WO2011162512A2 - 비정질합금을 이용한 임플란트의 제조장치 및 제조방법 - Google Patents

비정질합금을 이용한 임플란트의 제조장치 및 제조방법 Download PDF

Info

Publication number
WO2011162512A2
WO2011162512A2 PCT/KR2011/004478 KR2011004478W WO2011162512A2 WO 2011162512 A2 WO2011162512 A2 WO 2011162512A2 KR 2011004478 W KR2011004478 W KR 2011004478W WO 2011162512 A2 WO2011162512 A2 WO 2011162512A2
Authority
WO
WIPO (PCT)
Prior art keywords
preform
amorphous alloy
outer mold
implant
thread
Prior art date
Application number
PCT/KR2011/004478
Other languages
English (en)
French (fr)
Other versions
WO2011162512A3 (ko
Inventor
이호도
Original Assignee
Lee Ho Do
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Ho Do filed Critical Lee Ho Do
Priority to US13/806,309 priority Critical patent/US8656751B2/en
Priority to CN201180030551.7A priority patent/CN102946821B/zh
Publication of WO2011162512A2 publication Critical patent/WO2011162512A2/ko
Publication of WO2011162512A3 publication Critical patent/WO2011162512A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D21/00Combined processes according to methods covered by groups B21D1/00 - B21D19/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/20Methods or devices for soldering, casting, moulding or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/24Making other particular articles nuts or like thread-engaging members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body

