WO2012001813A1 - 走行感発生装置及び走行感発生方法 - Google Patents

走行感発生装置及び走行感発生方法 Download PDF

Info

Publication number
WO2012001813A1
WO2012001813A1 PCT/JP2010/061316 JP2010061316W WO2012001813A1 WO 2012001813 A1 WO2012001813 A1 WO 2012001813A1 JP 2010061316 W JP2010061316 W JP 2010061316W WO 2012001813 A1 WO2012001813 A1 WO 2012001813A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
unit
vehicle
signal
level
Prior art date
Application number
PCT/JP2010/061316
Other languages
English (en)
French (fr)
Inventor
寛聡 荒木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/061316 priority Critical patent/WO2012001813A1/ja
Priority to JP2011543739A priority patent/JP4897128B2/ja
Publication of WO2012001813A1 publication Critical patent/WO2012001813A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/42Means to improve acoustic vehicle detection by humans

Definitions

  • the present invention relates to a driving feeling generating device, a driving feeling generating method, a driving feeling generating program, and a recording medium on which the driving feeling generating program is recorded.
  • Patent Document 1 hereinafter referred to as “Conventional Example 1”.
  • the technique of the conventional example 1 when generating the pseudo engine sound based on the traveling information indicating the traveling state such as the engine speed, the throttle opening (accelerator opening), and the vehicle speed, the sound collection result of the sound in the vehicle interior It is designed to adjust the volume according to.
  • the generated pseudo engine sound does not always stay in the vehicle interior. For example, when the window is opened, the pseudo engine sound leaks outside the vehicle. As a result, when running in a quiet residential area or running at midnight, the leaked pseudo engine sound may become noise.
  • the technology of Conventional Example 2 described above is a technology that gives the driver a sense of reality only when the vehicle is started. As a result, the technology of Conventional Example 2 cannot provide the effect of enjoying a safe driving while driving the vehicle and a comfortable driving feeling.
  • the technology of Conventional Example 3 described above is a technology that gives a feeling of running when running in a virtual space. As a result, the technique of Conventional Example 3 cannot be applied to the generation of a feeling of traveling during actual traveling of the vehicle.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a driving feeling generating device and a driving feeling generating method capable of appropriately giving a driving feeling to a passenger of a traveling vehicle. .
  • the present invention is a travel feeling generating device that is mounted on a vehicle equipped with an electric motor as a power source and urges a rider to feel the travel.
  • An acquisition unit that acquires travel information that reflects an operating state; a vibration waveform generation unit that generates a vibration waveform based on the acquired travel information; and a predetermined member of the vehicle that vibrates according to the generated vibration waveform And a vibration imparting unit that causes the running feeling to be generated.
  • the present invention is a driving feeling generating method used in a driving feeling generating device that is mounted on a vehicle equipped with an electric motor as a power source and that arouses a driving feeling to a passenger.
  • the present invention is a driving feeling generation program characterized in that the driving feeling generation method of the present invention is executed by a calculation unit.
  • the present invention is a recording medium in which the running feeling generation program of the present invention is recorded so as to be readable by the calculation unit.
  • FIG. 10 is a block diagram illustrating a configuration of a pseudo sound waveform generating unit in FIG. 9. It is a block diagram which shows the structure of the level adjustment part of FIG. It is a block diagram which shows the structure of the selection part of FIG. It is a flowchart for demonstrating the process in the selection part of FIG. It is a flowchart for demonstrating the process in the normalization waveform generation part of FIG. It is a flowchart for demonstrating the process in the level control part of FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a running feeling generating device 100A according to the first embodiment.
  • the driving feeling generation device 100A includes an acquisition unit 110, a vibration waveform generation unit 120A, and a vibration application unit 130, and uses an electric vehicle CR (hereinafter, referred to as a power source). It is simply mounted on the “vehicle CR”.
  • the travel feeling generating device 100A is connected to an accelerator information sensor 910, a rotation speed information sensor 920, and a vehicle speed sensor 930 that are installed in the vehicle CR.
  • the accelerator information sensor 910 measures the accelerator opening corresponding to the accelerator depression amount, and outputs a measurement signal ARS reflecting the measurement result.
  • the rotation speed information sensor 920 measures the rotation speed of the electric motor and outputs a measurement signal ERS reflecting the measurement result.
  • the vehicle speed sensor 930 measures the rotation speed of the wheel or axle corresponding to the vehicle speed, and outputs a measurement signal SPS reflecting the measurement result.
  • the detection harness is engaged with a signal harness connected to an ECU (Electrical Control Unit) that controls the traveling of the vehicle CR, or is pulled out from the ECU for an add-on vehicle-mounted device.
  • ECU Electronic Control Unit
  • the accelerator information sensor 910, the rotation speed information sensor 920, and the vehicle speed sensor 930 are connected to the travel feeling generating device 100A.
  • the measurement signals ARS, ERS, and SPS are supplied to the travel feeling generating device 100A.
  • the acquisition unit 110 receives the measurement signal ARS sent from the accelerator information sensor 910. Then, the acquisition unit 110 sends the accelerator depression amount reflected in the measurement signal ARS to the vibration waveform generation unit 120A as accelerator information AR in a signal format that can be processed by the vibration waveform generation unit 120A.
  • the acquisition unit 110 receives the measurement signal ERS sent from the rotation speed information sensor 920. Receiving the measurement signal ERS, the acquisition unit 110 identifies the number of rotations reflected in the measurement signal ERS. Then, the acquisition unit 110 sends the identified rotation number to the vibration waveform generation unit 120A as rotation number information ER in a signal format that can be processed by the vibration waveform generation unit 120A.
  • the acquisition unit 110 receives the measurement signal SPS sent from the vehicle speed sensor 930 equipped in the vehicle CR. Receiving the measurement signal SPS, the acquisition unit 110 specifies the speed of the vehicle CR based on the measurement signal SPS. Subsequently, the acquisition unit 110 calculates the acceleration of the vehicle CR by calculating the time change rate of the identified speed. Then, the acquisition unit 110 sends the calculated acceleration to the vibration waveform generation unit 120A as acceleration information AC in a signal format that can be processed by the vibration waveform generation unit 120A.
  • the vibration waveform generation unit 120A receives the accelerator information AR, the rotation speed information ER, and the acceleration information AC sent from the acquisition unit 110. Then, the vibration waveform generation unit 120A generates a vibration signal VBS based on the accelerator information AR, the rotation speed information ER, and the acceleration information AC. The generated vibration signal VBS is sent to the vibration applying unit 130. The details of the configuration of the vibration waveform generation unit 120A will be described later.
  • Said vibration provision part 130 vibrates the predetermined member of vehicle CR according to the vibration signal VBS sent from 120 A of vibration waveform generation parts.
  • the vibration applying unit 130 having such a function includes vibrators 131 H , 131 FL , 131 FR , 131 RL , and 131 RR as shown in FIG.
  • the vibration signal VBS output from the vibration waveform generation unit 120A includes five individual vibration signals VBS H , VBS FL , VBS FR , VBS RL , It is composed of VBS RR .
  • the vibrator 131 H receives the individual vibration signal VBS H sent from the vibration waveform generator 120A.
  • the vibrator 131 H vibrates according to the individual vibration signal VBS H.
  • the vibrator 131 FL receives the individual vibration signal VBS FL sent from the vibration waveform generator 120A.
  • the vibrator 131 FL vibrates according to the individual vibration signal VBS FL .
  • the vibrator 131 FR receives the individual vibration signal VBS FR sent from the vibration waveform generator 120A.
  • the vibrator 131 FR vibrates according to the individual vibration signal VBS FR .
  • the vibrator 131 RL receives the individual vibration signal VBS RL sent from the vibration waveform generation unit 120A.
  • the vibrator 131 RL vibrates according to the individual vibration signal VBS RL .
  • the vibrator 131 RR receives the individual vibration signal VBS RR sent from the vibration waveform generation unit 120A.
  • the vibrator 131 RR vibrates according to the individual vibration signal VBS RR .
  • FIG. 3 The arrangement positions of the vibrators 131 H , 131 FL , 131 FR , 131 RL , 131 RR that vibrate under the control of the vibration waveform generator 120A are shown in FIG. As shown in FIG. 3, the vibrator 131 H is disposed in the interior of the handle member, applying vibrations to the handle member.
  • the vibrator 131 FL is disposed inside the passenger seat member and applies vibration to the passenger seat member. Further, the vibrator 131 FR is disposed inside the driver seat member and applies vibration to the driver seat member.
  • the vibrator 131 RL is disposed inside the left side of the rear seat member and applies vibration to the left side portion of the rear seat member. Further, the vibrator 131 RR is disposed inside the right side of the rear seat member and imparts vibration to the right side portion of the rear seat member.
  • a running feeling due to vibration similar to that when the engine is placed near the reference position RP is generated.
  • the vibration waveform generation unit 120 ⁇ / b> A includes a normalized waveform generation unit 121, a level control unit 122, and a level adjustment unit 123.
  • the standardized waveform generation unit 121 has a vibration waveform table VWT inside.
  • this vibration waveform table VWT the vibration waveform pattern for the handle member, the vibration waveform pattern for the front seat, and the rear seat are associated with the combination of the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110.
  • the relationship between the combination of the rotational speed information ER and the accelerator information AR and each vibration waveform pattern is an average relationship with respect to the combination of the vehicle type of the vehicle CR and the reference position RP obtained in advance based on experiments, experiences, and the like. It has become.
  • the standardized waveform generation unit 121 receives the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Then, the normalized waveform generation unit 121 refers to the vibration waveform table VWT based on the accelerator information AR and the rotation speed information ER, and the vibration waveform pattern for the handle member corresponding to the combination of the accelerator information AR and the rotation speed information ER. The vibration waveform pattern for the front seat and the vibration waveform pattern for the rear seat are read. Thus, based on the three types of waveform patterns read, standardized waveform generation unit 121, the normalized vibration signal NVW H for the handle member, the normalized vibration for normalized vibration signal NVW F and the rear seat for the front seat generating a signal NVW R. The generated normalized vibration signal NVW H, normalized vibration signal NVW F and the normalized vibration signal NVW R is sent to the level adjuster 123.
  • the level control unit 122 has a vibration level table VLT inside.
  • the vibration level table VLT the relationship between the combination of the rotation speed information ER and the acceleration information AC sent from the acquisition unit 110 and the three types of vibration level designation values is registered.
  • the three types of vibration level designation values are a vibration level designation value VLC H for the handle member, a vibration level designation value VLC F for the front seat, and a vibration level designation value VLC R for the rear seat.
  • the relationship between the combination of the rotation speed information ER and the acceleration information AC and each vibration level designation value is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of generating an appropriate running feeling.
  • Level control unit 122 receives rotational speed information ER and acceleration information AC sent from acquisition unit 110. Then, the level control unit 122 refers to the vibration level table VLT based on the combination of the rotation speed information ER and the acceleration information AC, and the combination of the rotation speed information ER and the acceleration information AC and the vibration level designation values VLC H and VLC. Read the relationship between F and VLC R. Using the relationship thus read, the level control unit 122 calculates vibration level designation values VLC H , VLC F , and VLC R. The calculated vibration level designation values VLC H , VLC F , and VLC R are sent to the level adjustment unit 123.
  • the relationship is as follows: (a) the higher the rotational speed of the electric motor, the higher the vibration level, and (b) the same rotational speed of the electric motor.
  • the vibration level designation values VLC H , VLC F , and VLC R are determined so that the vibration level increases as the acceleration of the vehicle CR increases.
  • the vibration level designation values VLC H , VLC F , and VLC R are determined so that the vibration level becomes higher as the distance from the reference position RP (see FIG. 3) is shorter. . For this reason, in the first embodiment, the values become smaller in the order of the vibration level designation values VLC H , VLC F , and VLC R.
  • the level adjustment unit 123 includes the normalized vibration signals NVW H , NVW F , NVW R sent from the normalized waveform generation unit 121, and the vibration level designation values VLC H , VLC F sent from the level control unit 122. , VLC R. Then, the level adjusting unit 123 generates the vibration signal VBS based on the standardized vibration signals NVW H , NVW F , NVW R , and vibration level designation values VLC H , VLC F , VLC R.
  • the level adjustment unit 123 having such a function includes DA (Digital to Analogue) conversion units 210 H , 210 F and 210 R and adjustment units 220 H , 220 F and 220 R. Yes.
  • the level adjustment unit 123 includes power amplification units 230 H , 230 FL , 230 FR , 230 RL , and 230 RR .
  • the DA converter 210 H is configured with a DA converter.
  • the DA conversion unit 210 H receives the normalized vibration signal NVW H sent from normalized waveform generation unit 121. Then, DA conversion unit 210 H converts the normalized vibration signal NVW H into an analog signal.
  • An analog conversion signal NVS H which is a conversion result by the DA conversion unit 210 H is sent to the adjustment unit 220 H.
  • the DA converter 210 F is configured to include a DA converter, similar to the DA converter 210 H described above.
  • the DA conversion unit 210 F receives the normalized vibration signal NVW F sent from the normalized waveform generation unit 121. Then, DA conversion unit 210 F converts the normalized vibration signal NVW F into an analog signal.
  • An analog conversion signal NVS F which is a conversion result by the DA conversion unit 210 F is sent to the adjustment unit 220 F.
  • the DA converter 210 R is configured to include a DA converter, similar to the DA converter 210 H described above.
  • the DA conversion unit 210 R receives the normalized vibration signal NVW R sent from normalized waveform generation unit 121. Then, DA conversion unit 210 R converts the normalized vibration signal NVW R to an analog signal.
  • An analog conversion signal NVS R that is a conversion result by the DA conversion unit 210 R is sent to the adjustment unit 220 R.
  • the adjustment unit 220 H is configured with an electronic volume element.
  • the adjustment unit 220 H performs level adjustment processing on the analog conversion signal NVS H sent from the DA conversion unit 210 H according to the vibration level designation value VLC H sent from the level control unit 122.
  • the level adjustment signal LCV H that is the adjustment result by the adjustment unit 220 H is sent to the power amplification unit 230 H.
  • the adjustment unit 220 F is configured to include an electronic volume element or the like, similar to the adjustment unit 220 H described above.
