述的油选自长链甘油三酸酯、 中链甘油酸三酯、 甘油单油酸酯、 甘油单 甘酯、 油酸乙酯、 肉豆蔻酸异丙酯中的一种或它们的混合物。
9、根据权利要求 7-8中任一项的胰岛素脂质复合物油溶液,其特征 在于, 所述的油含有乳化剂。
10、 根据权利要求 9的胰岛素脂质复合物油溶液, 其特征在于, 所 述的乳化剂选自吐温 80、 司盘 20、 汴泽、 聚氧乙烯氢化蓖麻油、 聚氧 乙烯蓖麻油和 Labrosal中至少一种。
11、 根据权利要求 7-10 中任一项的胰岛素脂质复合物油溶液, 其 特征在于, 所述的油中还含有助乳化剂。
12、 根据权利要求 11 的胰岛素脂质复合物油溶液, 其特征在于, 所述的助乳化剂剂选自丙二醇、 PEG400、 Transcutol P中至少一种。
13、 权利要求 7-12任一项的包含胰岛素复合物的油溶液, 在制备 胰岛素缓释注射剂中的应用。
14、 权利要求 7-12任一项的包含胰岛素复合物的油溶液, 在制备 胰岛素口服、 经皮、 粘膜和肺部吸入等非注射给药制剂中的应用。
15、 一种胰岛素新型囊泡, 其特征在于, 含有权利要求 1 -6中任一 项的胰岛素脂质复合物和磷脂。
16、 根据权利要求 15的胰岛素新型囊泡, 其特征在于, 还含有表 面活性剂。
17、 根据权利要求 16 的胰岛素新型囊泡, 其特征在于, 所述的表 面活性剂选自 Tween20、 Span60中至少一种。
18、根据权利要求 15-17中任一项的胰岛素新型囊泡,其特征在于, 所述的囊泡可以是水分散液, 还可以经冷冻干燥或喷雾干燥后制成固体 粉末。
19、 权利要求 15-18中任一项的胰岛素新型囊泡, 在制备胰岛素口 服、 经皮、 粘膜和肺部吸入等非注射给药制剂中的应用。
20、 制备权利要求 1至 6中任一项的胰岛素脂质复合物的方法, 包 括如下步骤: 取有机溶剂, 先加入或通入适量的低沸点酸, 再加入胰岛 素和脂质材料, 搅拌使两者充分复合至形成澄清透明的溶液, 旋转蒸法 或喷雾干燥除去有机溶剂, 残余物干燥即得;
该制备方法的有机溶剂可选自甲醇、 四氢呋喃或 DMSO中的任一种 溶剂或它们的混合物, 优选甲醇。
21、 制备权利要求 1至 6中任一项的胰岛素脂质复合物的方法, 包 括如下步骤: 将脂质材料先溶于有机溶剂中, 再加入胰岛素, 搅拌条件 下缓慢加入或通入适量低沸点酸, 至胰岛素完全溶解形成澄清透明的溶 液, 常温条件下搅拌或超声处理一定时间, 使胰岛素与脂质材料充分复 合, 旋转蒸法或喷雾干燥除去有机溶剂, 残余物经干燥即得;
该制备方法的有机溶剂可选自甲醇、 四氢呋喃或 DMSO中的任一种 溶剂或它们的混合物, 优选甲醇。
22、 制备权利要求 1至 6中任一项的胰岛素脂质复合物的方法, 包 括如下步骤: 将胰岛素溶于含适量低沸点酸的溶剂 A中制成澄清的胰岛 素溶液, 脂质材料溶于适量的溶剂 B中制成澄清的脂质溶液, 将胰岛素 溶液与脂质溶液混合均匀后, 水浴减压旋蒸, 再经水泵抽干处理, 干燥即 得。
该制备方法中, 溶剂 A可选自甲醇、 四氢呋喃或 DMSO中的任一种 溶剂或它们的混合物, 优选甲醇; 溶剂 B可选自三氯甲垸、 二氯甲垸或 乙醚中的一种或其混合物, 优选二氯甲垸。
23、 制备权利要求 1至 6中任一项的胰岛素脂质复合物的方法, 包 括如下步骤: 将胰岛素溶于含适量低沸点酸的溶剂 A中制成澄清的胰岛 素溶液, 脂质材料溶于适量的溶剂 B中制成澄清的脂质溶液, 将胰岛素 溶液与脂质溶液混合均匀后, 在一定温度下水浴减压旋蒸, 旋蒸过程中 分次加入适量的溶剂 B, 继续旋蒸, 水泵抽除溶剂, 干燥即得。
该制备方法中, 溶剂 A可选自甲醇、 四氢呋喃或 DMS0中的任一种溶 剂或它们的混合物, 优选甲醇; 溶剂 B可选自三氯甲垸、 二氯甲垸或乙 醚中的一种或其混合物, 优选二氯甲垸。
PCT/CN2011/077152 2010-07-14 2011-07-14 一种胰岛素的脂质复合物及其制备方法和制剂 WO2012006956A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2805325A CA2805325C (en) 2010-07-14 2011-07-14 Insulin-lipid complex, process for preparation thereof, and formulation thereof
JP2013518942A JP6051157B2 (ja) 2010-07-14 2011-07-14 一種インスリンの脂質複合物及び作製方法や製剤
US13/810,098 US20130338064A1 (en) 2010-07-14 2011-07-14 Insulin-lipid complex,preparation method therefor, and preparation thereof
EP11806298.3A EP2594281B1 (en) 2010-07-14 2011-07-14 Insulin-lipid complex, preparation method therefor, and preparation thereof
CN201180002259.4A CN102573889B (zh) 2010-07-14 2011-07-14 一种胰岛素的脂质复合物及其制备方法和制剂
KR1020137003805A KR101801426B1 (ko) 2010-07-14 2011-07-14 인슐린-지질 복합물 및 그의 제조방법과 그의 제제
US15/895,282 US10611852B2 (en) 2010-07-14 2018-02-13 Insulin-lipid complex, preparation method therefor, and preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010226102 2010-07-14
CN201010226102.7 2010-07-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/810,098 A-371-Of-International US20130338064A1 (en) 2010-07-14 2011-07-14 Insulin-lipid complex,preparation method therefor, and preparation thereof
US15/895,282 Division US10611852B2 (en) 2010-07-14 2018-02-13 Insulin-lipid complex, preparation method therefor, and preparation thereof