Definitions

  • the present invention relates to an apparatus and method for manufacturing an implant using an amorphous alloy, and more particularly, to an apparatus and a method for manufacturing an implant having a screw thread formed on an inner circumferential surface or an outer circumferential surface of the amorphous alloy using a press molding method rather than a die casting method.
  • Amorphous alloys are known to be suitable for the application of biomaterials due to their high strength, hardness, excellent wear resistance and corrosion resistance.
  • a die casting process is currently being developed as a molding process of such an amorphous alloy, which is a method of forming an alloy through a solidification process by heating the alloy, dissolving it in a liquid state at a high temperature, and then injecting it into a mold.
  • an inert gas atmosphere such as argon or a vacuum atmosphere is required.
  • the amorphous alloy shows almost elastic behavior with little plastic deformation under mechanical load at room temperature.
  • the thread is formed by rolling or tapping the amorphous alloy, it will cause failure of the material and damage of the tool.
  • the metal implant material used in the human body should be applied to a stable material that does not cause electrical corrosion in Ringer's solution, preferably a material having high hardness and high strength that can withstand repeated friction, mainly titanium (Ti) alloy or Co- Cr-based alloys are widely used.
  • Such titanium (Ti) alloys or Co-Cr based alloys have excellent mechanical / electrical properties, but have high melting points, making it difficult to apply molding processes such as die casting, and thus they are manufactured by three-dimensional machining.
  • Zr-Ti alloys or Pd alloys are known to be applicable to the human body.
  • a die casting method cannot be formed due to the specification of the amorphous alloy, so it is difficult to design a mold such as setting a gate for injection of a molten metal, and to use a die casting method. It is difficult to secure the surface quality of the die, and the apparatus for die casting molding is expensive, and since the ingot has to be re-dissolved in a liquid state at a high temperature, the mold life is very short and the process cycle time is lengthened.
  • the present invention is to solve the above-described problems, an apparatus for producing an implant using an amorphous alloy that can be produced quickly in a relatively low cost without using a die-casting method in which the thread formed on the inner peripheral surface or the outer peripheral surface using a die casting method And to provide a method for manufacturing the object.
  • an apparatus for manufacturing an implant using an amorphous alloy of the present invention includes a heating unit for heating a preform made of an amorphous alloy in a semi-solid state; A forming part for forming a thread in the heated preform using a press molding mold; Characterized in that consisting of a cooling unit for cooling the preform is formed thread.
  • the molded part may include: a first outer mold part in which an inner surface is recessed and a first screw thread is formed; A first cylinder for moving the first outer mold; A second outer mold portion coupled to the first outer mold portion, the inner side of which is recessed in a concave direction in the opposite direction of the first outer mold portion and in which a second screw thread is formed; And a second cylinder for moving the second outer mold part, wherein the heated semi-solid preform is disposed between the first outer mold part and the second outer mold part, so that the first screw thread and the first screw thread are formed on the outer circumferential surface of the preform.
  • An external thread corresponding to the second thread is formed, and the coefficient of thermal expansion of the first outer mold part and the second outer mold part is larger than that of the preform.
  • the molding part may include a core part disposed between the first outer mold part and the second outer mold part and having a third screw thread formed on an outer circumferential surface thereof; And a third cylinder for elevating the core part, wherein the core part is inserted into an inner circumferential groove in a preform disposed between the first outer mold part and the second outer mold part, and the third cylinder is formed on the inner circumferential surface of the preform.
  • the internal thread corresponding to the thread is formed.
  • the core part is rotated by the third cylinder, and the third cylinder rotates the core part inserted into the inner circumferential groove of the preform to take it out of the preform.
  • the preform manufacturing step of manufacturing the amorphous alloy in an ingot preform in the manufacturing method of the implant with the thread formed on the outer circumferential surface or the inner circumferential surface, the preform manufacturing step of manufacturing the amorphous alloy in an ingot preform; A heating step of heating the preform to a semisolid state; A batch step of placing the heated preform in a semi-solid state in the press molding mold for thread processing; A machining step of forming a thread in the heated preform using a press molding mold; The preform, which is formed with a screw thread, is cooled and separated from the press molding mold, and the cooling and separating step is performed.
  • the preform is higher than the glass temperature (Tg) and lower than the crystallization temperature (Tn: Nose temperature) of the amorphous alloy.
  • Tg glass temperature
  • Tn crystallization temperature
  • the press molding mold and the preform are separated by using the thermal expansion coefficients of the press molding mold and the preform.
  • the processing step by using a press molding mold consisting of an outer mold portion surrounding the outside of the preform and a core portion inserted into the preform, threads are formed on the outer circumferential surface and the inner circumferential surface of the heated preform, respectively, and the cooling separation is performed.
  • the core portion inserted into the preform is rotated and separated from the preform.
  • an implant using the amorphous alloy of the present invention it is possible to manufacture an implant in which the thread is formed on the inner circumferential surface and / or the outer circumferential surface of the amorphous alloy using a press molding method rather than a die casting method. Bars can be rapidly produced implants harmless to the human body at a relatively low cost, thereby improving the economics and productivity.
  • FIG. 1 is a block diagram of an apparatus for manufacturing an implant using an amorphous alloy according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for manufacturing an implant using an amorphous alloy according to an embodiment of the present invention
  • FIG. 3 is an explanatory diagram for explaining a manufacturing process of an implant with a screw thread formed on the outer circumferential surface by using the manufacturing apparatus according to the embodiment of the present invention
  • FIG. 4 is an explanatory diagram for explaining a manufacturing process of an implant with a screw thread formed on the inner and outer circumferential surfaces by using the manufacturing apparatus according to an embodiment of the present invention
  • FIG. 5 is a graph showing a thermoplastic molding process according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an apparatus for manufacturing an implant using an amorphous alloy according to an embodiment of the present invention
  • Figure 2 is a flow chart of a method for manufacturing an implant using an amorphous alloy according to an embodiment of the present invention
  • Figure 3 is a present invention
  • Figure 4 is an explanatory view for explaining a manufacturing process of the implant is formed on the outer circumferential surface using the manufacturing apparatus according to the embodiment of Figure 4
  • Figure 4 of the implant formed on the inner and outer circumferential surface using the manufacturing apparatus according to an embodiment of the present invention It is explanatory drawing for demonstrating a manufacturing process
  • FIG. 5 is a graph which shows the thermoplastic molding process which concerns on the Example of this invention.