  • the adjustment unit 220 F performs level adjustment processing on the analog conversion signal NVS F sent from the DA conversion unit 210 F in accordance with the vibration level designation value VLC F sent from the level control unit 122.
  • the level adjustment signal LCV F that is an adjustment result by the adjustment unit 220 F is sent to the power amplification units 230 FL and 230 FR .
  • the adjustment unit 220 R is configured to include an electronic volume element or the like, similar to the adjustment unit 220 H described above.
  • the adjustment unit 220 R performs level adjustment processing on the analog conversion signal NVS R sent from the DA conversion unit 210 R in accordance with the vibration level designation value VLC R sent from the level control unit 122.
  • An adjustment result of the adjustment unit 220 R level adjustment signal LCV R is sent to the power amplifier unit 230 RL, 230 RR.
  • the power amplifying unit 230 H includes a power amplifier.
  • the power amplifier 230 H receives the level adjustment signal LCV H sent from the adjustment unit 220 H. Then, the power amplification unit 230 H power-amplifies the level adjustment signal LCV H.
  • the individual vibration signal VBS H that is an amplification result by the power amplifier 230 H is sent to the vibration applying unit 130.
  • Each of the power amplification units 230 FL and 230 FR is configured to include a power amplifier in the same manner as the power amplification unit 230 H described above.
  • Power amplifier section 230 FL, 230 FR receives the sent from the adjustment unit 220 F level adjustment signal LCV F. Then, the power amplifier unit 230 FL, 230 FR is a level adjustment signal LCV F to power amplification.
  • Individual vibration signal VBS FL is an amplification result by the power amplifier unit 230 FL, 230 FR, VBS FR is sent to the vibration applying unit 130.
  • Each of the power amplifying units 230 RL and 230 RR includes a power amplifier, similar to the power amplifying unit 230 H described above.
  • the power amplification units 230 RL and 230 RR receive the level adjustment signal LCV R sent from the adjustment unit 220 R. Then, the power amplifier unit 230 RL, 230 RR is the level adjustment signal LCV R for power amplification.
  • Individual vibration signal VBS RL is an amplification result by the power amplifier unit 230 RL, 230 RR, VBS RR is sent to the vibration applying unit 130.
  • acquisition unit 110 receives measurement signal ARS sent from accelerator information sensor 910 and measurement signal ERS sent from rotation speed information sensor 920. And the acquisition part 110 produces
  • the acquisition unit 110 receives the measurement signal SPS sent from the vehicle speed sensor 930. And the acquisition part 110 calculates the acceleration of vehicle CR by calculating the time change rate of the specified speed, after specifying the speed of vehicle CR based on measurement signal SPS. Then, the acquisition unit 110 sends the calculated acceleration to the vibration waveform generation unit 120A as acceleration information AC (see FIG. 1).
  • the vibration waveform generation unit 120A a standardized vibration signal generation process is performed based on the accelerator information AR and the rotational speed information ER sent from the acquisition unit 110.
  • the vibration waveform generation unit 120A performs a vibration level designation value calculation process based on the rotation speed information ER and the acceleration information AC sent from the acquisition unit 110.
  • the generation process of the vibration signal VBS is performed based on the result of the generation process of the normalized vibration signal and the result of the calculation process of the vibration level designation value.
  • Standardized vibration signal generation process The generation process of the standardized vibration signal is performed by the standardized waveform generation unit 121 that receives the accelerator information AR and the rotation speed information ER.
  • step S11 the normalized waveform generation unit 121 takes in the accelerator information AR and the rotation speed information ER.
  • step S12 the normalized waveform generation unit 121 uses the vibration waveform pattern for the handle member, which is registered in the vibration waveform table VWT in association with the combination of the accelerator information AR and the rotation speed information ER, for the front seat. And the vibration waveform pattern for the rear seat are read.
  • step S13 whether or not the normalized waveform generation unit 121 should change the vibration waveform pattern by determining whether or not the newly read vibration waveform pattern has changed from the current vibration waveform pattern. Determine whether or not. If this determination is negative (step S13: N), the process returns to step S11.
  • step S13 determines whether the result of the determination in step S13 is affirmative (step S13: Y). If the result of the determination in step S13 is affirmative (step S13: Y), the process proceeds to step S14.
  • step S14 the normalized waveform generation unit 121, newly read vibration waveform pattern based were normalized vibration signal NVW H, NVW F, it starts generating the NVW R.
  • generated normalized vibration signal NVW H, NVW F, NVW R is sent to the level adjuster 123 (see FIG. 4). Then, the process returns to step S11.
  • step S14 newly read vibration waveform normalized vibration signal based on the pattern NVW H, NVW F, generation processing of NVW R is then adapted to continue to step S14 is executed ing.
  • the calculation process of the vibration level designation value is performed by the level control unit 122 that receives the rotation speed information ER and the acceleration information AC in parallel with the above-described normalization vibration signal generation process.
  • step S21 the level control unit 122 takes in the rotation speed information ER and the acceleration information AC. Subsequently, in step S22, the level control unit 122 performs the vibration level designation value VLC H for the handle member and the vibration level designation value VLC F for the front seat corresponding to the combination of the acquired rotation speed information ER and acceleration information AC. , and calculates the vibration level specified value VLC R for rear seat.
  • the level control unit 122 first refers to the vibration level table VLT based on the acquired rotational speed information ER and acceleration information AC, and combines the rotational speed information ER and acceleration information AC and specifies the vibration level. Read the relationship between the values VLC H , VLC F , and VLC R. Subsequently, the level control unit 122 calculates vibration level designation values VLC H , VLC F , and VLC R using the read relationship.
  • the level control unit 122 sends the calculation result to the level adjustment unit 123 (see FIG. 4). Then, the process returns to step S21.
  • the generation processing of the vibration signal VBS includes the normalized vibration signals NVW H , NVW F , NVW R sent from the normalized waveform generation unit 121, and the vibration level designation values VLC H , VLC F sent from the level control unit 122. , performed by the level adjusting unit 123 which receives the VLC R.
  • the level adjusting section 123 converts to analog conversion signal NVS H by the DA conversion unit 210 H for receiving the normalized vibration signal NVW H, and the level adjustment signal LCV by adjuster 220 H according to the vibration level specified value VLC H H is generated sequentially. Then, the level adjustment signal LCV H is amplified by the power amplifier 230 H , and the result of the amplification is sent to the vibration applying unit 130 as the individual vibration signal VBS H (see FIG. 6).
  • the level adjusting section 123 converts to analog conversion signal NVS F by the DA conversion unit 210 F which has received the normalized vibration signal NVW F, and the level adjustment by the adjusting section 220 F in accordance with the vibration level specified value VLC F generation of the signal LCV F are sequentially performed.
  • the amplification level adjustment signal LCV F by respective power amplification section 230 FL, 230 FR is performed, the result of the amplification, separate vibration signal VBS FL, is sent to the vibration applying unit 130 as a VBS FR.
  • the level adjusting section 123 converts to analog conversion signal NVS R by the DA conversion unit 210 R that has received the normalized vibration signal NVW R, and the level adjustment by the adjusting unit 220 R in accordance with the vibration level specified value VLC R generation of the signal LCV R are sequentially performed. Then, the amplification level adjustment signal LCV R by the respective power amplification section 230 RL, 230 RR is made, the result of the amplification, separate vibration signal VBS RL, is sent to the vibration applying unit 130 as a VBS RR.
  • the vibration applying unit 130 that receives the individual vibration signals VBS H , VBS FL , VBS FR , VBS RL , and VBS RR generated as described above applies vibrations according to the individual vibration signals. That is, the vibrator 131 H for receiving the individual vibration signal VBS H vibrates according to each individual vibration signal VBS H, imparts vibration to the handle member.
  • the vibration unit 131 FL which has received the individual vibration signal VBS FL vibrates according to each individual vibration signal VBS FL, imparts vibration to the passenger seat member. Moreover, vibrator 131 FR having received the individual vibration signal VBS FR vibrates according to each individual vibration signal VBS FR, imparts vibration to the driver's seat member.
  • the vibration unit 131 RL which has received the individual vibration signal VBS RL vibrates according to each individual vibration signal VBS RL, applying vibration to the left portion of the rear seat member.
  • vibrator 131 RR which has received the individual vibration signal VBS RR vibrates according to each individual vibration signal VBS RR, applying vibration to the right portion of the rear seat member.
  • the normalized waveform generation unit 121 refers to the vibration waveform table VWT based on the measurement result by the accelerator information sensor 910 and the measurement result by the rotation speed information sensor 920. , normalized vibration signal NVW H, NVW F, generates a NVW R.
  • the level control unit 122 refers to the vibration level table VLT on the basis of the measurement result obtained by the rotation speed information sensor 920 and the vehicle acceleration obtained based on the measurement result obtained by the vehicle speed sensor 930, and the vibration level designation value VLC. H , VLC F and VLC R are calculated.
  • the level adjuster 123 is the vibration level specified value VLC H, VLC F, according VLC R, adjusted normalized vibration signal NVW H, NVW F, the level of NVW R, individually oscillating signal VBS H, VBS FL, VBS FR , VBS RL , and VBS RR are generated.
  • the vibrators 131 H , 131 FL , 131 FR , 131 RL , 131 RR vibrate according to the individual vibration signals VBS H , VBS FL , VBS FR , VBS RL , VBS RR , and apply vibrations to the corresponding members.
  • the first embodiment it is possible to appropriately give a feeling of traveling to a passenger of a traveling vehicle while preventing generation of noise to the surroundings.
  • the higher the rotation speed of the electric motor the higher the vibration level.
  • the higher the acceleration of the vehicle CR the higher the vibration level.
  • vibration level designation values VLC H , VLC F , and VLC R are determined. For this reason, the greater the acceleration, the higher the driver's attention can be paid, which can contribute to safe driving.
  • the vibration level designation values VLC H , VLC F , and VLC R are determined so that the vibration level increases as the distance from the reference position RP corresponding to the engine placement position in the gasoline vehicle decreases. It is like that. For this reason, it is possible to generate a driving feeling similar to that of a gasoline car.
  • FIG. 9 is a block diagram illustrating a schematic configuration of the travel feeling generating device 100B according to the second embodiment.
  • the driving feeling generating device 100B is mounted on the vehicle CR
  • the accelerator information sensor 910 and the rotation speed information sensor 920 are mounted on the vehicle CR, similarly to the driving feeling generating device 100A described above.
  • a vehicle speed sensor 930 a vehicle speed sensor 930.
  • the driving feeling generating device 100B is different from the driving feeling generating device 100A in that it includes a vibration waveform generating unit 120B instead of the vibration waveform generating unit 120A, and a pseudo sound waveform generating unit 140, a sound output unit 150, and a selecting unit 160. Is different. Hereinafter, description will be made mainly focusing on these differences.
  • the vibration waveform generation unit 120B is different from the vibration waveform generation unit 120A only in that the generation of the vibration signal VBS is performed or interrupted according to the vibration selection signal VSL sent from the selection unit 160. That is, when the vibration selection signal VSL is “ON”, the vibration waveform generation unit 120B executes the generation process of the vibration signal VBS in the same manner as the vibration waveform generation unit 120A. On the other hand, when the vibration selection signal VSL is “OFF”, the vibration waveform generation unit 120B interrupts generation of the vibration signal VBS.
  • the vibration waveform generation unit 120B uses the vibration level designation values VLC H , VLC F , and VLC R when the vibration control signal VSL is “OFF”.
  • the configuration is the same as that of the vibration waveform generation unit 120A except that the value is designated for vibration.
  • the pseudo sound waveform generation unit 140 receives the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Then, the pseudo sound waveform generation unit 140 generates a pseudo sound signal PSS based on the accelerator information AR and the rotation speed information ER. The generated pseudo sound signal PSS is sent to the sound output unit 150. Details of the configuration of the pseudo sound waveform generating unit 140 will be described later.
  • the pseudo sound waveform generation unit 140 executes the generation process of the pseudo sound signal PSS when the pseudo sound selection signal SSL is “ON”. On the other hand, the pseudo sound waveform generation unit 140 interrupts the generation of the pseudo sound signal PSS when the pseudo sound selection signal SSL is “OFF”.
  • the sound output unit 150 is configured to include a speaker that outputs sound in the passenger compartment.
  • the sound output unit 150 receives the pseudo sound signal PSS sent from the pseudo sound waveform generation unit 140. Then, the sound output unit 150 outputs a simulated sound into the vehicle interior according to the simulated sound signal PSS.
  • the above-described selection unit 160 acquires the area type and time zone during which the vehicle CR is traveling as travel environment information. And the selection part 160 produces
  • the generated vibration selection signal VSL is sent to the vibration waveform generator 120B. Further, the generated pseudo sound selection signal SSL is sent to the pseudo sound waveform generating unit 140. Details of the configuration of the selection unit 160 will be described later.
  • the pseudo sound waveform generation unit 140 includes a normalized waveform generation unit 141, a level control unit 142, and a level adjustment unit 143.
  • the standardized waveform generation unit 141 has a pseudo sound waveform table SWT inside.
  • a pseudo sound waveform pattern is registered in a state where the maximum amplitude is standardized to a predetermined value in association with the combination of the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Yes.
  • the relationship between the combination of the rotational speed information ER and the accelerator information AR and the pseudo sound waveform pattern is an average relationship for the vehicle type of the vehicle CR obtained in advance based on experiments, experiences, and the like.
  • the standardized waveform generation unit 141 receives the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110. Then, the normalized waveform generation unit 141 refers to the pseudo sound waveform table SWT based on the accelerator information AR and the rotation speed information ER, and reads a pseudo sound waveform pattern corresponding to the combination of the accelerator information AR and the rotation speed information ER. . Based on the pseudo sound waveform pattern thus read, the standardized waveform generation unit 141 generates a standardized pseudo sound signal NSW. The generated standardized pseudo sound signal NSW is sent to the level adjusting unit 143.
  • the level control unit 142 stores therein the relationship between the rotation speed information ER sent from the acquisition unit 110 and the pseudo sound level designation value.
  • the relationship between the rotational speed information ER and the pseudo sound level designation value is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of generating an appropriate driving feeling.
