WO2012002362A1 - バーナの燃焼方法 - Google Patents
バーナの燃焼方法 Download PDFInfo
- Publication number
- WO2012002362A1 WO2012002362A1 PCT/JP2011/064757 JP2011064757W WO2012002362A1 WO 2012002362 A1 WO2012002362 A1 WO 2012002362A1 JP 2011064757 W JP2011064757 W JP 2011064757W WO 2012002362 A1 WO2012002362 A1 WO 2012002362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- burner
- oxygen
- periodic change
- burners
- vibration state
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C5/00—Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
- F23C5/08—Disposition of burners
- F23C5/28—Disposition of burners to obtain flames in opposing directions, e.g. impacting flames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C99/00—Subject-matter not provided for in other groups of this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2205/00—Pulsating combustion
- F23C2205/10—Pulsating combustion with pulsating fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2205/00—Pulsating combustion
- F23C2205/20—Pulsating combustion with pulsating oxidant supply
Definitions
- the present invention relates to a burner combustion method.
- NO X reduction method technique related to generation control is important, exhaust gas recirculation, lean burn, thick and thin fuel combustion, such as staged combustion and the like, are widely used up to the consumer from the industrial.
- Patent Document 7 discloses a method for reducing nitrogen oxides using pulsating combustion, that is, so-called forced vibration combustion when pure oxygen is used as an oxidant, and an apparatus for carrying out the method. It is disclosed.
- the problem to be solved by the present invention is to provide a combustion method and apparatus for a burner that is practically valuable and exhibits a significant NO x reduction effect as compared with the prior art.
- the present inventors have been working intensively on the development of the NO X reduction method practically valuable.
- at least one of the flow rate of the fuel fluid or the flow rate of the oxidant fluid supplied to the burner is caused to change periodically, and at the same time, the oxygen concentration in the oxidant fluid is changed periodically, thereby causing forced vibration combustion.
- the first aspect of the present invention is a burner combustion method in which two or more burners are installed facing each other and burned in a furnace, At least one of the flow rates of the fuel fluid or the oxidant fluid supplied to each burner is changed periodically, and the oxygen concentration in the oxidant fluid is changed periodically to change the supply oxygen amount to the theoretical required oxygen.
- the oxygen ratio divided by the amount is periodically changed, and the burner is burned in a periodic vibration state, Regarding the periodic change of the vibration state of the burner, a phase difference is provided between the periodic change of the vibration state of at least one burner and the periodic change of the vibration state of another burner. is there.
- the frequency of the periodic change in the oxygen ratio is preferably 20 Hz or less.
- the frequency of the periodic change in the oxygen ratio is preferably 0.02 Hz or more.
- the difference between the upper limit and the lower limit of the oxygen ratio that periodically changes is preferably 0.2 or more, and the average value of the oxygen ratio in one cycle is preferably 1.0 or more.
- At least one of the periodic change of the oxygen ratio or the periodic change of the oxygen concentration is combusted in all the burners.
- the phase difference of the periodic change of the vibration state between the burners arranged facing each other is ⁇ .
- the first aspect is burned using a burner array composed of one or more burners
- Two or more burner arrays are arranged on the side wall of the furnace, It is preferable that the phase difference between the periodic change of the vibration state of the burner constituting each burner array and the periodic change of the vibration state of the burner constituting the burner array arranged adjacent to the burner array is ⁇ .
- the first aspect is burned using a burner array composed of one or more burners
- the side walls of the furnace are opposed, and n sets of burner arrays are arranged on one side wall
- the phase difference between the periodic change of the vibration state of the burner constituting each burner array and the periodic change of the vibration state of the burner constituting the burner array arranged adjacent to the burner array is preferably 2 ⁇ / n. .
- the furnace pressure can be kept constant by providing a phase difference between a periodic change in the vibration state of at least one burner and a periodic change in the vibration state of another burner. preferable.
- a second aspect of the present invention is a burner combustion apparatus for installing and burning two or more burners facing each other in a furnace, At least one of the flow rates of the fuel fluid or the oxidant fluid supplied to each burner is changed periodically, and the oxygen concentration in the oxidant fluid is changed periodically to change the supply oxygen amount to the theoretical required oxygen. The oxygen ratio divided by the amount is periodically changed, and the burner is burned in a periodic vibration state,
- a burner combustion apparatus characterized by providing a phase difference between the periodic change of the vibration state of at least one burner and the periodic change of the vibration state of another burner with respect to the periodic change of the vibration state of the burner. is there.
- the combustion device includes a fuel supply pipe for supplying the fuel, an oxygen supply pipe for supplying oxygen, and an air supply pipe for supplying air, and the oxidant is supplied by the supplied oxygen and air. Formed, It is preferable that the combustion device includes a forced vibration unit that forcibly vibrates the flow of fuel, oxygen, and air supplied to each of the pipes.
- the combustion device includes a control system that changes a flow rate of the fuel fluid or the oxidant fluid or a period of the forced vibration based on data detected by the detector.
- the NO X can be obtained combustion method which can significantly and reliably reduced.
- the present invention can be applied not only to designing a new heating furnace but also to a combustion burner in an existing heating furnace.
- FIG. 1 is a plan view showing a furnace according to a first embodiment of the present invention.
- FIG. 2 is a schematic diagram showing a burner supply pipe used in the first embodiment of the present invention.
- FIGS. 3A and 3B are plan views showing the furnace of the first embodiment of the present invention.
- 4 (a) and 4 (b) are plan views showing a furnace according to a second embodiment of the present invention.
- FIG. 5 is a plan view showing a furnace according to the second embodiment of the present invention.
- FIG. 6 is a plan view showing a furnace according to a third embodiment of the present invention.
- FIG. 7 is a plan view showing a furnace according to a third embodiment of the present invention.
- Figure 8 is a graph showing the relationship between the frequency and the NO X concentration in an embodiment of the present invention.
- FIG. 9 is a graph showing the relationship between frequency and CO concentration in one embodiment of the present invention.
- FIG. 10 is a graph showing the relationship between the oxygen ratio and the NO x concentration in one example of the present invention.
- FIG. 11 is a graph showing the relationship between the oxygen ratio and the CO concentration in one example of the present invention.
- FIG. 12 is a plan view showing the combustion apparatus of the present invention.
- the combustion apparatus used in the first embodiment of the present invention includes a furnace 1, a burner 2 that forms a combustion flame 3 in the furnace 1, and a fuel fluid and an oxidation in the burner 2. It has a configuration including various pipes 5, 6, 7, and 8 that supply the agent fluid.
- the furnace 1 may be a heating furnace or a melting furnace, and includes a side wall 1 a and a side wall 1 b that extend in the longitudinal direction and are arranged to face each other.
- the side wall 1a is provided with a plurality of burners 2a
- the side wall 1b is also provided with a plurality of burners 2b.
- the furnace 1 has a so-called side burner type structure in which the burners 2a and 2b for forming the combustion flames 3a and 3b are provided on both side walls 1a and 1b in the longitudinal direction.
- the number of burners 2a provided on the side wall 1a and the number of burners 2b provided on the side wall 1b are the same, but they may be different.
- Each burner 2a, 2b is arranged so as to form combustion flames 3a, 3b from the provided side wall 1a or side wall 1b toward the opposite side wall 1b or side wall 1a. That is, the burner 2a forms the combustion flame 3a toward the side wall 1b, and the burner 2b forms the combustion flame 3b toward the side wall 1a.
- the combustion flame 3 a of the burner 2 a and the combustion flame 3 b of the burner 2 b are alternately arranged in the furnace 1 to form the combustion flame 3.