  • the present invention relates to an apparatus and method for manufacturing an implant in a state in which it is heated to a semi-solid state without melting a preform made of an amorphous alloy in a liquid state.
  • an apparatus for manufacturing an implant using an amorphous alloy of the present invention includes a heating unit 20, a molding unit 30, and a cooling unit 40.
  • the heating unit 20, the molding unit 30, and the cooling unit 40 are separately shown, but may be installed in one device.
  • heating, molding, and cooling can all be performed in one apparatus.
  • the heating unit 20 serves to heat the preform 10 made of an amorphous alloy in a semi-solid state.
  • the preform 10 is heated to a temperature higher than the glass temperature (Tg: glass temperature) shown in Figure 5 and lower than the crystallization temperature (Tn: Nose temperature) of the amorphous alloy, the preform 10 is Make it semi-solid, not liquid, like jelly.
  • Tg glass temperature
  • Tn crystallization temperature
  • the heating unit 20 preheats the preform 10 by a method such as high frequency heating or heating element heating.
  • the molding part 30 serves to form a screw thread in the heated preform 10 using a press molding mold.
  • the first outer mold portion 31 When the forming portion 30 is to form a screw thread on the outer peripheral surface of the preform 10, as shown in Figure 3, the first outer mold portion 31, the first cylinder 37, and the first It consists of the 2 outer mold part 33 and the 2nd cylinder 38. As shown in FIG.
  • the first outer mold portion 31 is recessed inwardly with an inner surface thereof, the first screw thread 32 is formed, and the second outer mold portion 33 is coupled to the first outer mold portion 31.
  • the inner surface is recessed in the opposite direction of the first outer mold portion 31 to form a second screw thread 34.
  • the first cylinder 37 and the second cylinder 38 serve to move the first outer mold 31 and the second outer mold 33, respectively.
  • the preform 10 in a heated semi-solid state is disposed between the first outer mold part 31 and the second outer mold part 33, and the first screw thread 32 and the outer peripheral surface of the preform 10 are disposed.
  • the external thread corresponding to the second thread 34 is formed.
  • the molding part 30 further includes a core part 35 and a third cylinder 39 as shown in FIG. 4 when a thread is formed on the inner circumferential surface as well as the outer circumferential surface of the preform 10. Is done.
  • the core part 35 is disposed between the first outer mold part 31 and the second outer mold part 33, and a third screw thread 36 is formed on an outer circumferential surface thereof.
  • the third cylinder 39 serves to lift up and down while rotating the core part 35.
  • the core part 35 is inserted into an inner circumferential groove in the preform 10 disposed between the first outer mold part 31 and the second outer mold part 33, so that the core part 35 is disposed on the inner circumferential surface of the preform 10.
  • An internal thread corresponding to the thread 36 is formed.
  • the cooling unit 40 cools the preform 10 in which the thread is formed by the forming unit 30 so that the preform 10 can be separated from the press molding mold.
  • the thermal expansion coefficients of the first outer mold part 31 and the second outer mold part 33 are larger than the thermal expansion coefficient of the preform 10.
  • first and second external mold parts 31 and 33 and the preform 10 are heated or cooled, the first and second external mold parts 31 and 33 are more than the preform 10. Make a lot of deformation.
  • the core part 35 inserted into the inner circumferential groove of the preform 10 is rotated by the third cylinder 39 and taken out from the preform 10.
  • the implant manufacturing method using the amorphous alloy of the present invention preform manufacturing step (S10), heating step (S20), batch step (S30), processing step (S40), and the cooling separation step (S50) .
  • the preform manufacturing step (S10) is a step of manufacturing the amorphous alloy in the preform 10 of the ingot state having a predetermined size and shape.
  • the heating step (S20) is a step of heating the preform 10 in a semi-solid state using the heating unit 20.
  • the preform 10 is heated higher than the vitrification temperature (Tg) and lower than the crystallization temperature (Tn) of the amorphous alloy.
  • the preform 10 made of an amorphous alloy is in a state capable of plastic working.
  • the disposition step (S30) is a step of disposing the preform 10 heated in a semi-solid state to the molding portion 30 for thread processing.
  • the preform 10 of the heated semi-solid state between the first outer mold part 31 and the second outer mold part 33 is placed. To place.
  • the preform 10 is heated and then disposed in the molding part 30, but the preform 10 may be first placed in the molding part 30 and heated.
  • the preform 10 disposed between the first external mold part 31 and the second external mold part 33 is disposed in the molding step 30.
  • the first outer mold part 31 is formed using the first cylinder 37 and the second cylinder 38 as shown in FIG. 3 (b). And the second outer mold part 33 are moved to press the preform 10 disposed therebetween.
  • an external thread corresponding to the first screw thread 32 and the second screw thread 34 is formed on the outer circumferential surface of the preform 10.
  • the core part 35 is first formed using the third cylinder 39. 10) the first outer mold part 31 and the second outer mold part 33 are moved by using the first cylinder 37 and the second cylinder 38 after being inserted into the inner circumferential groove. The preform 10 is pressed.
  • an external thread corresponding to the first screw thread 32 and the second screw thread 34 is formed on the outer circumferential surface of the preform 10
  • an internal thread thread corresponding to the third screw thread 36 is formed on the inner circumferential surface thereof. do.
  • the processing step (S40) is made in the state in which the preform 10 is heated to a glass crystallization temperature or more than the crystallization temperature as shown in FIG. 5, the preform 10 is plastically deformed and / or externally threaded. Or internal thread is formed.
  • the preform 10 having the thread formed therein is cooled below the vitrification temperature and separated from the press molding mold, that is, the molding part 30.
  • the press molding mold and the preform 10 are separated by using the thermal expansion coefficients of the press molding mold and the preform 10.
  • the coefficient of thermal expansion of the first outer mold part 31, the second outer mold part 33, and the core part 35 is greater than that of the preform 10 made of an amorphous alloy.
  • the first external mold part 31, the second external mold part 33, the core part 35, and the preform 10 are cooled together in the cooling separation step S50, the first external mold is cooled. Since the shrinkage of the part 31, the second outer mold part 33, and the core part 35 occurs more than the preform 10, the preform 10 causes the first outer mold part 31 and the second part to shrink. It is naturally separated from the outer mold part 33 and the core part 35.
  • first outer mold part 31 and the second outer mold part 33 are formed in the first cylinder 37 and the second cylinder (c) as shown in FIGS. 3 (c) and 4 (c). 38) the first outer mold part 31 and the second outer mold part 33 are moved to extract the preform 10, that is, the implant, having the thread.
  • the third cylinder 39 is illustrated in FIG. 4C.
  • the core portion 35 is rotated to separate from the preform 10, and then the first outer mold portion 31 and the second outer mold portion 33 are moved to thereby form an internal thread and an external thread.
  • the preform 10, that is, the implant, is formed.
  • Apparatus and method for manufacturing an implant using an amorphous alloy of the present invention are not limited to the above-described embodiments, and may be variously modified and carried out within the allowable technical spirit of the present invention.
  • the present invention can produce an implant in which the thread is formed on the inner circumferential surface or the outer circumferential surface of the amorphous alloy using a press molding method rather than a die casting method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Forging (AREA)