  • the relationship is such that the pseudo sound level designation value SLC is determined so that the pseudo sound level increases as the rotational speed of the electric motor increases.
  • the level control unit 142 receives the rotation speed information ER sent from the acquisition unit 110. And the level control part 142 calculates the pseudo
  • the level control part 142 performs the production
  • the level adjustment unit 143 receives the normalized pseudo sound signal NSW sent from the standardized waveform generation unit 141 and the pseudo sound level designation value SLC sent from the level control unit 142. Then, the level adjusting unit 143 generates the pseudo sound signal PSS based on the standardized pseudo sound signal NSW and the pseudo sound level designation value SLC. As shown in FIG. 11, the level adjustment unit 143 having such a function includes a DA conversion unit 260, an adjustment unit 270, and a power amplification unit 280.
  • the DA converter 260 includes a DA converter, similar to the DA converter 210 H described above.
  • the DA converter 260 receives the standardized pseudo sound signal NSW sent from the standardized waveform generator 141. Then, the DA converter 260 converts the standardized pseudo sound signal NSW into an analog signal.
  • An analog conversion signal NSS that is a conversion result by the DA conversion unit 260 is sent to the adjustment unit 270.
  • the adjustment unit 270 includes an electronic volume element and the like, similar to the adjustment unit 220 H described above.
  • the adjustment unit 270 performs level adjustment processing on the analog conversion signal NSS sent from the DA conversion unit 260 in accordance with the pseudo sound level designation value SLC sent from the level control unit 142.
  • the level adjustment signal LCS which is the adjustment result by the adjustment unit 270, is sent to the power amplification unit 280.
  • the power amplification unit 280 is configured to include a power amplifier in the same manner as the power amplification unit 230 H described above.
  • the power amplification unit 280 receives the level adjustment signal LCS sent from the adjustment unit 270.
  • the power amplifying unit 280 power-amplifies the level adjustment signal LCS.
  • the pseudo sound signal PSS that is an amplification result by the power amplification unit 280 is sent to the sound output unit 150.
  • the selection unit 160 includes a storage unit 161, a positioning unit 162, a clock unit 163, and a selection control unit 165.
  • the storage unit 161 includes a hard disk device that is a nonvolatile storage device.
  • the storage unit 161 includes map information (MPD) including road network information and the like, and area information (ARD) regarding the area to which each position on the map belongs.
  • map information MPD
  • ARD area information
  • whether or not silence is requested corresponding to the area to which each position on the map belongs is associated as an area attribute. For example, quietness is required in a quiet residential area, and quietness is not required in an urban area.
  • selection control unit 165 can access the storage unit 161.
  • the positioning unit 162 includes a GPS (Global Positioning System) receiving unit.
  • the positioning unit 162 calculates the current position of the vehicle CR based on reception results of radio waves from a plurality of GPS satellites. The calculated current position is sent to the selection control unit 165.
  • GPS Global Positioning System
  • the clock unit 163 is configured with a timer.
  • the clock unit 163 measures the current time.
  • the current time that is the time measurement result is sent to the selection control unit 165.
  • the selection control unit 165 receives the current position sent from the positioning unit 162 and the current time sent from the clock unit 163. The selection control unit 165 identifies the attribute of the area where the vehicle CR is traveling based on the current position. Then, the selection control unit 165 generates the vibration selection signal VSL and the pseudo sound selection signal SSL based on the specified regional attribute and the current time. The generated vibration selection signal VSL is sent to the vibration waveform generation unit 120B, and the generated pseudo sound selection signal SSL is sent to the pseudo sound waveform generation unit 140.
  • the selection control process in the selection control unit 165 will be described later.
  • the acquisition unit 110 receives the measurement signal ARS sent from the accelerator information sensor 910 and the measurement signal ERS sent from the rotation speed information sensor 920.
  • the accelerator information AR and the rotational speed information ER are generated.
  • the acquisition unit 110 sends the generated accelerator information AR and rotation speed information ER to the vibration waveform generation unit 120B and the pseudo sound waveform generation unit 140 (see FIG. 9).
  • the acquisition unit 110 calculates the acceleration of the vehicle CR based on the measurement signal SPS sent from the vehicle speed sensor 930, as in the case of the first embodiment. Then, the acquisition unit 110 sends the calculated acceleration to the vibration waveform generation unit 120B as acceleration information AC (see FIG. 9).
  • Selection processing for generation of vibration or generation of simulated sound is executed in the selection unit 160.
  • the positioning unit 162 measures the current position and sends the measurement result to the selection control unit 165. Further, it is assumed that the clock unit 163 measures the current time and sends the time measurement result to the selection control unit 165 (see FIG. 12).
  • the selection process of vibration generation or generation of pseudo sound is executed by the selection control unit 165 that receives the current position sent from the positioning unit 162 and the current time sent from the clock unit 163.
  • the selection control unit 165 takes in the current position and the current time.
  • step S32 the selection control unit 165 determines whether or not the vehicle CR is traveling in an area where quietness is required. In making this determination, the selection control unit 165 refers to the map information (MPD) and the region information (ARD) in the storage unit 161 based on the current position, and the region where the vehicle CR is traveling is requested to be quiet. It is determined whether or not the vehicle CR is traveling in the area.
  • MPD map information
  • ARD region information
  • step S32: Y If the result of the determination in step S32 is affirmative (step S32: Y), the process proceeds to step S35 described later. On the other hand, when the result of the determination in step S32 is negative (step S32: N), the process proceeds to step S33.
  • step S33 the selection control unit 165 determines whether or not the current time is within a time zone in which silence is requested. For example, when the current time is in the midnight or early morning time zone, the selection control unit 165 determines that the current time is in the time zone in which silence is required.
  • step S33 the process proceeds to step S34.
  • the selection control unit 165 selects a running feeling based on a pseudo sound. Then, the selection control unit 165 sets the vibration selection signal VSL to “OFF” and the pseudo sound selection signal SSL to “ON”. As a result, the output of the pseudo sound from the sound output unit 150 is selected.
  • step S33 If the result of the determination in step S33 is affirmative (step S33: Y), the process proceeds to step S35.
  • step S35 the selection control unit 165 selects a running feeling due to vibration. Then, the selection control unit 165 sets the vibration selection signal VSL to “ON” and the pseudo sound selection signal SSL to “OFF”. As a result, vibration application by the vibration application unit 130 is selected.
  • the vibration waveform generation process is executed by the vibration waveform generation unit 120B when the vibration selection signal VSL is turned “ON” by the selection unit 160, as in the case of the vibration waveform generation unit 120A described above.
  • vibration is applied to the handle member, the passenger seat member, the driver seat member, the left portion of the rear seat member, and the right portion of the rear seat member.
  • the selection unit 160 sets the vibration selection signal VSL to “OFF”, no vibration is applied.
  • the pseudo sound waveform generation process is executed by the pseudo sound waveform generating unit 140 when the selection unit 160 sets the pseudo sound selection signal SSL to “ON”.
  • a standardized pseudo sound signal generation process is performed based on the accelerator information AR and the rotation speed information ER sent from the acquisition unit 110.
  • the pseudo sound waveform generation unit 140 performs a calculation process of the pseudo sound level designation value based on the rotation speed information ER sent from the acquisition unit 110.
  • the pseudo sound waveform generation unit 140 performs the generation process of the pseudo sound signal PSS based on the result of the process of generating the normalized pseudo sound signal and the result of the process of calculating the pseudo sound level designation value.
  • the standardized pseudo sound signal generation processing is performed by the standardized waveform generation unit 141 that receives the accelerator information AR and the rotation speed information ER.
  • step S41 the standardized waveform generation unit 141 takes in the accelerator information AR and the rotation speed information ER.
  • step S42 the standardized waveform generation unit 141 reads the pseudo sound waveform pattern registered in the pseudo sound waveform table SWT in association with the combination of the accelerator information AR and the rotation speed information ER that has been taken in.
  • step S43 the normalized waveform generation unit 141 changes the pseudo sound waveform pattern by determining whether or not the newly read pseudo sound waveform pattern has changed from the current pseudo sound waveform pattern. It is determined whether or not to be performed. If this determination is negative (step S43: N), the process returns to step S41.
  • step S43 the process proceeds to step S44.
  • step S44 the standardized waveform generation unit 141 starts generating a standardized pseudo sound signal NSW based on the newly read pseudo sound waveform pattern.
  • the standardized pseudo sound signal NSW generated in this way is sent to the level adjustment unit 143 (see FIG. 10). Then, the process returns to step S41.
  • step S44 Note that the generation process of the normalized pseudo sound signal NSW based on the newly read pseudo sound waveform pattern started in step S44 is continued until the next step S44 is executed.
  • step S51 the level control unit 142 takes in the rotation speed information ER.
  • step S52 the level control unit 142 uses the relationship between the rotation speed information ER and the pseudo sound level specification value stored therein, and uses the pseudo sound level specification value corresponding to the acquired rotation speed information ER. SLC is calculated.
  • the level control unit 142 sends the calculation result to the level adjustment unit 143 (see FIG. 10). Then, the process returns to step S51.
  • the generation process of the pseudo sound signal PSS includes the standardized pseudo sound signal NSW sent from the standardized waveform generation unit 141 and the pseudo sound level designation sent from the level control unit 142.
  • the level adjustment unit 143 receives the value SLC.
  • the DA converter 260 receives the normalized vibration signal NSW and converts the analog conversion signal NSS into the analog conversion signal NSS, and the adjustment unit 270 generates the level adjustment signal LCS in accordance with the pseudo sound level designation value SLC. Done. Then, the level adjustment signal LCS is amplified by the power amplification unit 280, and the amplification result is sent to the sound output unit 150 as a pseudo sound signal PSS (see FIG. 11).
  • the sound output unit 150 Upon receiving the pseudo sound signal PSS generated as described above, the sound output unit 150 outputs a pseudo sound according to the pseudo sound signal PSS. As a result, the pseudo sound is output to the passenger compartment of the vehicle CR.
  • the selection unit 160 acquires the travel environment such as the attribute and time zone of the region in which the vehicle CR is traveling. Then, the selection unit 160 selects the generation of a driving feeling due to vibration when the acquired driving environment is required to be quiet. When the running feeling is generated by the vibration, the predetermined member is vibrated in the same manner as in the first embodiment.
  • the selection unit 160 selects the generation of the driving feeling due to the pseudo sound that consumes less power than the generation of the driving feeling due to vibration.
  • the standardized waveform generation unit 141 refers to the pseudo sound waveform table SWT based on the measurement result by the accelerator information sensor 910 and the measurement result by the rotation speed information sensor 920, A standardized pseudo sound signal NSW is generated.
  • the level control unit 142 calculates the pseudo sound level designation value SLC based on the measurement result by the rotation speed information sensor 920.
  • the level adjustment unit 143 adjusts the level of the standardized pseudo sound signal NSW in accordance with the pseudo sound level designation value SLC to generate the pseudo sound signal PSS. Then, according to the pseudo sound signal PSS, the sound output unit 150 outputs a pseudo sound into the vehicle interior.
  • the second embodiment it is possible to appropriately give a feeling of traveling to a passenger of a traveling vehicle while suppressing an increase in power consumption according to the surrounding environment during traveling.
  • the acceleration of the vehicle CR is acquired from the time change of the vehicle speed measured by the vehicle speed sensor 930 equipped on the vehicle CR.
  • the acceleration is measured by the acceleration sensor. It may be.
  • the measurement signal sent from the accelerator information sensor 920 that is standardly installed in the vehicle CR and used for the travel control of the vehicle CR is used to detect the travel feeling using the detection harness. It was made to supply to generator 100A, 100B.
  • an accelerator depression amount sensor prepared separately from the accelerator information sensor 920 may be used, and the measurement result by the accelerator depression amount sensor may be used instead of the measurement result by the accelerator information sensor 920.
  • the member to which vibration is applied is the handle member, the passenger seat member, the driver seat member, the left portion of the rear seat member, and the right portion of the rear seat member.
  • the vibration can be applied to any member as long as it includes a position at which the vibration at which the driver can feel a running feeling can be applied.
  • vibration may be applied to the vehicle body at the reference position.
  • the passenger can feel the same vibration as when the engine is placed inside the front of the vehicle CR.
  • the passenger may feel the same vibration as when the engine is placed inside the rear of the vehicle CR.
  • the change in the vibration level designation value corresponding to the change in the magnitude of the acceleration may be a continuous change with respect to the change in the magnitude of the acceleration, or may be changed in stages. Good.
  • the vibrator for applying vibration to the seat member is disposed in the lower part of the seating part.
  • the vibrator may be disposed in the backrest part. .
  • the driving feeling caused by the vibration and the driving feeling caused by the pseudo sound are alternatively selected.
  • an area and a time zone for selecting both are provided. May be.
  • the pseudo sound level designation value is calculated based only on the rotation speed information.
  • the pseudo sound level designation value is calculated based on the rotation speed information and the acceleration information. You may make it calculate.
  • the pseudo sound generated in the second embodiment may be a pseudo engine sound, or may be a pseudo sound other than the pseudo engine sound and may cause a running feeling. Good.
  • the acquisition unit 110, the normalized waveform generation unit 121, and the level control unit 122 in the first embodiment described above are all or partly a computer including a central processing unit (CPU) and a DSP (Digital Signal Processing). It can be configured as a system, and the functions of each unit can be realized by executing a program.
  • all or part of the acquisition unit 110, the normalized waveform generation unit 121, the level control unit 122, the normalized waveform generation unit 141, the level control unit 142, and the selection control unit 165 in the second embodiment described above is a central processing unit.
  • a computer system including a DSP, and the functions of each unit can be realized by executing a program. These programs may be acquired in a form recorded on a portable recording medium such as a CD-ROM or DVD, or may be acquired in a form distributed via a network such as the Internet. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