Publications (1)

Publication Number Publication Date
WO2012006956A1 true WO2012006956A1 (zh) 2012-01-19

Family

ID=45468937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077152 WO2012006956A1 (zh) 2010-07-14 2011-07-14 一种胰岛素的脂质复合物及其制备方法和制剂

Country Status (7)

Country Link
US (2) US20130338064A1 (zh)
EP (1) EP2594281B1 (zh)
JP (1) JP6051157B2 (zh)
KR (1) KR101801426B1 (zh)
CN (3) CN102573889B (zh)
CA (1) CA2805325C (zh)
WO (1) WO2012006956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511028A (en) * 2012-12-18 2014-08-27 Univ Manchester Metropolitan Nano emulsions, methods of forming the same and uses thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573889B (zh) * 2010-07-14 2014-10-22 中国医学科学院药物研究所 一种胰岛素的脂质复合物及其制备方法和制剂
CN105617362B (zh) * 2014-10-27 2021-05-11 中国医学科学院药物研究所 一种新型的胰岛素-磷脂-壳聚糖自组装微粒载体及其制剂
CN113768901B (zh) * 2016-04-26 2023-09-22 北京五和博澳药业股份有限公司 一种磷脂壳聚糖药物递送系统及其制备方法和用途
CN106581646A (zh) * 2016-11-03 2017-04-26 广州凯耀资产管理有限公司 口服胰岛素组合物
CN110464835B (zh) * 2018-05-11 2023-06-16 中国医学科学院药物研究所 一种胰岛素柔性微粒及其制剂
CN109498559B (zh) * 2018-11-30 2022-04-12 复旦大学 一种负载糖尿病治疗多肽的口服制剂及其制备方法
WO2022031842A1 (en) * 2020-08-04 2022-02-10 Reddy Robert R Polyphenolic insulin
CN113616798A (zh) * 2021-09-06 2021-11-09 天津农学院 一种甲苯咪唑脂质复合物、制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011780A1 (en) * 1989-03-31 1990-10-18 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
CN101524349A (zh) * 2007-09-20 2009-09-09 中国医学科学院药物研究所 双环醇的磷脂复合物及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL193099C (nl) * 1981-10-30 1998-11-03 Novo Industri As Gestabiliseerde insuline-oplossing.
DD212185A1 (de) * 1982-12-21 1984-08-08 Adw Ddr Verfahren zur herstellung von phospholipid-wirkstoff-kombinationen
GB9323588D0 (en) * 1993-11-16 1994-01-05 Cortecs Ltd Hydrophobic preparation
US5858398A (en) * 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
GB9613858D0 (en) * 1996-07-02 1996-09-04 Cortecs Ltd Hydrophobic preparations
MXPA00006196A (es) * 1998-10-23 2003-07-21 Idea Ag Metodo para desarrollar, evaluar y utilizar asociaciones de macromoleculas y agregados complejos para obtener mejores tasas de asociacion/desasociacion controlable y carga efectiva.
CN101380462A (zh) * 2008-09-04 2009-03-11 中国药科大学 一种新型胰岛素油相溶液的获得方法和制备技术
CN102227213A (zh) * 2008-11-28 2011-10-26 诺沃—诺迪斯克有限公司 适合于衍生化的胰岛素肽的口服施用的药物组合物
CN102573889B (zh) 2010-07-14 2014-10-22 中国医学科学院药物研究所 一种胰岛素的脂质复合物及其制备方法和制剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011780A1 (en) * 1989-03-31 1990-10-18 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
CN101524349A (zh) * 2007-09-20 2009-09-09 中国医学科学院药物研究所 双环醇的磷脂复合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI, F. ET AL.: "Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation", vol. 114, no. 2, 24 May 2006 (2006-05-24), pages 242 - 250, XP024957595 *
FRICKER, G. ET AL.: "Phospholipids and Lipid-Based Formulations", ORAL DRUG DELIVERY, vol. 27, no. 8, 22 April 2010 (2010-04-22), pages 1469 - 1486, XP019827972 *
See also references of EP2594281A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511028A (en) * 2012-12-18 2014-08-27 Univ Manchester Metropolitan Nano emulsions, methods of forming the same and uses thereof