Abstract

본 발명은 비정질합금을 이용한 임플란트의 제조장치 및 제조방법에 관한 것으로서, 특히 비정질합금을 다이케스팅방법이 아닌 프레스성형방법을 이용하여 내주면 또는 외주면에 나사산이 형성된 임플란트를 제조하는 장치 및 방법에 관한 것이다. 본 발명의 비정질합금을 이용한 임플란트의 제조장치는, 비정질합금으로 이루어진 프리폼을 반고체 상태로 가열하는 가열부와; 프레스성형금형을 이용하여 가열된 프리폼에 나사산을 형성하는 성형부와; 나사산이 형성된 프리폼을 냉각하는 냉각부로 이루어진 것을 특징으로 한다.

Description

비정질합금을 이용한 임플란트의 제조장치 및 제조방법
본 발명은 비정질합금을 이용한 임플란트의 제조장치 및 제조방법에 관한 것으로서, 특히 비정질합금을 다이케스팅방법이 아닌 프레스성형방법을 이용하여 내주면 또는 외주면에 나사산이 형성된 임플란트를 제조하는 장치 및 방법에 관한 것이다.
최근에는 비정질합금 소재기술의 급속한 발달로 다양한 소재가 개발되고 있다.
비정질합금은 강도, 경도가 높고 내마모성 및 내식성이 우수하여 생체재료 적용에 적합한 것으로 알려져 있다.
이러한 비정질합금의 성형공정으로는 현재 다이캐스팅 공정이 개발되어 있으며, 이는 합금을 승온하여 고온에서 액체상태로 용해한 다음 금형에 주입하여 응고과정을 통해 성형하는 방식이다.
위와 같은 비정질합금을 이용한 다이캐스팅 성형방법은, 비정질 소재가 가지는 특성에 따라 용해 및 성형단계에서 분위기 제어가 필요하다.
즉, 아르곤 등 불활성기체 분위기 혹은 진공분위기 조성이 필요하다.
따라서, 비정질합금을 다이캐스팅방법으로 성형하기 위해서는, 상기 조건을 충족하기 위해 용해 및 성형공정을 위한 별도의 분위기 챔버가 필요하며, 이를 안정적으로 구현하기 위해서 수직식 다이캐스팅 장비가 적용되고 있다.
그러나, 수직식 다이캐스팅 장치는 그 규모가 크고 용량에 비해 높이가 높으며 장치의 사이즈 및 구축비용이 높은 단점이 있다.
또한, 다이캐스팅의 특성상 잉곳을 약 섭씨 1000도까지 가열하여 액체상태로 재용해하고 용탕을 주입하는 공정이 포함되어야 하기 때문에, 장치가 커지게 되고 공정이 많아져 공정사이클 타임이 길어지게 되는 단점이 있다.
그리고, 비정질합금은 상온에서 기계적 하중을 받는 상태에서 소성변형은 거의 하지 않고 대체로 탄성적인 거동을 보인다.
따라서, 일반적인 상용소재(철, 알루미늄 등)의 나사산 가공에 활용되는 나사가공기술(전조 또는 태핑가공)은 나사산 표면의 소성변형을 동반하는 것이기 때문에, 소성변형이 거의 없는 비정질합금에 위와 같은 일반적인 나사가공기술인 전조 또는 태핑가공을 적용하여 나사산을 형성하기가 어렵다.
만일 비정질합금에 전조 또는 태핑가공을 통해 나사산을 형성하게 되면, 소재의 파손 및 공구의 손상 등을 유발하여 실패하게 된다.
한편, 인체에 사용되는 금속 임플란트 소재는 링거액에 전기부식을 일으키지 않는 안정한 소재가 적용되어야 하며, 반복되는 마찰에 견딜 수 있는 고경도 및 고강도를 가지는 소재가 바람직하며 주로 티타늄(Ti)합금 또는 Co-Cr계 합금이 널리 사용되고 있다.
이러한 티타늄(Ti)합금 또는 Co-Cr계 합금은 우수한 기계적/전기적 특성을 가지고 있으나, 융점이 높아 다이캐스팅 등과 같은 성형공정의 적용이 곤란하여, 3차원 기계가공으로 제작된다.
그러나, 위와 같은 소재는 소재 자체의 우수한 기계적 특성 때문에, 오히려 가공이 쉽지 않아 복잡한 3차원 형상을 제작하고자 할 경우에는, 생산성이 낮고 단가가 비싼 단점을 가지게 된다.
비정질계합금의 경우에는 Zr-Ti계합금 또는 Pd계합금 등이 인체적용이 가능한 것으로 알려져 있다.
일반적으로 치과용 또는 외과용 임플란트의 경우에는 내외주면에 나사산이 형성되어 있는데, 위와 같은 종래의 방법으로 생산할 경우에는 다음과 같은 단점이 있다.
티타늄(Ti)합금 또는 Co-Cr계 합금을 이용하는 경우에는, 재료 자체의 높은 강도 및 경도값에 의해 임플란트의 내외주면에 나사산을 가공하기가 용이하지 않아 단가가 높아진다는 단점이 있다.
또한, 비정질계합금을 이용하는 경우에는 비정질합금의 특정 때문에 전조 또는 태핑공정으로 나사산을 형성할 수 없는바 다이캐스팅방법을 이용하여야 하는데, 이 경우 용탕주입을 위한 게이트 설정 등의 금형설계가 어렵고, 나사산부위의 표면품질을 확보하기가 어려우며, 다이캐스팅 성형을 위한 장치가 고가이고, 잉곳을 고온에서 액체상태로 재용해시켜 주입하여야 하기 때문에 금형수명이 대단히 짧아지고 공정사이클타임이 길어지게 되는 단점이 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로써, 비정질합금을 이용하여 내주면 또는 외주면에 나사산이 형성된 임플란트를 다이캐스팅방법을 이용하지 않고 비교적 저렴한 비용으로 신속하게 생산할 수 있는 비정질합금을 이용한 임플란트의 제조장치 및 제조방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명의 비정질합금을 이용한 임플란트의 제조장치는, 비정질합금으로 이루어진 프리폼을 반고체 상태로 가열하는 가열부와; 프레스성형금형을 이용하여 가열된 프리폼에 나사산을 형성하는 성형부와; 나사산이 형성된 프리폼을 냉각하는 냉각부로 이루어진 것을 특징으로 한다.
상기 성형부는, 내측면이 오목하게 함몰되고 제1나사산이 형성된 제1외부금형부와; 상기 제1외부금형부를 이동시키는 제1실린더와; 상기 제1외부금형부와 결합되고, 내측면이 상기 제1외부금형부의 반대방향으로 오목하게 함몰되고 제2나사산이 형성된 제2외부금형부와; 상기 제2외부금형부를 이동시키는 제2실린더로 이루어지되, 상기 제1외부금형부와 제2외부금형부 사이에는 상기 가열된 반고체 상태의 프리폼이 배치되어 상기 프리폼의 외주면에 상기 제1나사산 및 제2나사산에 대응되는 외부나사산이 형성되고, 상기 제1외부금형부 및 제2외부금형부의 열팽창계수는 상기 프리폼의 열팽창계수보다 크다.
상기 성형부는, 상기 제1외부금형부와 제2외부금형부 사이에 배치되고, 외주면에 제3나사산이 형성된 코어부와; 상기 코어부를 승강시키는 제3실린더를 더 포함하여 이루어지되, 상기 코어부는 상기 제1외부금형부와 제2외부금형부 사이에 배치된 프리폼에 내주홈에 삽입되어, 상기 프리폼의 내주면에 상기 제3나사산에 대응되는 내부나사산을 형성한다.