 規格化波形生成部121が、アクセル情報センサによる測定結果と、回転数情報センサによる測定結果とに基づいて、振動波形テーブルVWTを参照し、規格化振動信号NVWH,NVWF,NVWRを生成する。一方、レベル制御部122が、回転数情報センサによる測定結果と、車速センサによる測定結果に基づいて得られる車両の加速度に基づいて、振動レベルテーブルVLTを参照して、振動レベル指定値VLCH,VLCF,VLCRを算出する。引き続き、レベル調整部123が、振動レベル指定値VLCH,VLCF,VLCRに従って、規格化振動信号NVWH,NVWF,NVWRのレベルを調整して、振動信号VBSを生成する。そして、振動信号VBSに従って、振動付与部130が、所定部材に振動を付与する。この結果、走行中の車両の搭乗者に走行感を、振動により適切に与えることができる。

Description

走行感発生装置及び走行感発生方法
 本発明は、走行感発生装置、走行感発生方法及び走行感発生プログラム、並びに、当該走行感発生プログラムが記録された記録媒体に関する。
 近年、電池を駆動力源とする電気自動車や、電池を駆動力源の一部とするハイブリッド車の普及が進んでいる。こうした自動車が、電池を駆動力源として走行する場合には、従来のガソリン車と比べて、車室内における駆動音のレベル、及び、車体振動のレベルが飛躍的に低くなる。この結果、ガソリン車の場合には得られていたエンジン音や車体振動による走行臨場感を、適切に感じることができなくなる事態が発生し得る。かかる事態の発生は、安全運転や、快適なドライブ感を味わうという観点からは、好ましくない場合が多い。
 このため、車両の走行状況に対応する擬似エンジン音を車室内に発生させる技術が提案されている(特許文献1参照:以下、「従来例1」と呼ぶ)。この従来例1の技術では、エンジン回転数、スロットル開度(アクセル開度)及び車速等の走行状況を示す走行情報に基づいて擬似エンジン音を生成する際に、車室内の音の収音結果に応じた音量に調整するようになっている。
 また、車両の走行中に関する技術ではないが、車両始動時において車両が走行可能になった場合に、運転座席シート又はハンドルを振動させることにより、車両が走行可能状態となったことを認識させる技術が提案されている(特許文献2参照:以下、「従来例2」と呼ぶ)。この従来例2の技術では、スタートスイッチが押下された場合に、「ブレーキペダルが踏み込まれていないこと」等の始動条件を満たし、かつ、スマートキーの認証がなされると、走行用モータへの電力の供給が開始されることをもって、車両の走行可能状態としている。
 また、車両に関する技術ではないが、ドライビングシミュレータにおいて、仮想空間における運動データに基づいて、座席が設けられたカプセルを振動させることにより、自動車の走行を模擬する技術が提案されている(特許文献3参照:以下、「従来例3」と呼ぶ)。この従来例3の技術では、仮想空間における運動データに基づいて、最大6軸の自由度でカプセルを駆動し、カプセルの姿勢変化振動及び並進方向振動を発生させるようになっている。
特開2006-193002号公報 特開2007-28816号公報 特開2001-75470号公報
 上述した従来例1の技術では、発生させた擬似エンジン音が車室内にとどまるとは限らず、例えば、窓を開放している場合には、車外に擬似エンジン音が洩れる。この結果、閑静な住宅街の走行や、深夜の走行に際しては、洩れ出た擬似エンジン音が騒音となってしまうことがあった。
 また、上述した従来例2の技術は、車両の始動時のみに運転者に対して臨場感を与える技術である。この結果、従来例2の技術は、車両の走行中における安全運転や、快適なドライブ感を味わうという効果を奏することができない。
 また、上述した従来例3の技術は、仮想空間における走行に際して、走行感を与える技術である。この結果、従来例3の技術を実際の車両の走行の際における走行感の発生に適用できる訳ではない。
 このため、周囲環境に悪影響を与えることなく、走行中の車両の搭乗者に走行感を与えることができる新たな技術が待望されている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
 本発明は、上記の事情を鑑みてなされたものであり、走行中の車両の搭乗者に走行感を適切に与えることができる走行感発生装置及び走行感発生方法を提供することを目的とする。
 本発明は、第1の観点からすると、電気モータを動力源として備える車両に搭載され、搭乗者に走行感を喚起させる走行感発生装置であって、前記車両の走行中に、前記電気モータの動作状態を反映した走行情報を取得する取得部と;前記取得された走行情報に基づいて、振動波形を生成する振動波形生成部と;前記生成された振動波形に従って、前記車両の所定部材を振動させる振動付与部と;を備えることを特徴とする走行感発生装置である。
 本発明は、第2の観点からすると、電気モータを動力源として備える車両に搭載され、搭乗者に走行感を喚起させる走行感発生装置において使用される走行感発生方法であって、前記車両の走行中に、前記電気モータの動作状態を反映した走行情報を取得する取得工程と;前記取得された走行情報に基づいて、振動波形を生成する生成工程と;前記生成された振動波形に従って、前記車両の所定部材を振動させる振動発生工程と;を備えることを特徴とする走行感発生方法である。
 本発明は、第3の観点からすると、本発明の走行感発生方法を演算部により実行させる、ことを特徴とする走行感発生プログラムである。
 本発明は、第4の観点からすると、本発明の走行感発生プログラムが、演算部により読取可能に記録されている、ことを特徴とする記録媒体である。
本発明の第1実施形態に係る走行感発生装置の構成を概略的に示すブロック図である。 図1の振動付与部の構成を示すブロック図である。 図2の振動器の配設位置を説明するための図である。 図1の振動波形生成部の構成を示すブロック図である。 振動レベルと、回転数及び加速度との関係を説明するための図である。 図4のレベル調整部の構成を示すブロック図である。 図4の規格化波形生成部における処理を説明するためのフローチャートである。 図4のレベル制御部における処理を説明するためのフローチャートである。 本発明の第2実施形態に係る走行感発生装置の構成を概略的に示すブロック図である。 図9の擬似音波形生成部の構成を示すブロック図である。 図10のレベル調整部の構成を示すブロック図である。 図9の選択部の構成を示すブロック図である。 図12の選択部における処理を説明するためのフローチャートである。 図10の規格化波形生成部における処理を説明するためのフローチャートである。 図10のレベル制御部における処理を説明するためのフローチャートである。
 以下、本発明の実施形態を、添付図面を参照して説明する。なお、以下の説明及び図面においては、同一又は同等の要素には同一符号を付し、重複する説明を省略する。
 [第1実施形態]
 まず、本発明の第1実施形態を、図1~図8を参照して説明する。
 <構成>
 図1には、第1実施形態に係る走行感発生装置100Aの概略的な構成が、ブロック図にて示されている。この図1に示されるように、走行感発生装置100Aは、取得部110と、振動波形生成部120Aと、振動付与部130とを備えおり、電気モータを動力源とする電気自動車CR(以下、単に「車両CR」という)に搭載されている。そして、走行感発生装置100Aは、車両CRに装備されたアクセル情報センサ910、回転数情報センサ920及び車速センサ930と接続されている。
 ここで、アクセル情報センサ910は、アクセル踏み込み量に対応するアクセル開度を測定し、測定結果を反映した測定信号ARSを出力する。また、回転数情報センサ920は、電気モータの回転数を測定し、測定結果を反映した測定信号ERSを出力する。また、車速センサ930は、車速に対応する車輪又は車軸の回転数を測定し、測定結果を反映した測定信号SPSを出力する。
 なお、本第1実施形態では、車両CRの走行を制御するECU(Electrical Control Unit)に接続される信号ハーネスに検出ハーネスを噛ませることにより、又は、ECUからアドオン車載装置向けに引き出されている出力ハーネスを利用することにより、アクセル情報センサ910、回転数情報センサ920、及び、車速センサ930のそれぞれと走行感発生装置100Aとを接続している。この結果、測定信号ARS,ERS,SPSが走行感発生装置100Aに供給されるようになっている。
 上記の取得部110は、アクセル情報センサ910から送られた測定信号ARSを受ける。そして、取得部110は、測定信号ARSに反映されているアクセル踏み込み量を、振動波形生成部120Aで処理可能な形態の信号形式のアクセル情報ARとして、振動波形生成部120Aへ送る。
 また、取得部110は、回転数情報センサ920から送られた測定信号ERSを受ける。測定信号ERSを受けた取得部110は、測定信号ERSに反映されている回転数を特定する。そして、取得部110は、特定された回転数を、振動波形生成部120Aで処理可能な形態の信号形式の回転数情報ERとして、振動波形生成部120Aへ送る。
 さらに、取得部110は、車両CRに装備された車速センサ930から送られた測定信号SPSを受ける。測定信号SPSを受けた取得部110は、測定信号SPSに基づいて、車両CRの速度を特定する。引き続き、取得部110は、特定された速度の時間変化率を算出することにより、車両CRの加速度を算出する。そして、取得部110は、算出された加速度を、振動波形生成部120Aで処理可能な形態の信号形式の加速度情報ACとして、振動波形生成部120Aへ送る。
 上記の振動波形生成部120Aは、取得部110から送られたアクセル情報AR、回転数情報ER及び加速度情報ACを受ける。そして、振動波形生成部120Aは、アクセル情報AR、回転数情報ER及び加速度情報ACに基づいて、振動信号VBSを生成する。生成された振動信号VBSは、振動付与部130へ送られる。なお、振動波形生成部120Aの構成の詳細については、後述する。
 上記の振動付与部130は、振動波形生成部120Aから送られた振動信号VBSに従って、車両CRの所定部材を振動させる。かかる機能を有する振動付与部130は、本第1実施形態では、図2に示されるように、振動器131H,131FL,131FR,131RL,131RRを備えている。なお、この図2に示されるように、本第1実施形態では、振動波形生成部120Aから出力される振動信号VBSは、5個の個別振動信号VBSH,VBSFL,VBSFR,VBSRL,VBSRRから構成されるようになっている。
 上記の振動器131Hは、振動波形生成部120Aから送られた個別振動信号VBSHを受ける。そして、振動器131Hは、個別振動信号VBSHに従って振動する。
 上記の振動器131FLは、振動波形生成部120Aから送られた個別振動信号VBSFLを受ける。そして、振動器131FLは、個別振動信号VBSFLに従って振動する。
 上記の振動器131FRは、振動波形生成部120Aから送られた個別振動信号VBSFRを受ける。そして、振動器131FRは、個別振動信号VBSFRに従って振動する。
 上記の振動器131RLは、振動波形生成部120Aから送られた個別振動信号VBSRLを受ける。そして、振動器131RLは、個別振動信号VBSRLに従って振動する。
 上記の振動器131RRは、振動波形生成部120Aから送られた個別振動信号VBSRRを受ける。そして、振動器131RRは、個別振動信号VBSRRに従って振動する。
 こうして振動波形生成部120Aによる制御のもとで振動する振動器131H,131FL,131FR,131RL,131RRの配設位置が図3に示されている。この図3に示されるように、振動器131Hは、ハンドル部材の内部に配設され、ハンドル部材に振動を付与する。
 また、振動器131FLは、助手席部材の内部に配設され、助手席部材に振動を付与する。さらに、振動器131FRは、運転席部材の内部に配設され、運転席部材に振動を付与する。
 また、振動器131RLは、後部座席部材の左方内部に配設され、後部座席部材の左方部分に振動を付与する。さらに、振動器131RRは、後部座席部材の右方内部に配設され、後部座席部材の右方部分に振動を付与する。
 なお、本第1実施形態では、基準位置RP付近にエンジンが載置された場合と同様の振動による走行感を発生させるようになっている。
 次に、振動波形生成部120Aの構成について説明する。振動波形生成部120Aは、図4に示されるように、規格化波形生成部121と、レベル制御部122と、レベル調整部123とを備えている。