Also Published As

Publication number Publication date
EP2594281B1 (en) 2019-08-28
CA2805325C (en) 2020-08-04
CA2805325A1 (en) 2012-01-19
KR101801426B1 (ko) 2017-12-20
JP6051157B2 (ja) 2016-12-27
US20180171031A1 (en) 2018-06-21
US10611852B2 (en) 2020-04-07
EP2594281A4 (en) 2014-02-26
CN102512667B (zh) 2015-08-19
CN102512667A (zh) 2012-06-27
JP2013531015A (ja) 2013-08-01
CN102573889A (zh) 2012-07-11
CN104001159B (zh) 2016-08-24
EP2594281A1 (en) 2013-05-22
KR20130043193A (ko) 2013-04-29
CN102573889B (zh) 2014-10-22
CN104001159A (zh) 2014-08-27
US20130338064A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
WO2012006956A1 (zh) 一种胰岛素的脂质复合物及其制备方法和制剂
Kumar et al. Nonionic surfactant vesicular systems for effective drug delivery—an overview
Li et al. Self-nanoemulsifying drug delivery systems for oral insulin delivery: In vitro and in vivo evaluations of enteric coating and drug loading
US20140302148A1 (en) Cannabinoid formulations
Shalaby et al. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice
JP2003501404A (ja) 薬剤の脱水粒子からなる製剤およびこれの調製方法
Khatib et al. Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation
WO2009046444A2 (en) Formulation for intranasal administration of diazepam
JP2023017793A (ja) エラスターゼ阻害活性を有するベータヘアピンペプチド模倣体及びそのエアロゾル剤形
US11318115B2 (en) Oral pharmaceutical composition of Tecovirimat and preparation method thereof
Chen et al. Improved absorption of salmon calcitonin by ultraflexible liposomes through intranasal delivery
Shah et al. Intranasal delivery of insulin by self-emulsified nanoemulsion system: In vitro and in vivo studies
WO2010069139A1 (zh) 一种药用组合物及其制备方法
JP2004506003A (ja) ペプチドの経口デリバリー
CN102188379B (zh) 载药脂质体的制备方法
CN103349644B (zh) 一种注射用兰索拉唑复合胶束药物组合物及其制备方法
CN102188364B (zh) 载药类脂微粒的制备方法
US20240058272A1 (en) Stable parenteral formulations of duloxetine
CN102188390B (zh) 包载水溶性药物类脂微粒的制备方法
CN117180405A (zh) 一种口服降糖药物制剂及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002259.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2805325

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013518942

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011806298

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003805

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810098

Country of ref document: US