상기 코어부는 상기 제3실린더에 의해 회전되되, 상기 제3실린더는 상기 프리폼의 내주홈에 삽입된 상기 코어부를 회전시켜 상기 프리폼으로부터 취출시킨다.
또한, 상기 목적을 달성하기 위하여 본 발명의 비정질합금을 이용한 임플란트의 제조방법은, 외주면 또는 내주면에 나사산이 형성된 임플란트의 제조방법에 있어서, 비정질합금을 잉곳상태의 프리폼으로 제조하는 프리폼제조단계와; 상기 프리폼을 반고체 상태로 가열하는 가열단계와; 나사산 가공을 위해 프레스성형금형에 반고체 상태로 가열된 프리폼을 배치하는 배치단계와; 프레스성형금형을 이용하여 가열된 프리폼에 나사산을 형성하는 가공단계와; 나사산이 형성된 프리폼을 냉각시켜 프레스성형금형으로부터 분리하여 냉각분리단계로 이루어지되, 상기 가열단계에서는 상기 프리폼을 유리화온도(Tg:Glass temperature)보다 높고 비정질합금의 결정화온도(Tn:Nose temperature)보다 낮게 가열하며, 상기 냉각분리단계에서는 상기 프리폼을 유리화온도 미만으로 냉각시킨다.
상기 냉각분리단계에서는 상기 프레스성형금형과 프리폼의 열팽창계수를 이용하여 상기 프레스성형금형과 프리폼을 분리시킨다.
상기 가공단계에서는, 상기 프리폼의 외부를 감싸는 외부금형부와, 상기 프리폼의 내부에 삽입되는 코어부로 이루어진 프레스성형금형을 이용하여, 가열된 프리폼의 외주면 및 내주면에 각각 나사산을 형성하고, 상기 냉각분리단계에서는, 상기 프리폼 내부에 삽입된 상기 코어부를 회전시켜 상기 프리폼으로부터 분리시킨다.
이상에서 설명한 바와 같은 본 발명의 비정질합금을 이용한 임플란트의 제조장치 및 제조방법에 따르면, 비정질합금을 다이캐스팅방법이 아닌 프레스성형방식을 이용하여 내주면 및/또는 외주면에 나사산이 형성된 임플란트를 제조할 수 있는바, 비교적 저렴한 비용으로 인체에 무해한 임플란트를 신속하게 생산할 수 있어, 경제성 및 생산성을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 비정질합금을 이용한 임플란트의 제조장치의 구성도,
도 2는 본 발명의 실시예에 따른 비정질합금을 이용한 임플란트의 제조방법의 순서도,
도 3은 본 발명의 실시예에 따른 제조장치를 이용하여 외주면에 나사산이 형성된 임플란트의 제조공정을 설명하기 위한 설명도,
도 4는 본 발명의 실시예에 따른 제조장치를 이용하여 내외주면에 나사산이 형성된 임플란트의 제조공정을 설명하기 위한 설명도,
도 5는 본 발명의 실시예에 따른 열가소성 성형공정을 나타내는 그래프이다.
도 1은 본 발명의 실시예에 따른 비정질합금을 이용한 임플란트의 제조장치의 구성도이고, 도 2는 본 발명의 실시예에 따른 비정질합금을 이용한 임플란트의 제조방법의 순서도이며, 도 3은 본 발명의 실시예에 따른 제조장치를 이용하여 외주면에 나사산이 형성된 임플란트의 제조공정을 설명하기 위한 설명도이고, 도 4는 본 발명의 실시예에 따른 제조장치를 이용하여 내외주면에 나사산이 형성된 임플란트의 제조공정을 설명하기 위한 설명도이며, 도 5는 본 발명의 실시예에 따른 열가소성 성형공정을 나타내는 그래프이다.
본 발명은 비정질합금으로 이루어진 프리폼(Pre-form)을 액체 상태로 용융시키지않고, 반고체 상태로 가열한 상태에서 임플란트를 제조하는 장치 및 방법에 관한 것이다.
도 1에 도시된 바와 같이, 본 발명의 비정질합금을 이용한 임플란트의 제조장치는, 가열부(20)와, 성형부(30)와, 냉각부(40)로 이루어진다.
도 1에서는 상기 가열부(20), 성형부(30) 및 냉각부(40)가 각각 별개로 표시되어 있으나, 하나의 장치에 설치되어 있을 수도 있다.
즉, 하나의 장치에서 가열, 성형 및 냉각이 모두 이루어지도록 할 수 있다.
상기 가열부(20)는 비정질합금으로 이루어진 프리폼(10)을 반고체 상태로 가열하는 역할을 한다.
상기 가열부(20)에서는 상기 프리폼(10)을 도 5에 도시된 유리화온도(Tg : Glass temperature)보다 높고 비정질합금의 결정화온도(Tn : Nose temperature)보다 낮게 가열하여, 상기 프리폼(10)이 액체상태가 아닌 반고체 상태 즉 젤리와 같은 상태가 되도록 한다.
상기 가열부(20)는 상기 프리폼(10)을 고주파가열 또는 발열체 가열 등의 방법을 통해 상기 프리폼(10)을 예열하게 된다.
상기 성형부(30)는 프레스성형금형을 이용하여 가열된 프리폼(10)에 나사산을 형성하는 역할을 한다.
이러한 상기 성형부(30)는 상기 프리폼(10)의 외주면에 나사산을 형성하고자 할 때에는, 도 3에 도시된 바와 같이, 제1외부금형부(31)와, 제1실린더(37)와, 제2외부금형부(33)와, 제2실린더(38)로 이루어진다.
상기 제1외부금형부(31)는 내측면이 오목하게 함몰되고 제1나사산(32)이 형성되어 있고, 상기 제2외부금형부(33)는 상기 제1외부금형부(31)와 결합되고 내측면이 상기 제1외부금형부(31)의 반대방향으로 오목하게 함몰되어 제2나사산(34)이 형성되어 있다.
상기 제1실린더(37)와 제2실린더(38)는 각각 상기 제1외부금형부(31)와 제2외부금형부(33)를 이동시키는 역할을 한다.
상기 제1외부금형부(31)와 제2외부금형부(33) 사이에는 가열된 반고체 상태의 상기 프리폼(10)이 배치되어, 상기 프리폼(10)의 외주면에 상기 제1나사산(32) 및 제2나사산(34)에 대응되는 외부나사산이 형성되도록 한다.
그리고, 상기 성형부(30)는 상기 프리폼(10)의 외주면 뿐만 아니라 내주면에도 나사산을 형성하고자 할 때에는 도 4에 도시된 바와 같이, 코어부(35)와 제3실린더(39)를 더 포함하여 이루어진다.
상기 코어부(35)는 상기 제1외부금형부(31)와 제2외부금형부(33) 사이에 배치되고, 외주면에 제3나사산(36)이 형성되어 있다.
상기 제3실린더(39)는 상기 코어부(35)를 회전시키면서 상하방향으로 승강시키는 역할을 한다.
상기 코어부(35)는 상기 제1외부금형부(31)와 제2외부금형부(33) 사이에 배치된 프리폼(10)에 내주홈에 삽입되어 상기 프리폼(10)의 내주면에 상기 제3나사산(36)에 대응되는 내부나사산을 형성한다.
상기 냉각부(40)는 상기 성형부(30)에 의해 나사산이 형성된 프리폼(10)을 냉각하여 프리폼(10)이 프레스성형금형로부터 분리될 수 있도록 한다.