 上記の規格化波形生成部121は、内部に振動波形テーブルVWTを有している。この振動波形テーブルVWTには、取得部110から送られるアクセル情報ARと回転数情報ERとの組み合わせに関連付けて、ハンドル部材用の振動波形パターン、前方座席用の振動波形パターン、及び、後方座席用の振動波形パターンが、最大振幅が所定値に規格された状態で登録されている。かかる回転数情報ERとアクセル情報ARとの組み合わせと、各振動波形パターンとの関係は、実験、経験等に基づいて予め得られた車両CRの車種と基準位置RPとの組み合わせについて平均的な関係となっている。
 規格化波形生成部121は、取得部110から送られたアクセル情報AR及び回転数情報ERを受ける。そして、規格化波形生成部121は、アクセル情報AR及び回転数情報ERに基づいて振動波形テーブルVWTを参照し、アクセル情報ARと回転数情報ERとの組み合わせに対応するハンドル部材用の振動波形パターン、前方座席用の振動波形パターン、及び、後方座席用の振動波形パターンを読み取る。こうして読み取られた3種の波形パターンに基づいて、規格化波形生成部121は、ハンドル部材用の規格化振動信号NVWH、前方座席用の規格化振動信号NVWF及び後方座席用の規格化振動信号NVWRを生成する。生成された規格化振動信号NVWH、規格化振動信号NVWF及び規格化振動信号NVWRは、レベル調整部123へ送られる。
 上記のレベル制御部122は、内部に振動レベルテーブルVLTを有している。この振動レベルテーブルVLTには、取得部110から送られる回転数情報ERと加速度情報ACとの組み合わせと、3種の振動レベル指定値との関係が登録されている。ここで、3種の振動レベル指定値は、ハンドル部材用の振動レベル指定値VLCH、前方座席用の振動レベル指定値VLCF、及び、後方座席用の振動レベル指定値VLCRとなっている。かかる回転数情報ERと加速度情報ACとの組み合わせと、各振動レベル指定値との関係は、適切な走行感の発生の観点から、実験、シミュレーション、経験等に基づいて、予め定められる。
 レベル制御部122は、取得部110から送られた回転数情報ER及び加速度情報ACを受ける。そして、レベル制御部122は回転数情報ER及び加速度情報ACの組み合わせに基づいて、振動レベルテーブルVLTを参照し、回転数情報ERと加速度情報ACとの組み合わせと、振動レベル指定値VLCH,VLCF,VLCRとの関係を読み取る。こうして読み取られた当該関係を利用して、レベル制御部122は、振動レベル指定値VLCH,VLCF,VLCRを算出する。算出された振動レベル指定値VLCH,VLCF,VLCRは、レベル調整部123へ送られる。
 なお、本第1実施形態では、当該関係は、図5に示されるように、(a)電気モータの回転数が高いほど振動レベルが高くなるとともに、(b)電気モータの回転数が同一であるとした場合に、車両CRの加速度が大きくなるほど、振動レベルが高くなるように、振動レベル指定値VLCH,VLCF,VLCRを定めるようになっている。
 また、本第1実施形態では、基準位置RP(図3参照)からの距離が短いほど振動レベルが高くなるように、振動レベル指定値VLCH,VLCF,VLCRを定めるようになっている。このため、本第1実施形態では、振動レベル指定値VLCH,VLCF,VLCRの順に値が小さくなるようになっている。
 上記のレベル調整部123は、規格化波形生成部121から送られた規格化振動信号NVWH,NVWF,NVWR、及び、レベル制御部122から送られた振動レベル指定値VLCH,VLCF,VLCRを受ける。そして、レベル調整部123は、規格化振動信号NVWH,NVWF,NVWR、及び、振動レベル指定値VLCH,VLCF,VLCRに基づいて、振動信号VBSを生成する。
 かかる機能を有するレベル調整部123は、図6に示されるように、DA(Digital to Analogue)変換部210H,210F,210Rと、調整部220H,220F,220Rとを備えている。また、レベル調整部123は、パワー増幅部230H,230FL,230FR,230RL,230RRを備えている。
 上記のDA変換部210Hは、DA変換器を備えて構成されている。このDA変換部210Hは、規格化波形生成部121から送られた規格化振動信号NVWHを受ける。そして、DA変換部210Hは、規格化振動信号NVWHをアナログ信号に変換する。DA変換部210Hによる変換結果であるアナログ変換信号NVSHは、調整部220Hへ送られる。
 上記のDA変換部210Fは、上述したDA変換部210Hと同様に、DA変換器を備えて構成されている。このDA変換部210Fは、規格化波形生成部121から送られた規格化振動信号NVWFを受ける。そして、DA変換部210Fは、規格化振動信号NVWFをアナログ信号に変換する。DA変換部210Fによる変換結果であるアナログ変換信号NVSFは、調整部220Fへ送られる。
 上記のDA変換部210Rは、上述したDA変換部210Hと同様に、DA変換器を備えて構成されている。このDA変換部210Rは、規格化波形生成部121から送られた規格化振動信号NVWRを受ける。そして、DA変換部210Rは、規格化振動信号NVWRをアナログ信号に変換する。DA変換部210Rによる変換結果であるアナログ変換信号NVSRは、調整部220Rへ送られる。
 上記の調整部220Hは、電子ボリューム素子等を備えて構成されている。この調整部220Hは、レベル制御部122から送られた振動レベル指定値VLCHに従って、DA変換部210Hから送られたアナログ変換信号NVSHに対してレベル調整処理を施す。調整部220Hによる調整結果であるレベル調整信号LCVHは、パワー増幅部230Hへ送られる。
 上記の調整部220Fは、上述した調整部220Hと同様に、電子ボリューム素子等を備えて構成されている。この調整部220Fは、レベル制御部122から送られた振動レベル指定値VLCFに従って、DA変換部210Fから送られたアナログ変換信号NVSFに対してレベル調整処理を施す。調整部220Fによる調整結果であるレベル調整信号LCVFは、パワー増幅部230FL,230FRへ送られる。
 上記の調整部220Rは、上述した調整部220Hと同様に、電子ボリューム素子等を備えて構成されている。この調整部220Rは、レベル制御部122から送られた振動レベル指定値VLCRに従って、DA変換部210Rから送られたアナログ変換信号NVSRに対してレベル調整処理を施す。調整部220Rによる調整結果であるレベル調整信号LCVRは、パワー増幅部230RL,230RRへ送られる。
 上記のパワー増幅部230Hは、パワー増幅器を備えて構成される。このパワー増幅部230Hは、調整部220Hから送られたレベル調整信号LCVHを受ける。そして、パワー増幅部230Hは、レベル調整信号LCVHをパワー増幅する。パワー増幅部230Hによる増幅結果である個別振動信号VBSHは、振動付与部130へ送られる。
 上記のパワー増幅部230FL,230FRのそれぞれは、上述したパワー増幅部230Hと同様に、パワー増幅器を備えて構成される。パワー増幅部230FL,230FRは、調整部220Fから送られたレベル調整信号LCVFを受ける。そして、パワー増幅部230FL,230FRは、レベル調整信号LCVFをパワー増幅する。パワー増幅部230FL,230FRによる増幅結果である個別振動信号VBSFL,VBSFRは、振動付与部130へ送られる。
 上記のパワー増幅部230RL,230RRのそれぞれは、上述したパワー増幅部230Hと同様に、パワー増幅器を備えて構成される。パワー増幅部230RL,230RRは、調整部220Rから送られたレベル調整信号LCVRを受ける。そして、パワー増幅部230RL,230RRは、レベル調整信号LCVRをパワー増幅する。パワー増幅部230RL,230RRによる増幅結果である個別振動信号VBSRL,VBSRRは、振動付与部130へ送られる。
 <動作>
 次に、上記のように構成された走行感発生装置100Aの動作について、振動波形生成部120Aにおける規格化振動信号の生成処理、及び、振動レベル指定値の算出処理に主に着目して説明する。
 走行感発生装置100Aでは、取得部110が、アクセル情報センサ910から送られた測定信号ARSと、回転数情報センサ920から送られた測定信号ERSとを受ける。そして、取得部110は、測定信号ARS及び測定信号ERSに基づいて、振動波形生成部120Aで処理可能な形態のアクセル情報AR及び回転数情報ERを生成し、生成されたアクセル情報AR及び回転数情報ERを振動波形生成部120Aへ送る(図1参照)。
 さらに、取得部110は、車速センサ930から送られた測定信号SPSを受ける。そして、取得部110は、測定信号SPSに基づいて、車両CRの速度を特定した後、特定された速度の時間変化率を算出することにより、車両CRの加速度を算出する。そして、取得部110は、算出された加速度を、加速度情報ACとして振動波形生成部120Aへ送る(図1参照)。
 振動波形生成部120Aでは、取得部110から送られたアクセル情報AR及び回転数情報ERに基づいて、規格化振動信号の生成処理が行われる。また、振動波形生成部120Aでは、取得部110から送られた回転数情報ER及び加速度情報ACに基づいて、振動レベル指定値の算出処理が行われる。そして、振動波形生成部120Aでは、規格化振動信号の生成処理の結果及び振動レベル指定値の算出処理の結果に基づいて、振動信号VBSの生成処理が行われる。
 《規格化振動信号の生成処理》
 規格化振動信号の生成処理は、アクセル情報AR及び回転数情報ERを受けた規格化波形生成部121により行われる。
 かかる規格化振動信号の生成処理に際しては、図7に示されるように、まず、ステップS11において、規格化波形生成部121が、アクセル情報AR及び回転数情報ERを取り込む。引き続き、ステップS12において、規格化波形生成部121が、取り込まれたアクセル情報ARと回転数情報ERとの組み合わせに関連付けて振動波形テーブルVWTに登録されたハンドル部材用の振動波形パターン、前方座席用の振動波形パターン、及び、後方座席用の振動波形パターンを読み取る。
 次に、ステップS13において、規格化波形生成部121が、新たに読み取られた振動波形パターンが現時点における振動波形パターンから変化しているか否かを判定することにより、振動波形パターンを変化させるべきか否かを判定する。この判定が否定的であった場合(ステップS13:N)には、処理はステップS11へ戻る。
 一方、ステップS13における判定の結果が肯定的であった場合(ステップS13:Y)には、処理はステップS14へ進む。このステップS14では、規格化波形生成部121が、新たに読み取られた振動波形パターンに基づいた規格化振動信号NVWH,NVWF,NVWRの生成を開始する。こうして生成された規格化振動信号NVWH,NVWF,NVWRは、レベル調整部123へ送られる(図4参照)。そして、処理はステップS11へ戻る。
 なお、ステップS14で開始された、新たに読み取られた振動波形パターンに基づく規格化振動信号NVWH,NVWF,NVWRの生成処理は、次にステップS14が実行されるまで継続するようになっている。
 《振動レベル指定値の算出処理》
 振動レベル指定値の算出処理は、上述した規格化振動信号の生成処理と並行して、回転数情報ER及び加速度情報ACを受けたレベル制御部122により行われる。
 かかる振動レベル指定値の算出処理に際しては、図8に示されるように、まず、ステップS21において、レベル制御部122が、回転数情報ER及び加速度情報ACを取り込む。引き続き、ステップS22において、レベル制御部122が、取り込まれた回転数情報ERと加速度情報ACとの組み合わせに対応したハンドル部材用の振動レベル指定値VLCH、前方座席用の振動レベル指定値VLCF、及び、後方座席用の振動レベル指定値VLCRを算出する。
 かかる算出に際して、レベル制御部122は、まず、取り込まれた回転数情報ER及び加速度情報ACに基づいて振動レベルテーブルVLTを参照し、回転数情報ERと加速度情報ACとの組み合わせと、振動レベル指定値VLCH,VLCF,VLCRとの関係を読み取る。引き続き、レベル制御部122は、読み取られた関係を利用して、振動レベル指定値VLCH,VLCF,VLCRを算出する。
 こうして振動レベル指定値VLCH,VLCF,VLCRが算出されると、レベル制御部122は、算出結果をレベル調整部123へ送る(図4参照)。そして、処理はステップS21へ戻る。
 《振動信号VBSの生成処理》
 振動信号VBSの生成処理は、規格化波形生成部121から送られた規格化振動信号NVWH,NVWF,NVWR、及び、レベル制御部122から送られた振動レベル指定値VLCH,VLCF,VLCRを受けたレベル調整部123により行われる。