- each burner 2 burns in a periodic vibration state (forced vibration combustion).
- the vibration state is controlled by a burner array unit composed of one or more burners 2.
- the burner array 14a is formed by all the burners 2a provided on the side wall 1a, and the vibration states of the burners 2a are all controlled in the same manner.
- the burner array 14b is formed by all the burners 2b provided in the side wall 1b, and all the vibration states of the burners 2b are similarly controlled. The combustion of each burner 2 will be described later.
- each burner 2 is connected to a fuel supply pipe 5 for supplying a fuel fluid and an oxidant supply pipe 6 for supplying an oxidant fluid.
- the oxidant supply pipe 6 has a structure branched upstream into an oxygen supply pipe 7 and an air supply pipe 8.
- the fuel supply pipe 5, the oxygen supply pipe 7 and the air supply pipe 8 are provided with forced vibration means 51, 71 and 81 for forcibly vibrating the supplied fluid flow.
- forcibly applying vibration to the flow of fluid refers to periodically adjusting the flow rate of the fluid.
- the forced vibration means 51, 71, 81 is a flow meter that controls the flow rate control valves 52, 72, 82 and the flow rate control valves 52, 72, 82 provided in the supply pipes 5, 7, 8.
- a control unit including 53, 73, 83.
- the fuel supplied by the fuel supply pipe 5 may be any one as long as it is suitable for the fuel of the burner 2, and examples thereof include liquefied natural gas (LNG).
- LNG liquefied natural gas
- oxygen is supplied from the oxygen supply pipe 7, this oxygen does not necessarily need to be pure oxygen, and any desired one may be used as appropriate in relation to the oxygen concentration described later.
- air is supplied from the air supply pipe 8
- combustion exhaust gas can be used as air in addition to air taken from the atmosphere. When combustion exhaust gas is used, the oxygen concentration can be lowered to less than 21% (oxygen concentration in the air).
- various detectors are preferably arranged in the furnace 1 as shown in FIG. That is, the temperature in the furnace 1 is measured by the temperature sensor 9 and the concentration of the exhaust gas (NO X , CO, CO 2 , O 2 ) discharged from the furnace 1 through the flue 10 is measured with the continuous exhaust gas concentration measuring device 11. Measure with Furthermore, the data detected by these detectors is recorded in the data recording unit 12. It is preferable to have a control system 13 that grasps the atmospheric condition in the furnace 1 based on this data and automatically changes the flow rate of the fuel fluid or oxidant fluid, the period of forced vibration, etc. appropriately. Specifically, the control system 13 forcibly vibrates the flow of fluid supplied from various pipes through the control unit 14, and as a result, the vibration state of the vibration combustion 15 in the burner 2 periodically changes. .
- the oxidant fluid is composed of pure oxygen and air.
- the forced vibration means 71 and 81 are controlled so that one or both of the flow rate of pure oxygen supplied from the oxygen supply pipe 7 and the flow rate of air supplied from the air supply pipe 8 change periodically over time. Has been.
- the flow rate of pure oxygen and the flow rate of air may be controlled in any way as long as the oxygen concentration in the oxidant fluid changes periodically. Further, the sum of the flow rate of pure oxygen and the flow rate of air (that is, the flow rate of the oxidant fluid) may be constant or may change periodically.
- the periodic change in the flow rate of pure oxygen and the flow rate of air may have the same waveform and the same fluctuation range, and the phase difference may be ⁇ .
- the increase and decrease in the flow rate of pure oxygen and the flow rate of air are offset, so that the flow rate of the oxidant fluid supplied to the burner 2 is controlled to be constant.
- the minimum values of the flow rates of pure oxygen and air are both controlled to be zero.
- the oxygen concentration in the oxidant fluid can be changed in the range of about 21% to 100%.
- the oxygen concentration of the oxidant fluid is equal to the oxygen concentration of air, and the oxygen concentration is about 21%.
- the oxidant fluid is composed of pure oxygen only, and the oxygen concentration is 100%.
- the flow rate of the oxidant fluid when the flow rate of the oxidant fluid is periodically changed, for example, the flow rate of pure oxygen may be periodically changed while supplying air at a constant amount.
- the oxygen concentration in the oxidant fluid is maximized when the flow rate of pure oxygen is maximized, and the oxygen concentration in the oxidant fluid is minimized when the flow rate of pure oxygen is minimized.
- the oxygen concentration in the oxidant fluid is about 21% to about 61%. It will change periodically in the range. That is, when the flow rate of pure oxygen is maximum, the flow rate ratio between pure oxygen and air is 1: 1, and the oxygen concentration in the oxidant fluid is about 61%. When the flow rate of pure oxygen is minimized, the oxidant fluid is composed of only air, and the oxygen concentration is about 21%.
- the flow rate of the fuel fluid may be constant or periodically when the flow rate of the oxidant fluid is periodically changed. On the other hand, when the flow rate of the oxidant fluid is constant, the flow rate of the fuel fluid is periodically changed.
- the oxygen ratio refers to a value obtained by dividing the amount of oxygen supplied to the burner 2 as the oxidant fluid by the theoretical amount of oxygen required to burn the fuel fluid supplied to the burner 2. Therefore, theoretically, a state where the oxygen ratio is 1.0 can be said to be a state where oxygen can be completely burned using excess or deficiency. Note that the theoretical required oxygen amount for LNG combustion is approximately 2.3 times that of LNG in terms of molar ratio, although it depends on the LNG composition.
- At least one of the flow rates of the fuel fluid or the oxidant fluid changes periodically, and the oxygen concentration in the oxidant fluid also changes periodically, so that the oxygen ratio also changes periodically. Has changed.
- the flow rate of the oxidant fluid is made constant and the flow rate of the fuel fluid is changed periodically, the flow rate of the oxidant fluid is set to 1, and the oxygen concentration of the oxidant is changed periodically within a range of 21 to 100%.
- the flow rate of the fuel fluid (LNG) is periodically changed in the range of 0.05 to 0.65, the oxygen ratio is periodically changed in the range of 0.14 to 8.7.
- the flow rate of the oxidant fluid when the flow rate of the oxidant fluid changes periodically, the flow rate of the fuel fluid can be made constant. At this time, for example, if the flow rate of the oxidant fluid is changed in the range of 1 to 2, the oxygen concentration of the oxidant is changed in the range of 21 to 61%, and the flow rate of the fuel fluid (LNG) is supplied at 0.3. The oxygen ratio changes periodically in the range of 0.3 to 1.75.
- the relationship between the flow rate of the fuel fluid (LNG), the oxidant flow rate, the oxygen concentration of the oxidant, and the oxygen ratio is expressed by the same equation as the equation (1).
- the frequency of the periodic change in the oxygen ratio is large, the NO X reduction effect is not sufficiently recognized, so it is preferably 20 Hz or less, more preferably 5 Hz or less. Conversely, if the frequency of the periodic change in the oxygen ratio is too small, the amount of CO generated increases, so 0.02 Hz or more is preferable, and 0.03 Hz or more is more preferable.
- the difference between the upper limit and the lower limit of the oxygen ratio is preferably 0.2 or more.
- the fuel fluid is preferably 1.0 or more, and more preferably 1.05 or more.
- At least one of the flow rate of the fuel fluid (LNG) or the flow rate of the oxidant fluid and the oxygen concentration in the oxidant fluid are periodically changed to periodically change the oxygen ratio.
- LNG fuel fluid
- the flow rate of oxygen is changed in the range of 1.2 to 1.7
- the flow rate of air is changed in the range of 0 to 9.2.