상기 제1외부금형부(31) 및 제2외부금형부(33)의 열팽창계수는 상기 프리폼(10)의 열팽창계수보다 크도록 함이 바람직하다.
즉, 상기 제1,2외부금형부(31,33)과 프리폼(10)에 열을 가하거나 냉각시켰을 때, 상기 제1,2외부금형부(31,33)이 상기 프리폼(10)보다 더 많이 변형되도록 한다.
그리고, 상기 프리폼(10)의 내주홈에 삽입된 상기 코어부(35)는 상기 제3실린더(39)에 의해 회전되어 상기 프리폼(10)으로부터 취출된다.
이하, 상술한 구성으로 이루어진 본 발명의 임플란트 제조방법에 대하여 살펴본다.
본 발명의 비정질합금을 이용한 임플란트의 제조방법은, 프리폼제조단계(S10)와, 가열단계(S20)와, 배치단계(S30)와, 가공단계(S40)와, 냉각분리단계(S50)로 이루어진다.
상기 프리폼제조단계(S10)는 비정질합금을 일정한 크기 및 형태를 갖는 잉곳상태의 프리폼(10)으로 제조하는 단계이다.
이는 도 5에 도시된 바와 같이, 비정질합금을 급속냉각시켜 제조할 수 있다.
상기 가열단계(S20)는 상기 가열부(20)를 이용하여 상기 프리폼(10)을 반고체 상태로 가열하는 단계이다.
상기 가열단계(S20)에서는 상기 프리폼(10)을 도 5에 도시된 바와 같이, 유리화온도(Tg)보다 높고 비정질합금의 결정화온도(Tn)보다 낮게 가열한다.
이로 인해, 비정질합금으로 이루어진 상기 프리폼(10)은 소성가공이 가능한 상태가 된다.
상기 배치단계(S30)는 나사산 가공을 위해 상기 성형부(30)에 반고체 상태로 가열된 상기 프리폼(10)을 배치하는 단계이다.
보다 자세하게는 도 3(a) 및 도 4(a)에 도시된 바와 같이 상기 제1외부금형부(31)와 제2외부금형부(33) 사이에 상기 가열된 반고체 상태의 프리폼(10)을 배치한다.
본 실시예에서는 상기 프리폼(10)을 가열한 후 성형부(30)에 배치하였으나, 상기 성형부(30)에 먼저 프리폼(10)을 배치하고 가열할 수도 있다.
상기 가공단계(S40)는 상기 배치단계(S30)에 의해 상기 제1외부금형부(31)와 제2외부금형부(33) 사이에 배치된 상기 프리폼(10)을 상기 성형부(30) 즉 프레스성형금형을 이용하여 상기 프리폼(10)에 나사산을 형성하는 단계이다.
이러한 상기 가공단계(S40)에서는, 도 3(b)에 도시된 바와 같이 상기 프리폼(10)의 외주면에만 나사산을 형성하거나, 도 4(b)에 도시된 바와 같이 상기 프리폼(10)의 외주면 및 내주면에 모두 나사산을 형성한다.
상기 프리폼(10)의 외주면에만 나사산을 형성할 경우에는 도 3(b)에 도시된 바와 같이 상기 제1실린더(37) 및 제2실린더(38)를 이용하여 상기 제1외부금형부(31)와 제2외부금형부(33)를 이동시켜 그 사이에 배치된 상기 프리폼(10)을 가압한다.
이로 인해, 상기 프리폼(10)의 외주면에는 상기 제1나사산(32) 및 제2나사산(34)에 대응되는 외부나사산이 형성된다.
그리고, 상기 프리폼(10)의 내주면 및 외주면 모두에 나사산을 형성할 경우에는 도 4(b)에 도시된 바와 같이 먼저 상기 제3실린더(39)를 이용하여 상기 코어부(35)를 상기 프리폼(10)의 내주홈에 삽입한 후 상기 제1실린더(37) 및 제2실린더(38)를 이용하여 상기 제1외부금형부(31)와 제2외부금형부(33)를 이동시켜 그 사이에 배치된 상기 프리폼(10)을 가압한다.
이로 인해, 상기 프리폼(10)의 외주면에는 상기 제1나사산(32) 및 제2나사산(34)에 대응되는 외부나사산이 형성되고, 내주면에는 상기 제3나사산(36)에 대응되는 내부나사산이 형성된다.
이때, 상기 가공단계(S40)는 도 5에 도시된 바와 같이 상기 프리폼(10)을 유리화온도 이상 결정화온도 이하로 가열한 상태에서 이루어지기 때문에, 상기 프리폼(10)은 소성변형되어 외부나사산 및/또는 내부나사산이 형성되게 된다.
상기 냉각분리단계(S50)는, 도 5에 도시된 바와 같이 나사산이 형성된 프리폼(10)을 유리화온도 이하로 냉각시켜 프레스성형금형 즉 성형부(30)로부터 분리시키는 단계이다.
상기 냉각분리단계(S50)에서는 상기 프레스성형금형과 프리폼(10)의 열팽창계수를 이용하여 상기 프레스성형금형과 프리폼(10)을 분리시킨다.
즉, 상기 제1외부금형부(31), 제2외부금형부(33) 및 코어부(35)의 열팽창계수는 비정질합금으로 이루어진 상기 프리폼(10)의 열팽창계수보다 크다.
이로 인해, 상기 냉각분리단계(S50)에서 상기 제1외부금형부(31), 제2외부금형부(33), 코어부(35) 및 프리폼(10)을 함께 냉각시키면, 상기 제1외부금형부(31), 제2외부금형부(33) 및 코어부(35)의 수축이 상기 프리폼(10)보다 많이 일어나기 때문에, 상기 프리폼(10)이 상기 제1외부금형부(31), 제2외부금형부(33) 및 코어부(35)로부터 자연스럽게 분리되게 된다.
그 후, 상기 제1외부금형부(31)와 제2외부금형부(33)는 도 3(c) 및 도 4(c)에 도시된 바와 같이 상기 제1실린더(37) 및 제2실린더(38)를 이용하여 상기 제1외부금형부(31)와 제2외부금형부(33)를 이동시켜 나사산이 형성된 상기 프리폼(10) 즉 임플란트를 취출하도록 한다.
그리고, 도 4에 도시된 바와 같이 상기 코어부(35)를 이용하여 프리폼(10)의 내주면에 내부나사산을 형성한 경우에는, 도 4(c)에 도시된 바와 같이 상기 제3실린더(39)를 이용하여 상기 코어부(35)를 회전시키면서 상기 프리폼(10)으로부터 분리시키고, 그 후에 상기 제1외부금형부(31)와 제2외부금형부(33)를 이동시켜 내부나사산 및 외부나사산이 형성된 상기 프리폼(10) 즉 임플란트를 취출하도록 한다.
위와 같은 본 발명의 제조장치 및 제조방법에 의해, 비정질합금을 다이캐스팅방법이 아닌 프레스성형방식을 이용하여 내주면 및/또는 외주면에 나사산이 형성된 임플란트를 제조할 수 있다.
본 발명인 비정질합금을 이용한 임플란트의 제조장치 및 제조방법은 전술한 실시예에 국한하지 않고, 본 발명의 기술 사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.
본 발명은 비정질합금을 다이케스팅방법이 아닌 프레스성형방법을 이용하여 내주면 또는 외주면에 나사산이 형성된 임플란트를 제조할 수 있다.

Claims (7)

  1. 비정질합금으로 이루어진 프리폼을 반고체 상태로 가열하는 가열부와;
    프레스성형금형을 이용하여 가열된 프리폼에 나사산을 형성하는 성형부와;
    나사산이 형성된 프리폼을 냉각하는 냉각부로 이루어진 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조장치.
  2. 제 1항에 있어서,
    상기 성형부는,
    내측면이 오목하게 함몰되고 제1나사산이 형성된 제1외부금형부와;
    상기 제1외부금형부를 이동시키는 제1실린더와;
    상기 제1외부금형부와 결합되고, 내측면이 상기 제1외부금형부의 반대방향으로 오목하게 함몰되고 제2나사산이 형성된 제2외부금형부와;
    상기 제2외부금형부를 이동시키는 제2실린더로 이루어지되,
    상기 제1외부금형부와 제2외부금형부 사이에는 상기 가열된 반고체 상태의 프리폼이 배치되어 상기 프리폼의 외주면에 상기 제1나사산 및 제2나사산에 대응되는 외부나사산이 형성되고,
    상기 제1외부금형부 및 제2외부금형부의 열팽창계수는 상기 프리폼의 열팽창계수보다 큰 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조장치.
  3. 제 2항에 있어서,
    상기 성형부는,
    상기 제1외부금형부와 제2외부금형부 사이에 배치되고, 외주면에 제3나사산이 형성된 코어부와;
    상기 코어부를 승강시키는 제3실린더를 더 포함하여 이루어지되,
    상기 코어부는 상기 제1외부금형부와 제2외부금형부 사이에 배치된 프리폼에 내주홈에 삽입되어, 상기 프리폼의 내주면에 상기 제3나사산에 대응되는 내부나사산을 형성하는 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조장치.
  4. 제 3항에 있어서,
    상기 코어부는 상기 제3실린더에 의해 회전되되,
    상기 제3실린더는 상기 프리폼의 내주홈에 삽입된 상기 코어부를 회전시켜 상기 프리폼으로부터 취출시키는 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조장치.
  5. 외주면 또는 내주면에 나사산이 형성된 임플란트의 제조방법에 있어서,
    비정질합금을 잉곳상태의 프리폼으로 제조하는 프리폼제조단계와;
    상기 프리폼을 반고체 상태로 가열하는 가열단계와;
    나사산 가공을 위해 프레스성형금형에 반고체 상태로 가열된 프리폼을 배치하는 배치단계와;
    프레스성형금형을 이용하여 가열된 프리폼에 나사산을 형성하는 가공단계와;
    나사산이 형성된 프리폼을 냉각시켜 프레스성형금형으로부터 분리하여 냉각분리단계로 이루어지되,
    상기 가열단계에서는 상기 프리폼을 유리화온도(Tg:Glass temperature)보다 높고 비정질합금의 결정화온도(Tn:Nose temperature)보다 낮게 가열하며,
    상기 냉각분리단계에서는 상기 프리폼을 유리화온도 미만으로 냉각시키는 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조방법.
  6. 제 5항에 있어서,
    상기 냉각분리단계에서는 상기 프레스성형금형과 프리폼의 열팽창계수를 이용하여 상기 프레스성형금형과 프리폼을 분리시키는 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조방법.
  7. 제 5항 또는 제 6항에 있어서,
    상기 가공단계에서는,
    상기 프리폼의 외부를 감싸는 외부금형부와, 상기 프리폼의 내부에 삽입되는 코어부로 이루어진 프레스성형금형을 이용하여, 가열된 프리폼의 외주면 및 내주면에 각각 나사산을 형성하고,
    상기 냉각분리단계에서는, 상기 프리폼 내부에 삽입된 상기 코어부를 회전시켜 상기 프리폼으로부터 분리시키는 것을 특징으로 하는 비정질합금을 이용한 임플란트의 제조방법.
PCT/KR2011/004478 2010-06-23 2011-06-20 비정질합금을 이용한 임플란트의 제조장치 및 제조방법 WO2011162512A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/806,309 US8656751B2 (en) 2010-06-23 2011-06-20 Apparatus and method for manufacturing implant using amorphous alloy
CN201180030551.7A CN102946821B (zh) 2010-06-23 2011-06-20 利用非晶态合金的植体的制造装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100059423A KR101104191B1 (ko) 2010-06-23 2010-06-23 비정질합금을 이용한 임플란트의 제조장치 및 제조방법
KR10-2010-0059423 2010-06-23

Publications (2)

Publication Number Publication Date
WO2011162512A2 true WO2011162512A2 (ko) 2011-12-29
WO2011162512A3 WO2011162512A3 (ko) 2012-05-03

Family

ID=45371926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004478 WO2011162512A2 (ko) 2010-06-23 2011-06-20 비정질합금을 이용한 임플란트의 제조장치 및 제조방법

Country Status (4)