 レベル調整部123では、規格化振動信号NVWHを受けたDA変換部210Hによるアナログ変換信号NVSHへの変換、及び、振動レベル指定値VLCHに従った調整部220Hによるレベル調整信号LCVHの生成が順次行われる。そして、パワー増幅部230Hによるレベル調整信号LCVHの増幅が行われ、当該増幅の結果が、個別振動信号VBSHとして振動付与部130へ送られる(図6参照)。
 また、レベル調整部123では、規格化振動信号NVWFを受けたDA変換部210Fによるアナログ変換信号NVSFへの変換、及び、振動レベル指定値VLCFに従った調整部220Fによるレベル調整信号LCVFの生成が順次行われる。そして、パワー増幅部230FL,230FRのそれぞれによるレベル調整信号LCVFの増幅が行われ、当該増幅の結果が、個別振動信号VBSFL,VBSFRとして振動付与部130へ送られる。
 また、レベル調整部123では、規格化振動信号NVWRを受けたDA変換部210Rによるアナログ変換信号NVSRへの変換、及び、振動レベル指定値VLCRに従った調整部220Rによるレベル調整信号LCVRの生成が順次行われる。そして、パワー増幅部230RL,230RRのそれぞれによるレベル調整信号LCVRの増幅が行われ、当該増幅の結果が、個別振動信号VBSRL,VBSRRとして振動付与部130へ送られる。
 以上のようにして生成された個別振動信号VBSH,VBSFL,VBSFR,VBSRL,VBSRRを受けた振動付与部130では、各個別振動信号に従って振動を付与する。すなわち、個別振動信号VBSHを受けた振動器131Hは、個別振動信号VBSHに従って振動し、ハンドル部材に振動を付与する。
 また、個別振動信号VBSFLを受けた振動器131FLは、個別振動信号VBSFLに従って振動し、助手席部材に振動を付与する。さらに、個別振動信号VBSFRを受けた振動器131FRは、個別振動信号VBSFRに従って振動し、運転席部材に振動を付与する。
 また、個別振動信号VBSRLを受けた振動器131RLは、個別振動信号VBSRLに従って振動し、後部座席部材の左方部分に振動を付与する。さらに、個別振動信号VBSRRを受けた振動器131RRは、個別振動信号VBSRRに従って振動し、後部座席部材の右方部分に振動を付与する。
 以上説明したように、本第1実施形態では、規格化波形生成部121が、アクセル情報センサ910による測定結果と、回転数情報センサ920による測定結果とに基づいて、振動波形テーブルVWTを参照し、規格化振動信号NVWH,NVWF,NVWRを生成する。一方、レベル制御部122が、回転数情報センサ920による測定結果と、車速センサ930による測定結果に基づいて得られる車両の加速度に基づいて、振動レベルテーブルVLTを参照して、振動レベル指定値VLCH,VLCF,VLCRを算出する。
 引き続き、レベル調整部123が、振動レベル指定値VLCH,VLCF,VLCRに従って、規格化振動信号NVWH,NVWF,NVWRのレベルを調整して、個別振動信号VBSH,VBSFL,VBSFR,VBSRL,VBSRRを生成する。そして、個別振動信号VBSH,VBSFL,VBSFR,VBSRL,VBSRRに従って、振動器131H,131FL,131FR,131RL,131RRが振動し、対応する部材に振動を付与する。
 したがって、本第1実施形態によれば、周囲への騒音の発生を防止しつつ、走行中の車両の搭乗者に走行感を適切に与えることができる。
 また、本第1実施形態では、電気モータの回転数が高いほど振動レベルが高くなるとともに、電気モータの回転数が同一であるとした場合に、車両CRの加速度が大きくなるほど、振動レベルが高くなるように、振動レベル指定値VLCH,VLCF,VLCRを定める。このため、加速度が大きなほど、運転者の注意の喚起を高めることができ、安全運転に寄与することができる。
 また、本第1実施形態では、ガソリン車におけるエンジン載置位置に対応する基準位置RPからの距離が短いほど振動レベルが高くなるように、振動レベル指定値VLCH,VLCF,VLCRを定めるようになっている。このため、ガソリン車の場合に感じる走行感と同様の走行感を発生することができる。
 [第2実施形態]
 次に、本発明の第2実施形態を、図9~図15を主に参照して説明する。
 <構成>
 図9には、第2実施形態に係る走行感発生装置100Bの概略的な構成が、ブロック図にて示されている。この図9に示されるように、走行感発生装置100Bは、上述した走行感発生装置100Aと同様に、車両CRに搭載され、当該車両CRに装備されたアクセル情報センサ910、回転数情報センサ920及び車速センサ930と接続されている。
 走行感発生装置100Bは、走行感発生装置100Aと比べて、振動波形生成部120Aに代えて振動波形生成部120Bを備える点、並びに、擬似音波形生成部140、音出力部150及び選択部160を更に備える点が異なっている。以下、これらの相違点に主に着目して説明する。
 上記の振動波形生成部120Bは、振動波形生成部120Aと比べて、選択部160から送られた振動選択信号VSLに従って、振動信号VBSの生成の実行又は中断を行う点のみが異なっている。すなわち、振動波形生成部120Bは、振動選択信号VSLが「ON」である場合には、振動波形生成部120Aと同様に、振動信号VBSの生成処理を実行する。一方、振動波形生成部120Bは、振動選択信号VSLが「OFF」である場合には、振動信号VBSの生成を中断する。
 なお、本第2実施形態では、振動波形生成部120Bは、レベル制御部122が、振動選択信号VSLが「OFF」である場合に、振動レベル指定値VLCH,VLCF,VLCRを、無振動に指定する値にする以外は、振動波形生成部120Aと同様に構成されている。
 上記の擬似音波形生成部140は、取得部110から送られたアクセル情報AR及び回転数情報ERを受ける。そして、擬似音波形生成部140は、アクセル情報AR及び回転数情報ERに基づいて、擬似音信号PSSを生成する。生成された擬似音信号PSSは、音出力部150へ送られる。この擬似音波形生成部140の構成の詳細については、後述する。
 なお、擬似音波形生成部140は、擬似音選択信号SSLが「ON」である場合には、擬似音信号PSSの生成処理を実行する。一方、擬似音波形生成部140は、擬似音選択信号SSLが「OFF」である場合には、擬似音信号PSSの生成を中断する。
 上記の音出力部150は、車室内に音を出力するスピーカを備えて構成される。この音出力部150は、擬似音波形生成部140から送られた擬似音信号PSSを受ける。そして、音出力部150は、擬似音信号PSSに従って、擬似音を車室内へ出力する。
 上記の選択部160は、車両CRの走行中の地域種別及び時間帯を走行環境情報として取得する。そして、選択部160は、取得された走行環境情報に基づいて、振動選択信号VSL及び擬似音選択信号SSLを生成する。生成された振動選択信号VSLは、振動波形生成部120Bへ送られる。また、生成された擬似音選択信号SSLは、擬似音波形生成部140へ送られる。なお、選択部160の構成の詳細については、後述する。
 次に、擬似音波形生成部140の構成について説明する。擬似音波形生成部140は、図10に示されるように、規格化波形生成部141と、レベル制御部142と、レベル調整部143とを備えている。
 上記の規格化波形生成部141は、内部に擬似音波形テーブルSWTを有している。この擬似音波形テーブルSWTには、取得部110から送られるアクセル情報ARと回転数情報ERとの組み合わせに関連付けて、擬似音波形パターンが、最大振幅が所定値に規格された状態で登録されている。かかる回転数情報ERとアクセル情報ARとの組み合わせと、擬似音波形パターンとの関係は、実験、経験等に基づいて予め得られた車両CRの車種について平均的な関係となっている。
 規格化波形生成部141は、取得部110から送られたアクセル情報AR及び回転数情報ERを受ける。そして、規格化波形生成部141は、アクセル情報AR及び回転数情報ERに基づいて擬似音波形テーブルSWTを参照し、アクセル情報ARと回転数情報ERとの組み合わせに対応する擬似音波形パターンを読み取る。こうして読み取られた擬似音波形パターンに基づいて、規格化波形生成部141は規格化擬似音信号NSWを生成する。生成された規格化擬似音信号NSWは、レベル調整部143へ送られる。
 上記のレベル制御部142は、取得部110から送られる回転数情報ERと、擬似音レベル指定値との関係を内部に記憶している。かかる回転数情報ERと、擬似音レベル指定値との関係は、適切な走行感の発生の観点から、実験、シミュレーション、経験等に基づいて、予め定められる。
 なお、本第2実施形態では、当該関係は、電気モータの回転数が高いほど擬似音レベルが高くなるように、擬似音レベル指定値SLCを定めるようになっている。
 レベル制御部142は、取得部110から送られた回転数情報ERを受ける。そして、レベル制御部142は、回転数情報ERに基づいて、内部に記憶された当該関係を利用して、擬似音レベル指定値SLCを算出する。算出された擬似音レベル指定値SLCは、レベル調整部143へ送られる。
 なお、レベル制御部142は、擬似音選択信号SSLが「ON」である場合には、擬似音信号PSSの生成処理を実行する。一方、レベル制御部142は、擬似音選択信号SSLが「OFF」である場合には、擬似音レベル指定値SLCを、無音に指定する値にし、擬似音信号PSSの生成を中断する。
 上記のレベル調整部143は、規格化波形生成部141から送られた規格化擬似音信号NSW、及び、レベル制御部142から送られた擬似音レベル指定値SLCを受ける。そして、レベル調整部143は、規格化擬似音信号NSW及び擬似音レベル指定値SLCに基づいて、擬似音信号PSSを生成する。かかる機能を有するレベル調整部143は、図11に示されるように、DA変換部260と、調整部270と、パワー増幅部280とを備えている。
 上記のDA変換部260は、上述したDA変換部210Hと同様に、DA変換器を備えて構成されている。このDA変換部260は、規格化波形生成部141から送られた規格化擬似音信号NSWを受ける。そして、DA変換部260は、規格化擬似音信号NSWをアナログ信号に変換する。DA変換部260による変換結果であるアナログ変換信号NSSは、調整部270へ送られる。
 上記の調整部270は、上述した調整部220Hと同様に、電子ボリューム素子等を備えて構成されている。この調整部270は、レベル制御部142から送られた擬似音レベル指定値SLCに従って、DA変換部260から送られたアナログ変換信号NSSに対してレベル調整処理を施す。調整部270による調整結果であるレベル調整信号LCSは、パワー増幅部280へ送られる。
 上記のパワー増幅部280は、上述したパワー増幅部230Hと同様に、パワー増幅器を備えて構成される。このパワー増幅部280は、調整部270から送られたレベル調整信号LCSを受ける。そして、パワー増幅部280は、レベル調整信号LCSをパワー増幅する。パワー増幅部280による増幅結果である擬似音信号PSSは、音出力部150へ送られる。
 次に、選択部160の構成について説明する。選択部160は、図12に示されるように、記憶部161と、測位部162と、時計部163と、選択制御部165とを備えている。
 上記の記憶部161は、不揮発性の記憶装置であるハードディスク装置等から構成される。この記憶部161には、道路ネットワーク情報等を含む地図情報(MPD)、及び、地図上の各位置が属する地域に関する地域情報(ARD)が含まれている。ここで、地域情報(ARD)では、地図上の各位置が属する地域に対応して、静謐さが要請されるか否かが、地域属性として関連付けられている。例えば、閑静な住宅地域の場合には、静謐さが要請されるとされ、市街地域の場合には、静謐さが要請されないとされる。
 なお、記憶部161には、選択制御部165がアクセスできるようになっている。
 上記の測位部162は、本第2実施形態では、GPS(Global Positioning System)受信ユニットを備えて構成される。この測位部162は、複数のGPS衛星からの電波の受信結果に基づいて、車両CRの現在位置を算出する。算出された現在位置は、選択制御部165へ送られる。
 上記の時計部163は、タイマを備えて構成される。この時計部163は、現在時刻の計時を行う。計時結果である現在時刻は、選択制御部165へ送られる。
 上記の選択制御部165は、測位部162から送られた現在位置、及び、時計部163から送られた現在時刻を受ける。選択制御部165は、現在位置に基づいて、車両CRが走行中の地域の属性を特定する。そして、選択制御部165は、特定された地域属性及び現在時刻に基づいて、振動選択信号VSL及び擬似音選択信号SSLを生成する。生成された振動選択信号VSLは、振動波形生成部120Bへ送られ、生成された擬似音選択信号SSLは、擬似音波形生成部140へ送られる。