- the oxygen ratio periodically changes in the range of 0.5 to 2.7
- the oxygen concentration periodically changes in the range of 30 to 100%.
- each burner 2 performs temporal concentration combustion according to the flow rate of the supplied fuel fluid, the flow rate of the oxidant fluid, and the change in the oxygen concentration in the oxidant fluid, and the vibration state changes periodically.
- the vibration state specifically means that the combustion state fluctuates by changing the flow rate of at least one of the fuel and the oxidant.
- a plurality of burners 2 are provided in the furnace 1, but are arranged to face the periodic change (vibration cycle) of the vibration state of each burner 2.
- the phase difference from the vibration period of the burner 2 is controlled to be ⁇ .
- the burner 2 arranged oppositely refers to the burner 2 provided at the opposite position of the opposite side walls 1a, 1b, but is required to be arranged at the opposite position in a strict sense. Instead, it refers to the burner 2 closest to the opposing position.
- the burner 2 facing the burner 2a 1 refers to the burner 2b 1
- the burner 2 facing the burner 2a 2 refers to the burner 2b 2 .
- the burner array 14a is formed by all the burners 2a arranged on the side wall 1a, and the periodic changes in the flow rate of fuel fluid, the flow rate of air, and the flow rate of oxygen are all synchronized in each burner 2a.
- the burner array 14b is formed by all the burners 2b arranged on the side wall 1b, and all the burners 2b are also synchronized. Therefore, as shown in FIG. 3A, when the burner 2a arranged on the side wall 1a burns most strongly, the burner 2b arranged on the side wall 1b burns weakest. On the contrary, as shown in FIG. 3B, when the burner 2a arranged on the side wall 1a burns weakest, the burner 2b arranged on the side wall 1b burns most strongly.
- each burner 2a since the periodic changes in the flow rate of the fuel fluid, the air flow rate, and the oxygen flow rate are all synchronized, the periodic changes in the oxygen ratio and the oxygen concentration are also synchronized.
- the term “synchronization” here means that the waveform, frequency, and phase are the same, and the fluctuation widths are not necessarily the same.
- the fluctuation range may be different between the burner 2a 1 and the burner 2a 2 .
- the burner 2a 1 and the burner 2b 1 are preferably configured such that the periodic change in the oxygen ratio and oxygen concentration has the same waveform, the same frequency, the same fluctuation range, and the phase difference is ⁇ .
- the generation amount of the NO X can be significantly and reliably reduced. That is, in the conventional burner combustion method, at least one of the flow rate of the fuel fluid or the oxidant fluid supplied to the burner is changed, and only the oxygen ratio is changed periodically. In contrast, in this embodiment, at least one of the flow rate of the fuel fluid or the flow rate of the oxidant fluid is periodically changed, and at the same time, the oxygen concentration in the oxidant fluid is periodically changed. This makes it possible to greatly NO X reduction effect than the prior art is exhibited.
- the burner combustion method of the present embodiment can be applied not only to designing a new heating furnace, but also to an existing heating furnace or a burner in a combustion furnace.
- the present embodiment is different from the first embodiment in that a phase difference is provided in the vibration period of the adjacent burner 2, and the rest is the same as the first embodiment.
- a plurality of burners 2a and burners 2b are provided on the side wall 1a and the side wall 1b, respectively.
- Each burner 2 forms each burner array 24 by only one. That is, each burner 2a provided on the side wall 1a forms a burner array 24a, and each burner 2b provided on the side wall 1b forms a burner array 24b.
- the adjacent burners 2 are controlled so that the phase difference of the vibration period is ⁇ .
- the vibration period of each burner 2 is controlled such that the phase difference between the vibration period of the opposing burner 2 is ⁇ .
- the phase difference between the vibration periods of the burner 2a 1 and the burner 2b 1 facing it is ⁇
- the phase difference between the vibration periods of the burner 2a 2 and the burner 2b 2 facing it is ⁇ .
- the oxygen concentration in the oxidant fluid is periodically changed, so that the NO X reduction effect can be significantly exhibited as compared with the prior art.
- the vibration period of each burner 2 is controlled so that the phase difference between the vibration period of adjacent burners 2 is ⁇ .
- the burners 2 that burn at a high oxygen ratio and a low oxygen concentration and the burners 2 that burn at a low oxygen ratio and a high oxygen concentration are alternately arranged along the longitudinal direction.
- mixing is promoted by the temperature distribution in the furnace is more uniform, it is possible to further reduce the NO X generation amount.
- the CO concentration in the exhaust gas can be further reduced.
- the burner array 24 may be configured by a plurality of burners 2. That is, as shown in FIG. 5, a plurality of sets of burner arrays 34a composed of a plurality of burners 2a are provided on the side wall 1a of the furnace 1, and a plurality of sets of burner arrays 34b composed of a plurality of burners 2b are provided on the side wall 1b. I do not care.
- the burner 2 constituting each burner array 34 and the burner 2 constituting the burner array 34 adjacent to the burner array 34 may be controlled so that the phase difference of the vibration period is ⁇ .
- a burner 2a constituting the burner array 34a 1 the phase difference between the oscillation period of the burner 2a constituting the burner array 34a 2 and burner array 34a 3 may be set to [pi.
- This embodiment is also the same as the first embodiment except that a difference is provided in the vibration period of the adjacent burner 2 from the first embodiment. That is, as shown in FIG. 6, in the present embodiment, n burners 2a and 2b are provided on the side wall 1a and the side wall 1b of the furnace 1, respectively. Each burner 2 forms each burner array 44 by only one each. That is, each burner 2a provided on the side wall 1a forms a burner array 44a, and each burner 2b provided on the side wall 1b forms a burner array 44b.
- the vibration period and phase difference of the adjacent burner 2 may be set to 2 ⁇ / n.
- the vibration period of the burner 2a 1 the vibration period of the burner 2a 2 is disposed adjacent the burner 2a 3, the phase difference between [pi / 2
- the vibration period of the burner 2a 2 and the vibration period of the burner 2a 3 are controlled so that the phase difference is ⁇ .
- the vibration period of each burner 2 is controlled such that the phase difference between the vibration period of the opposing burner 2 is ⁇ .
- the phase difference between the vibration periods of the burner 2a 1 and the burner 2b 1 facing it is ⁇
- the phase difference between the vibration periods of the burner 2a 2 and the burner 2b 2 facing it is ⁇ .
- the oxygen concentration in the oxidant fluid is periodically changed, so that the NO X reduction effect can be significantly exhibited as compared with the prior art. Furthermore, when the number of burners 2 arranged on the side wall of the furnace is n, the vibration period of each burner 2 is controlled so that the phase difference between the vibration period of adjacent burners is 2 ⁇ / n. . Thereby, since the flow fluctuations of the fuel fluid supplied into the furnace 1 and the oxidant fluid are suppressed to be small, the pressure in the furnace 1 can be made more uniform.
- the burner array 44 may be configured by a plurality of burners 2. That is, as shown in FIG. 7, n sets of burner arrays 54a made up of a plurality of burners 2a are provided on the side wall 1a of the furnace 1, and n sets of burner arrays 54b made up of a plurality of burners 2b are provided on the side wall 1b. It doesn't matter. In that case, the burner array 54 and the burner 2 constituting the burner array 54 adjacent to the burner array 54 may be controlled so that the phase difference of the vibration period is 2 ⁇ / n.
- the burners 2a constituting the burner array 54a 1 and the vibrations of the burners 2a constituting the burner array 54a 2 and the burner array 54a 3 are provided.