Country Link
US (1) US8656751B2 (ko)
KR (1) KR101104191B1 (ko)
CN (1) CN102946821B (ko)
WO (1) WO2011162512A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771642B2 (en) * 2012-07-04 2017-09-26 Apple Inc. BMG parts having greater than critical casting thickness and method for making the same
KR101798815B1 (ko) 2017-02-02 2017-11-16 박희준 티타늄 단조공법을 이용한 임플란트 나사 제조장치 및 이를 이용한 임플란트나사 제조방법
WO2019082154A1 (pt) * 2017-10-26 2019-05-02 Universidade Do Minho Implante dentário em zircónia ou alumina com funções elétricas curativas e respetivo método de obtenção
EP3701904A1 (en) * 2017-10-26 2020-09-02 Universidade do Minho Dental implant with functional gradient and its production process
KR102331707B1 (ko) * 2019-11-12 2021-11-26 한국생산기술연구원 무금형 임플란트 성형 장치
CN112916694A (zh) * 2020-12-29 2021-06-08 东莞立德生物医疗有限公司 一种耐腐蚀骨科可降解螺钉及其制备方法
CN112743045B (zh) * 2020-12-29 2023-08-04 东莞立德生物医疗有限公司 一种骨组织固定用镁螺钉及其制备方法
CN113751598B (zh) * 2021-11-10 2022-03-04 北京融创汇智科技有限责任公司 一种制备口腔种植体的塑性成型模具及方法
KR102672616B1 (ko) * 2023-11-06 2024-06-04 박기현 스크류형 세라믹 덴탈 임플란트 픽스쳐 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920702209A (ko) * 1990-06-15 1992-09-03 나까히가시 모또모 의치틀 성형장치
KR20070051848A (ko) * 2004-08-05 2007-05-18 알 앤 디 그린 머티리얼, 엘엘씨 고체 생분해성 제품 제조를 위한 저온 몰딩 방법
US20090317762A1 (en) * 2006-08-02 2009-12-24 Forschungszentrum Juelich Gmbh Implants with porous outer layer, and process for the production thereof
KR20100024675A (ko) * 2008-08-26 2010-03-08 주식회사 아바코 잉곳 제조 장치 및 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482402A (en) * 1982-04-01 1984-11-13 General Electric Company Dynamic annealing method for optimizing the magnetic properties of amorphous metals
US4584036A (en) * 1984-10-03 1986-04-22 General Electric Company Hot working of amorphous alloys
US5896642A (en) * 1996-07-17 1999-04-27 Amorphous Technologies International Die-formed amorphous metallic articles and their fabrication
US20040267349A1 (en) * 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
KR100561877B1 (ko) * 2003-11-13 2006-03-21 진태선 인공치아용 임플란트의 지르코늄 어버트먼트 제조방법
KR100614853B1 (ko) * 2004-02-24 2006-08-22 이도재 다공성 임플란트 제조방법
US7708844B2 (en) * 2004-05-28 2010-05-04 Ngk Insulators, Ltd. Method of forming metallic glass
KR100936489B1 (ko) * 2007-12-17 2010-01-13 이소현 치과용 임시 임플란트 제조방법
JP5219617B2 (ja) * 2008-05-19 2013-06-26 キヤノン株式会社 光学素子及びその製造方法
KR100976258B1 (ko) 2010-02-03 2010-08-18 (주)미러비전 미러 장착용 부재 및 거울 겸용 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920702209A (ko) * 1990-06-15 1992-09-03 나까히가시 모또모 의치틀 성형장치
KR20070051848A (ko) * 2004-08-05 2007-05-18 알 앤 디 그린 머티리얼, 엘엘씨 고체 생분해성 제품 제조를 위한 저온 몰딩 방법
US20090317762A1 (en) * 2006-08-02 2009-12-24 Forschungszentrum Juelich Gmbh Implants with porous outer layer, and process for the production thereof
KR20100024675A (ko) * 2008-08-26 2010-03-08 주식회사 아바코 잉곳 제조 장치 및 제조 방법

Also Published As

Publication number Publication date
US20130086967A1 (en) 2013-04-11
KR101104191B1 (ko) 2012-01-09
WO2011162512A3 (ko) 2012-05-03
CN102946821A (zh) 2013-02-27
CN102946821B (zh) 2015-06-17
US8656751B2 (en) 2014-02-25
KR20110139379A (ko) 2011-12-29

Similar Documents

Publication Publication Date Title
WO2011162512A2 (ko) 비정질합금을 이용한 임플란트의 제조장치 및 제조방법
EP2773495A1 (en) Injection molding apparatus
EP3895829B1 (en) Die casting method for filtering cavity
WO2015199351A1 (ko) 진공환경에서 금속을 용해하고 성형하는 장치 및 방법
JPS61276762A (ja) 金属成品の製造方法
CN110508777B (zh) 一种非晶合金立式压铸机的压铸方法
WO2017088423A1 (zh) 一种铝合金注射成型机
BR0200894A (pt) Método de fundição em matriz e aparelho de fundição em matriz
WO2014137023A1 (ko) Led 렌즈 성형용 사출 금형
WO2014208810A1 (ko) 가압함침형 금속기지 복합재료 제조방법
WO2023191144A1 (ko) 세라믹 재질의 분리형 치과용 임플란트의 제조방법
CN111378882B (zh) 一种高导热性能压铸镁合金材料及其制备方法
CN110252834A (zh) 压力模具制造用加热处理装置及处理工艺
CN215614863U (zh) 带有预热装置的浇铸件成型用组合模具
CN205966826U (zh) 一种铝镁合金线材多孔挤压模
WO2020197092A1 (ko) 사출 성형 장치 및 사출 성형 방법
CN114590989A (zh) 成型模具、制备玻璃壳体的方法和电子装置
WO2016208825A1 (ko) 비정질 제품의 성형방법 및 비정질 다이캐스팅재의 표면결함 개선방법
WO2017061712A1 (ko) 휴대단말기용 금속 케이스 제조방법 및 휴대단말기용 금속 케이스의 강도 향상장치
CN207189928U (zh) 陶瓷插芯套筒式镶针自动成型装置
CN110625062A (zh) 一种采用壳型铸造铰耳的铸造工艺
CN206169274U (zh) 一种真空熔炼炉用铸模的加热保温装置
JP2001525257A (ja) セラミック成形型を形成するためのロスト金属原型の使用方法
CN219788739U (zh) 一种锆钢玉格子砖的模具芯子
CN220482056U (zh) 一种防裂的锆刚玉格子砖砂型

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030551.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798347

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13806309

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798347

Country of ref document: EP

Kind code of ref document: A2