 なお、選択制御部165における選択制御処理については後述する。
 <動作>
 次に、上記のように構成された走行感発生装置100Bの動作について、振動発生と擬似音発生の選択処理に主に着目して説明する。
 走行感発生装置100Bでは、上述した第1実施形態の場合と同様に、取得部110が、アクセル情報センサ910から送られた測定信号ARSと、回転数情報センサ920から送られた測定信号ERSとを受け、アクセル情報AR及び回転数情報ERを生成する。そして、取得部110は、生成されたアクセル情報AR及び回転数情報ERを、振動波形生成部120B及び擬似音波形生成部140へ送る(図9参照)。
 また、取得部110は、第1実施形態の場合と同様に、車速センサ930から送られた測定信号SPSに基づいて車両CRの加速度を算出する。そして、取得部110は、算出された加速度を、加速度情報ACとして振動波形生成部120Bへ送る(図9参照)。
 《振動発生又は擬似音発生の選択処理》
 上述した取得部110による処理と並行して、振動発生又は擬似音発生の選択処理が選択部160において実行される。なお、測位部162は、現在位置を計測し、計測結果を選択制御部165へ送っているものする。また、時計部163は、現在時刻を計時し、計時結果を選択制御部165へ送っているものとする(図12参照)。
 振動発生又は擬似音発生の選択処理は、測位部162から送られた現在位置、及び、時計部163から送られた現在時刻を受けた選択制御部165により実行される。かかる選択処理に際しては、図13に示されるように、まず、ステップS31において、選択制御部165が、現在位置及び現在時刻を取り込む。
 次に、ステップS32において、選択制御部165が、静謐さが要請される地域を車両CRが走行中か否かを判定する。かかる判定に際して、選択制御部165は、現在位置に基づいて記憶部161内の地図情報(MPD)及び地域情報(ARD)を参照し、車両CRが走行中の地域が、静謐さが要請される地域を車両CRが走行中か否かを判定する。
 ステップS32における判定の結果が肯定的であった場合(ステップS32:Y)には、処理は、後述するステップS35へ進む。一方、ステップS32における判定の結果が否定であった場合(ステップS32:N)には、処理はステップS33へ進む。
 ステップS33では、選択制御部165が、現在時刻が、静謐さが要請される時間帯内であるか否かを判定する。例えば、選択制御部165は、現在時刻が深夜又は早朝の時間帯内である場合に、現在時刻が、静謐さが要請される時間帯内であると判定する。
 ステップS33における判定の結果が否定的であった場合(ステップS33:N)には、処理はステップS34へ進む。このステップS34では、選択制御部165が、擬似音による走行感を選択する。そして、選択制御部165は、振動選択信号VSLを「OFF」とするとともに、擬似音選択信号SSLを「ON」とする。この結果、音出力部150からの擬似音の出力が選択される。
 ステップS33における判定の結果が肯定的であった場合(ステップS33:Y)には、処理はステップS35へ進む。このステップS35では、選択制御部165が、振動による走行感を選択する。そして、選択制御部165は、振動選択信号VSLを「ON」とするとともに、擬似音選択信号SSLを「OFF」とする。この結果、振動付与部130による振動付与が選択される。
 《振動波形生成処理》
 振動波形生成処理は、選択部160により振動選択信号VSLが「ON」とされた場合に、上述した振動波形生成部120Aの場合と同様にして、振動波形生成部120Bにより実行される。この結果、第1実施形態の場合と同様にして、ハンドル部材、助手席部材、運転席部材、後部座席部材の左方部分及び後部座席部材の右方部分に振動を付与する。なお、選択部160により振動選択信号VSLが「OFF」とされた場合には、振動の付与は行われない。
 《擬似音波形生成処理》
 擬似音波形生成処理は、選択部160により擬似音選択信号SSLが「ON」とされた場合に、擬似音波形生成部140により実行される。擬似音波形生成部140では、取得部110から送られたアクセル情報AR及び回転数情報ERに基づいて、規格化擬似音信号の生成処理が行われる。また、擬似音波形生成部140では、取得部110から送られた回転数情報ERに基づいて、擬似音レベル指定値の算出処理が行われる。そして、擬似音波形生成部140では、規格化擬似音信号の生成処理の結果及び擬似音レベル指定値の算出処理の結果に基づいて、擬似音信号PSSの生成処理が行われる。
 (A)規格化擬似音信号の生成処理
 規格化擬似音信号の生成処理は、アクセル情報AR及び回転数情報ERを受けた規格化波形生成部141により行われる。
 かかる規格化擬似音信号の生成処理に際しては、図14に示されるように、まず、ステップS41において、規格化波形生成部141が、アクセル情報AR及び回転数情報ERを取り込む。引き続き、ステップS42において、規格化波形生成部141が、取り込まれたアクセル情報ARと回転数情報ERとの組み合わせに関連付けて擬似音波形テーブルSWTに登録された擬似音波形パターンを読み取る。
 次に、ステップS43において、規格化波形生成部141が、新たに読み取られた擬似音波形パターンが現時点における擬似音波形パターンから変化しているか否かを判定することにより、擬似音波形パターンを変化させるべきか否かを判定する。この判定が否定的であった場合(ステップS43:N)には、処理はステップS41へ戻る。
 一方、ステップS43における判定の結果が肯定的であった場合(ステップS43:Y)には、処理はステップS44へ進む。このステップS44では、規格化波形生成部141が、新たに読み取られた擬似音波形パターンに基づいた規格化擬似音信号NSWの生成を開始する。こうして生成された規格化擬似音信号NSWは、レベル調整部143へ送られる(図10参照)。そして、処理はステップS41へ戻る。
 なお、ステップS44で開始された新たに読み取られた擬似音波形パターンに基づく規格化擬似音信号NSWの生成処理は、次にステップS44が実行されるまで継続するようになっている。
 (B)擬似音レベル指定値の算出処理
 擬似音レベル指定値の算出処理は、上述した規格化擬似音信号の生成処理と並行して、回転数情報ERを受けたレベル制御部142により行われる。
 かかる擬似音レベル指定値の算出処理に際しては、図15に示されるように、まず、ステップS51において、レベル制御部142が、回転数情報ERを取り込む。引き続き、ステップS52において、レベル制御部142が、内部に記憶された回転数情報ERと擬似音レベル指定値との関係を利用して、取り込まれた回転数情報ERに対応した擬似音レベル指定値SLCを算出する。
 こうして擬似音レベル指定値SLCが算出されると、レベル制御部142は、算出結果をレベル調整部143へ送る(図10参照)。そして、処理はステップS51へ戻る。
 (C)擬似音信号PSSの生成処理
 擬似音信号PSSの生成処理は、規格化波形生成部141から送られた規格化擬似音信号NSW、及び、レベル制御部142から送られた擬似音レベル指定値SLCを受けたレベル調整部143により行われる。
 レベル調整部143では、規格化振動信号NSWを受けたDA変換部260によるアナログ変換信号NSSへの変換、及び、擬似音レベル指定値SLCに従った調整部270によるレベル調整信号LCSの生成が順次行われる。そして、パワー増幅部280によるレベル調整信号LCSの増幅が行われ、当該増幅の結果が、擬似音信号PSSとして音出力部150へ送られる(図11参照)。
 以上のようにして生成された擬似音信号PSSを受けた音出力部150は、擬似音信号PSSに従って擬似音を出力する。この結果、擬似音が、車両CRの車室内に出力される。
 以上説明したように、本第2実施形態では、選択部160が、車両CRが走行中の地域の属性及び時間帯という走行環境を取得する。そして、選択部160は、取得された走行環境が、静謐さが要請される場合に、振動による走行感の発生を選択する。かかる振動による走行感の発生に際しては、第1実施形態の場合と同様にして、所定部材に振動を付与する。
 一方、選択部160は、取得された走行環境が、静謐さが要請されない場合に、振動による走行感の発生よりも電力消費の少ない擬似音による走行感の発生を選択する。かかる擬似音による走行感の発生に際しては、規格化波形生成部141が、アクセル情報センサ910による測定結果と、回転数情報センサ920による測定結果とに基づいて、擬似音波形テーブルSWTを参照し、規格化擬似音信号NSWを生成する。一方、レベル制御部142が、回転数情報センサ920による測定結果に基づいて、擬似音レベル指定値SLCを算出する。
 引き続き、レベル調整部143が、擬似音レベル指定値SLCに従って、規格化擬似音信号NSWのレベルを調整して、擬似音信号PSSを生成する。そして、擬似音信号PSSに従って、音出力部150が擬似音を車室内へ出力する。
 したがって、本第2実施形態によれば、走行中の周囲の環境に応じて、消費電力の増大を抑制しつつ、走行中の車両の搭乗者に走行感を適切に与えることができる。
 [実施形態の変形]
 本発明は、上記の第1及び第2実施形態に限定されるものではなく、様々な変形が可能である。
 例えば、上記の第1及び第2実施形態では、車両CRの加速度を、車両CRに装備された車速センサ930により測定される車速の時間変化から取得するようにしたが、加速度センサにより測定するようにしてもよい。
 また、上記の第1及び第2実施形態では、車両CRに標準的に装備され、車両CRの走行制御に利用されるアクセル情報センサ920から送られる測定信号を、検出ハーネスを使用して走行感発生装置100A,100Bへ供給するようにした。これに対し、アクセル情報センサ920とは別途に用意されるアクセル踏み込み量センサを用い、当該アクセル踏み込み量センサによる測定結果を、アクセル情報センサ920による測定結果の代わりに利用するようにしてもよい。
 また、上記の第1及び第2実施形態では、振動が付与される部材を、ハンドル部材、助手席部材、運転席部材、後部座席部材の左方部分及び後部座席部材の右方部分としたが、少なくとも運転者が走行感を感じられる振動を付与できる位置を含むのであれば、任意の部材に振動を付与するようにすることができる。例えば、基準位置において車体に振動を付与するようにしてもよい。
 また、上記の第1及び第2実施形態では、エンジンが車両CRの前方内部に載置される場合と同様の振動を搭乗者が感じられるようにした。これに対し、エンジンが車両CRの後方内部に載置される場合と同様の振動を搭乗者が感じられるようにしてもよい。
 また、加速度の大きさの変化に対応する振動レベル指定値の変化は、加速度の大きさの変化に対して連続的な変化とするようにしてもよいし、段階的に変化するようにしてもよい。
 また、上記の第1及び第2実施形態では、座席部材に振動を付与する振動器を、着座部の下方内部に配設するようにしたが、背もたれ部内部に配設するようにしてもよい。さらに、着座部の下方内部及び背もたれ部内部の双方に振動器を配設するようにしてもよい。
 また、上記の第2実施形態では、振動による走行感の発生と、擬似音による走行感の発生とを択一的に選択するようにしたが、双方を選択する地域や時間帯を設けるようにしてもよい。
 また、上記の第2実施形態では、擬似音レベル指定値を、回転数情報のみに基づいて算出するようにしたが、振動レベル指定値の場合と同様に、回転数情報及び加速度情報に基づいて算出するようにしてもよい。
 また、上記の第2実施形態において発生する擬似音は、擬似エンジン音であってもよいし、擬似エンジン音以外の擬似音であって、走行感を生じさせることができる擬似音であってもよい。
 なお、上記の第1実施形態における取得部110、規格化波形生成部121、レベル制御部122の全部又は一部を中央処理装置(CPU:Central Processor Unit)やDSP(Digital Signal Processor)を備えるコンピュータシステムとして構成し、各部の機能を、プログラムの実行によって実現するようにすることができる。また、上記の第2実施形態における取得部110、規格化波形生成部121、レベル制御部122、規格化波形生成部141、レベル制御部142、選択制御部165の全部又は一部を中央処理装置やDSPを備えるコンピュータシステムとして構成し、各部の機能を、プログラムの実行によって実現するようにすることができる。これらのプログラムは、CD-ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配信の形態で取得されるようにしてもよい。

Claims (12)

  1.  電気モータを動力源として備える車両に搭載され、搭乗者に走行感を喚起させる走行感発生装置であって、
     前記車両の走行中に、前記電気モータの動作状態を反映した走行情報を取得する取得部と;
     前記取得された走行情報に基づいて、振動波形を生成する振動波形生成部と;
     前記生成された振動波形に従って、前記車両の所定部材を振動させる振動付与部と;
     を備えることを特徴とする走行感発生装置。
  2.  前記所定部材には、前記車両の車体が含まれる、ことを特徴とする請求項1に記載の走行感発生装置。
  3.  前記振動付与部が前記車体に振動を付与する位置は、前記車両の車種に対応して定まる位置である、ことを特徴とする請求項2に記載の走行感発生装置。
  4.  前記所定部材には、運転席シートを含む少なくとも1つの座席シートが含まれる、ことを特徴とする請求項1~3のいずれか一項に記載の走行感発生装置。
  5.  前記所定部材には、運転ハンドルが含まれる、ことを特徴とする請求項1~4のいずれか一項に記載の走行感発生装置。
  6.  前記所定部材の数は複数であり、
     前記振動波形生成部は、前記車両の車種に対応して定まる基準位置と、前記複数の所定部材のそれぞれの位置との間の距離に対応して、前記複数の所定部材ごとの振動波形を生成する、
     ことを特徴とする請求項4又は5に記載の走行感発生装置。
  7.  前記走行情報には、前記電気モータの回転数及び前記車両の加速度が含まれる、ことを特徴とする請求項1~6のいずれか一項に記載の走行感発生装置。
  8.  前記振動波形生成部は、前記電気モータの回転数が同一であるとした場合に、前記車両が高加速状態にあるときには、前記車両が高加速状態にないときと比べて、前記振動波形の振幅を大きくする、ことを特徴とする請求項7に記載の走行感発生装置。
  9.  前記取得された走行情報に基づいて、擬似音波形を生成する擬似音波形生成部と;
     前記生成された擬似音波形に従って、前記車両の車室内へ擬似音を出力する音出力部と;
     前記車両の走行環境を取得し、前記取得された走行環境に基づいて、前記振動部を利用した走行感発生、及び、前記音出力部を利用した走行感発生の少なくとも一方を選択する選択部と;
     を更に備えることを特徴とする請求項1~8に記載の走行感発生装置。
  10.  電気モータを動力源として備える車両に搭載され、搭乗者に走行感を喚起させる走行感発生装置において使用される走行感発生方法であって、
     前記車両の走行中に、前記電気モータの動作状態を反映した走行情報を取得する取得工程と;
     前記取得された走行情報に基づいて、振動波形を生成する生成工程と;
     前記生成された振動波形に従って、前記車両の所定部材を振動させる振動発生工程と;
     を備えることを特徴とする走行感発生方法。
  11.  請求項10に記載の走行感発生方法を演算部により実行させる、ことを特徴とする走行感発生プログラム。
  12.  請求項11に記載の走行感発生プログラムが、演算部により読取可能に記録されている、ことを特徴とする記録媒体。
PCT/JP2010/061316 2010-07-02 2010-07-02 走行感発生装置及び走行感発生方法 WO2012001813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/061316 WO2012001813A1 (ja) 2010-07-02 2010-07-02 走行感発生装置及び走行感発生方法
JP2011543739A JP4897128B2 (ja) 2010-07-02 2010-07-02 走行感発生装置及び走行感発生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061316 WO2012001813A1 (ja) 2010-07-02 2010-07-02 走行感発生装置及び走行感発生方法

Publications (1)

Publication Number Publication Date
WO2012001813A1 true WO2012001813A1 (ja) 2012-01-05

Family

ID=45401566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061316 WO2012001813A1 (ja) 2010-07-02 2010-07-02 走行感発生装置及び走行感発生方法

Country Status (2)

Country Link
JP (1) JP4897128B2 (ja)
WO (1) WO2012001813A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465937U (ja) * 1990-10-13 1992-06-09
JPH0733066A (ja) * 1993-06-22 1995-02-03 Casio Comput Co Ltd 電動車両
JPH10277263A (ja) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd エンジン模擬音発生装置
JPH11288291A (ja) * 1998-04-02 1999-10-19 Sony Corp 電気自動車
JP2006327540A (ja) * 2005-05-30 2006-12-07 Honda Motor Co Ltd 車両用能動型騒音・振動・効果音発生制御システム及び該システムが搭載された車両
JP2006349844A (ja) * 2005-06-14 2006-12-28 Aruze Corp 擬似エンジン音発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465937U (ja) * 1990-10-13 1992-06-09
JPH0733066A (ja) * 1993-06-22 1995-02-03 Casio Comput Co Ltd 電動車両
JPH10277263A (ja) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd エンジン模擬音発生装置
JPH11288291A (ja) * 1998-04-02 1999-10-19 Sony Corp 電気自動車
JP2006327540A (ja) * 2005-05-30 2006-12-07 Honda Motor Co Ltd 車両用能動型騒音・振動・効果音発生制御システム及び該システムが搭載された車両
JP2006349844A (ja) * 2005-06-14 2006-12-28 Aruze Corp 擬似エンジン音発生装置

Also Published As

Publication number Publication date
JP4897128B2 (ja) 2012-03-14
JPWO2012001813A1 (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
US9156401B2 (en) Running-linked sound producing device
CN109664817B (zh) 实时发动机声音再生方法及使用该方法的车辆
US8045725B2 (en) Vehicle interior active noise cancellation
EP2628640B1 (en) Driving-linked sound generation device
JP6117145B2 (ja) 能動型効果音発生装置
JP4669585B1 (ja) 擬似音発生装置及び擬似音発生方法
KR101744716B1 (ko) 차량 및 그 제어방법
JPH10277263A (ja) エンジン模擬音発生装置
KR20190044292A (ko) 하이브리드 차량의 소리 제어방법
JP2008025492A (ja) 車両制御装置
JP2004074994A (ja) 車室内音制御装置
CN114643920A (zh) 用于产生电动车辆的虚拟效果的装置
JP2001282263A (ja) 電動式自動車用の排気音発生装置
JP4559297B2 (ja) エンジン音合成装置およびそれを備えた車両システム、ならびにエンジン音合成方法
JP4897128B2 (ja) 走行感発生装置及び走行感発生方法
JP5201225B2 (ja) 加速情報伝達装置
JP4944284B1 (ja) 音響装置及び出力音制御方法
US6035720A (en) Method and device for simulating an impression which is subjectively perceived by an occupant of a vehicle in particular of passenger car when the vehicle is being operated
CN116729251A (zh) 用于生成电动汽车的声音的设备及方法
CN114643921A (zh) 产生电动车辆的虚拟效果的方法
Maunder Experiences Tuning an Augmented Power Unit Sound System for Both Interior and Exterior of an Electric Car
US20230191954A1 (en) Apparatus and method for controlling vehicle seat
US11654827B2 (en) Driving sound generation device and driving sound generation method
US20230356656A1 (en) Automotive sound amplification
CN116262476A (zh) 用于控制车辆声音的装置和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011543739

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854110

Country of ref document: EP

Kind code of ref document: A1