- the phase difference of the period may be ⁇ / 2.
- the fuel fluid was LNG
- an oxidant fluid was formed by oxygen and air having an oxygen concentration of 99.6%
- the oxygen ratio and the oxygen concentration in the oxidant fluid were periodically changed to perform forced vibration combustion.
- the NO X reduction effect in this case will be described with reference to examples.
- the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the spirit of the present invention.
- Example 1 As shown in FIG. 3, an experiment was performed using a combustion apparatus in which eight burners 2 were arranged in a furnace 1. Specifically, the oxygen ratio of all the burners 2 and the oxygen concentration waveform, fluctuation range and frequency of the oxidant are the same, the oxygen concentration in the oxidant is in the range of 33 to 100%, and the oxygen ratio is 0. It was made to change periodically in the range of .5 to 1.6, and the frequency was both 0.033 Hz. At this time, the average value (time average value) of the oxygen concentration in the oxidizing agent in one cycle was 40%, and the average value of the oxygen ratio was 1.05. In addition, the phase difference between the periodic changes in the oxygen concentration and the oxygen ratio was set to ⁇ .
- the phase difference between the vibration period of the burner 2 provided on the side wall 1a and the vibration period of the burner 2 provided on the side wall 1b was set to ⁇ .
- the NO X concentration in the combustion exhaust gas was measured using a chemiluminescence type continuous NO X concentration measuring device by continuously sucking the exhaust gas from the flue using a suction pump.
- the concentration of the NO X in the combustion exhaust gas in the case of performing conventional oxygen-enriched combustion (the steady combustion) using the same apparatus was measured and the this value reference value NO X (ref) .
- the value of NO X concentration was 90 ppm
- the value of NO X (ref) was 850 ppm
- the NO X concentration was reduced by about 90% compared to NO X (ref).
- Example 2 For comparison, the same as in Example 1 except that the oxygen concentration is fixed at 40% and only the oxygen ratio is periodically changed in the range of 0.5 to 1.6 as in conventional forced vibration combustion.
- the test was conducted under conditions.
- the NO X concentration value was 410 ppm
- the NO X (ref) value was 850 ppm.
- NO X concentration was reduced by about 50%.
- Example 2 to examine the effect on NO X concentration reducing effect of the vibration frequency of the burner 2, except frequency set to the same conditions as in Example 1, the frequency of the oxygen concentration in the oxidizing agent and the oxygen ratio In the range of 0.017 to 100 Hz. At this time, the oxygen ratio and the frequency of the oxygen concentration in the oxidizing agent were made the same.
- the CO concentration in the combustion exhaust gas was measured using an infrared absorption type continuous CO concentration measuring device by continuously sucking the exhaust gas from the flue using a suction pump.
- the results of NO X concentration are shown in Table 1 and FIG. 8, and the results of CO concentration are shown in Table 2 and FIG.
- the CO concentration is not significantly affected by the frequency when the frequency is in the range of 0.017 to 100 Hz. In particular, when the frequency is 0.02 Hz or more, the CO concentration is less affected by the frequency. I understand that.
- the fluctuation range of the oxygen ratio was investigated the effect of the NO X concentration reducing effect.
- the oxygen concentration is periodically changed in a range of 30 to 100%, it was measured NO X concentration by changing the range to vary the oxygen ratio.
- the lower limit of the oxygen ratio is 0.1, 0.2, 0.3, 0.4, and 0.5
- the upper limit of the oxygen ratio is changed in the range of 1.1 to 7, and the NO in the exhaust gas is changed.
- X concentration was measured.
- the time average value of the oxygen ratio was 1.05, and the oxygen concentration in the oxidant fluid was 40%.
- the oxygen ratio m is 0.5 to 5
- the oxygen ratio m is 0.2 to 1.
- the combustion time for m ⁇ 1.05 was adjusted to be shorter than the time for m> 1.05.
- the fuel flow rate is constant and the average of the oxygen ratio and oxygen concentration is constant, the amount of oxygen used in a certain period of time is the same.
- the measurement results of NO X concentration are shown in Table 3 and FIG. 10, and the measurement results of CO concentration are shown in Table 4 and FIG. 10 and FIG. 11, the horizontal axis represents the upper limit value m max of the oxygen ratio, the vertical axis represents the normalized NO X concentration or the normalized CO concentration, and the values in Tables 3 and 4 are , Normalized NO x concentration or normalized CO concentration.
- the CO concentration increases as the upper limit value m max of the oxygen ratio increases, and in particular, when m max > 6, the CO concentration rapidly increases. Therefore, in the present invention, when it is desired to reduce the CO concentration together with the NO x concentration in the exhaust gas, it is understood that it is preferable to vary the oxygen ratio in the range of 0.3 to 6.
- Example 4 in order to examine the influence of the fluctuation range of the oxygen concentration, the fuel flow constant, the oxygen ratio is varied in the range of 0.5 ⁇ 1.6, NO X emissions by changing the variation range of the oxygen concentration
- the effect on In the test the lower limit of the oxygen concentration was 33%, and the upper limit value C max of the oxygen concentration was changed in the range of 50 to 100%.
- the average oxygen ratio was 1.05, and the oxygen concentration in the oxidant was 40%.
- the frequency of the oxygen ratio and oxygen concentration was 0.067 Hz, and the phase difference between the periodic changes in the oxygen ratio and oxygen concentration was ⁇ . The results are shown in Table 5.
- Example 5 the NO X concentration reduction effect when the vibration period of each burner 2 was operated while shifting the phase of the vibration period of the adjacent burner 2 by ⁇ was examined. Specifically, with respect to the periodic changes in the oxygen ratio and oxygen concentration of all the burners 2, the waveforms, the vibration widths, and the frequencies were made the same, and every other phase was shifted by ⁇ and burned. Further, the vibration period of each burner 2 was shifted by ⁇ from the vibration period of the burner 2 provided at the opposing position.
- the oxygen concentration in the oxidant was periodically changed in a range of 33 to 100%, and the oxygen ratio was changed in a range of 0.5 to 1.6.
- the time-average oxygen concentration was 40%, and the oxygen ratio was 1.05.
- the test was conducted at a frequency of periodic change of oxygen concentration and oxygen ratio at 0.033 Hz.
- the phase difference between periodic changes in oxygen concentration and oxygen ratio was ⁇ .
- Table 6 shows the measurement results of the NO X concentration.
- Table 7 shows the measurement results of the CO concentration.
- Example 5 From Table 6, it was found that in Example 5, the NO X concentration was further reduced as compared with Example 1. Furthermore, from Table 7, it was found that in Example 5, the CO concentration was further reduced as compared to Example 1.
- Example 6 it was investigated NO X concentration reducing effect in the case of driving one side four burners phase shifted by [pi / 2.
- the oxygen ratio and oxygen concentration waveforms, fluctuation ranges, and frequencies of all the burners 2 are the same, and are arranged on the side wall 1a and the side wall 1b, respectively, as shown in FIG.
- the four burners 2 were combusted so that the vibration period of the four burners 2 was ⁇ / 2 in phase difference with the vibration period of the adjacent burners 2.
- the vibration period of each burner 2 was made to shift ⁇ from the vibration period of the opposed burner 2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
Description
本発明が解決しようとする課題は、従来に比較して大幅なNOX低減効果を発揮する、実用的に価値のあるバーナの燃焼方法及び装置を提供することにある。
各バーナに供給する燃料流体もしくは酸化剤流体の流量のうち、少なくとも一方を周期的に変化させるとともに、前記酸化剤流体中の酸素濃度を周期的に変化させることによって、供給酸素量を理論必要酸素量で除した酸素比を周期的に変化させ、前記バーナを周期的な振動状態で燃焼し、
前記バーナの振動状態の周期的変化について、少なくとも1つのバーナの振動状態の周期的変化と、他のバーナの振動状態の周期的変化とに位相差を設けることを特徴とするバーナの燃焼方法である。
前記炉の側壁に2組以上のバーナアレイが配置されており、
前記各バーナアレイを構成するバーナの振動状態の周期的変化と、前記バーナアレイと隣接して配置されたバーナアレイを構成するバーナの振動状態の周期的変化との位相差はπであることが好ましい。
前記炉の側壁が対向しており、一方の側壁にn組のバーナアレイが配置されており、
前記各バーナアレイを構成するバーナの振動状態の周期的変化と、前記バーナアレイと隣接して配置されたバーナアレイを構成するバーナの振動状態の周期的変化との位相差は2π/nであることが好ましい。
各バーナに供給する燃料流体もしくは酸化剤流体の流量のうち、少なくとも一方を周期的に変化させるとともに、前記酸化剤流体中の酸素濃度を周期的に変化させることによって、供給酸素量を理論必要酸素量で除した酸素比を周期的に変化させ、前記バーナを周期的な振動状態で燃焼し、
前記バーナの振動状態の周期的変化について、少なくとも1つのバーナの振動状態の周期的変化と、他のバーナの振動状態の周期的変化とに位相差を設けることを特徴とするバーナの燃焼装置である。
前記燃焼装置が、前記配管のそれぞれに、供給される燃料、酸素、及び空気の流れに強制的に振動を加える強制振動手段を備えることが好ましい。
前記燃焼装置が、前記検知器によって検出されたデータをもとに、前記燃料流体もしくは前記酸化剤流体の流量、または前記強制振動の周期を変更する制御システムを備えることが好ましい。
<燃焼装置>
本発明の第1の実施形態に用いられる燃焼装置は、図1および図2に示すように、炉1と、炉1内に燃焼炎3を形成するバーナ2と、バーナ2に燃料流体および酸化剤流体を供給する各種の配管5,6,7,8とを備えた構成となっている。
なお、本実施形態においては、側壁1aに設けられるバーナ2aの本数と、側壁1bに設けられるバーナ2bの本数を同一にしているが、異なっても構わない。
本実施形態では、側壁1aに設けられた全てのバーナ2aによってバーナアレイ14aが形成されており、バーナ2aの振動状態は全て同じように制御されている。また、側壁1bに設けられた全てのバーナ2bによって、バーナアレイ14bが形成されており、バーナ2bの振動状態も全て同じように制御されている。各バーナ2の燃焼については、後述する。
ここで、流体の流れに強制的に振動を加えるとは、流体の流量を周期的に調整することを指す。強制振動手段51,71,81とは、具体的には、各供給配管5,7,8に設けられた流量調節弁52,72,82及び流量調節弁52,72,82を制御する流量計53,73,83を含むコントロールユニットのことを指す。
酸素供給配管7からは酸素が供給されるが、この酸素は、必ずしも純酸素である必要はなく、後述する酸素濃度との関係から適宜所望のものを用いればよい。
空気供給配管8からは空気が供給されるが、空気として、大気中から取り込んだ空気以外に、燃焼排ガスを使用することもできる。燃焼排ガスを使用した場合は、酸素濃度を21%(空気中の酸素濃度)未満に下げることができる。
次に、酸化剤流体の流量及び酸化剤流体中の酸素濃度について説明する。なお、以下の説明においては、便宜上、酸素供給配管7、空気供給配管8及び燃料供給配管5からは、それぞれ純酸素、空気(酸素濃度は約21%)及び液化天然ガス(LNG)が供給されるものとして説明する。また、本明細書で使用される酸素濃度の単位はvol%で表される。
燃料流体の流量は、酸化剤流体の流量を周期的に変化させている場合には、一定であっても周期的に変化していても構わない。一方、酸化剤流体の流量を一定にする場合は、燃料流体の流量を周期的に変化させることとなる。
次に、酸素比について説明する。ここで酸素比とは、酸化剤流体としてバーナ2に供給される供給酸素量を、バーナ2に供給される燃料流体を燃焼させるのに必要とされる理論必要酸素量で除した値をいう。したがって、理論的には、酸素比1.0の状態が、酸素を過不足なく用いて完全燃焼することが可能な状態といえる。
なお、LNGの燃焼における理論必要酸素量は、LNG組成にもよるが、モル比にして、おおよそLNGの2.3倍である。
m=(QO2×XO2/100)/(Qf×2.3)・・・(1)
また、酸素比の時間平均値(1周期における平均値)は、小さいと燃料流体が不完全燃焼となるので、1.0以上であることが好ましく、1.05以上であることがより好ましい。
これらの周期的変化は、燃料流体の流量、酸素の流量および空気の流量を変化させることで制御されている。例えば、燃料流体の流量を0.5~1.5の範囲で変化させ、酸素の流量を1.2~1.7、空気の流量を0~9.2の範囲で変化させて供給すると、酸素比は0.5~2.7の範囲で周期的に変化し、酸素濃度は30~100%の範囲で周期的に変化する。
次に、バーナ2の燃焼について説明する。各バーナ2は、供給される燃料流体の流量、酸化剤流体の流量、および酸化剤流体中の酸素濃度の変化に応じて、時間的な濃淡燃焼を行い、振動状態が周期的に変化して燃焼する。なお本発明において振動状態とは、具体的には燃料もしくは酸化剤の少なくとも一方の流量を変化させることによって、燃焼状態が変動することを意味する。
ここで、対向して配置されたバーナ2とは、対向する側壁1a、1bの対抗する位置に設けられたものを指すが、厳密な意味で対向する位置に配置されることを要求しているのではなく、対抗する位置に最も近いバーナ2のことを指す。例えば、バーナ2a1にとって対向するバーナ2とは、バーナ2b1を指し、バーナ2a2にとって対向するバーナ2とは、バーナ2b2のことを指す。
また、バーナ2bについても同様で、各バーナ2bは、全て酸素比および酸素濃度の周期的変化は同期しているが、変動幅は異なっていても構わない。
また、対向するバーナ2同士は、変動幅が同一であることが好ましい。例えば、バーナ2a1とバーナ2b1は、酸素比および酸素濃度の周期的変化が、同一波形、同一周波数、同一変動幅で、位相差がπとなるように構成されているのが好ましい。
すなわち、従来のバーナの燃焼方法では、バーナに供給される燃料流体の流量もしくは酸化剤流体の流量の少なくとも一方のみを変化させて、酸素比のみを周期的に変化させていた。これに対し、本実施形態では、燃料流体の流量もしくは酸化剤流体の流量の少なくとも一方を周期的に変化させると同時に、酸化剤流体中の酸素濃度を周期的に変化させている。これにより、従来よりも大幅にNOX低減効果が発現することができる。
また、炉に配置された複数のバーナについて、振動状態の周期的変化(振動周期)を全て同じにした場合、大きなNOX低減効果は得られるものの、バーナへの燃料流体と酸化剤流体の流量が大きく変動するため、炉内圧力の変動が大きくなる。これに対し、本実施形態では、バーナ2の振動状態の周期的変化について、少なくとも1つのバーナ2の振動周期と、他のバーナ2の振動周期とに位相差が設けられている。これにより、大きなNOX低減効果を得るとともに、炉1内に供給される燃料流体と酸化剤流体の流量の変動が小さくなるので、バーナ2が炉1に与える圧力を均一化させることができる。
特に、対向して設けられたバーナ2同士の位相差をπとすることで、よりNOX低減効果を得るとともに、炉1内圧力を一定にすることができる。
また、本実施形態のバーナの燃焼方法は、新規の加熱炉を設計する場合のみならず、既設の加熱炉や燃焼炉におけるバーナにも適用することが可能である。
次に、本発明を適用した第2の実施形態に係るバーナの燃焼方法について説明する。なお、本実施形態は、第1の実施形態の変形例であり、同様の部分については説明を省略する。
図4(a)および図4(b)に示すように、本実施形態でも、側壁1aおよび側壁1bに、それぞれ複数のバーナ2aおよびバーナ2bが設けられている。各バーナ2は、それぞれ1本のみで各バーナアレイ24を形成している。すなわち、側壁1aに設けられた各バーナ2aは、それぞれがバーナアレイ24aを形成しており、側壁1bに設けられた各バーナ2bは、それぞれがバーナアレイ24bを形成している。
この際、各バーナ2の振動周期は、それぞれ対向するバーナ2の振動周期と位相差がπとなるように制御されている。例えば、バーナ2a1と、それと対向するバーナ2b1の振動周期の位相差はπであるし、バーナ2a2と、それと対向するバーナ2b2の振動周期の位相差はπである。
更に、各バーナ2の振動周期が、それぞれ隣接するバーナ2の振動周期と位相差がπになるように制御されている。その結果、長手方向に沿って、高酸素比かつ低酸素濃度で燃焼するバーナ2と、低酸素比かつ高酸素濃度で燃焼するバーナ2が交互に配置されることになる。これにより、混合が促進され、炉内の温度分布がより均一化されることにより、NOX発生量をより低減化することができる。また、排ガス中のCO濃度をより下げることができる。
すなわち、図5に示すように、炉1の側壁1aに複数本のバーナ2aからなるバーナアレイ34aを複数組設け、側壁1bに複数本のバーナ2bからなる複数組のバーナアレイ34bを設けるようにしても構わない。その場合は、各バーナアレイ34を構成するバーナ2と、前記バーナアレイ34と隣接するバーナアレイ34を構成するバーナ2とで、振動周期の位相差がπとなるように制御すればよい。例えば、バーナアレイ34a1を構成するバーナ2aと、バーナアレイ34a2およびバーナアレイ34a3を構成するバーナ2aの振動周期の位相差をπとすればよい。
次に、本発明を適用した第3の実施形態に係るバーナの燃焼方法について説明する。なお、本実施形態は、第1の実施形態の変形例であり、同様の部分については説明を省略する。
すなわち、図6に示すように、本実施形態では、炉1の側壁1aおよび側壁1bに、それぞれn本のバーナ2aおよびバーナ2bが設けられている。各バーナ2は、それぞれ1本のみで各バーナアレイ44を形成している。すなわち、側壁1aに設けられた各バーナ2aは、それぞれがバーナアレイ44aを形成しており、側壁1bに設けられた各バーナ2bは、それぞれがバーナアレイ44bを形成している。
この際、各バーナ2の振動周期は、それぞれ対向するバーナ2の振動周期と位相差がπとなるように制御されている。例えば、バーナ2a1と、それと対向するバーナ2b1の振動周期の位相差はπであるし、バーナ2a2と、それと対向するバーナ2b2の振動周期の位相差はπである。
更に、炉の側壁に配置されたバーナ2の本数がn本の際に、各バーナ2の振動周期が、それぞれ隣接するバーナの振動周期と位相差が2π/nとなるように制御されている。これにより、炉1内に供給される燃料流体と、酸化剤流体の流量変動が小さく抑えられるので、より炉1内の圧力を均一化することができる。
すなわち、図7に示すように、炉1の側壁1aに、複数本のバーナ2aからなるバーナアレイ54aをn組設け、側壁1bにも、複数本のバーナ2bからなるバーナアレイ54bをn組設けるようにしても構わない。その場合は、バーナアレイ54を構成するバーナ2と、前記バーナアレイ54と隣接するバーナアレイ54を構成するバーナ2とで、振動周期の位相差が2π/nとなるように制御すればよい。例えば、炉1の側壁1aに、2本のバーナ2aかなるバーナアレイ54aを4組設けた場合は、バーナアレイ54a1を構成するバーナ2aと、バーナアレイ54a2およびバーナアレイ54a3を構成するバーナ2aの振動周期の位相差をπ/2とすればよい。
また、側壁1aに設けられたバーナ2の振動周期と、側壁1bに設けられたバーナ2の振動周期は、位相差がπとなるようにした。
なお、燃焼排ガス中のNOX濃度は、煙道から吸引ポンプを用いて連続的に排ガスを吸引し、化学発光式の連続式NOX濃度測定装置を用いて測定した。
実施例1では、NOX濃度の値は90ppm、NOX(ref)の値は850ppmとなり、NOX(ref)と比較して、NOX濃度は約90%減となった。
比較例1では、NOXの濃度の値は410ppm、NOX(ref)の値は850ppmとなり、NOX(ref)と比較して、NOX濃度は約50%減に留まった。
なお、燃焼排ガス中のCO濃度は、煙道から吸引ポンプを用いて連続的に排ガスを吸引し、赤外吸収式の連続式CO濃度測定装置を用いて測定した。
NOX濃度の結果を表1及び図8に、CO濃度の結果を表2及び図9に示す。
酸素比の下限を0.1、0.2、0.3、0.4、0.5とした各場合について、酸素比の上限を1.1~7の範囲で変化させ、排ガス中のNOX濃度を測定した。
表3および図10から、mmin=0.5のグラフは、mmaxが大きくなる(酸素比の振幅が大きくなる)にしたがって、NOXが減少していくが、mmax>5では、NOX濃度は一定となる。また、mmin=0.3のグラフは、mmin=0.5のグラフよりNOX濃度は下がるが、mmin=0.2と、mmin=0.3とでは、ほぼ変らない。
したがって、NOX濃度とCO濃度の双方を下げたいときは、酸素比の下限値mminは、0.3であることが好ましい。
よって、本発明において、排ガス中のNOX濃度とともに、CO濃度を下げたいときは、酸素比を0.3以上6以下の範囲で変動させることが好ましいことがわかる。
また、酸素比及び酸素濃度の周波数を0.067Hzとし、酸素比と酸素濃度の周期的変化の位相差をπとした。結果を表5に示す。
NOX濃度の測定結果を表6に示す。また、CO濃度の測定結果を表7に示す。
1a,1b 側壁
2,2a,2b,2a1,2a2,2a3,2b1,2b2,2b3 バーナ
3,3a,3b 燃焼炎
14a,14b,24,24a,24b,34,34a,34b,44,44a,44b,54,54a,54b バーナアレイ
5 燃料供給配管
6 酸化剤流体供給配管
7 酸素供給配管
8 空気供給配管
9 温度センサー
10 煙道
11 連続排ガス濃度測定装置(NOX,CO,CO2,O2)
12 データ記録ユニット
13 制御システム
14 コントロールユニット
15 振動燃焼
Claims (13)
- 炉において、2本以上のバーナを対向させて設置し燃焼させるバーナの燃焼方法であって、
各バーナに供給する燃料流体もしくは酸化剤流体の流量のうち、少なくとも一方を周期的に変化させるとともに、前記酸化剤流体中の酸素濃度を周期的に変化させることによって、供給酸素量を理論必要酸素量で除した酸素比を周期的に変化させ、前記バーナを周期的な振動状態で燃焼し、
前記バーナの振動状態の周期的変化について、少なくとも1つのバーナの振動状態の周期的変化と、他のバーナの振動状態の周期的変化とに位相差を設けることを特徴とするバーナの燃焼方法。 - 前記各バーナに供給する燃料流体の流量の周期的変化と、前記酸素濃度及び前記酸素比の周期的変化とに位相差を設けることを特徴とする請求項1に記載のバーナの燃焼方法。
- 前記酸素比の周期的変化の周波数が20Hz以下であることを特徴とする請求項1または請求項2に記載のバーナの燃焼方法。
- 前記酸素比の周期的変化の周波数が0.02Hz以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のバーナの燃焼方法。
- 周期的に変化する前記酸素比の上限と下限の差が0.2以上であり、1周期における前記酸素比の平均値が1.0以上であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のバーナの燃焼方法。
- 前記バーナの全てにおいて、酸素比の周期的変化もしくは酸素濃度の周期的変化のうち少なくとも1つを同期して燃焼させることを特徴とする請求項1ないし請求項5のいずれか1項に記載のバーナの燃焼方法。
- 対向して配置された前記バーナ同士の振動状態の周期的変化の位相差がπであることを特徴とする請求項1ないし請求項6のいずれか1項に記載のバーナの燃焼方法。
- 1本以上のバーナからなるバーナアレイを用いて燃焼させる場合において、
前記炉の側壁に2組以上のバーナアレイが配置されており、
前記各バーナアレイを構成するバーナの振動状態の周期的変化と、前記バーナアレイと隣接して配置されたバーナアレイを構成するバーナの振動状態の周期的変化との位相差がπであることを特徴とする請求項1ないし請求項7のいずれか1項に記載のバーナの燃焼方法。 - 1本以上のバーナからなるバーナアレイを用いて燃焼させる場合において、
前記炉の側壁が対向しており、一方の側壁にn組のバーナアレイが配置されており、
前記各バーナアレイを構成するバーナの振動状態の周期的変化と、前記バーナアレイと隣接して配置されたバーナアレイを構成するバーナの振動状態の周期的変化との位相差が2π/nであることを特徴とする請求項1ないし請求項7のいずれか1項に記載のバーナの燃焼方法。 - 少なくとも1つの前記バーナの振動状態の周期的変化と、他のバーナの振動状態の周期的変化とに位相差を設けることによって、炉内圧力を一定に保持することを特徴とする請求項1ないし請求項9のいずれか1項に記載のバーナの燃焼方法。
- 炉において、2本以上のバーナを対向させて設置し燃焼させるバーナの燃焼装置であって、
各バーナに供給する燃料流体もしくは酸化剤流体の流量のうち、少なくとも一方を周期的に変化させるとともに、前記酸化剤流体中の酸素濃度を周期的に変化させることによって、供給酸素量を理論必要酸素量で除した酸素比を周期的に変化させ、前記バーナを周期的な振動状態で燃焼し、
前記バーナの振動状態の周期的変化について、少なくとも1つのバーナの振動状態の周期的変化と、他のバーナの振動状態の周期的変化とに位相差を設けることを特徴とするバーナの燃焼装置。 - 前記燃焼装置が、前記燃料を供給する燃料供給配管、酸素を供給する酸素供給配管、及び空気を供給する空気供給配管を含み、供給される酸素と空気により前記酸化剤が形成され、
前記燃焼装置が、前記配管のそれぞれに、供給される燃料、酸素、及び空気の流れに強制的に振動を加える強制振動手段を備える、請求項11に記載のバーナの燃焼装置。 - 前記炉内に、前記炉内の雰囲気状況を把握する検知器が配置されており、
前記燃焼装置が、前記検知器によって検出されたデータをもとに、前記燃料流体もしくは前記酸化剤流体の流量、または前記強制振動の周期を変更する制御システムを備える、請求項12に記載のバーナの燃焼装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127033342A KR101778706B1 (ko) | 2010-06-29 | 2011-06-28 | 버너의 연소 방법 |
CN201180030058.5A CN102959330B (zh) | 2010-06-29 | 2011-06-28 | 烧嘴的燃烧方法 |
US13/805,836 US9581332B2 (en) | 2010-06-29 | 2011-06-28 | Burner combustion method |
ES11800826T ES2729938T3 (es) | 2010-06-29 | 2011-06-28 | Método de combustión de quemador |
EP11800826.7A EP2589865B1 (en) | 2010-06-29 | 2011-06-28 | Burner combustion method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010147576A JP5357108B2 (ja) | 2010-06-29 | 2010-06-29 | バーナの燃焼方法 |
JP2010-147576 | 2010-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012002362A1 true WO2012002362A1 (ja) | 2012-01-05 |
Family
ID=45402069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064757 WO2012002362A1 (ja) | 2010-06-29 | 2011-06-28 | バーナの燃焼方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US9581332B2 (ja) |
EP (1) | EP2589865B1 (ja) |
JP (1) | JP5357108B2 (ja) |
KR (1) | KR101778706B1 (ja) |
CN (1) | CN102959330B (ja) |
ES (1) | ES2729938T3 (ja) |
MY (1) | MY166266A (ja) |
PT (1) | PT2589865T (ja) |
TW (1) | TWI502155B (ja) |
WO (1) | WO2012002362A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106122957A (zh) * | 2016-06-16 | 2016-11-16 | 中冶长天国际工程有限责任公司 | 一种低NOx清洁燃烧型点火炉及其燃烧控制方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110151386A1 (en) * | 2009-12-23 | 2011-06-23 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Particulate Fuel Combustion Process and Furnace |
JP5485193B2 (ja) | 2011-01-26 | 2014-05-07 | 大陽日酸株式会社 | バーナの燃焼方法 |
EP2642098A1 (de) * | 2012-03-24 | 2013-09-25 | Alstom Technology Ltd | Gasturbinenkraftwerk mit inhomogenem Eintrittsgas |
US9360257B2 (en) | 2014-02-28 | 2016-06-07 | Air Products And Chemicals, Inc. | Transient heating burner and method |
DE102016123041B4 (de) * | 2016-11-29 | 2023-08-10 | Webasto SE | Brennstoffbetriebenes Fahrzeugheizgerät und Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0046898A1 (en) | 1980-08-18 | 1982-03-10 | Nauchno-Proizvodstvennoe Obiedinenie Po Tekhnologii Mashinostroenia "Tsniitmash" | Method and apparatus for pulse-burning of fuel gases in industrial furnaces, particularly metallurgical furnaces |
US4846665A (en) | 1987-10-23 | 1989-07-11 | Institute Of Gas Technology | Fuel combustion |
JPH05215311A (ja) | 1991-07-23 | 1993-08-24 | L'air Liquide | 脈動燃焼方法及び装置 |
JPH06213411A (ja) | 1993-01-14 | 1994-08-02 | Tokyo Gas Co Ltd | 濃淡燃焼方法 |
JPH10141629A (ja) * | 1996-11-08 | 1998-05-29 | Kobe Steel Ltd | 廃棄物の処理方法および装置 |
JP2000171032A (ja) | 1998-12-08 | 2000-06-23 | Osaka Gas Co Ltd | 加熱装置 |
JP2000171005A (ja) | 1998-12-08 | 2000-06-23 | Osaka Gas Co Ltd | 燃焼制御方法 |
JP2001165410A (ja) * | 1999-12-02 | 2001-06-22 | Osaka Gas Co Ltd | 燃焼装置の燃焼制御方法 |
JP2001311505A (ja) | 2000-03-31 | 2001-11-09 | L'air Liquide | 酸素燃料の燃焼形状及び方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE372090B (ja) * | 1972-11-03 | 1974-12-09 | J Graffman | |
DE2818164A1 (de) * | 1978-04-21 | 1979-10-31 | Schering Ag | 1,3-dibenzoesaeureester des 17alpha- ethinyl-7 alpha -methyl-1,3,5(10)-oestratrien- 1,3,17 beta -triols, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische zusammensetzungen |
US5470224A (en) | 1993-07-16 | 1995-11-28 | Radian Corporation | Apparatus and method for reducing NOx , CO and hydrocarbon emissions when burning gaseous fuels |
FR2711769B1 (fr) * | 1993-10-29 | 1995-12-08 | Air Liquide | Procédé de combustion dans un four industriel. |
US20030134241A1 (en) * | 2002-01-14 | 2003-07-17 | Ovidiu Marin | Process and apparatus of combustion for reduction of nitrogen oxide emissions |
FR2837913B1 (fr) * | 2002-03-29 | 2004-11-19 | Air Liquide | Procede de dopage a l'oxygene utilisant la combustion pulsee |
EP1645804A1 (de) | 2004-10-11 | 2006-04-12 | Siemens Aktiengesellschaft | Verfahren zum Betrieb eines Brenners, insbesondere eines Brenners einer Gasturbine, sowie Vorrichtung zur Durchführung des Verfahrens |
FR2880409B1 (fr) | 2004-12-31 | 2007-03-16 | Air Liquide | Procede de combustion d'un combustible liquide par atomisation a vitesse variable |
DE102005001807A1 (de) * | 2005-01-13 | 2006-07-20 | Air Liquide Deutschland Gmbh | Verfahren zum Erhitzen eines Industrieofens und dafür geeignete Vorrichtung |
CN101201163B (zh) | 2006-12-04 | 2010-11-03 | 普莱克斯技术有限公司 | 用可变氧化剂以及低NOx燃烧器的燃烧 |
US7632090B2 (en) * | 2007-10-30 | 2009-12-15 | Air Products And Chemicals, Inc. | Burner system and method of operating a burner for reduced NOx emissions |
-
2010
- 2010-06-29 JP JP2010147576A patent/JP5357108B2/ja active Active
-
2011
- 2011-06-28 KR KR1020127033342A patent/KR101778706B1/ko active IP Right Grant
- 2011-06-28 PT PT11800826T patent/PT2589865T/pt unknown
- 2011-06-28 ES ES11800826T patent/ES2729938T3/es active Active
- 2011-06-28 EP EP11800826.7A patent/EP2589865B1/en active Active
- 2011-06-28 US US13/805,836 patent/US9581332B2/en active Active
- 2011-06-28 WO PCT/JP2011/064757 patent/WO2012002362A1/ja active Application Filing
- 2011-06-28 MY MYPI2012005508A patent/MY166266A/en unknown
- 2011-06-28 CN CN201180030058.5A patent/CN102959330B/zh not_active Expired - Fee Related
- 2011-06-29 TW TW100122789A patent/TWI502155B/zh not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0046898A1 (en) | 1980-08-18 | 1982-03-10 | Nauchno-Proizvodstvennoe Obiedinenie Po Tekhnologii Mashinostroenia "Tsniitmash" | Method and apparatus for pulse-burning of fuel gases in industrial furnaces, particularly metallurgical furnaces |
US4846665A (en) | 1987-10-23 | 1989-07-11 | Institute Of Gas Technology | Fuel combustion |
JPH05215311A (ja) | 1991-07-23 | 1993-08-24 | L'air Liquide | 脈動燃焼方法及び装置 |
JPH06213411A (ja) | 1993-01-14 | 1994-08-02 | Tokyo Gas Co Ltd | 濃淡燃焼方法 |
JPH10141629A (ja) * | 1996-11-08 | 1998-05-29 | Kobe Steel Ltd | 廃棄物の処理方法および装置 |
JP2000171032A (ja) | 1998-12-08 | 2000-06-23 | Osaka Gas Co Ltd | 加熱装置 |
JP2000171005A (ja) | 1998-12-08 | 2000-06-23 | Osaka Gas Co Ltd | 燃焼制御方法 |
JP2001165410A (ja) * | 1999-12-02 | 2001-06-22 | Osaka Gas Co Ltd | 燃焼装置の燃焼制御方法 |
JP2001311505A (ja) | 2000-03-31 | 2001-11-09 | L'air Liquide | 酸素燃料の燃焼形状及び方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106122957A (zh) * | 2016-06-16 | 2016-11-16 | 中冶长天国际工程有限责任公司 | 一种低NOx清洁燃烧型点火炉及其燃烧控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102959330A (zh) | 2013-03-06 |
KR101778706B1 (ko) | 2017-09-14 |
PT2589865T (pt) | 2019-06-19 |
TWI502155B (zh) | 2015-10-01 |
EP2589865A1 (en) | 2013-05-08 |
US9581332B2 (en) | 2017-02-28 |
CN102959330B (zh) | 2015-02-11 |
TW201211462A (en) | 2012-03-16 |
EP2589865B1 (en) | 2019-05-15 |
JP2012013258A (ja) | 2012-01-19 |
MY166266A (en) | 2018-06-22 |
KR20130086296A (ko) | 2013-08-01 |
ES2729938T3 (es) | 2019-11-07 |
EP2589865A4 (en) | 2018-03-21 |
US20130095436A1 (en) | 2013-04-18 |
JP5357108B2 (ja) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012002362A1 (ja) | バーナの燃焼方法 | |
US5456594A (en) | Pulsating combustion method and apparatus | |
JP5580320B2 (ja) | 燃焼生成物を制御するための方法およびシステム | |
US20160305660A1 (en) | Flame visualization control for a burner including a perforated flame holder | |
WO2012102206A1 (ja) | バーナの燃焼方法 | |
JP5451455B2 (ja) | バーナの燃焼方法 | |
Shudo et al. | NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen | |
JP2008008569A (ja) | ガス燃焼用バーナー、それを備えたガスオーブン及びガス燃焼用バーナーにおける一酸化炭素の生成量を低減する方法 | |
US12007301B2 (en) | Variable composition gas mixture sensor | |
JP2008261606A (ja) | 燃焼装置 | |
JP2007125485A (ja) | 窒素酸化物および一酸化炭素の低減方法およびその装置 | |
TW201913004A (zh) | 燃燒器及使用燃燒器之加熱方法 | |
JP2004204787A (ja) | 動力発生装置の制御装置 | |
JP3104759B2 (ja) | 燃料ガスの燃焼方法 | |
JPH04151408A (ja) | 窒素酸化物低発生バーナ | |
JP2002213714A (ja) | 燃焼装置 | |
JPH10292906A (ja) | 燃焼装置 | |
JP2010059900A (ja) | 発電システムに用いるガス混合装置 | |
Zhang et al. | Experimental Investigation of Thermoacoustic Instabilities for a Model Combustor With Varying Fuel Components | |
CN104395673A (zh) | 低NOx燃烧器和操作低NOx燃烧器的方法 | |
JPH0682011A (ja) | 窒素酸化物低発生バーナ | |
JPH07103419A (ja) | 燃焼装置 | |
JP2011106694A (ja) | 熱機器 | |
JPH09105505A (ja) | 燃焼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180030058.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800826 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011800826 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127033342 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13805836 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |