WO2012005150A1 - スクロール型圧縮機 - Google Patents
スクロール型圧縮機 Download PDFInfo
- Publication number
- WO2012005150A1 WO2012005150A1 PCT/JP2011/064885 JP2011064885W WO2012005150A1 WO 2012005150 A1 WO2012005150 A1 WO 2012005150A1 JP 2011064885 W JP2011064885 W JP 2011064885W WO 2012005150 A1 WO2012005150 A1 WO 2012005150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spiral body
- main bearing
- movable spiral
- bearing member
- bottom plate
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
- F04C18/0253—Details concerning the base
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/005—Axial sealings for working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
Definitions
- the present invention relates to a scroll compressor, and more particularly, to an improvement in a back pressure mechanism provided on the back side of a movable spiral body constituting a scroll compression mechanism.
- a scroll type compressor having a scroll type compression mechanism composed of a fixed spiral body and a movable spiral body that swirls with respect to the fixed spiral body is well known.
- a thrust load is generated in the movable spiral body due to the compression reaction force of the fluid being compressed, and due to this thrust load, the movable spiral body and the housing portion that supports the movable spiral body, etc.
- a pressurized fluid is guided from the inside of the compression mechanism to the back side of the movable spiral body, and the above described with respect to the movable spiral body. It is known that it is effective to apply a back pressure in a direction opposite to the thrust load and reduce the thrust load that causes the wear and the like by the back pressure.
- Patent Document 1 discloses a back pressure chamber formed as a space between the back surface of the bottom plate portion of the movable spiral body and the surface of the main bearing member facing the back surface, and one of the back surface and the surface. At least one annular groove formed in the annular groove, an annular sealing means mounted in a movable state in the annular groove and in sliding contact with the other surface, a crankshaft for driving the movable spiral body, and the above It is formed on the back side of the bottom plate portion of the movable spiral body by sealing the gap with an annular shaft seal means mounted in a movable state in the gap with the main bearing member, and the seal means and the shaft seal means. Also disclosed is a scroll compressor having a pressure introducing hole for supplying a pressurized fluid to the back pressure chamber.
- the annular groove as described above and the annular sealing means attached to the groove are required. Since it is also necessary to provide a rotation preventing mechanism for the movable spiral body on the back side of the body, it may be difficult to fit the same diameter as a compressor without a back pressure mechanism. Further, in the structure described in Patent Document 1, since the annular groove and the annular sealing means for forming the back pressure chamber are arranged on the inner diameter side of the rotation preventing mechanism of the movable spiral body, These sealing means and the like that define the radial size are disposed at a relatively small diameter position, and the area for receiving the back pressure in the back pressure chamber is relatively small.
- the pressure in the back pressure chamber In order to increase the pressure receiving area of the back pressure chamber with such a structure, it is necessary to increase the body diameter of the compressor itself, and it is difficult to make the entire compressor small. On the other hand, in order to obtain a desired force by back pressure without increasing the body diameter of the compressor, the pressure in the back pressure chamber must be increased. The fluid introduced from the compression mechanism into the pressure chamber is likely to leak, and when the leakage amount increases, the volume efficiency of the compressor is reduced. Furthermore, when the pressure in the back pressure chamber is increased, the durability and sealing function of the annular sealing means may be greatly deteriorated due to changes over time.
- an object of the present invention is to focus on the above-mentioned problems, and to configure a desired back pressure mechanism without increasing the diameter of the compressor, and to reduce the pressure receiving area in the back pressure chamber. It is possible to keep the pressure in the back pressure chamber low by taking it large, which can satisfy the demand for downsizing of the compressor and reduce the amount of leakage from the seal part of the back pressure chamber. It is possible to improve the volumetric efficiency of the compressor, and by lowering the back pressure chamber, it is possible to suppress the deterioration of the annular sealing means and the sealing function due to changes over time, etc. It is an object of the present invention to provide a scroll compressor that can improve the lubrication of the blocking mechanism and improve the reliability.
- a scroll compressor has a scroll-type compression mechanism including a fixed spiral body and a movable spiral body that is swung with respect to the fixed spiral body, and is eccentric at one end.
- a shaft for driving the movable spiral body by the crank portion a main bearing member for rotatably supporting the shaft via a main bearing, a back surface of the bottom plate portion of the movable spiral body, and the opposite surface
- a rotation-preventing mechanism provided between the main bearing member and the surface of the main bearing member opposed to the back surface of the bottom plate portion of the movable spiral body.
- a back pressure chamber formed as a space therebetween, at least one annular groove formed on one of the back surface of the bottom plate portion of the movable spiral body and the surface of the main bearing member, It is mounted in a movable state in the groove
- the annular sealing means that is in sliding contact with the other surface, the shaft sealing means that is mounted between the shaft and the main bearing member, and the sealing means and the shaft sealing means that are formed in a sealed space.
- the thrust receiving member is provided separately from the annular sealing means that is mounted in the annular groove and seals to form the back pressure chamber.
- the annular sealing means that has been provided with both the sealing function and the function of receiving the thrust force in FIG. 5 may be mainly provided with only the sealing function, and the thrust receiving member may be provided with the function of receiving the thrust force. It becomes possible. In other words, the annular sealing means does not have a function of receiving a thrust force and can be specialized only for the sealing function. As a result, the degree of freedom in designing the annular sealing means is increased, and higher sealing performance and durability can be provided.
- the back pressure chamber can exert the desired back pressure function on the movable spiral body, that is, the desired thrust load reducing function and the function of pressing against the fixed spiral body, resulting from the thrust load. It is possible to improve the volumetric efficiency of the compressor, and consequently the coefficient of performance, by suppressing wear and the like.
- the thrust receiving member is interposed so that the bottom plate portion of the movable spiral body is in contact with the thrust receiving member when the compressor is started and is not in contact during steady operation. It is preferable that That is, at the time of start-up, the pressure in the back pressure chamber has not yet increased sufficiently, and a relatively large thrust load may act from the bottom plate portion side of the movable spiral body toward the surface side of the main bearing member.
- the thrust receiving member reliably receives the thrust load, prevents an undesirable thrust load from being applied to the annular sealing means, wear due to the thrust load, etc.
- the thrust receiving member can take various forms.
- the thrust receiving member is formed of a plate-like member extending annularly in the circumferential direction on the surface of the main bearing member, or the thrust receiving member is formed on the surface of the main bearing member and intermittent in the circumferential direction. It is possible to adopt a form comprising a plurality of arc-shaped members loosely fitted (movably mounted) in a plurality of arc-shaped grooves arranged in a regular manner.
- the thrust receiving member since the thrust receiving member is responsible for the thrust load, the thrust receiving member preferably has high wear resistance.
- the thrust receiving member is preferably made of wear-resistant metal or resin.
- the annular groove and the sealing means are arranged in a position including the rotation prevention mechanism in the radial direction.
- the rotation preventing mechanism part of the movable spiral body is substantially included in the back pressure chamber, the rotation preventing mechanism for the pressurized fluid containing lubricating oil introduced from the compression mechanism into the back pressure chamber through the pressure introducing hole. It can be effectively used for lubricating parts, and the durability and reliability can be improved.
- a back pressure chamber having a desired pressure receiving area that requires a low pressure without increasing the cylinder diameter of the compressor can be configured, and the excellent sealing performance, durability, and reliability of the back pressure mechanism can be achieved. Since the present invention can be realized, the present invention is particularly suitable for a compressor for a vehicle air conditioner that is strongly demanded for downsizing and improved durability.
- a back pressure chamber excellent in sealing performance, durability, reliability, and the like can be formed, and therefore, high volume efficiency and high compared with a compressor having no back pressure mechanism. Achieve a coefficient of performance.
- the cylinder diameter is the same as that of a compressor that does not have a back pressure mechanism without increasing the cylinder diameter of the compressor, and it is excellent in sealing performance and durability. Since the back pressure chamber can be configured, a small and highly efficient scroll compressor can be provided.
- FIG. 1 shows a scroll compressor 100 according to a first embodiment of the present invention
- FIG. 2 shows a scroll compressor 200 according to a second embodiment of the present invention, both of which have a built-in motor. It is comprised by the made electric compressor.
- These scroll compressors 100 and 200 are used as, for example, a compressor for a vehicle air conditioner, and are used for compressing a refrigerant or the like. Since the first embodiment and the second embodiment are different only in the thrust receiving member portion and the other portions have substantially the same configuration, the same configuration with reference to FIGS. 1 and 2 at the same time. The parts will be described using the same reference numerals, and only the thrust receiving member parts will be described using different reference numerals.
- the scroll compressors 100 and 200 have a scroll type compression mechanism 3 including a fixed spiral body 1 and a movable spiral body 2 that pivots relative to the fixed spiral body 1.
- the fluid for example, refrigerant
- the compressed fluid is discharged from a discharge hole 5 provided at the center of the fixed spiral body 1 into a discharge chamber 7 formed in the rear plate 6, and the contained lubricating oil is separated by a separation pipe 8. From the discharge port section 9, it is sent to an external circuit (not shown).
- the fixed spiral body 1 is fixedly installed inside one end of the stator housing 10, and the rear plate 6 is fixed to the end surface of the stator housing 10 via bolts or the like.
- a motor 12 that rotationally drives the shaft 11 for driving the movable spiral body 2 is built in the other end side of the stator housing 10.
- the motor 12 includes a stator 13 fixed in the stator housing 10 and a rotor 14 rotated with respect to the stator 13, and the shaft 11 is rotated integrally with the rotor 14.
- the shaft 11 is rotatably supported by a front bearing 17 that is mounted on an inverter case 16 that houses the inverter portion 15, and a main bearing 19 that is mounted on a main bearing member 18 that is fixed in the stator housing 10. .
- a crank portion 20 (crank pin) is formed at one end of the shaft 11 at a position eccentric from the axis of the shaft 11.
- the crank portion 20 is rotatably inserted into an eccentric bush 22 that is rotatably supported on the back side of the movable spiral body 2 via a drive bearing 21, and the crank portion 20 is eccentric as the shaft 11 rotates.
- the movable spiral body 2 Via the bush 22 and the drive bearing 21, the movable spiral body 2 is swung in a state where rotation is prevented.
- a counterweight 23 is formed integrally with the eccentric bush 22.
- the rotation preventing mechanism 24 of the movable spiral body 2 includes a rotation prevention ring 26 mounted in a hole 25 formed on the back surface of the movable spiral body 2 and a rotation protruding from the main bearing member 18 into the rotation prevention ring 26.
- the rotation prevention mechanism 24 including the ring 26 and the pin 27 is arranged in a plurality in the circumferential direction.
- a back pressure chamber 28 is formed as a space between the back surface of the bottom plate portion 2a of the movable spiral body 2 and the surface of the main bearing member 18 facing the bottom plate portion 2a.
- the back pressure chamber 28 has at least one annular groove 29 formed on the back surface of the bottom plate portion 2 a of the movable spiral body 2 and an annular ring that is mounted in the groove 29 and is in sliding contact with the surface of the main bearing member 18.
- a fluid pressurized from within the compression mechanism 3 is supplied to the back pressure chamber 28 through a pressure introducing hole 32 provided in the bottom plate portion 2 a of the movable spiral body 2.
- a thrust load force for pressing the movable spiral body 2 against the main bearing member 18 acting on the movable spiral body 2 due to the compression reaction force is reduced.
- the pressure in the back pressure chamber 28 acts on the movable spiral body 2 so as to press the movable spiral body 2 against the fixed spiral body 1 side.
- the fluid pressurized in the compression mechanism 3 is supplied from the compression mechanism 3 into the back pressure chamber 28 through the pressure introduction hole 32.
- a seal portion including an annular groove 29 and an annular seal 30 for forming the back pressure chamber 28 in a sealed space is provided at a position including the rotation prevention mechanism 24 in the radial direction.
- a large pressure receiving area on the bottom plate 2a side of the movable spiral body 2 is secured.
- Thrust receiving members 33 (form of FIG. 1) and 34 (form of FIG. 2) that receive a thrust force from the bottom plate portion 2a side of the movable spiral body 2 to the main bearing member 18 side are interposed while being movable in the axial direction.
- the thrust receiving members 33 and 34 By providing the thrust receiving members 33 and 34 in this way, the thrust force from the movable spiral body 2 side to the main bearing member 18 side is exclusively received by the thrust receiving members 33 and 34, and the annular seal 30 is subjected to the thrust force.
- the sealing performance and durability of the annular seal 30 can be greatly improved.
- the annular seal 30 does not have to be subjected to thrust force, and only the sealing performance needs to be taken into account. Therefore, the degree of freedom in designing the annular seal 30 is greatly increased, and appropriate material selection and design are possible. By doing so, the sealing performance and durability of the annular seal 30 can be greatly improved.
- the back pressure chamber from the annular seal 30 portion is greatly improved by greatly improving the sealing performance and durability of the annular seal 30.
- the amount of leakage of the fluid introduced into the valve 28 can be greatly reduced, thereby making it possible to improve the volume efficiency of the compressor and improve the coefficient of performance.
- the thrust receiving members 33 and 34 may contact the thrust receiving members 33 and 34 with the bottom plate portion 2a of the movable spiral body 2 when the compressor is started, and become substantially non-contact during steady operation. By providing it as possible, the durability of both the annular seal 30 and the thrust receiving members 33 and 34 can be improved.
- the first embodiment shown in FIG. 1 can be configured as shown in FIGS. 3 and 5, and the second embodiment shown in FIG. Can be configured as shown in FIGS. That is, in the first embodiment, as shown in FIG. 3, a shallow annular step 41 is formed on the surface of the main bearing member 18 facing the movable spiral body 2, and the step 41 is compared with the step 41.
- An annular thrust receiving member 33 formed of a thin plate material is disposed, and the thrust receiving member 33 is supported so as to be sandwiched between the stepped portion 41 and the back surface of the bottom plate portion 2a of the movable spiral body 2. You can do it.
- the rotation preventing pin 27 can penetrate the thrust receiving member 33 as shown in FIG.
- the hole 42 may be opened.
- the radially outer surface of the thrust receiving member 33 on the surface of the main bearing member 18 serves as a seal surface 43 on which the annular seal 30 swung together with the movable spiral body 2 is slidably contacted. It can be secured widely.
- a wear-resistant metal plate made of SK material or the like is preferable. With such a metal plate, a desired surface roughness can be easily obtained. .
- a plurality of grooves 51 extending in an arc shape in the circumferential direction are intermittently formed on the surface of the main bearing member 18 facing the movable spiral body 2.
- An arc-shaped thrust member 34 is mounted in each groove 51 in a loosely fitted state.
- the arc-shaped groove 51 and the arc-shaped thrust member 34 are disposed so as to avoid the position of the rotation prevention pin 27, and as shown in FIG. 6, radially outside the positions where the grooves 51 and the thrust member 34 are disposed.
- the surface of the main bearing member 18 is widely secured as a seal surface 52 on which the annular seal 30 swung together with the movable spiral body 2 is slidably contacted.
- a highly wear-resistant resin particularly engineering plastic
- polyphenylene sulfide or the like is preferable. It is possible to obtain desirable sliding characteristics.
- the structure on the back surface 61 side of the bottom plate 2a of the movable spiral body 2 is formed with a hole 62 for the drive bearing 21 at the center, and a hole 25 for the rotation prevention ring on the outer side. And a rotation prevention ring 26 is attached to the hole 25.
- An annular groove 29 is formed so as to contain a plurality of rotation prevention rings 26 (rotation prevention mechanisms), and the above-described annular seal 30 is attached to the groove 29.
- the structure of the scroll compressor according to the present invention can be applied to any scroll compressor, and is particularly suitable for a compressor for a vehicle air conditioner that is strongly required to be downsized and improved in durability.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
可動渦巻体の背面側に環状のシール手段を用いて背圧室を形成し、該背圧室内へ圧力導入孔を介して加圧された流体を供給するスクロール型圧縮機において、可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に、前記シール手段とは別の部材として、可動渦巻体の底板部側から主軸受部材側へのスラスト力を受けるスラスト受け部材を介装したことを特徴とするスクロール型圧縮機。圧縮機の小型化の要請を満たすことが可能で、環状のシール手段の耐久性やシール機能の低下を抑制可能なスクロール型圧縮機を提供する。
Description
本発明は、スクロール型圧縮機に関し、とくに、スクロール型圧縮機構を構成する可動渦巻体の背面側に設けられる背圧機構部の改良に関する。
固定渦巻体と、該固定渦巻体に対し旋回運動される可動渦巻体とからなるスクロール型圧縮機構を備えたスクロール型圧縮機はよく知られている。このようなスクロール型圧縮機において、圧縮されつつある流体の圧縮反力により可動渦巻体にスラスト荷重が発生し、このスラスト荷重に起因して可動渦巻体とそれを支持するハウジング部等の間で摩耗等が発生するおそれの生じることがあるが、このような摩耗等を抑制するためには、可動渦巻体の背面側に圧縮機構内から加圧された流体を導き、可動渦巻体に対し上記スラスト荷重に対向する方向に背圧を作用させ、該背圧によって上記摩耗等の原因となるスラスト荷重を低減することが有効であることが知られている。
例えば特許文献1には、可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に空間として形成された背圧室と、上記背面と表面のいずれか一方の面に形成された少なくとも1個の環状の溝と、該環状の溝内に可動な状態で装着されて他方の面に摺動接触する環状のシール手段と、可動渦巻体を駆動するクランクシャフトと上記主軸受部材との隙間に可動な状態で装着された環状のシャフトシール手段と、上記シール手段と上記シャフトシール手段とによって隙間を密封されることによって可動渦巻体の底板部の背面側に形成された上記背圧室へ加圧された流体を供給する圧力導入孔とを備えたスクロール型圧縮機が開示されている。
ところが、可動渦巻体の底板部の背面側に背圧機構を構成しようとする場合、上記のような環状の溝および該溝に装着される環状のシール手段が必要になることに加え、可動渦巻体の背面側には可動渦巻体の自転阻止機構を設けることも必要となるため、背圧機構を持たない圧縮機と同等の径に収めることが難しい場合がある。また、上記特許文献1に記載されている構造では、可動渦巻体の自転阻止機構の内径側に背圧室を形成するための環状溝および環状シール手段を配置しているので、背圧室の径方向サイズを画定するこれらシール手段等が比較的小径の位置に配置されることになり、背圧室内で背圧を受けるための面積が比較的小さい。このような構造にて背圧室の受圧面積を大きくするためには、圧縮機自体の胴径を大きくすることが必要となり、圧縮機全体を小型に構成することが困難となる。一方、圧縮機の胴径を大きくすることなく背圧により所望の力を得るためには、背圧室の圧力を高めなければならないが、そうすると、背圧室を形成するためのシール部において背圧室内に圧縮機構内から導入された流体が漏れやすくなり、漏れ量が大きくなると圧縮機の体積効率の低下を招くことになる。さらに、背圧室の圧力を高めると、経時変化等により、上記環状のシール手段の耐久性やシール機能の低下が大きくなるおそれがある。
そこで本発明の課題は、上記のような問題点に着目し、圧縮機の胴径を大きくすることなく所望の背圧機構を構成することができ、かつ、背圧室内の圧力の受け面積を大きくとって背圧室の圧力を低く抑えることが可能であり、それらによって、圧縮機の小型化の要請を満たすことが可能で、かつ、背圧室のシール箇所からの漏れ量を低減して圧縮機の体積効率の向上が可能であり、しかも背圧室の低圧化により、経時変化等による環状のシール手段の耐久性やシール機能の低下を抑制可能な、さらには、可動渦巻体の自転阻止機構部の潤滑を良好にし、信頼性を向上させることも可能なスクロール型圧縮機を提供することにある。
上記課題を解決するために、本発明に係るスクロール型圧縮機は、固定渦巻体と、該固定渦巻体に対し旋回運動される可動渦巻体とからなるスクロール型圧縮機構を有し、一端に偏心したクランク部を有し該クランク部により前記可動渦巻体を駆動するシャフトと、該シャフトを主軸受を介して回転自在に支持する主軸受部材と、前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に設けられ前記可動渦巻体の自転を阻止する自転阻止機構と、前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に空間として形成された背圧室と、前記可動渦巻体の底板部の背面と前記主軸受部材の表面のいずれか一方の面に形成された少なくとも1個の環状の溝と、該環状の溝内に可動な状態で装着されて他方の面に摺動接触する環状のシール手段と、前記シャフトと前記主軸受部材との間に装着されたシャフトシール手段と、前記シール手段と前記シャフトシール手段とによって密封空間に形成された前記背圧室へ加圧された流体を供給する圧力導入孔とを備えたスクロール型圧縮機において、
前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に、前記シール手段とは別の部材として、前記可動渦巻体の底板部側から前記主軸受部材側へのスラスト力を受けるスラスト受け部材を介装したことを特徴とするものからなる。
前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に、前記シール手段とは別の部材として、前記可動渦巻体の底板部側から前記主軸受部材側へのスラスト力を受けるスラスト受け部材を介装したことを特徴とするものからなる。
このような本発明に係るスクロール型圧縮機においては、環状の溝内に装着され背圧室を形成するためのシールを行う環状のシール手段とは別に、スラスト受け部材が設けられるので、従来構造においてシール機能とスラスト力を受ける機能との両機能を受け持たせていた環状のシール手段には、主としてシール機能のみを受け持たせ、スラスト受け部材にスラスト力を受ける機能を受け持たせることが可能になる。換言すれば、環状のシール手段にはスラスト力を受ける機能はなくし、シール機能のみに特化することが可能になる。その結果、環状のシール手段の設計の自由度が大きくなり、より高いシール性、耐久性を持たせることが可能となる。高いシール性、耐久性により、背圧室が可動渦巻体に対し望ましい背圧機能、つまり、望ましいスラスト荷重低減機能、および、固定渦巻体側に押し付ける機能を発揮できるようになり、スラスト荷重に起因する摩耗等を抑制して、圧縮機の体積効率の向上、ひいては成績係数の向上をはかることが可能になる。
この本発明に係るスクロール型圧縮機においては、上記スラスト受け部材は、圧縮機の起動時には上記可動渦巻体の底板部が該スラスト受け部材に接触し、定常運転時には非接触となるように介装されていることが好ましい。すなわち、起動時には背圧室内の圧力が未だ十分に高まっておらず、可動渦巻体の底板部側から主軸受部材の表面側に向けて比較的大きなスラスト荷重が作用するおそれがあるが、可動渦巻体の底板部がスラスト受け部材に接触することにより、該スラスト受け部材によって確実にスラスト荷重が受けられ、環状のシール手段に望ましくないスラスト荷重がかかることが防止され、スラスト荷重に起因する摩耗等を抑制して環状のシール手段に一層高いシール性、耐久性を持たせることが可能となる。一方、定常運転時には背圧室には加圧された流体が十分に供給されて背圧室内の圧力はスラスト荷重を受けるために十分に高い圧力に保たれるから、可動渦巻体の底板部とスラスト受け部材とが接触しないことにより、スラスト受け部材についても耐久性、寿命の向上をはかることができる。
また、本発明に係るスクロール型圧縮機においては、上記スラスト受け部材としては、各種形態を採ることができる。例えば、上記スラスト受け部材が、上記主軸受部材の表面上で周方向に環状に延びる板状部材からなる形態や、上記スラスト受け部材が、上記主軸受部材の表面上に形成され周方向に断続的に配置された複数の円弧状の溝内に遊嵌された(可動状態で装着された)複数の円弧状部材からなる形態を採り得る。いずれの形態にあっても、スラスト受け部材はスラスト荷重を受け持つので高い耐摩耗性を有していることが好ましく、例えば、耐摩耗性の金属または樹脂から構成されていることが好ましい。
また、上記環状のシール手段の設計の自由度の増大によるシール性、耐久性の向上に加えて、上記環状の溝およびシール手段を、径方向に上記自転阻止機構を内包する位置に配置する構成を採用することにより、環状のシール手段の配設位置を前述の特許文献1に記載されている位置に比べ、外形側に大きく変更することが可能になる。これによって、背圧室の径方向寸法が増大され、その分、背圧室内の圧力の受け面積(受圧面積)を大きくすることが可能になる。すなわち、圧縮機の胴径を大きくすることなく背圧室内の受圧面積を大きくすることが可能になる。したがって、圧縮機の小型化の要請を満たすことが可能になるとともに、背圧室内の低圧化により背圧室のシール箇所からの漏れ量を低減することが可能になって、結果的に圧縮機の体積効率の向上が可能になる。また、背圧室の低圧化により、環状のシール手段への負荷条件を軽減することができるので、経時変化等による環状のシール手段の耐久性やシール機能の低下を抑制することも可能になり、一層、シール性、耐久性の向上をはかることが可能になる。さらに、可動渦巻体の自転阻止機構部を実質的に背圧室内に内包する構成となるので、圧縮機構内から圧力導入孔を通して背圧室内に導入される潤滑油含有加圧流体を自転阻止機構部の潤滑に有効利用できるようになり、その耐久性、信頼性を向上させることも可能になる。
このように、本発明では圧縮機の胴径を大きくすることなく低圧で済む所望の受圧面積を有する背圧室を構成でき、その背圧機構部の優れたシール性、耐久性、信頼性を実現できるので、本発明は、とくに小型化、耐久性向上の要求が強い車両空調装置用の圧縮機に好適なものである。
本発明に係るスクロール型圧縮機によれば、シール性、耐久性、信頼性等に優れた背圧室を形成できるので、背圧機構を持たない圧縮機と比較して、高い体積効率と高い成績係数を実現できる。また、圧縮機の胴径を大きくすることなく、背圧機構を持たない圧縮機と同等の胴径にて、シール性、耐久性に優れ、受圧面積を大きく確保して低圧で済む目標とする背圧室を構成できるので、小型で高効率なスクロール型圧縮機を提供できる。
以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
図1は、本発明の第1実施態様に係るスクロール型圧縮機100を示しており、図2は、本発明の第2実施態様に係るスクロール型圧縮機200を示しており、ともにモータが内蔵された電動圧縮機に構成されている。これらスクロール型圧縮機100、200は、例えば、車両空調装置用の圧縮機として使用され、冷媒等の圧縮に用いられる。第1実施態様と第2実施態様とは、スラスト受け部材部分のみが異なり、他の部分は実質的に同一の構成を有しているので、図1および図2を同時に参照しながら同一の構成部分を同一の符号を用いて説明し、スラスト受け部材部分のみ異なる符号を用いて説明する。
図1は、本発明の第1実施態様に係るスクロール型圧縮機100を示しており、図2は、本発明の第2実施態様に係るスクロール型圧縮機200を示しており、ともにモータが内蔵された電動圧縮機に構成されている。これらスクロール型圧縮機100、200は、例えば、車両空調装置用の圧縮機として使用され、冷媒等の圧縮に用いられる。第1実施態様と第2実施態様とは、スラスト受け部材部分のみが異なり、他の部分は実質的に同一の構成を有しているので、図1および図2を同時に参照しながら同一の構成部分を同一の符号を用いて説明し、スラスト受け部材部分のみ異なる符号を用いて説明する。
図1、図2において、スクロール型圧縮機100、200は、固定渦巻体1と、該固定渦巻体1に対し旋回運動される可動渦巻体2とからなるスクロール型圧縮機構3を有しており、該スクロール型圧縮機構3に形成される流体ポケット4の中心方向に向かう移動に伴って、流体ポケット4内に取り込まれた流体(例えば、冷媒)が圧縮されるようになっている。圧縮された流体は、固定渦巻体1の中心部に設けられた吐出孔5から、リアプレート6内に形成された吐出室7内に吐出され、分離パイプ8で含有潤滑油が分離された後、吐出ポート部9から外部回路(図示略)に送られる。
上記固定渦巻体1は、本実施態様では、ステータハウジング10の一端側内部に固定設置されており、ステータハウジング10の端面にリアプレート6がボルト等を介して固定されている。ステータハウジング10の他端側内部には、上記可動渦巻体2駆動用のシャフト11を回転駆動するモータ12が内蔵されている。モータ12は、ステータハウジング10内に固定されるステータ13と該ステータ13に対し回転されるロータ14から構成されており、シャフト11はロータ14と一体に回転される。シャフト11は、インバータ部15を収容したインバータケース16に装着されたフロント軸受17と、ステータハウジング10内に固定された主軸受部材18に装着された主軸受19とによって回転自在に支持されている。シャフト11の一端には、シャフト11の軸心とは偏心した位置にクランク部20(クランクピン)が形成されている。クランク部20は、可動渦巻体2の背面側にドライブ軸受21を介して回転自在に支持された偏心ブッシュ22に回動自在に挿入されており、シャフト11の回転に伴い、クランク部20、偏心ブッシュ22、ドライブ軸受21を介して、可動渦巻体2が自転を阻止された状態で旋回運動されるようになっている。偏心ブッシュ22には、カウンターウエイト23が一体に形成されている。可動渦巻体2の自転阻止機構24は、可動渦巻体2の背面に形成された穴25内に装着された自転阻止リング26と、主軸受部材18から自転阻止リング26内に突設された自転阻止ピン27で構成されており、これらリング26とピン27からなる自転阻止機構24は周方向に複数配置されている。
上記可動渦巻体2の底板部2aの背面とそれに対向している主軸受部材18の表面との間に,空間として背圧室28が形成されている。この背圧室28は、可動渦巻体2の底板部2aの背面に形成された少なくとも1個の環状の溝29と該溝29内に装着されて主軸受部材18の表面に摺動接触する環状のシール手段としての環状シール30からなるシール部と、主軸受19の側部にてシャフト11の外周面と主軸受部材18の内周面との間に装着されたシャフトシール31を有するシール部とによって、密封空間に形成されている。背圧室28には、圧縮機構3内から加圧された流体が、可動渦巻体2の底板部2aに設けられた圧力導入孔32を通して供給されるようになっている。この加圧流体の背圧室28内への導入により、圧縮反力により可動渦巻体2に作用するスラスト荷重(可動渦巻体2を主軸受部材18側に押し付けようとする力)を低減するように、または、可動渦巻体2を固定渦巻体1側に押し付けるように、背圧室28内の圧力が可動渦巻体2に作用することになる。なお、本実施態様では、圧縮機構3内で加圧された流体が該圧縮機構3内から圧力導入孔32を通して背圧室28内に供給されるようになっているが、加圧された流体を、例えば、圧縮機の吐出室やオイル分離室等から背圧室28内に供給するように構成することも可能である。
上記背圧室28を密封空間に形成するための環状の溝29と環状シール30からなるシール部は、径方向において、自転阻止機構24を内包する位置に設けられており、背圧室28内における可動渦巻体2の底板部2a側の受圧面積が大きく確保されている。このような配置による背圧室28における受圧面積の増大により、背圧室28内の圧力の低圧化が可能になり、環状シール30の設計の自由度が大きくなるとともに、環状シール30のシール性、耐久性の向上が可能になる。また、上記のような配置により、圧縮機の胴径を大きくすることなく、背圧室28における受圧面積の増大が可能になり、高いシール性、耐久性を確保しつつ、背圧機構を設けることによる圧縮機の大型化を回避でき、圧縮機の小型化が実現可能となる。
そして、可動渦巻体2の底板部2aの背面とそれに対向している主軸受部材18の表面との間に、環状シール30よりも内径側の位置に、環状シール30とは別の部材として、可動渦巻体2の底板部2a側から主軸受部材18側へのスラスト力を受けるスラスト受け部材33(図1の形態)、34(図2の形態)が、軸方向に可動な状態で介装されている。このようにスラスト受け部材33、34を設けることによって、可動渦巻体2側から主軸受部材18側へのスラスト力を専らスラスト受け部材33、34に受け持たせ、環状シール30にはスラスト力を受ける機能を持たなくてよいようにして、シール機能のみに特化することが可能になる。その結果、環状シール30のシール性能、耐久性の大幅な向上が可能になる。すなわち、環状シール30にはスラスト力を受け持たせなくてもよく、専らシール性能だけを考慮すればよいので、環状シール30の設計の自由度が大幅に増大され、適切な材料選択や設計を行うことによって、環状シール30のシール性能、耐久性の大幅な向上が可能になる。また、上述の背圧室28における受圧面積の増大による背圧室28の低圧化に加えて、この環状シール30のシール性能、耐久性の大幅な向上により、環状シール30部分からの背圧室28への導入流体の漏洩量が大幅に低減できることになり、それによって、圧縮機の体積効率の向上、成績係数の向上が可能になる。とくに前述したように、スラスト受け部材33、34を、圧縮機の起動時には可動渦巻体2の底板部2aがスラスト受け部材33、34に接触し、定常運転時には実質的に非接触となることができるように、設けておくことにより、環状シール30、スラスト受け部材33、34双方の耐久性の向上をはかることができる。
上記のような優れた作用効果は、環状シール30にはシール機能のみを、スラスト受け部材33、34にはスラスト荷重を受け持つ機能のみを持たせるという、機能分離によって達成される。この機能分離は、環状シール30とは別の部材としてスラスト受け部材33、34を設けることによって達成されたものである。
これらスラスト受け部材33、34部分をより具体的に例示して説明すると、図1に示した第1実施態様は図3、図5に示すように構成でき、図2に示した第2実施態様は図4、図6に示すように構成できる。すなわち、第1実施態様では、図3に示すように、主軸受部材18の可動渦巻体2に対向する表面上に、浅い環状の段落ち部41を形成し、この段落ち部41に、比較的薄い板状材料から形成された環状に延びるスラスト受け部材33を配置し、該スラスト受け部材33を段落ち部41と可動渦巻体2の底板部2aの背面との間で挟持するように支持させればよい。この場合、主軸受部材18の表面から突設される自転阻止ピン27とスラスト受け部材33との干渉を避けるために、図5に示すように、スラスト受け部材33に自転阻止ピン27が貫通できる孔42を開けておけばよい。また、図5に示すように、主軸受部材18の表面のスラスト受け部材33の径方向外側の面は、可動渦巻体2とともに旋回運動される環状シール30が摺動接触されるシール面43として広く確保できることになる。なお、上記スラスト受け部材33を構成する比較的薄い板状材料としては、例えば、SK材等からなる耐摩耗性金属板が好ましく、このような金属板では、容易に望ましい面粗度が得られる。
また、第2実施態様では、図4、図6に示すように、主軸受部材18の可動渦巻体2に対向する表面上に、周方向に円弧状に延びる溝51が複数断続的に形成されて配置され、各溝51内に、円弧状のスラスト部材34がそれぞれ遊嵌させた状態で装着されている。円弧状の溝51および円弧状のスラスト部材34は、自転阻止ピン27の位置を避けて配置されており、図6に示すように、これら溝51およびスラスト部材34の配置箇所よりも径方向外側の主軸受部材18の表面は、可動渦巻体2とともに旋回運動される環状シール30が摺動接触されるシール面52として広く確保されている。なお、上記スラスト受け部材34を構成する円弧状の部材の材料としては、例えば、ポリフェエニレンサルファイド等からなる耐摩耗性の高い樹脂(とくに、エンジニアリングプラスチック)が好ましく、このような樹脂では、容易に望ましい摺動特性を得ることが可能である。
一方、可動渦巻体2の底板2aの背面61側の構造は、例えば図7に示すように、中央部にドライブ軸受21用の穴62が形成され、その外側に、自転阻止リング用の穴25が形成されて,該穴25に自転阻止リング26が装着されている。複数の自転阻止リング26(自転阻止機構)を内包するように環状の溝29が形成され、その溝29に前述の環状シール30が装着される。
本発明に係るスクロール型圧縮機の構造は、あらゆるスクロール型圧縮機に適用可能であり、とくに、小型化、耐久性向上の要求が強い車両空調装置用の圧縮機に好適なものである。
1 固定渦巻体
2 可動渦巻体
2a 可動渦巻体の底板部
3 スクロール型圧縮機構
4 流体ポケット
5 吐出孔
6 リアプレート
7 吐出室
8 分離パイプ
9 吐出ポート部
10 ステータハウジング
11 シャフト
12 モータ
13 ステータ
14 ロータ
15 インバータ部
16 インバータケース
17 フロント軸受
18 主軸受部材
19 主軸受
20 クランク部
21 ドライブ軸受
22 偏心ブッシュ
23 カウンターウエイト
24 自転阻止機構
25 穴
26 自転阻止リング
27 自転阻止ピン
28 背圧室
29 環状の溝
30 環状シール
31 シャフトシール
32 圧力導入孔
33、34 スラスト受け部材
41 段落ち部
42 孔
43 環状シールのシール面
51 円弧状の溝
52 環状シールのシール面
61 底板の背面
62 ドライブ軸受の穴
100、200 スクロール型圧縮機
2 可動渦巻体
2a 可動渦巻体の底板部
3 スクロール型圧縮機構
4 流体ポケット
5 吐出孔
6 リアプレート
7 吐出室
8 分離パイプ
9 吐出ポート部
10 ステータハウジング
11 シャフト
12 モータ
13 ステータ
14 ロータ
15 インバータ部
16 インバータケース
17 フロント軸受
18 主軸受部材
19 主軸受
20 クランク部
21 ドライブ軸受
22 偏心ブッシュ
23 カウンターウエイト
24 自転阻止機構
25 穴
26 自転阻止リング
27 自転阻止ピン
28 背圧室
29 環状の溝
30 環状シール
31 シャフトシール
32 圧力導入孔
33、34 スラスト受け部材
41 段落ち部
42 孔
43 環状シールのシール面
51 円弧状の溝
52 環状シールのシール面
61 底板の背面
62 ドライブ軸受の穴
100、200 スクロール型圧縮機
Claims (7)
- 固定渦巻体と、該固定渦巻体に対し旋回運動される可動渦巻体とからなるスクロール型圧縮機構を有し、一端に偏心したクランク部を有し該クランク部により前記可動渦巻体を駆動するシャフトと、該シャフトを主軸受を介して回転自在に支持する主軸受部材と、前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に設けられ前記可動渦巻体の自転を阻止する自転阻止機構と、前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に空間として形成された背圧室と、前記可動渦巻体の底板部の背面と前記主軸受部材の表面のいずれか一方の面に形成された少なくとも1個の環状の溝と、該環状の溝内に可動な状態で装着されて他方の面に摺動接触する環状のシール手段と、前記シャフトと前記主軸受部材との間に装着されたシャフトシール手段と、前記シール手段と前記シャフトシール手段とによって密封空間に形成された前記背圧室へ加圧された流体を供給する圧力導入孔とを備えたスクロール型圧縮機において、
前記可動渦巻体の底板部の背面とそれに対向している主軸受部材の表面との間に、前記シール手段とは別の部材として、前記可動渦巻体の底板部側から前記主軸受部材側へのスラスト力を受けるスラスト受け部材を介装したことを特徴とするスクロール型圧縮機。 - 前記スラスト受け部材は、圧縮機の起動時には前記可動渦巻体の底板部が該スラスト受け部材に接触し、定常運転時には非接触となるように介装されている、請求項1に記載のスクロール型圧縮機。
- 前記スラスト受け部材は、前記主軸受部材の表面上で周方向に環状に延びる板状部材からなる、請求項1または2に記載のスクロール型圧縮機。
- 前記スラスト受け部材は、前記主軸受部材の表面上に形成され周方向に断続的に配置された複数の円弧状の溝内に遊嵌された複数の円弧状部材からなる、請求項1または2に記載のスクロール型圧縮機。
- 前記スラスト受け部材が、耐摩耗性の金属または樹脂から構成されている、請求項1~4のいずれかに記載のスクロール型圧縮機。
- 前記環状の溝および前記シール手段は、径方向に前記自転阻止機構を内包する位置に配置されている、請求項1~5のいずれかに記載のスクロール型圧縮機。
- 車両空調装置用の圧縮機である、請求項1~6のいずれかに記載のスクロール型圧縮機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800328311A CN102985696A (zh) | 2010-07-06 | 2011-06-29 | 涡旋式压缩机 |
US13/808,823 US20130209305A1 (en) | 2010-07-06 | 2011-06-29 | Scroll compressor |
EP11803484.2A EP2589808A1 (en) | 2010-07-06 | 2011-06-29 | Scroll compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-153750 | 2010-07-06 | ||
JP2010153750A JP2012017656A (ja) | 2010-07-06 | 2010-07-06 | スクロール型圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012005150A1 true WO2012005150A1 (ja) | 2012-01-12 |
Family
ID=45441132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064885 WO2012005150A1 (ja) | 2010-07-06 | 2011-06-29 | スクロール型圧縮機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130209305A1 (ja) |
EP (1) | EP2589808A1 (ja) |
JP (1) | JP2012017656A (ja) |
CN (1) | CN102985696A (ja) |
WO (1) | WO2012005150A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2799665A3 (en) * | 2013-03-04 | 2015-04-29 | Kabushiki Kaisha Toyota Jidoshokki | Scroll compressor |
JP2020190244A (ja) * | 2019-05-22 | 2020-11-26 | 澤 司郎 | スクロール圧縮機用両頭円すいころ偏心接手 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5601404B1 (ja) * | 2013-06-20 | 2014-10-08 | ダイキン工業株式会社 | スクロール圧縮機 |
DE102014113435A1 (de) * | 2014-09-17 | 2016-03-17 | Bitzer Kühlmaschinenbau Gmbh | Kompressor |
CN105986997B (zh) * | 2015-02-04 | 2019-11-01 | 艾默生环境优化技术(苏州)有限公司 | 涡旋压缩机 |
US11105332B2 (en) | 2015-02-04 | 2021-08-31 | Emerson Climate Technologies (Suzhou) Co., Ltd. | Scroll compressor having stable back pressure chamber with sealing members |
JP6686490B2 (ja) | 2016-02-04 | 2020-04-22 | ソニー株式会社 | ユーザ端末、方法及びプログラム |
WO2017175945A1 (en) * | 2016-04-06 | 2017-10-12 | Lg Electronics Inc. | Motor-operated compressor |
CN108884828A (zh) * | 2016-04-06 | 2018-11-23 | Lg电子株式会社 | 电机操作的压缩机 |
US11976655B2 (en) | 2016-05-27 | 2024-05-07 | Copeland Climate Technologies (Suzhou) Co. Ltd. | Scroll compressor |
JP6715722B2 (ja) * | 2016-07-29 | 2020-07-01 | 日立ジョンソンコントロールズ空調株式会社 | スクロール圧縮機 |
JP6678762B2 (ja) * | 2016-10-28 | 2020-04-08 | 三菱電機株式会社 | スクロール圧縮機、冷凍サイクル装置およびシェル |
KR102549777B1 (ko) | 2016-12-21 | 2023-06-30 | 삼성전자주식회사 | 스크롤 압축기 |
CN107044416A (zh) * | 2017-03-07 | 2017-08-15 | 无锡五洋川普涡旋科技有限公司 | 一种水冷式三级压缩无油涡旋空气压缩机 |
JP6760148B2 (ja) * | 2017-03-10 | 2020-09-23 | 株式会社豊田自動織機 | 車両用電動圧縮機 |
DE102020109556B4 (de) | 2020-04-06 | 2022-10-06 | Hanon Systems | Vorrichtungen zum Verdichten eines gasförmigen Fluids und Verfahren zum Betreiben der Vorrichtungen |
CN114033676A (zh) * | 2021-12-23 | 2022-02-11 | 广州广涡压缩机有限公司 | 一种增压式涡旋空气压缩机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0874754A (ja) * | 1994-09-08 | 1996-03-19 | Toyota Autom Loom Works Ltd | スクロール型圧縮機 |
JP2000220582A (ja) * | 1999-01-29 | 2000-08-08 | Sanyo Electric Co Ltd | スクロール流体機械 |
JP2009024663A (ja) * | 2007-07-23 | 2009-02-05 | Sanden Corp | スクロール型流体機械 |
JP4262949B2 (ja) | 2002-09-09 | 2009-05-13 | 株式会社日本自動車部品総合研究所 | スクロール型圧縮機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2674991B2 (ja) * | 1986-11-19 | 1997-11-12 | 株式会社日立製作所 | スクロール圧縮機 |
US5256042A (en) * | 1992-02-20 | 1993-10-26 | Arthur D. Little, Inc. | Bearing and lubrication system for a scroll fluid device |
MY119499A (en) * | 1995-12-05 | 2005-06-30 | Matsushita Electric Ind Co Ltd | Scroll compressor having bypass valves |
JP4440564B2 (ja) * | 2003-06-12 | 2010-03-24 | パナソニック株式会社 | スクロール圧縮機 |
JP5039327B2 (ja) * | 2006-06-14 | 2012-10-03 | 三菱重工業株式会社 | スクロール圧縮機 |
JP4979473B2 (ja) * | 2007-06-06 | 2012-07-18 | 日立アプライアンス株式会社 | スクロール圧縮機 |
-
2010
- 2010-07-06 JP JP2010153750A patent/JP2012017656A/ja active Pending
-
2011
- 2011-06-29 EP EP11803484.2A patent/EP2589808A1/en not_active Withdrawn
- 2011-06-29 CN CN2011800328311A patent/CN102985696A/zh active Pending
- 2011-06-29 US US13/808,823 patent/US20130209305A1/en not_active Abandoned
- 2011-06-29 WO PCT/JP2011/064885 patent/WO2012005150A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0874754A (ja) * | 1994-09-08 | 1996-03-19 | Toyota Autom Loom Works Ltd | スクロール型圧縮機 |
JP2000220582A (ja) * | 1999-01-29 | 2000-08-08 | Sanyo Electric Co Ltd | スクロール流体機械 |
JP4262949B2 (ja) | 2002-09-09 | 2009-05-13 | 株式会社日本自動車部品総合研究所 | スクロール型圧縮機 |
JP2009024663A (ja) * | 2007-07-23 | 2009-02-05 | Sanden Corp | スクロール型流体機械 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2799665A3 (en) * | 2013-03-04 | 2015-04-29 | Kabushiki Kaisha Toyota Jidoshokki | Scroll compressor |
US9243639B2 (en) | 2013-03-04 | 2016-01-26 | Kabushiki Kaisha Toyota Jidoshokki | Scroll compressor including a sealing member |
JP2020190244A (ja) * | 2019-05-22 | 2020-11-26 | 澤 司郎 | スクロール圧縮機用両頭円すいころ偏心接手 |
JP7314452B2 (ja) | 2019-05-22 | 2023-07-26 | 司郎 澤 | スクロール圧縮機用両頭円すいころ偏心接手 |
Also Published As
Publication number | Publication date |
---|---|
JP2012017656A (ja) | 2012-01-26 |
EP2589808A1 (en) | 2013-05-08 |
CN102985696A (zh) | 2013-03-20 |
US20130209305A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012005150A1 (ja) | スクロール型圧縮機 | |
KR100916554B1 (ko) | 올덤 커플링을 위한 클리어런스를 가진 스크롤 압축기 | |
JP5183938B2 (ja) | シール装置 | |
US8047823B2 (en) | Scroll-type fluid machine including pressure-receiving piece | |
US7997883B2 (en) | Scroll compressor with scroll deflection compensation | |
JP4638762B2 (ja) | スクロール圧縮機 | |
JP4514106B2 (ja) | スクロール圧縮機 | |
JP4822943B2 (ja) | 流体機械 | |
JP5175497B2 (ja) | スクロール式流体機械 | |
CN114174679B (zh) | 涡旋泵 | |
KR20200030390A (ko) | 전동식 압축기 | |
JPH09310687A (ja) | スクロール型圧縮機 | |
US11359629B2 (en) | Motor operated compressor | |
JP4706599B2 (ja) | スクロール圧縮機 | |
CN110017276B (zh) | 涡旋压缩机 | |
JP2018168801A (ja) | ベーン型圧縮機 | |
CN207795568U (zh) | 涡旋压缩机 | |
KR100348609B1 (ko) | 스크롤 압축기의 고저압 분리구조 | |
JP4727468B2 (ja) | スクロール圧縮機 | |
JP2010156249A (ja) | スクロール圧縮機 | |
JP2010112174A (ja) | ロータリ圧縮機 | |
JP4118112B2 (ja) | スクロール型圧縮機 | |
JP2004019527A (ja) | スクロール型圧縮機 | |
JP2011231687A (ja) | スクロール圧縮機 | |
JP2013148041A (ja) | チップシールおよびそれを用いたスクロール圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180032831.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11803484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011803484 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13808823 Country of ref document: US |