WO2012004906A1 - 画像処理装置、画像処理方法およびプログラム - Google Patents

画像処理装置、画像処理方法およびプログラム Download PDF

Info

Publication number
WO2012004906A1
WO2012004906A1 PCT/JP2011/000065 JP2011000065W WO2012004906A1 WO 2012004906 A1 WO2012004906 A1 WO 2012004906A1 JP 2011000065 W JP2011000065 W JP 2011000065W WO 2012004906 A1 WO2012004906 A1 WO 2012004906A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
image
luminance level
exposure time
image processing
Prior art date
Application number
PCT/JP2011/000065
Other languages
English (en)
French (fr)
Inventor
釣部 智行
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180003630.9A priority Critical patent/CN102484679B/zh
Priority to EP11803248.1A priority patent/EP2448244A4/en
Publication of WO2012004906A1 publication Critical patent/WO2012004906A1/ja
Priority to US13/356,798 priority patent/US8502880B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images

Definitions

  • the present invention relates to an image processing apparatus using stereo matching.
  • a stereo image processing apparatus that performs a stereo distance measurement to measure a distance to an object to be photographed is known (for example, see Patent Document 1).
  • the distance to the object to be photographed is calculated using two camera images photographed using two cameras. It can be said that these two camera images are images for distance measurement.
  • one of two camera images is used as a monitoring image.
  • the S / N ratio of the video signal becomes low.
  • the video signal for the monitoring image is subjected to nonlinear processing such as gamma correction processing and the amplitude of the low / medium luminance video signal is expanded.
  • Non-linear processing increases noise, and as a result, the image quality of the monitoring image is degraded.
  • An object of the present invention is to provide an image processing apparatus capable of obtaining a monitoring image with good image quality.
  • One embodiment of the present invention is an image processing device, and the image processing device applies a first video signal obtained from a first imaging unit and a second video signal obtained from a second imaging unit.
  • a matching unit that performs a matching process that minimizes the amount of deviation between the first video signal and the second video signal, and a third video signal obtained from the first imaging unit are used as a result of the matching process.
  • an addition unit that adds the fourth video signal obtained from the second imaging unit by shifting the minimum deviation amount obtained as above, and performs non-linear processing and / or contour correction processing on the added video signal.
  • a monitoring image generation unit for generating a monitoring image.
  • Another aspect of the present invention is an image processing method, which includes a first video signal obtained from a first imaging unit and a second video signal obtained from a second imaging unit.
  • a matching process that minimizes the amount of deviation between the first video signal and the second video signal is performed, and the third video signal obtained from the first imaging unit is used as a result of the matching process. Shifting the obtained minimum shift amount and adding it to the fourth video signal obtained from the second imaging unit, and performing nonlinear processing and / or contour correction processing on the added video signal Generating a monitoring image.
  • Another aspect of the present invention is an image processing program, which is stored in a computer with a first video signal obtained from the first imaging unit and a second image obtained from the second imaging unit.
  • a process of shifting by the minimum shift amount obtained as a result of the above and adding to the fourth video signal obtained from the second imaging unit, and a non-linear process and / or a contour correction process for the added video signal To generate a monitoring image.
  • FIG. 1 is a block diagram of an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the operation of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing a flow of generation of a distance image and a monitoring image in the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a flow of generation of low, medium and high luminance images in the embodiment of the present invention.
  • the image processing apparatus is configured such that the first video signal and the second video signal obtained from the first imaging unit and the second video signal obtained from the second imaging unit are The matching unit that performs the matching process that minimizes the amount of deviation from the video signal and the third video signal obtained from the first imaging unit are shifted by the minimum amount of deviation obtained as a result of the matching process, An adder for adding to the fourth video signal obtained from the second imaging unit, and a monitoring image for generating a monitoring image by performing nonlinear processing and / or contour correction processing on the added video signal And a generation unit.
  • the video signal (first video signal and second video signal) obtained from the two imaging units is subjected to matching processing, and the deviation amount of the video signal obtained from the two imaging units is obtained. Then, in consideration of the shift amount of the video signals obtained from the two imaging units, the two video signals (third video signal and fourth video signal) are added and used as a monitoring image. Since the added video signal has a higher S / N ratio than one video signal, it is possible to obtain a monitoring image with good image quality.
  • the image processing apparatus of the present invention may have a configuration including a distance image generation unit that generates an image for distance measurement from the minimum shift amount obtained as a result of the matching process.
  • This configuration makes it possible to obtain a monitoring image with good image quality and a distance measurement image (distance image).
  • the image processing apparatus also exposes or amplifies the first video signal and the second video signal so that the first video signal and the second video signal are within a predetermined luminance level.
  • a control unit for controlling the rate, and the matching unit may have a configuration for performing a matching process on the first video signal and the second video signal within a predetermined luminance level range by the control unit. .
  • the exposure time or the amplification factor is controlled so that the luminance level of the video signal is within a predetermined luminance level range. For example, for a low / medium luminance video signal, control is performed to increase the exposure time or increase the amplification factor. In addition, for a high-luminance video signal, control is performed to shorten the exposure time or lower the amplification factor. As a result, even when shooting a high-luminance subject, it is possible to suppress deterioration in image quality due to white crushing, and matching processing using two video signals (first video signal and second video signal) Accuracy can be improved.
  • the image processing apparatus of the present invention controls the second video signal and the fourth video signal so that the exposure times of the third video signal and the fourth video signal are different from each other. You may have the structure provided with the control part.
  • the two video signals (third video signal and fourth video signal) can be obtained by addition.
  • the dynamic range of the monitoring image can be expanded. For example, when a high-luminance subject is photographed, the exposure time of the third video signal and the fourth video signal is controlled to be shortened. In this case, the exposure of the third video signal is further performed. The time is controlled to be shorter than the exposure time of the fourth video signal.
  • the image processing apparatus of the present invention includes a third control unit that controls the exposure time or the amplification factor of the first video signal, the second video signal, the third video signal, and the fourth video signal,
  • the third control unit exposes the first video signal and the second video signal so that the first video signal and the second video signal are within the first luminance level range in the first period.
  • the time or amplification factor is controlled, and in the second period, the third video signal and the fourth video signal are set so that the third video signal and the fourth video signal are within the second luminance level range.
  • the exposure time or amplification factor is controlled, and in the third period, the first video signal and the second video signal are within a third luminance level range different from the first luminance level range.
  • the exposure time or amplification factor of the third video signal and the fourth video signal may be controlled so that the signal is within a fourth luminance level range different from the second luminance level range. .
  • a video signal within the first luminance level range for example, a low-medium luminance level
  • a video signal within the third luminance level range for example, a high luminance level
  • a video signal within the third luminance level range for example, a high luminance level
  • a video signal within the second luminance level range for example, low and medium luminance levels
  • a video signal within the fourth luminance level range for example, a high luminance level
  • a monitoring image in which video signals (third video signal and fourth video signal) are added in a wide luminance level range (a wide range from low luminance to high luminance).
  • the dynamic range of the monitoring image can be expanded. Therefore, for example, even when a high-luminance subject is photographed, the occurrence of white crushing in the monitoring image (obtained by adding the third video signal and the fourth video signal) is reduced. Therefore, it is possible to obtain a monitoring image having gradation even with high luminance.
  • the image processing method includes a first video signal and a second video signal obtained from the first imaging unit and a second video signal obtained from the second imaging unit. Matching processing that minimizes the amount of deviation from the video signal is performed, and the third video signal obtained from the first imaging unit is shifted by the smallest amount of deviation obtained as a result of the matching processing, Adding to the fourth video signal obtained from the imaging unit, and performing non-linear processing and / or contour correction processing on the added video signal to generate a monitoring image. It is out.
  • the two video signals (the third video signal and the fourth video signal) are added and monitored in consideration of the shift amount of the video signals obtained from the two imaging units. Since it can be used as an image for monitoring, a monitoring image with good image quality can be obtained.
  • the image processing method of the present invention may include generating an image for distance measurement from the minimum shift amount obtained as a result of the matching process.
  • This method can obtain a monitoring image with good image quality and a distance measurement image (distance image) in the same manner as described above.
  • the image processing method of the present invention provides the exposure time or amplification of the first video signal and the second video signal so that the first video signal and the second video signal are within a predetermined luminance level range.
  • the matching process including controlling the rate, the matching process may be performed on the first video signal and the second video signal that are within a predetermined luminance level range by the control.
  • the image processing method of the present invention includes controlling the exposure times of the third video signal and the fourth video signal so that the exposure times of the third video signal and the fourth video signal are different from each other. It's okay.
  • the dynamic range of the monitoring image obtained by adding two video signals (third video signal and fourth video signal) can be expanded as described above.
  • the image processing method of the present invention includes controlling an exposure time or an amplification factor of the first video signal, the second video signal, the third video signal, and the fourth video signal, and the first period And controlling the exposure time or the amplification factor of the first video signal and the second video signal so that the first video signal and the second video signal are within the first luminance level range.
  • the exposure time or amplification factor of the third video signal and the fourth video signal is controlled so that the third video signal and the fourth video signal are within the second luminance level range.
  • the first video signal and the second video signal are set so that the first video signal and the second video signal are within a third luminance level range different from the first luminance level range.
  • Control the exposure time or amplification factor, and in the fourth period, the third video signal and the fourth video signal are the second luminance level As will be in a different fourth brightness level range of the circumference, it may control the exposure time or gain of the third video signal and the fourth image signal.
  • the program of the present invention causes a computer to execute a first video signal and a second video signal on the first video signal obtained from the first imaging unit and the second video signal obtained from the second imaging unit.
  • the process of performing the matching process that minimizes the amount of deviation from the video signal of the second image signal and the third video signal obtained from the first imaging unit are shifted by the minimum amount of deviation obtained as a result of the matching process,
  • the two video signals (third video signal and fourth video signal) are added and monitored in consideration of the shift amount of the video signals obtained from the two imaging units, as described above. Since it can be used as an image for monitoring, a monitoring image with good image quality can be obtained.
  • the two video signals (the third video signal and the fourth video signal) are added and used as a monitoring image in consideration of the shift amount of the video signals obtained from the two imaging units. By doing so, a high-quality monitoring image can be obtained.
  • an image processing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
  • a case of an image processing apparatus used for a vehicle-mounted stereo image processing apparatus or the like is illustrated.
  • the image processing function of the image processing apparatus according to the present embodiment as described below may be realized by a program stored in a memory or HDD of the image processing apparatus.
  • the image processing apparatus 1 includes two image pickup devices 3 (an image pickup device A and an image pickup device B) in which a lens 2 is disposed on an optical path, and images from the image pickup devices 3.
  • Two amplifier circuits 4 amplifier circuit A and amplifier circuit B for amplifying signals are provided.
  • imaging is performed by the lens 2 and the imaging device 3.
  • the two imaging devices 3 (imaging device A and imaging device B) correspond to the first imaging unit and the second imaging unit of the present invention.
  • the image processing apparatus 1 includes a matching circuit 5 that performs stereo matching processing (also simply referred to as matching processing) on two video signals obtained from two imaging devices 3 (imaging device A and imaging device B). Yes.
  • the matching circuit 5 performs a matching process that minimizes the shift amount for each pixel of the two video signals, and outputs the minimum shift amount for each pixel as a result of the matching process.
  • This matching circuit 5 corresponds to the matching unit of the present invention.
  • the image processing apparatus 1 includes an adding circuit 6 that adds a video signal obtained from one image sensor 3 (image sensor A) to a video signal obtained from the other image sensor 3 (image sensor B); A non-linear processing / contour correction circuit 7 is provided that performs non-linear processing such as gamma correction processing or contour correction processing on the added video signal to generate a monitoring image.
  • the video signal obtained from one image sensor 3 (image sensor A) is shifted by the minimum shift amount for each pixel obtained as a result of the matching process, and the other image sensor 3 ( A process of adding to the video signal obtained from the image sensor B) is performed.
  • the adding circuit 6 corresponds to the adding unit of the present invention
  • the non-linear processing / contour correcting circuit 7 corresponds to the monitoring image generating unit of the present invention.
  • the image processing apparatus 1 further includes a distance image generation circuit 8 that generates an image for distance measurement from the minimum shift amount for each pixel obtained as a result of the matching process.
  • the distance image generation circuit 8 generates an image (distance image) for measuring the distance to the object to be photographed from the minimum deviation amount for each pixel of the two video signals based on the principle of general triangulation. To do.
  • This distance image generation circuit 8 corresponds to a distance image generation unit of the present invention.
  • the image processing apparatus 1 includes an exposure / amplification control circuit 9 that controls the exposure time of the image sensor 3 and the amplification factor of the amplifier circuit 4.
  • the exposure / amplification control circuit 9 controls the exposure time of the image sensor 3 by sending a control signal to a drive circuit (not shown) of the image sensor 3.
  • the exposure / amplification control circuit 9 controls the amplification factor of the amplifier circuit 4 by sending a control signal to the amplifier circuit 4.
  • the exposure / amplification control circuit 9 monitors the output from the amplifier circuit 4 (video signal obtained from the image sensor 3), and the exposure time of the image sensor 3 so that the output is within a certain luminance level range. And a function of adjusting the amplification factor of the amplifier circuit 4.
  • the exposure / amplification control circuit 9 corresponds to a control unit, a second control unit, and a third control unit of the present invention.
  • FIG. 2 is an explanatory diagram of the operation of the image processing apparatus 1 according to the present embodiment.
  • video signals first video signal and second video signal
  • the exposure time of the image pickup device 3 and the amplification factor of the amplifier circuit 4 are controlled so as to be within the range of the low and medium luminance levels.
  • the exposure time of the two image pickup devices 3 (the image pickup device A and the image pickup device B) is set to the exposure time Tc1 for low and medium luminance in the period T1, and the two amplifier circuits 4 (amplifier circuit A).
  • the amplification factor of the amplification circuit B) is set to the amplification factor A1 for low and medium luminance.
  • the video signals (third video signal and fourth video signal) obtained from the two image pickup devices 3 are within the range of the luminance level of low and medium luminance.
  • the exposure time of the image sensor 3 and the amplification factor of the amplifier circuit 4 are controlled.
  • the exposure time of one image sensor 3 (image sensor A) is set to the short exposure time Tc2s for low and medium luminance, and the exposure of the other image sensor 3 (image sensor B).
  • the time is set to the long exposure time Tc2l for low and medium luminance.
  • the amplification factor of one amplification circuit 4 (amplification circuit A) is set to a low amplification factor A2s for low and medium luminance, and the amplification factor of the other amplification circuit 4 (amplification circuit B) is low and medium luminance.
  • a high amplification factor A2l is set.
  • this period T2 matching processing is performed on the two video signals (first video signal and second video signal) obtained in the period T1, and a minimum shift amount for each pixel is calculated. A range image for low and medium luminance is generated (updated). Further, in this period T2, addition processing (minimum deviation for each pixel) in which the result of the above-described matching processing is reflected in the two video signals (third video signal and fourth video signal) obtained in the period T2. (Addition processing shifted by the amount) is performed, and the obtained video signal (added video signal) is subjected to nonlinear processing and contour correction processing to generate (update) a monitoring image for low and medium luminance.
  • the video signals (first video signal and second video signal) obtained from the two image pickup devices 3 are within the range of the high luminance level.
  • the exposure time of the image sensor 3 and the amplification factor of the amplifier circuit 4 are controlled.
  • the exposure time of the two imaging devices 3 imaging device A and imaging device B
  • the two amplification circuits 4 amplification circuit A and The amplification factor of the amplification circuit B
  • the amplification factor A3 for high luminance.
  • the video signals (third video signal and fourth video signal) obtained from the two image pickup devices 3 are within the range of the high luminance level.
  • the exposure time of the image sensor 3 and the amplification factor of the amplifier circuit 4 are controlled.
  • the exposure time of one image sensor 3 (image sensor A) is set to the short exposure time Tc4s for high brightness
  • the exposure time of the other image sensor 3 is set to a long exposure time Tc4l for high brightness.
  • the amplification factor of one amplification circuit 4 (amplification circuit A) is set to the amplification factor A4s
  • the amplification factor of the other amplification circuit 4 (amplification circuit B) is set to the amplification factor A41.
  • this period T4 matching processing is performed on the two video signals (first video signal and second video signal) obtained in the period T3, and the minimum shift amount for each pixel is calculated. A distance image for high brightness is generated (updated). Further, in this period T4, an addition process (minimum deviation for each pixel) that reflects the result of the above matching process in the two video signals (third video signal and fourth video signal) obtained in the period T3. (Addition processing shifted by an amount) is performed, and the obtained video signal (added video signal) is subjected to nonlinear processing and contour correction processing to generate (update) a monitoring image for high luminance.
  • the processes in the period T1 to the period T4 as described above are periodically repeated. That is, the process of updating (generating) the distance image for low and medium luminance and the monitoring image, and the process of updating (generating) the distance image for high luminance and the monitoring image are periodically repeated.
  • the operation of the image processing apparatus 1 according to the present embodiment will be described in detail by dividing it into generation of a distance image and a monitoring image, and generation of low-medium luminance and high-luminance images.
  • FIG. 3 is a flowchart showing the flow of generation of the distance image and generation of the monitoring image.
  • two video signals first video signal and second video signal
  • S1 it is determined whether or not the luminance level is within a predetermined luminance level (S2). For example, when the luminance level of the video signal is lower than a predetermined reference luminance level, it is determined that the luminance level is within the range of low and medium luminance levels. On the other hand, if it is higher than the predetermined reference luminance level, it is determined that it is within the range of the high luminance level.
  • the luminance level of the video signal is within a predetermined luminance level range
  • two video signals first and second luminance images
  • the video signal and the second video signal are matched, and the minimum shift amount for each pixel is obtained (S4).
  • a distance image is generated based on a general triangulation principle from the minimum shift amount for each pixel obtained as a result of the matching process (S5).
  • an exposure time for short exposure (for example, exposure time Tc2s) is set for one image sensor 3 (image sensor A), and a short exposure is performed for one amplifier circuit 4 (amplifier circuit A).
  • An amplification factor (for example, amplification factor A2s) is set, an exposure time for long exposure (for example, exposure time Tc2l) is set for the other imaging device 3 (imaging device B), and the other amplification circuit 4
  • An amplification factor for long-time exposure (for example, amplification factor A2l) is set in (amplifier circuit B) (S6).
  • FIG. 4 is a flowchart showing a flow of generation of an image with low and medium luminance and high luminance.
  • the exposure time for example, exposure time Tc ⁇ b> 1
  • the amplification factor for example, amplification factor A ⁇ b> 1
  • S10 two video signals
  • S11 two video signals
  • S12 matching processing of the two video signals
  • S13 a distance image for low and medium luminance is generated from the minimum shift amount for each pixel obtained as a result of the matching process (S13).
  • an exposure time for short exposure (for example, exposure time Tc2s) is set for one imaging device 3 (imaging device A), and amplification for short exposure is performed for one amplification circuit 4 (amplification circuit A).
  • a rate for example, amplification factor A2s
  • an exposure time for long exposure (for example, exposure time Tc2l) is set for the other image sensor 3 (image sensor B), and the other amplifier circuit 4 (amplifier circuit).
  • an amplification factor for long-time exposure (for example, amplification factor A2l) is set (S14).
  • two video signals (third video signal and fourth video signal) are acquired from these two image pickup devices 3 (S15), and the minimum for each pixel obtained as a result of the matching process (S12) is obtained.
  • One of the video signals is shifted by the amount of shift, and the two video signals for low and medium luminance are added (S16).
  • the added video signal is subjected to non-linear processing and contour correction processing to generate a low-medium luminance monitoring image (S17).
  • an exposure time for high brightness for example, exposure time Tc3
  • an amplification factor for example, amplification factor A3
  • 1 video signal and 2nd video signal are acquired (S19).
  • matching processing of two video signals is performed to obtain a minimum shift amount for each pixel (S20).
  • a distance image for high luminance is generated from the minimum shift amount for each pixel obtained as a result of the matching process (S21).
  • an exposure time for short exposure (for example, exposure time Tc4s) is set for one imaging device 3 (imaging device A), and amplification for short exposure is performed for one amplification circuit 4 (amplification circuit A).
  • a rate for example, amplification factor A4s
  • an exposure time for long exposure (for example, exposure time Tc4l) is set for the other image sensor 3 (image sensor B), and the other amplifier circuit 4 (amplifier circuit) In B)
  • an amplification factor for long-time exposure (for example, amplification factor A4l) is set (S22).
  • the two video signals (the third video signal and the fourth video are considered in consideration of the shift amount of the video signals obtained from the two imaging units. Signal) is added and used as a monitoring image, whereby a high-quality monitoring image can be obtained.
  • the video signal obtained from the two imaging units (the first video signal and the second video signal) is subjected to a matching process, and the deviation amount of the video signal obtained from the two imaging units is reduced. Desired. Then, in consideration of the shift amount of the video signals obtained from the two imaging units, the two video signals (third video signal and fourth video signal) are added and used as a monitoring image. Since the added video signal has a higher S / N ratio than one video signal, it is possible to obtain a monitoring image with good image quality. In this case, a monitoring image with good image quality can be obtained, and an image for distance measurement (distance image) can be obtained.
  • the exposure time or the amplification factor is controlled so that the luminance level of the video signal is within a predetermined luminance level. For example, for a low / medium luminance video signal, control is performed to increase the exposure time or increase the amplification factor. In addition, for a high-luminance video signal, control is performed to shorten the exposure time or lower the amplification factor. As a result, even when shooting a high-luminance subject, it is possible to suppress deterioration in image quality due to white crushing, and matching processing using two video signals (first video signal and second video signal) Accuracy can be improved.
  • the exposure times of the third video signal and the fourth video signal can be made different from each other, two video signals (third video signal and fourth video signal) are added.
  • the dynamic range of the monitoring image obtained can be expanded.
  • the exposure time of the third video signal and the fourth video signal is controlled to be shortened.
  • the exposure of the third video signal is further performed.
  • the time is controlled to be shorter than the exposure time of the fourth video signal.
  • a video signal within the first luminance level range for example, a low-medium luminance level
  • a video signal within a third luminance level range for example, a high luminance level
  • a video signal within the second luminance level range for example, low and medium luminance levels
  • a video signal within the fourth luminance level range for example, a high luminance level
  • the dynamic range of the monitoring image can be expanded. Therefore, for example, even when a high-luminance subject is photographed, the occurrence of white crushing in the monitoring image (obtained by adding the third video signal and the fourth video signal) is reduced. Therefore, it is possible to obtain a monitoring image having gradation even with high luminance. In this case, it is possible to obtain an accurate distance image in a wide luminance level range (a wide range from low luminance to high luminance), and therefore it is possible to improve the accuracy of distance measurement.
  • the scope of the present invention is not limited to this, and two image regions are cut out from one image sensor 3 and 2 One video signal may be used. Further, the monitoring images may be updated earlier by setting the periods T1 and T3 shorter than the periods T2 and T4.
  • the image processing apparatus has an effect that a high-quality monitoring image can be obtained by adding two video signals and using them as a monitoring image. It is useful as an image processing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 画像処理装置(1)では、2つの撮像素子(3)(例えば、撮像素子Aと撮像素子B)から得られた第一の映像信号と第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理が行われる。一方の撮像素子(3)(例えば、撮像素子A)から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、他方の撮像素子(3)(例えば、撮像素子B)から得られた第四の映像信号に加算し、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像が生成される。このように、二つの映像信号を加算して、監視用画像として利用することにより、高い画質の監視用画像を得ることのできる画像処理装置が提供される。

Description

画像処理装置、画像処理方法およびプログラム
 本発明は、ステレオマッチングを利用した画像処理装置に関するものである。
 従来、ステレオ測距を行って撮影対象物までの距離を測定するステレオ画像処理装置が知られている(例えば、特許文献1参照)。従来のステレオ画像処理装置では、2台のカメラを用いて撮影された2つのカメラ画像を用いて、撮影対象物までの距離の算出が行われる。これらの2つのカメラ画像は、距離測定用の画像であるともいえる。また、従来のステレオ画像処理装置では、2つのカメラ画像(距離測定用の画像)の一方を、監視用画像として用いていた。
 しかしながら、従来の画像処理装置においては、2つのカメラ画像(距離測定用の画像)の一方のカメラ画像しか監視用画像として利用していないため、映像信号のS/N比が低くなってしまう。監視用画像のための映像信号にはガンマ補正処理などの非線形処理が施され、低・中輝度の映像信号の振幅が伸張されるが、このとき、映像信号のS/N比が低いと、非線形処理によってノイズが増えてしまい、その結果、監視用画像の画質が劣化してしまう。
特開2009-121870号公報
 本発明は、上記背景の下でなされたものである。本発明の目的は、画質のよい監視用画像を得ることのできる画像処理装置を提供することにある。
 本発明の一の態様は、画像処理装置であり、この画像処理装置は、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行うマッチング部と、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算する加算部と、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する監視用画像生成部と、を備えている。
 本発明の別の態様は、画像処理方法であり、この画像処理方法は、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行うことと、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算することと、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成することと、を含んでいる。
 本発明の別の態様は、画像処理プログラムであり、この画像処理プログラムは、コンピュータに、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行う処理と、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算する処理と、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する処理と、を実行させる。
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。
図1は、本発明の実施の形態における画像処理装置のブロック図 図2は、本発明の実施の形態における画像処理装置の動作の説明図 図3は、本発明の実施の形態における距離画像の生成と監視用画像の生成の流れを示すフロー図 図4は、本発明の実施の形態における低中輝度と高輝度の画像の生成の流れを示すフロー図
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。
 本発明の画像処理装置は、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行うマッチング部と、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算する加算部と、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する監視用画像生成部と、を備えた構成を有している。
 この構成により、二つの撮像部から得られる映像信号(第一の映像信号と第二の映像信号)にマッチング処理を施して、二つの撮像部から得られる映像信号のずれ量が求められる。そして、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用する。加算された映像信号は、一つの映像信号よりS/N比が高いので、画質のよい監視用画像を得ることができる。
 また、本発明の画像処理装置は、マッチング処理の結果として得られる最小のずれ量から距離測定用の画像を生成する距離画像生成部を備えた構成を有してよい。
 この構成により、画質のよい監視用画像を得るとともに、距離測定用の画像(距離画像)を得ることができる。
 また、本発明の画像処理装置は、第一の映像信号と第二の映像信号が所定の輝度レベルの範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御する制御部を備え、マッチング部は、制御部により所定の輝度レベルの範囲内となった第一の映像信号と第二の映像信号に対してマッチング処理を行う構成を有してよい。
 この構成により、映像信号の輝度レベルが所定の輝度レベルの範囲内となるように、露光時間または増幅率が制御される。例えば、低中輝度の映像信号については、露光時間を長く、または、増幅率を上げる制御が行われる。また、高輝度の映像信号については、露光時間を短く、または、増幅率を下げる制御が行われる。これにより、高輝度の被写体を撮影した場合であっても、白潰れによる画質の低下を抑えることができ、二つの映像信号(第一の映像信号と第二の映像信号)を用いたマッチング処理の精度を向上させることができる。このように、高輝度の被写体を撮影した場合であっても、精度の高いマッチング処理の結果(最小のずれ量)に基づいて、二つの映像信号(第三の映像信号と第四の映像信号)を加算することができるので、画質のよい監視用画像を得ることができる。
 また、本発明の画像処理装置は、第三の映像信号と第四の映像信号の露光時間が互いに異なるように、第三の映像信号と第四の映像信号の露光時間を制御する第二の制御部を備えた構成を有してよい。
 この構成により、第三の映像信号と第四の映像信号の露光時間を互いに異ならせることができるので、二つの映像信号(第三の映像信号と第四の映像信号)を加算して得られる監視用画像のダイナミックレンジを拡大することができる。例えば、高輝度の被写体を撮影した場合、第三の映像信号と第四の映像信号の露光時間がともに短くなるように制御されるが、さらに、この場合には、第三の映像信号の露光時間が第四の映像信号の露光時間より短くなるように制御される。これにより、高輝度の被写体を撮影した場合であっても、監視用画像(第三の映像信号と第四の映像信号を加算して得られる)に白潰れが発生するのを低減させることができ、高輝度でも階調のある監視用画像を得ることが可能になる。
 また、本発明の画像処理装置は、第一の映像信号、第二の映像信号、第三の映像信号、第四の映像信号の露光時間または増幅率を制御する第三の制御部を備え、第三の制御部は、第一の期間に、第一の映像信号と第二の映像信号が第一の輝度レベル範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御し、第二の期間に、第三の映像信号と第四の映像信号が第二の輝度レベル範囲内となるように、第三の映像信号と第四の映像信号の露光時間または増幅率を制御し、第三の期間に、第一の映像信号と第二の映像信号が、第一の輝度レベル範囲とは異なる第三の輝度レベル範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御し、第四の期間に、第三の映像信号と第四の映像信号が、第二の輝度レベル範囲とは異なる第四の輝度レベル範囲内となるように、第三の映像信号と第四の映像信号の露光時間または増幅率を制御する構成を有してよい。
 この構成により、第一の映像信号と第二の映像信号については、第一の期間に、第一の輝度レベル範囲内(例えば、低中輝度レベル)の映像信号が得られ、第三の期間に、第三の輝度レベル範囲内(例えば、高輝度レベル)の映像信号が得られる。一方、第三の映像信号と第四の映像信号については、第二の期間に、第二の輝度レベル範囲内(例えば、低中輝度レベル)の映像信号が得られ、第四の期間に、第四の輝度レベル範囲内(例えば、高輝度レベル)の映像信号が得られる。このようにして、第一の期間から第四の期間にかけて、輝度レベルの異なる映像信号を得ることができる。したがって、広い輝度レベルの範囲(低輝度から高輝度の広い範囲)で、映像信号(第三の映像信号と第四の映像信号)を加算した監視用画像を得ることができ、このようにして、監視用画像のダイナミックレンジを拡大することができる。そのため、例えば、高輝度の被写体を撮影した場合であっても、監視用画像(第三の映像信号と第四の映像信号を加算して得られる)に白潰れが発生するのを低減させることができ、高輝度でも階調のある監視用画像を得ることが可能になる。
 本発明の画像処理方法は、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行うことと、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算することと、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成することと、を含んでいる。
 この方法によっても、上記と同様に、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用することができるので、画質のよい監視用画像を得ることができる。
 また、本発明の画像処理方法は、マッチング処理の結果として得られる最小のずれ量から距離測定用の画像を生成することを含んでよい。
 この方法によっても、上記と同様に、画質のよい監視用画像を得るとともに、距離測定用の画像(距離画像)を得ることができる。
 また、本発明の画像処理方法は、第一の映像信号と第二の映像信号が所定の輝度レベルの範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御することを含み、マッチング処理では、制御により所定の輝度レベルの範囲内となった第一の映像信号と第二の映像信号に対してマッチング処理を行ってよい。
 この方法によっても、上記と同様に、高輝度の被写体を撮影した場合であっても、白潰れによる画質の低下を抑えることができ、二つの映像信号(第一の映像信号と第二の映像信号)を用いたマッチング処理の精度を向上させることができる。
 また、本発明の画像処理方法は、第三の映像信号と第四の映像信号の露光時間が互いに異なるように、第三の映像信号と第四の映像信号の露光時間を制御することを含んでよい。
 この方法によっても、上記と同様に、二つの映像信号(第三の映像信号と第四の映像信号)を加算して得られる監視用画像のダイナミックレンジを拡大することができる。
 また、本発明の画像処理方法は、第一の映像信号、第二の映像信号、第三の映像信号、第四の映像信号の露光時間または増幅率を制御することを含み、第一の期間に、第一の映像信号と第二の映像信号が第一の輝度レベル範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御し、第二の期間に、第三の映像信号と第四の映像信号が第二の輝度レベル範囲内となるように、第三の映像信号と第四の映像信号の露光時間または増幅率を制御し、第三の期間に、第一の映像信号と第二の映像信号が、第一の輝度レベル範囲とは異なる第三の輝度レベル範囲内となるように、第一の映像信号と第二の映像信号の露光時間または増幅率を制御し、第四の期間に、第三の映像信号と第四の映像信号が、第二の輝度レベル範囲とは異なる第四の輝度レベル範囲内となるように、第三の映像信号と第四の映像信号の露光時間または増幅率を制御してよい。
 この方法によっても、上記と同様にして、広い輝度レベルの範囲(低輝度から高輝度の広い範囲)で、映像信号(第三の映像信号と第四の映像信号)を加算した監視用画像を得ることができ、監視用画像のダイナミックレンジを拡大することができる。
 本発明のプログラムは、コンピュータに、第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、第一の映像信号と第二の映像信号とのずれ量を最小にするマッチング処理を行う処理と、第一の撮像部から得られた第三の映像信号を、マッチング処理の結果として得られる最小のずれ量だけずらして、第二の撮像部から得られた第四の映像信号に加算する処理と、加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する処理と、を実行させるものである。
 このプログラムによっても、上記と同様に、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用することができるので、画質のよい監視用画像を得ることができる。
 本発明によれば、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用することにより、高い画質の監視用画像を得ることができる。
 以下、本発明の実施の形態の画像処理装置について、図面を用いて説明する。本実施の形態では、例えば、車載式のステレオ画像処理装置等に用いられる画像処理装置の場合を例示する。なお、以下に説明するような、本実施の形態の画像処理装置が有する画像処理の機能は、画像処理装置のメモリやHDDに格納されているプログラムによって実現されてもよい。
 本発明の実施の形態の画像処理装置の構成を、図面を参照して説明する。図1に示すように、本実施の形態の画像処理装置1は、光路上にレンズ2が配置された2つの撮像素子3(撮像素子Aと撮像素子B)と、各撮像素子3からの映像信号をそれぞれ増幅する2つの増幅回路4(増幅回路Aと増幅回路B)を備えている。この場合、レンズ2と撮像素子3により、撮像が行われる。ここでは、2つの撮像素子3(撮像素子Aと撮像素子B)が、本発明の第一の撮像部と第二の撮像部に相当する。
 画像処理装置1は、2つの撮像素子3(撮像素子Aと撮像素子B)から得られた2つの映像信号に対してステレオマッチング処理(単に、マッチング処理ともいう)を行うマッチング回路5を備えている。マッチング回路5では、2つの映像信号の画素毎のずれ量が最小になるようなマッチング処理が行われ、マッチング処理の結果として、画素毎の最小のずれ量が出力される。このマッチング回路5が、本発明のマッチング部に相当する。
 この画像処理装置1は、一方の撮像素子3(撮像素子A)から得られた映像信号を、もう一方の撮像素子3(撮像素子B)から得られた映像信号に加算する加算回路6と、加算された映像信号に対して、ガンマ補正処理などの非線形処理や輪郭補正処理を施して、監視用画像を生成する非線形処理・輪郭補正回路7を備えている。この加算回路6では、一方の撮像素子3(撮像素子A)から得られた映像信号を、マッチング処理の結果として得られた画素毎の最小のずれ量だけずらして、もう一方の撮像素子3(撮像素子B)から得られた映像信号に加算する処理が行われる。この加算回路6が、本発明の加算部に相当し、非線形処理・輪郭補正回路7が、本発明の監視用画像生成部に相当する。
 また、画像処理装置1は、マッチング処理の結果として得られた画素毎の最小のずれ量から距離測定用の画像を生成する距離画像生成回路8を備えている。距離画像生成回路8は、一般的な三角測量の原理に基づいて、2つの映像信号の画素毎の最小のずれ量から、撮影対象物までの距離を測定するための画像(距離画像)を生成する。この距離画像生成回路8は、本発明の距離画像生成部に相当する。
 画像処理装置1は、撮像素子3の露光時間と増幅回路4の増幅率を制御する露光・増幅制御回路9を備えている。この露光・増幅制御回路9は、撮像素子3の駆動回路(図示せず)に制御信号を送ることによって、撮像素子3の露光時間を制御する。また、この露光・増幅制御回路9は、増幅回路4に制御信号を送ることによって、増幅回路4の増幅率を制御する。露光・増幅制御回路9は、増幅回路4からの出力(撮像素子3から得られた映像信号)を監視し、その出力が一定の輝度レベルの範囲内になるように、撮像素子3の露光時間を調整したり、増幅回路4の増幅率を調整する機能を備えている。この露光・増幅制御回路9は、本発明の制御部、第二の制御部、第三の制御部に相当する。
 以上のように構成された画像処理装置1について、図面を参照してその動作を説明する。
 図2は、本実施の形態の画像処理装置1の動作の説明図である。図2に示すように、本実施の画像処理装置1では、期間T1(第一の期間)において、2つの撮像素子3から得られる映像信号(第一の映像信号と第二の映像信号)が低中輝度の輝度レベルの範囲内となるように、撮像素子3の露光時間と増幅回路4の増幅率が制御される。図2の例では、期間T1で、2つの撮像素子3(撮像素子Aと撮像素子B)の露光時間が、低中輝度用の露光時間Tc1に設定され、2つの増幅回路4(増幅回路Aと増幅回路B)の増幅率が、低中輝度用の増幅率A1に設定される。
 つぎに、期間T2(第二の期間)において、2つの撮像素子3から得られる映像信号(第三の映像信号と第四の映像信号)が低中輝度の輝度レベルの範囲内となるように、撮像素子3の露光時間と増幅回路4の増幅率が制御される。図2の例では、期間T2で、一方の撮像素子3(撮像素子A)の露光時間が、低中輝度用の短い露光時間Tc2sに設定され、他方の撮像素子3(撮像素子B)の露光時間が、低中輝度用の長い露光時間Tc2lに設定される。また、一方の増幅回路4(増幅回路A)の増幅率が、低中輝度用の低い増幅率A2sに設定され、他方の増幅回路4(増幅回路B)の増幅率が、低中輝度用の高い増幅率A2lに設定される。
 そして、この期間T2では、期間T1で得られた2つの映像信号(第一の映像信号と第二の映像信号)に対してマッチング処理を行い、画素毎の最小のずれ量を算出して、低中輝度用の距離画像を生成(更新)する。さらに、この期間T2では、期間T2で得られた2つの映像信号(第三の映像信号と第四の映像信号)に上記のマッチング処理の結果を反映させた加算処理(画素毎の最小のずれ量だけずらした加算処理)を行い、得られた映像信号(加算された映像信号)に非線形処理と輪郭補正処理を行って、低中輝度用の監視用画像を生成(更新)する。
 つづいて、期間T3(第三の期間)において、2つの撮像素子3から得られる映像信号(第一の映像信号と第二の映像信号)が高輝度の輝度レベルの範囲内となるように、撮像素子3の露光時間と増幅回路4の増幅率が制御される。図2の例では、期間T3で、2つの撮像素子3(撮像素子Aと撮像素子B)の露光時間が、高輝度用の露光時間Tc3に設定され、2つの増幅回路4(増幅回路Aと増幅回路B)の増幅率が、高輝度用の増幅率A3に設定される。
 つぎに、期間T4(第四の期間)において、2つの撮像素子3から得られる映像信号(第三の映像信号と第四の映像信号)が高輝度の輝度レベルの範囲内となるように、撮像素子3の露光時間と増幅回路4の増幅率が制御される。図2の例では、期間T4で、一方の撮像素子3(撮像素子A)の露光時間が、高輝度用の短い露光時間Tc4sに設定され、他方の撮像素子3(撮像素子B)の露光時間が、高輝度用の長い露光時間Tc4lに設定される。また、一方の増幅回路4(増幅回路A)の増幅率が、増幅率A4sに設定され、他方の増幅回路4(増幅回路B)の増幅率が、増幅率A4lに設定される。
 そして、この期間T4では、期間T3で得られた2つの映像信号(第一の映像信号と第二の映像信号)に対してマッチング処理を行い、画素毎の最小のずれ量を算出して、高輝度用の距離画像を生成(更新)する。さらに、この期間T4では、期間T3で得られた2つの映像信号(第三の映像信号と第四の映像信号)に上記のマッチング処理の結果を反映させた加算処理(画素毎の最小のずれ量だけずらした加算処理)を行い、得られた映像信号(加算された映像信号)に非線形処理と輪郭補正処理を行って、高輝度用の監視用画像を生成(更新)する。
 本実施の形態の画像処理装置1では、上記のような期間T1~期間T4の処理が定期的に繰り返される。すなわち、低中輝度用の距離画像と監視用画像の更新(生成)の処理と、高輝度用の距離画像と監視用画像の更新(生成)の処理が、定期的に繰り返される。
 以下では、本実施の形態の画像処理装置1の動作を、距離画像と監視用画像の生成と、低中輝度と高輝度の画像の生成とに分けて、それぞれ詳しく説明する。
 図3は、距離画像の生成と監視用画像の生成の流れを示すフロー図である。図3に示すように、画像処理装置1では、まず、2つの撮像素子3(撮像素子Aと撮像素子B)から2つの映像信号(第一の映像信号と第二の映像信号)を取得し(S1)、輝度レベルが所定の輝度レベルの範囲内であるか否かを判定する(S2)。例えば、映像信号の輝度レベルが、所定の基準輝度レベルより低い場合には、低中輝度の輝度レベルの範囲内であると判定される。また、所定の基準輝度レベルより高い場合には、高輝度の輝度レベルの範囲内であると判定される。
 判定の結果、映像信号の輝度レベルが所定の輝度レベルの範囲内でないと判定された場合には、撮像素子3の露光時間や増幅回路4の増幅率を変更し(S3)、上記のステップ(S1とS2)を繰り返す。
 判定の結果、映像信号の輝度レベルが所定の輝度レベルの範囲内であると判定された場合には、その画像領域(例えば、低中輝度の画像領域など)について、2つの映像信号(第一の映像信号と第二の映像信号)のマッチング処理を行い、画素毎の最小のずれ量を求める(S4)。そして、マッチング処理の結果として得られた画素毎の最小のずれ量から、一般的な三角測量の原理に基づいて距離画像の生成が行われる(S5)。
 つぎに、一方の撮像素子3(撮像素子A)に短時間露光用の露光時間(例えば、露光時間Tc2sなど)を設定するとともに、一方の増幅回路4(増幅回路A)に短時間露光用の増幅率(例えば、増幅率A2sなど)を設定し、他方の撮像素子3(撮像素子B)に長時間露光用の露光時間(例えば、露光時間Tc2lなど)を設定するとともに、他方の増幅回路4(増幅回路B)に長時間露光用の増幅率(例えば、増幅率A2lなど)を設定する(S6)。
 そして、これら2つの撮像素子3から2つの映像信号(第三の映像信号と第四の映像信号)を取得し(S7)、上記のマッチング処理(S4)の結果として得られた画素毎の最小のずれ量だけ一方の映像信号をずらして、2つの映像信号を加算する(S8)。最後に、加算された映像信号に、非線形処理と輪郭補正処理を施して、監視用画像が生成される(S9)。
 図4は、低中輝度と高輝度の画像の生成の流れを示すフロー図である。図4に示すように、画像処理装置1では、まず、2つの撮像素子3と増幅回路4に、低中輝度用の露光時間(例えば、露光時間Tc1)と増幅率(例えば、増幅率A1)が設定され(S10)、2つの映像信号(第一の映像信号と第二の映像信号)が取得される(S11)。そして、2つの映像信号(第一の映像信号と第二の映像信号)のマッチング処理を行い、画素毎の最小のずれ量を求める(S12)。そして、マッチング処理の結果として得られた画素毎の最小のずれ量から、低中輝度用の距離画像の生成が行われる(S13)。
 つぎに、一方の撮像素子3(撮像素子A)に短時間露光用の露光時間(例えば、露光時間Tc2s)を設定するとともに、一方の増幅回路4(増幅回路A)に短時間露光用の増幅率(例えば、増幅率A2s)を設定し、他方の撮像素子3(撮像素子B)に長時間露光用の露光時間(例えば、露光時間Tc2l)を設定するとともに、他方の増幅回路4(増幅回路B)に長時間露光用の増幅率(例えば、増幅率A2l)を設定する(S14)。
 そして、これら2つの撮像素子3から2つの映像信号(第三の映像信号と第四の映像信号)を取得し(S15)、上記のマッチング処理(S12)の結果として得られた画素毎の最小のずれ量だけ一方の映像信号をずらして、低中輝度用の2つの映像信号を加算する(S16)。最後に、加算された映像信号に、非線形処理と輪郭補正処理を施して、低中輝度用の監視用画像が生成される(S17)。
 つづいて、2つの撮像素子3と増幅回路4に、高輝度用の露光時間(例えば、露光時間Tc3)と増幅率(例えば、増幅率A3)が設定され(S18)、2つの映像信号(第一の映像信号と第二の映像信号)が取得される(S19)。そして、2つの映像信号(第一の映像信号と第二の映像信号)のマッチング処理を行い、画素毎の最小のずれ量を求める(S20)。そして、マッチング処理の結果として得られた画素毎の最小のずれ量から、高輝度用の距離画像の生成が行われる(S21)。
 つぎに、一方の撮像素子3(撮像素子A)に短時間露光用の露光時間(例えば、露光時間Tc4s)を設定するとともに、一方の増幅回路4(増幅回路A)に短時間露光用の増幅率(例えば、増幅率A4s)を設定し、他方の撮像素子3(撮像素子B)に長時間露光用の露光時間(例えば、露光時間Tc4l)を設定するとともに、他方の増幅回路4(増幅回路B)に長時間露光用の増幅率(例えば、増幅率A4l)を設定する(S22)。
 そして、これら2つの撮像素子3から2つの映像信号(第三の映像信号と第四の映像信号)を取得し(S23)、上記のマッチング処理(S20)の結果として得られた画素毎の最小のずれ量だけ一方の映像信号をずらして、高輝度用の2つの映像信号を加算する(S24)。最後に、加算された映像信号に、非線形処理と輪郭補正処理を施して、高輝度用の監視用画像が生成される(S25)。
 このような本発明の実施の形態の画像処理装置1によれば、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用することにより、高い画質の監視用画像を得ることができる。
 すなわち、本実施の形態では、二つの撮像部から得られる映像信号(第一の映像信号と第二の映像信号)にマッチング処理を施して、二つの撮像部から得られる映像信号のずれ量が求められる。そして、二つの撮像部から得られる映像信号のずれ量を考慮して、二つの映像信号(第三の映像信号と第四の映像信号)を加算して、監視用画像として利用する。加算された映像信号は、一つの映像信号よりS/N比が高いので、画質のよい監視用画像を得ることができる。この場合、画質のよい監視用画像を得るとともに、距離測定用の画像(距離画像)を得ることができる。
 また、本実施の形態では、映像信号の輝度レベルが所定の輝度レベルの範囲内となるように、露光時間または増幅率が制御される。例えば、低中輝度の映像信号については、露光時間を長く、または、増幅率を上げる制御が行われる。また、高輝度の映像信号については、露光時間を短く、または、増幅率を下げる制御が行われる。これにより、高輝度の被写体を撮影した場合であっても、白潰れによる画質の低下を抑えることができ、二つの映像信号(第一の映像信号と第二の映像信号)を用いたマッチング処理の精度を向上させることができる。このように、高輝度の被写体を撮影した場合であっても、精度の高いマッチング処理の結果(最小のずれ量)に基づいて、二つの映像信号(第三の映像信号と第四の映像信号)を加算することができるので、画質のよい監視用画像を得ることができる。また、この場合、低輝度、中輝度、高輝度の映像信号それぞれで、精度の良い距離画像を得ることができ、さまざまな輝度の被写体を撮影した場合であっても、高精度に距離の算出を行うことが可能になる。
 また、本実施の形態では、第三の映像信号と第四の映像信号の露光時間を互いに異ならせることができるので、二つの映像信号(第三の映像信号と第四の映像信号)を加算して得られる監視用画像のダイナミックレンジを拡大することができる。例えば、高輝度の被写体を撮影した場合、第三の映像信号と第四の映像信号の露光時間がともに短くなるように制御されるが、さらに、この場合には、第三の映像信号の露光時間が第四の映像信号の露光時間より短くなるように制御される。これにより、高輝度の被写体を撮影した場合であっても、監視用画像(第三の映像信号と第四の映像信号を加算して得られる)に白潰れが発生するのを低減させることができ、高輝度でも階調のある監視用画像を得ることが可能になる。
 また、本実施の形態では、第一の映像信号と第二の映像信号については、第一の期間に、第一の輝度レベル範囲内(例えば、低中輝度レベル)の映像信号が得られ、第三の期間に、第三の輝度レベル範囲内(例えば、高輝度レベル)の映像信号が得られる。一方、第三の映像信号と第四の映像信号については、第二の期間に、第二の輝度レベル範囲内(例えば、低中輝度レベル)の映像信号が得られ、第四の期間に、第四の輝度レベル範囲内(例えば、高輝度レベル)の映像信号が得られる。このようにして、第一の期間から第四の期間にかけて、輝度レベルの異なる映像信号を得ることができる。したがって、広い輝度レベルの範囲(低輝度から高輝度の広い範囲)で、映像信号(第三の映像信号と第四の映像信号)を加算した監視用画像を得ることができ、このようにして、監視用画像のダイナミックレンジを拡大することができる。そのため、例えば、高輝度の被写体を撮影した場合であっても、監視用画像(第三の映像信号と第四の映像信号を加算して得られる)に白潰れが発生するのを低減させることができ、高輝度でも階調のある監視用画像を得ることが可能になる。また、この場合、広い輝度レベルの範囲(低輝度から高輝度の広い範囲)で、精度の良い距離画像を得ることができ、したがって、距離の測定の精度を向上することが可能になる。
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。
 例えば、以上の説明では、2つの撮像素子3を使用する例について説明したが、本発明の範囲はこれに限定されるものではなく、1つの撮像素子3から2つの画像領域を切り出して、2つの映像信号としてもよい。また、期間T1とT3を、期間T2とT4より短く設定することにより、監視用画像の更新を早くしてもよい。
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。
 以上のように、本発明にかかる画像処理装置は、二つの映像信号を加算して、監視用画像として利用することにより、高い画質の監視用画像を得ることができるという効果を有し、ステレオ画像処理装置等として有用である。
 1 画像処理装置
 2 レンズ
 3 撮像素子
 4 増幅回路
 5 マッチング回路
 6 加算回路
 7 非線形処理・輪郭補正回路
 8 距離画像生成回路
 9 露光・増幅制御回路

Claims (11)

  1.  第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、前記第一の映像信号と前記第二の映像信号とのずれ量を最小にするマッチング処理を行うマッチング部と、
     前記第一の撮像部から得られた第三の映像信号を、前記マッチング処理の結果として得られる最小のずれ量だけずらして、前記第二の撮像部から得られた第四の映像信号に加算する加算部と、
     前記加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する監視用画像生成部と、
    を備えたことを特徴とする画像処理装置。
  2.  前記マッチング処理の結果として得られる最小のずれ量から距離測定用の画像を生成する距離画像生成部を備えた請求項1に記載の画像処理装置。
  3.  前記第一の映像信号と前記第二の映像信号が所定の輝度レベルの範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御する制御部を備え、
     前記マッチング部は、前記制御部により所定の輝度レベルの範囲内となった前記第一の映像信号と前記第二の映像信号に対してマッチング処理を行う請求項1に記載の画像処理装置。
  4.  前記第三の映像信号と前記第四の映像信号の露光時間が互いに異なるように、前記第三の映像信号と前記第四の映像信号の露光時間を制御する第二の制御部を備えた請求項1に記載の画像処理装置。
  5.  前記第一の映像信号、前記第二の映像信号、前記第三の映像信号、前記第四の映像信号の露光時間または増幅率を制御する第三の制御部を備え、
     前記第三の制御部は、
     第一の期間に、前記第一の映像信号と前記第二の映像信号が第一の輝度レベル範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御し、
     第二の期間に、前記第三の映像信号と前記第四の映像信号が第二の輝度レベル範囲内となるように、前記第三の映像信号と前記第四の映像信号の露光時間または増幅率を制御し、
     第三の期間に、前記第一の映像信号と前記第二の映像信号が、前記第一の輝度レベル範囲とは異なる第三の輝度レベル範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御し、
     第四の期間に、前記第三の映像信号と前記第四の映像信号が、前記第二の輝度レベル範囲とは異なる第四の輝度レベル範囲内となるように、前記第三の映像信号と前記第四の映像信号の露光時間または増幅率を制御する請求項1に記載の画像処理装置。
  6.  第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、前記第一の映像信号と前記第二の映像信号とのずれ量を最小にするマッチング処理を行うことと、
     前記第一の撮像部から得られた第三の映像信号を、前記マッチング処理の結果として得られる最小のずれ量だけずらして、前記第二の撮像部から得られた第四の映像信号に加算することと、
     前記加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、
    監視用画像を生成することと、
    を含むことを特徴とする画像処理方法。
  7.  前記マッチング処理の結果として得られる最小のずれ量から距離測定用の画像を生成することを含む請求項6に記載の画像処理方法。
  8.  前記第一の映像信号と前記第二の映像信号が所定の輝度レベルの範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御することを含み、
     前記マッチング処理では、前記制御により所定の輝度レベルの範囲内となった前記第一の映像信号と前記第二の映像信号に対してマッチング処理を行う請求項6に記載の画像処理方法。
  9.  前記第三の映像信号と前記第四の映像信号の露光時間が互いに異なるように、前記第三の映像信号と前記第四の映像信号の露光時間を制御することを含む請求項6に記載の画像処理方法。
  10.  前記第一の映像信号、前記第二の映像信号、前記第三の映像信号、前記第四の映像信号の露光時間または増幅率を制御することを含み、
     第一の期間に、前記第一の映像信号と前記第二の映像信号が第一の輝度レベル範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御し、
     第二の期間に、前記第三の映像信号と前記第四の映像信号が第二の輝度レベル範囲内となるように、前記第三の映像信号と前記第四の映像信号の露光時間または増幅率を制御し、
     第三の期間に、前記第一の映像信号と前記第二の映像信号が、前記第一の輝度レベル範囲とは異なる第三の輝度レベル範囲内となるように、前記第一の映像信号と前記第二の映像信号の露光時間または増幅率を制御し、
     第四の期間に、前記第三の映像信号と前記第四の映像信号が、前記第二の輝度レベル範囲とは異なる第四の輝度レベル範囲内となるように、前記第三の映像信号と前記第四の映像信号の露光時間または増幅率を制御する請求項6に記載の画像処理方法。
  11.  コンピュータに、
     第一の撮像部から得られた第一の映像信号と第二の撮像部から得られた第二の映像信号に対して、前記第一の映像信号と前記第二の映像信号とのずれ量を最小にするマッチング処理を行う処理と、
     前記第一の撮像部から得られた第三の映像信号を、前記マッチング処理の結果として得られる最小のずれ量だけずらして、前記第二の撮像部から得られた第四の映像信号に加算する処理と、
     前記加算された映像信号に対して、非線形処理および/または輪郭補正処理を行って、監視用画像を生成する処理と、
    を実行させることを特徴とする画像処理プログラム。
PCT/JP2011/000065 2010-07-07 2011-01-11 画像処理装置、画像処理方法およびプログラム WO2012004906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180003630.9A CN102484679B (zh) 2010-07-07 2011-01-11 图像处理设备、图像处理方法
EP11803248.1A EP2448244A4 (en) 2010-07-07 2011-01-11 IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, AND PROGRAM
US13/356,798 US8502880B2 (en) 2010-07-07 2012-01-24 Image processing apparatus, image processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-154477 2010-07-07
JP2010154477A JP5283667B2 (ja) 2010-07-07 2010-07-07 画像処理装置、画像処理方法およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/356,798 Continuation US8502880B2 (en) 2010-07-07 2012-01-24 Image processing apparatus, image processing method, and program

Publications (1)

Publication Number Publication Date
WO2012004906A1 true WO2012004906A1 (ja) 2012-01-12

Family

ID=45440902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000065 WO2012004906A1 (ja) 2010-07-07 2011-01-11 画像処理装置、画像処理方法およびプログラム

Country Status (5)

Country Link
US (1) US8502880B2 (ja)
EP (1) EP2448244A4 (ja)
JP (1) JP5283667B2 (ja)
CN (1) CN102484679B (ja)
WO (1) WO2012004906A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237331B2 (en) * 2011-01-18 2016-01-12 Disney Enterprises, Inc. Computational stereoscopic camera system
TWI536835B (zh) 2013-03-05 2016-06-01 原相科技股份有限公司 影像感測方法和使用此方法的影像感測器
CN104052939B (zh) * 2013-03-15 2017-07-11 原相科技股份有限公司 影像感测方法和使用这个方法的影像传感器
KR101591172B1 (ko) * 2014-04-23 2016-02-03 주식회사 듀얼어퍼처인터네셔널 이미지 센서와 피사체 사이의 거리를 결정하는 방법 및 장치
CN106131448B (zh) * 2016-07-22 2019-05-10 石家庄爱赛科技有限公司 可自动调节成像亮度的三维立体视觉系统
JP6759460B2 (ja) * 2017-06-07 2020-09-23 日立オートモティブシステムズ株式会社 画像処理装置
JP6959277B2 (ja) * 2019-02-27 2021-11-02 ファナック株式会社 3次元撮影装置および3次元撮影条件調整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018617A (ja) * 2001-07-03 2003-01-17 Olympus Optical Co Ltd 撮像装置
JP2004096488A (ja) * 2002-08-30 2004-03-25 Fujitsu Ltd 物体検知装置、物体検知方法および物体検知プログラム
JP2007028236A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd 撮像装置
JP2009121870A (ja) 2007-11-13 2009-06-04 Panasonic Corp ステレオ画像処理装置、ステレオ画像処理方法およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101942B2 (ja) * 1986-04-12 1995-11-01 ソニー株式会社 電子編集システム
US5394187A (en) * 1992-06-26 1995-02-28 Apollo Camera, L.L.C. Video imaging systems and method using a single interline progressive scanning sensor and sequential color object illumination
US5446492A (en) * 1993-01-19 1995-08-29 Wolf; Stephen Perception-based video quality measurement system
JP3935548B2 (ja) * 1997-02-27 2007-06-27 オリンパス株式会社 画像信号処理装置
KR100517517B1 (ko) * 2004-02-20 2005-09-28 삼성전자주식회사 중간 시점 영상 합성 방법 및 그를 적용한 3d 디스플레이장치
JP4763525B2 (ja) * 2006-06-21 2011-08-31 日本電信電話株式会社 映像整合方法
JP2008153997A (ja) * 2006-12-18 2008-07-03 Matsushita Electric Ind Co Ltd 固体撮像装置、カメラ、車両、監視装置及び固体撮像装置の駆動方法
JP2009033629A (ja) * 2007-07-30 2009-02-12 Canon Inc 撮像装置及びその制御方法、並びにプログラム及び媒体、画像処理装置
FR2922074B1 (fr) * 2007-10-05 2010-02-26 Thales Sa Procede de synchronisation de flux video
CN101472062A (zh) * 2008-05-23 2009-07-01 嘉兴闻泰通讯科技有限公司 一种实现摄像头功能的移动终端装置及其方法
JP5230376B2 (ja) * 2008-11-28 2013-07-10 三星電子株式会社 撮像装置及び撮像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018617A (ja) * 2001-07-03 2003-01-17 Olympus Optical Co Ltd 撮像装置
JP2004096488A (ja) * 2002-08-30 2004-03-25 Fujitsu Ltd 物体検知装置、物体検知方法および物体検知プログラム
JP2007028236A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd 撮像装置
JP2009121870A (ja) 2007-11-13 2009-06-04 Panasonic Corp ステレオ画像処理装置、ステレオ画像処理方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448244A4

Also Published As

Publication number Publication date
EP2448244A4 (en) 2013-08-14
JP2012019311A (ja) 2012-01-26
JP5283667B2 (ja) 2013-09-04
US20120176514A1 (en) 2012-07-12
CN102484679B (zh) 2016-04-27
CN102484679A (zh) 2012-05-30
EP2448244A1 (en) 2012-05-02
US8502880B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
JP5283667B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP5367640B2 (ja) 撮像装置および撮像方法
US9699387B2 (en) Image processing device for processing pupil-divided images obtained through different pupil regions of an imaging optical system, control method thereof, and program
US9582868B2 (en) Image processing apparatus that appropriately performs tone correction in low-illuminance environment, image processing method therefor, and storage medium
JPWO2012057277A1 (ja) 撮像装置及びその暗電流補正方法
JP6587380B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、記憶媒体
JP2015220716A (ja) 撮像素子、その制御方法、および制御プログラム、並びに信号処理装置
KR20170074771A (ko) 라이트필드 카메라들에 의해 캡처된 이미지 상에 야기된 비네팅 효과를 정정하는 방법 및 장치
JP2017225072A (ja) 撮像装置、その制御方法、及びプログラム
JP2010154478A (ja) 複眼撮像装置及びその合成画像生成方法
US10498925B2 (en) Image processing to control synthesizing results of shading correction when generating wider dynamic range image
JP5172283B2 (ja) ステレオ画像処理装置、ステレオ画像処理方法およびプログラム
JP2011249948A (ja) ステレオ画像処理装置、画像処理方法及びプログラム
JP2013255121A (ja) 画像処理装置及び画像処理装置の制御方法
JP2018056743A (ja) 逆光補正プログラム及び半導体装置
JP6090565B2 (ja) 撮像装置、撮像方法及びプログラム
JP6141129B2 (ja) 撮像装置、撮像装置の制御方法、及びコンピュータプログラム
JP6272006B2 (ja) 撮像装置、画像処理方法及びプログラム
JP6575667B2 (ja) 露出制御装置及び光学機器
JP2018207176A (ja) 画像処理装置、撮像装置、画像処理方法、および、プログラム
JP6432642B2 (ja) 露出制御装置及び光学機器
JP2009105501A (ja) 撮像装置、光学的黒レベルの補正方法、およびプログラム
JP6752688B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP5991090B2 (ja) 画像信号処理装置及び方法
JP2014075721A (ja) 露出制御装置及び光学機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003630.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011803248

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE