WO2011162350A1 - ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法 - Google Patents

ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法 Download PDF

Info

Publication number
WO2011162350A1
WO2011162350A1 PCT/JP2011/064448 JP2011064448W WO2011162350A1 WO 2011162350 A1 WO2011162350 A1 WO 2011162350A1 JP 2011064448 W JP2011064448 W JP 2011064448W WO 2011162350 A1 WO2011162350 A1 WO 2011162350A1
Authority
WO
WIPO (PCT)
Prior art keywords
dicarboxylic acid
diamine
polyamide
aqueous solution
diester
Prior art date
Application number
PCT/JP2011/064448
Other languages
English (en)
French (fr)
Inventor
祐 日戸
肇 永原
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN2011800305381A priority Critical patent/CN102947263A/zh
Priority to US13/703,508 priority patent/US20130085257A1/en
Priority to JP2012521535A priority patent/JP5698234B2/ja
Priority to KR1020127030694A priority patent/KR101457288B1/ko
Publication of WO2011162350A1 publication Critical patent/WO2011162350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring
    • C07C61/09Completely hydrogenated benzenedicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to a diamine / dicarboxylate aqueous solution and a method for producing a polyamide.
  • Polyamides represented by polyamide 6 and polyamide 66 are excellent in molding processability, mechanical properties, and chemical resistance. -Widely used as various parts materials for electronics, industrial materials, industrial materials, daily use and household goods.
  • PA6 and PA66 have a low melting point and cannot satisfy these requirements in terms of heat resistance
  • various materials have been proposed.
  • PA46 a high melting point aliphatic polyamide
  • 6T copolymer polyamide Semi-aromatic polyamides
  • the PA 46 has good moldability and heat resistance, it has a problem that it has a high water absorption rate, and a dimensional change and a decrease in mechanical properties due to water absorption are remarkably large. There are cases where the demand cannot be met in terms of change.
  • the 6T copolymer polyamide has characteristics such as low water absorption, high heat resistance, and high chemical resistance.
  • the fluidity is low and the moldability and the surface appearance of the molded product may be insufficient.
  • the specific gravity is large, and improvement in lightness is also desired.
  • a semi-alicyclic polyamide using 1,4-cyclohexanedicarboxylic acid has been proposed as a high melting point polyamide having a structure different from that of PA46 or 6T copolymer polyamide (for example, Patent Document 1). reference.). It is disclosed that this semi-alicyclic polyamide is excellent in light resistance, toughness, moldability, heat resistance and the like.
  • 1,4-cyclohexanedicarboxylic acid which is a raw material for this semialicyclic polyamide.
  • terephthalic acid is hydrogenated with a palladium catalyst to obtain 1,4-cyclohexanedicarboxylic acid
  • sodium salt of terephthalic acid is hydrogenated in the presence of a ruthenium catalyst.
  • a process for obtaining 1,4-cyclohexanedicarboxylic acid by reacting sodium salt of cyclohexanedicarboxylic acid with an acid such as hydrochloric acid, or dimethyl 1,4-cyclohexanedicarboxylate obtained by hydrogenating dimethyl terephthalate There has been proposed a method of hydrolyzing an ester (hereinafter sometimes referred to as “DMCD”) in the presence of sulfuric acid or sodium hydroxide to obtain 1,4-cyclohexanedicarboxylic acid (for example, Patent Document 2).
  • DMCD an ester
  • 1,4-cyclohexanedicarboxylic acid is isolated and obtained as a solid.
  • a production method using an aqueous solution of a mixture of dicarboxylic acid and diamine as a starting material is common (see, for example, Patent Document 1).
  • water is added to 1,4-cyclohexanedicarboxylic acid and 2-methylpentamethylenediamine to form a uniform mixed solution, and then the added water is removed, and water produced as a by-product in the reaction is further removed. By removing the amide bond, polycondensation is performed.
  • a production method using a mixture of a dicarboxylic acid ester and a diamine as a starting material is also known.
  • a mixture of dimethyl ester of 1,4-cyclohexanedicarboxylic acid and hexamethylenediamine is charged into an autoclave and heated to remove methanol by-produced by the reaction to form an amide bond for polymerization.
  • a production method using (3) an aqueous solution of a mixture of dicarboxylic acid diester and diamine as a starting material a production method using dicarboxylic acid dimethyl ester and hexamethylenediamine is known (for example, Patent Document 4). reference).
  • methanol is removed to obtain a polyamide intermediate, and then a polycondensation reaction is carried out.
  • 1,4-cyclohexanedicarboxylic acid and diamine are mixed in equimolar amounts in the presence of water.
  • a salt aqueous solution and heat the salt aqueous solution under high pressure conditions to distill off water as a solvent of the salt aqueous solution and water generated by polycondensation of diamine and dicarboxylic acid by distillation.
  • the reaction proceeds with the reaction. That is, in the production process of 1,4-cyclohexanedicarboxylic acid, the product is obtained as a mixture containing water.
  • the hydrolysis reaction of the dicarboxylic acid dimethyl ester proceeds rapidly at the beginning of the reaction, and the raw material dicarboxylic acid dimethyl ester is consumed, but the dicarboxylic acid monomethyl ester remains.
  • the remaining monomethyl ester has a higher vapor pressure than dicarboxylic acid. Therefore, in order to polymerize a polyamide having a high melting point of 280 ° C. or higher, when the reaction temperature is higher than the melting point of the polyamide, the dicarboxylic acid monomethyl ester or diamine escapes out of the system as a vapor. There is a remarkable problem that the degree of polymerization is difficult to increase because the molar ratio of the dicarboxylic acid component and the diamine component is shifted.
  • an object of the present invention is to provide a method for producing a diamine-dicarboxylate aqueous solution and a method for producing a polyamide, which can simplify the whole process for producing a polyamide.
  • the inventors of the present invention produced a dicarboxylic acid by hydrolyzing a dicarboxylic acid diester in the presence of a diamine that can be used for producing a polyamide, and at the same time, It has been found that the above-mentioned problems can be solved by obtaining a salt with diamine, and the present invention has been completed. That is, the present invention is as follows.
  • [1] Including a step of mixing a dicarboxylic acid diester and a diamine, The manufacturing method of the salt aqueous solution of diamine and dicarboxylic acid whose mixing molar ratio (diamine / dicarboxylic acid diester) of the said dicarboxylic acid diester and the said diamine is 1.005 or more.
  • [2] The method for producing a salt aqueous solution of a diamine / dicarboxylic acid according to [1] above, wherein the dicarboxylic acid diester is terephthalic acid diester or cyclohexanedicarboxylic acid diester.
  • the diamine is any one selected from the group consisting of 1,6-diaminohexane, 1,5-diaminopentane, 1,9-diaminononane, 1,10-diaminodecane and 2-methyl-1,5-diaminopentane.
  • [4] The method for producing an aqueous diamine / dicarboxylic acid salt solution according to any one of [1] to [3], wherein trialkylamines are further mixed with the dicarboxylic acid diester and the diamine.
  • [5] A method for producing a polyamide, using the diamine / dicarboxylic acid salt aqueous solution obtained by the method for producing a diamine / dicarboxylic acid salt aqueous solution according to any one of [1] to [4].
  • [6] The method for producing a polyamide according to [5], wherein the polyamide has a melting point of 280 ° C or higher.
  • a dicarboxylic acid is added to the aqueous diamine / dicarboxylic acid salt solution used in the step of performing the polycondensation reaction to obtain a mixture having a molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) of 0.95 to 1.05.
  • a high-quality diamine / dicarboxylate aqueous solution having a very low impurity content and suitable as a raw material for producing polyamide can be produced by a simple process.
  • the diamine / dicarboxylate aqueous solution according to the production method of the present invention in the polyamide production process using this as a raw material, the dicarboxylic acid isolation process can be omitted, the process and equipment can be simplified, An advantageous effect is obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
  • the method for producing a salt aqueous solution of a diamine / dicarboxylic acid includes a step of mixing a dicarboxylic acid diester and a diamine, and a mixing molar ratio of the dicarboxylic acid diester and the diamine (diamine / dicarboxylic acid diester). Is 1.005 or more.
  • a dicarboxylic acid diester is a hydrocarbon compound having two ester groups as substituents.
  • examples of the aliphatic hydrocarbon compounds include n-butane, n-pentane, n-hexane, n-nonane, n-decane, n-dodecane, 2-methylpentane, 2,5- Examples include dimethylhexane and 2-methyloctane.
  • Examples of the alicyclic hydrocarbon compound include cyclopentane, cyclohexane, decahydronaphthalene and the like.
  • Examples of the hydrocarbon compound having an aromatic ring include benzene, toluene, xylene, naphthalene, anthracene and the like.
  • the ester group can be represented by the following chemical formula (I). -COOR (I)
  • R is selected from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an isopropyl group, and an n-butyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group and a p-tolyl group.
  • Examples of the arylalkyl group having 7 to 20 carbon atoms include a benzyl group and a phenethyl group.
  • R is preferably an alkyl group, particularly preferably a methyl group.
  • dicarboxylic acid diester terephthalic acid diester or cyclohexanedicarboxylic acid diester is suitable.
  • the polyamide obtained using the salt aqueous solution of diamine / dicarboxylic acid can easily obtain a polyamide having high heat resistance regardless of the kind of diamine.
  • Cyclohexane dicarboxylic acid diester is a compound having two ester groups in the cyclohexane skeleton. The position of the ester group may be any of 1,2-position, 1,3-position, and 1,4-position.
  • the cyclohexanedicarboxylic acid diester is a compound having two ester groups in the cyclohexane skeleton.
  • Examples of the cyclohexanedicarboxylic acid diester include 1,4-cyclohexanedicarboxylic acid dimethyl ester, 1,3-cyclohexanedicarboxylic acid dimethyl ester, 1,4-cyclohexanedicarboxylic acid diethyl ester, and 1,2-cyclohexanedicarboxylic acid di n-butyl ester. Etc. are preferred, and 1,4-cyclohexanedicarboxylic acid dimethyl ester is more preferred.
  • 1,4-Cyclohexanedicarboxylic acid dimethyl ester can be easily obtained by hydrogenating terephthalic acid dimethyl ester, for example, in the presence of a palladium catalyst under high temperature and high pressure conditions.
  • Diamine is a hydrocarbon compound having two amino groups as substituents.
  • the diamine may be used alone or as a mixture of two or more.
  • Examples of the hydrocarbon compound constituting the diamine used in the production method of the present embodiment include an aliphatic hydrocarbon compound having 1 to 20 carbon atoms, an alicyclic hydrocarbon compound having 5 to 20 carbon atoms, and a 6 to 20 carbon atom.
  • a hydrocarbon compound having an aromatic ring is preferred.
  • Examples of the aliphatic hydrocarbon compound include n-butane, n-pentane, n-hexane, n-nonane, n-decane, n-dodecane, 2-methylpentane, 2,5-dimethylhexane, 2-methyloctane. Etc.
  • Examples of the alicyclic hydrocarbon compound include cyclopentane, cyclohexane, cyclooctane, decahydronaphthalene and the like.
  • Examples of the hydrocarbon compound having an aromatic ring include benzene, toluene, xylene, naphthalene, anthracene and the like.
  • the position of the amino group may be any position of the hydrocarbon compound.
  • the diamine used in the production method of the present embodiment is preferably a primary diamine or a secondary diamine.
  • Tertiary diamine can efficiently proceed the reaction when hydrolyzing the dicarboxylic acid diester, but cannot be used as a raw material for polyamide.
  • the diamine used in the production method of the present embodiment is preferably a primary diamine. Secondary diamines have a higher reaction rate than primary diamines, but primary diamines are more suitable as raw materials for polyamides from the viewpoint of polyamide stability.
  • diamine used in the production method of the present embodiment include 1,5-diaminopentane, 1,6-diaminohexane, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, 2-methyl-1,5-diaminopentane, 2-methyl-1,8-diaminooctane, 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, metaxylenediamine, 3,5-diaminotoluene Etc.
  • 1,5-diaminopentane, 1,6-diaminohexane, 1,9-diaminononane, 1,10-diaminodecane, 2-methyl-1,5-diaminopentane, 2-methyl-1,8-diaminooctane 1,6-diaminohexane, 1,10-diaminodecane, and 2-methyl-1,5-diaminopentane are more preferable.
  • water In the diamine / dicarboxylic acid salt aqueous solution of the present embodiment, water is used as a solvent. Water is added to the dicarboxylic acid diester and diamine. In this case, depending on the type of dicarboxylic acid diester and the amount of water, it may be separated into two layers of oil and water, or it may be uniform, but in either case.
  • the amount of water can be selected as long as the mixture of diamine and dicarboxylic acid does not precipitate and is a uniform aqueous solution, but when the sum of the weights of diamine and dicarboxylic acid is 1,
  • the weight is preferably in the range of 0.2 to 10, more preferably in the range of 0.3 to 5, and still more preferably in the range of 0.5 to 2.
  • the diamine / dicarboxylic acid precipitates particularly when the temperature is low, and when the weight of water is more than 10, the polyamide is used as a raw material for the diamine / dicarboxylic acid salt solution. Is less efficient because less polyamide is obtained in the same polymerization reactor.
  • the dicarboxylic acid diester described above and the diamine described above are mixed, heated and reacted in the presence of water.
  • lactam or ⁇ -aminocarboxylic acid may optionally be added.
  • the lactam is not limited to the following, and examples thereof include pyrrolidone, caprolactam, undecaractam and dodecaractam.
  • the ⁇ -aminocarboxylic acid is not limited to the following, and examples thereof include ⁇ -amino fatty acid which is a ring-opening compound of the above lactam with water.
  • the lactam or ⁇ -aminocarboxylic acid may be used alone or in combination of two or more.
  • the mixing molar ratio of dicarboxylic acid diester and diamine is 1.005 or more, preferably 1.01 or more, more preferably 1.03 or more, and 1.05. More preferably, it is the above.
  • the mixing molar ratio (diamine / dicarboxylic acid diester) is preferably 3.00 or less, more preferably 2.50 or less, and further preferably 2.00 or less.
  • the mixed molar ratio (diamine / dicarboxylic acid diester) is smaller than 1.005, the reaction progresses slowly as the hydrolysis reaction of the dicarboxylic acid diester proceeds, and even over time, the dicarboxylic acid diester or dicarboxylic acid Unreacted substances such as monoesters that have not undergone hydrolysis reaction remain.
  • the mixing molar ratio (diamine / dicarboxylic acid diester) is greater than 3.00, the hydrolysis of the dicarboxylic acid diester proceeds rapidly, but the resulting diamine / dicarboxylic acid salt aqueous solution is used to produce a polyamide.
  • dicarboxylic acid diesters or dicarboxylic acid monoesters are mixed in the aqueous diamine / dicarboxylic acid salt solution, they inhibit the polymerization when the polyamide is produced, and the degree of polymerization cannot be increased as expected.
  • the total molar amount of the dicarboxylic acid diester and the dicarboxylic acid monoester is preferably 1 mol% or less relative to the total molar amount of the dicarboxylic acid, the dicarboxylic acid diester and the dicarboxylic acid monoester. Preferably it is 0.5 mol% or less, More preferably, it is 0.3 mol% or less.
  • the total molar amount of the dicarboxylic acid diester and the dicarboxylic acid monoester in the aqueous diamine / dicarboxylic acid salt solution can be measured by the method described in the examples below.
  • diamine or dicarboxylic acid is added to the obtained diamine / dicarboxylic acid, and the mole of the diamine and dicarboxylic acid.
  • the number is preferably in a specific range. For example, when the amount of diamine is excessive and the reaction according to the production method of the present embodiment is carried out, it is preferable to add dicarboxylic acid to the obtained aqueous salt solution of diamine / dicarboxylic acid.
  • the polyamide polymerization reaction to be performed later proceeds efficiently, and the degree of polymerization of the polyamide can be improved.
  • the molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) in the mixture is 0.95 to 1.05. It is preferably 0.98 to 1.04, more preferably 0.99 to 1.03.
  • the reaction is carried out by adding water.
  • the amount of water is preferably 2 to 20, preferably 2 to 15 in terms of molar ratio to 1 mol of the dicarboxylic acid diester. More preferably, 4 to 10 is more preferable.
  • amount of water By setting the amount of water to 20 or less in terms of molar ratio, it is possible to prevent the concentration of the aqueous salt solution from becoming too low, and to maintain high production efficiency.
  • reaction can be completed in a short time by making the quantity of water 2 or more by molar ratio.
  • trialkylamines In the method for producing an aqueous diamine / dicarboxylic acid salt solution of the present embodiment, trialkylamines can be further mixed when the dicarboxylic acid diester is reacted with the diamine. By mixing trialkylamines, the reaction rate of hydrolysis of the dicarboxylic acid diester tends to be improved, and the amount ratio of the diamine to the dicarboxylic acid diester tends to be reduced.
  • the trialkylamines used in the present embodiment refer to nitrogen compounds in which hydrogen is not bonded to a nitrogen atom, such as tertiary amines and cyclic amines.
  • the trialkylamine used in the present embodiment is represented by “NR 3 ”.
  • N represents a nitrogen atom
  • R represents an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group
  • R may be the same type or a combination of two or three types.
  • Rs may have a cyclic structure.
  • Examples of trialkylamines include trimethylamine, triethylamine, tri-n-butylamine, diethylmethylamine, pyridine, 2-methylpyridine and the like.
  • Trialkylamines may be partly or wholly removed by distillation during the reaction together with alcohol and water. Further, it may remain in the polyamide production process using a salt aqueous solution as a raw material, or may be removed together with water in the polyamide production process.
  • any reaction temperature and reaction pressure can be used as long as alcohol produced as a by-product in the reaction can be distilled and removed, but the reaction temperature is 50 to 150 ° C.
  • the pressure is preferably 80 to 120 ° C., and the pressure is preferably ⁇ 0.1 MPa (gauge pressure) to 0.1 MPa (gauge pressure) in a vacuum state.
  • an alcohol corresponding to the ester is produced. This alcohol can be returned to the reaction vessel or extracted from the reaction system by distillation.
  • the polyamide production method of the present embodiment comprises a step of mixing a dicarboxylic acid diester and a diamine to form a diamine / dicarboxylic acid salt aqueous solution, and heating the diamine / dicarboxylic acid salt aqueous solution formed in the above step.
  • a step of performing a polycondensation reaction between a diamine and a dicarboxylic acid, and in the step of forming a salt aqueous solution of the diamine / dicarboxylic acid, a mixed molar ratio of the dicarboxylic acid diester and the diamine (diamine / dicarboxylic acid) Diester) is 1.005 or more.
  • the polycondensation reaction refers to a generally known dehydration condensation reaction between a diamine and a dicarboxylic acid.
  • the polyamide obtained by the dehydration condensation is one in which diamine components and dicarboxylic acid-derived components are alternately linked by amide bonds.
  • the polyamide production method of the present embodiment preferably uses the diamine / dicarboxylic acid salt aqueous solution obtained by the above-described method for producing the diamine / dicarboxylic acid salt aqueous solution. That is, the method for producing a polyamide of this embodiment includes a step of forming a salt aqueous solution of diamine / dicarboxylic acid by the method of producing a salt aqueous solution of diamine / dicarboxylic acid, and a salt of diamine / dicarboxylic acid formed in the above step. It is preferable to include a step of heating the aqueous solution and performing a polycondensation reaction between the diamine and the dicarboxylic acid.
  • the mixing molar ratio of the dicarboxylic acid diester to the diamine (diamine / dicarboxylic acid diester) is 1.005 or more. It is preferably 1.01 or more, more preferably 1.03 or more, and further preferably 1.05 or more.
  • the mixing molar ratio (diamine / dicarboxylic acid diester) is preferably 3.00 or less, more preferably 2.50 or less, and further preferably 2.00 or less.
  • the hydrolysis reaction of the dicarboxylic acid diester proceeds rapidly, and the dicarboxylic acid diester or dicarboxylic acid
  • the residual amount of unreacted substances such as acid monoesters can be suppressed.
  • the addition work of dicarboxylic acid for adjusting the number of moles of diamine and dicarboxylic acid to be close to equimolar as described later can be reduced. The production efficiency can be improved.
  • the total molar amount of dicarboxylic acid diester and dicarboxylic acid monoester is dicarboxylic acid, dicarboxylic acid diester and dicarboxylic acid monoester in the aqueous diamine / dicarboxylic acid salt solution formed in the above step.
  • the total molar amount is preferably 1 mol% or less, more preferably 0.5 mol% or less, and still more preferably 0.3 mol% or less.
  • dicarboxylic acid is added to a salt aqueous solution of diamine / dicarboxylic acid used in the step of performing the polycondensation reaction, and the molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) is It is preferable to further include a step of obtaining a mixture of 0.95 to 1.05.
  • the molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) in the mixture is more preferably 0.98 to 1.04, and still more preferably 0.99 to 1.03.
  • the molar ratio of the diamine to the dicarboxylic acid in the mixture (diamine / dicarboxylic acid) is within the above range, the polycondensation reaction between the diamine and the dicarboxylic acid in the mixture proceeds efficiently, and a polyamide having a high degree of polymerization is obtained. Obtainable.
  • a trialkylamine is further mixed with the dicarboxylic acid diester and the diamine in the step of forming the salt aqueous solution of diamine / dicarboxylic acid.
  • the carboxylic acid diester, diamine, and trialkylamine used in the method for producing a polyamide according to the present embodiment are the same as those used in the method for producing a salt aqueous solution of diamine / dicarboxylic acid described above.
  • the dicarboxylic acid diester used in the step of forming the salt aqueous solution of diamine / dicarboxylic acid is preferably terephthalic acid diester or cyclohexanedicarboxylic acid diester.
  • the terephthalic acid diester can be easily obtained by oxidizing paraxylene, which is a basic petrochemical.
  • dimethyl terephthalate has long been used as a raw material for polyethylene terephthalate (PET), is industrially produced and widely distributed, and is easily available.
  • Cyclohexanedicarboxylic acid diester obtained by hydrogen reduction of dimethyl terephthalate is also readily available.
  • Polyamides obtained from diamine / dicarboxylic acid salt aqueous solutions obtained using such dicarboxylic acid diesters tend to have a high melting point.
  • the diamine used in the step of forming the salt aqueous solution of diamine / dicarboxylic acid is 1,6-diaminohexane, 1,5-diaminopentane, 1,9-diaminononane, 1,10-diaminodecane and 2-methyl-1, It preferably contains any diamine selected from the group consisting of 5-diaminopentane.
  • diamines are easily available, and polyamides with high crystallinity tend to be obtained from diamine-dicarboxylic acids using such diamines.
  • the melting point of the polyamide obtained by the polyamide production method of the present embodiment is preferably 280 ° C. or more, preferably 285 to 380 ° C., and preferably 290 to 360 ° C.
  • Polyamide having a melting point within the above range can be used as a metal substitute material in the automobile industry, and can also be used as a high heat resistant material corresponding to the surface mounting technology (SMT technology) in the electric and electronic industries. Furthermore, the thermal stability of polymerization, extrusion, and molding in a molten state tends to increase.
  • the melting point of polyamide can be measured by the method described in the examples below.
  • the production of the polyamide of the present embodiment comprises the steps of mixing the dicarboxylic acid diester and the diamine to form a diamine / dicarboxylic acid salt aqueous solution, and the diamine / dicarboxylic acid salt aqueous solution formed in the above step. Heating and performing a polycondensation reaction between the diamine and the dicarboxylic acid, and in the step of forming the salt aqueous solution of the diamine / dicarboxylic acid, a mixed molar ratio of the dicarboxylic acid diester and the diamine (diamine / dicarboxylic acid).
  • the polyamide production method of the present embodiment preferably further includes a step of increasing the degree of polymerization of the polyamide.
  • Examples of the method for producing the polyamide of the present embodiment include various methods as exemplified below: 1) A method in which the salt aqueous solution of diamine / dicarboxylic acid formed in the above-mentioned step is heated and polymerized while maintaining a molten state, 2) A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point, 3) A method in which the salt aqueous solution of diamine / dicarboxylic acid formed in the above-mentioned step is heated, and the precipitated prepolymer is melted again with an extruder such as a kneader to increase the degree of polymerization, 4) A method in which the salt aqueous solution of diamine / dicarboxylic acid formed in the above step is heated, and the degree of polymerization is increased while maintaining the solid state of the precipitated prepolymer at a temperature below the melting point of the polyamide.
  • examples of a method for increasing the melting point of the polyamide by increasing the degree of polymerization include a method of increasing the heating temperature and / or increasing the heating time.
  • the polyamide may be colored by heating or the tensile elongation may be decreased due to thermal deterioration.
  • the rate of increase in molecular weight may be significantly reduced.
  • the polymerization form may be either a batch type or a continuous type.
  • the polymerization apparatus used in the polyamide production method of the present embodiment is not particularly limited, and known apparatuses, for example, an autoclave type reactor, a tumbler type reactor, and an extruder type reactor such as a kneader, etc. Can be mentioned.
  • Specific examples of the method for producing the polyamide of the present embodiment are not particularly limited, and examples thereof include a batch-type hot melt polymerization method described below.
  • Examples of the batch-type hot melt polymerization method are as follows. About 65 to 90 mass of the salt aqueous solution of diamine and dicarboxylic acid formed in the above-mentioned process in a concentration tank operated at a temperature of 110 to 180 ° C. and a pressure of about 0.035 to 0.6 MPa (gauge pressure). To give a concentrated solution. The concentrated solution is then transferred to an autoclave and heating is continued until the pressure in the vessel is about 1.5-5.0 MPa (gauge pressure).
  • the pressure is maintained at about 1.5 to 5.0 MPa (gauge pressure) while draining water and / or gas components, and when the temperature reaches about 250 to 350 ° C., the pressure is reduced to atmospheric pressure (the gauge pressure is , 0 MPa).
  • gauge pressure is , 0 MPa
  • pressurization is performed with an inert gas such as nitrogen to extrude the polyamide melt as a strand. The strand is cooled and cut to obtain pellets.
  • Specific examples of the method for producing the polyamide of the present embodiment are not particularly limited, and examples thereof include the continuous hot melt polymerization method described below.
  • Examples of the continuous hot melt polymerization method are as follows.
  • the salt aqueous solution of diamine-dicarboxylic acid formed in the above step is preheated to about 40-100 ° C. in a preliminary apparatus container, and then transferred to a concentrated layer / reactor, about 0.1-0.5 MPa ( Concentration to about 70-90% at a pressure of gauge pressure) and a temperature of about 200-270 ° C. to obtain a concentrated solution.
  • the concentrated solution is discharged to a flasher maintained at a temperature of about 200 to 350 ° C., and then the pressure is reduced to atmospheric pressure (gauge pressure is 0 MPa). After reducing the pressure to atmospheric pressure, reduce the pressure as necessary.
  • the polyamide melt is then extruded into strands, cooled and cut into pellets.
  • a known molding method such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, Various molded products can be obtained by performing melt spinning and the like.
  • Diethyl terephthalate (DET) A reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • C6DA 1,6-Diaminohexane
  • C10DA 1,10-diaminodecane
  • MC5DA 2-Methylpentamethylenediamine
  • MC5DA A reagent (2-methyl-1,5-diaminopentane) manufactured by Aldrich
  • C9DA 1,9-Diaminononane
  • Sulfuric acid 9%): A reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • the obtained salt or dicarboxylic acid was dissolved in deuterated hexafluoroisopropanol, and 1 H-NMR analysis was performed with a 400 MHz NMR apparatus, and the difference was determined based on the difference in integral value with dicarboxylic acid having a purity of 99.9% or more.
  • ⁇ Ester amount in salt aqueous solution> A part of the aqueous salt solution was collected, and the pressure was reduced while heating at 80 ° C., and water was distilled off to obtain a salt (solid).
  • the obtained salt was dissolved in deuterated hexafluoroisopropanol and subjected to 1 H-NMR analysis with a 400 MHz NMR apparatus, and the amount of ester in the salt aqueous solution [(dicarboxylic The total molar amount of acid diester and dicarboxylic acid monoester) / (total molar amount of dicarboxylic acid, dicarboxylic acid diester and dicarboxylic acid monoester) ⁇ 100) was calculated and determined in mol%.
  • ⁇ Impurity (Na)> The aqueous salt solution was heated at 80 ° C. under reduced pressure to distill water off to obtain a salt (solid).
  • the obtained salt or dicarboxylic acid was determined by ICP-MS analysis.
  • ⁇ Impurity (S)> The aqueous salt solution was heated at 80 ° C. under reduced pressure to distill water off to obtain a salt (solid).
  • the obtained salt or dicarboxylic acid was analyzed and analyzed by ion chromatography.
  • the temperature of the endothermic peak (melting peak) that appears at the time of this temperature rise was defined as Tm1 (° C.). After maintaining the temperature in the melted state at the highest temperature for 2 minutes, the temperature was decreased to 30 ° C. at a temperature decrease rate of 20 ° C./min, and held at 30 ° C. for 2 minutes. Thereafter, the maximum peak temperature of the endothermic peak (melting peak) that appears when the temperature is raised at a rate of temperature rise of 20 ° C./min as described above is the melting point Tm2 (° C.), and the total peak area is the heat of fusion ⁇ H (J / g ).
  • a peak having ⁇ H of 1 J / g or more was regarded as a peak, and when there were a plurality of peaks, the endothermic peak temperature having the maximum ⁇ H was defined as the melting point Tm2 (° C.).
  • Tm2 melting point
  • a 1% concentration solution ((polyamide 1 g) / (98% sulfuric acid 100 mL) was prepared using 98% sulfuric acid, and the relative viscosity ⁇ r was measured at a temperature of 25 ° C. did.
  • Example 1 ⁇ Production of salt aqueous solution> To a 300 mL glass three-necked flask equipped with a thermometer, a distillation tube and a cooling tube, 40 g of dimethyl 1,4-cyclohexanedicarboxylate, 35 g of 1,6-hexamethylenediamine and 72 g of distilled water were added to obtain a mixed solution. Under an atmospheric pressure, the mixture was heated in an oil bath while continuously distilling so that the temperature of the mixture became 100 ° C.
  • a polyamide was produced by the hot melt polymerization method using the salt aqueous solution as follows. By adding 17.2 g of 1,4-cyclohexanedicarboxylic acid to the 1,6-hexamethylenediamine / 1,4-cyclohexanedicarboxylate aqueous solution obtained above while confirming with a pH meter, a polyamide raw material is obtained.
  • a neutralized diamine-cyclohexanedicarboxylate aqueous solution suitable as The obtained aqueous solution was charged into an autoclave having an internal volume of 500 mL (manufactured by Nitto Koatsu), and kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was replaced with nitrogen.
  • the liquid temperature was continuously heated from about 50 ° C. until the pressure in the autoclave tank reached about 2.5 kg / cm 2 as gauge pressure (hereinafter, all pressure in the tank was expressed as gauge pressure). .
  • the heater temperature was adjusted so that the final reaction temperature of the resin temperature (liquid temperature) was 380 ° C.
  • the inside of the tank was reduced to 370 torr with a vacuum apparatus and maintained for 10 minutes.
  • the inside of the autoclave was pressurized to about 0.2 kg / cm 2 with nitrogen, and then the autoclave was taken out of the heater and cooled.
  • the produced polyamide was removed from the autoclave while being crushed. The obtained polyamide was analyzed based on the above measurement method. The analysis results of the polyamide are shown in Table 1.
  • Example 2 The type and amount of diamine, the amount of distilled water, the amount of additional dicarboxylic acid, the final reaction temperature during polyamide production, and the like were changed as shown in Table 1 below.
  • the other conditions were the same as in Example 1, and the aqueous salt solution and the polyamide were produced.
  • Table 1 below shows the charged amount and reaction temperature, the analysis result of the aqueous salt solution, and the analysis result of the polyamide.
  • Example 5 The type and amount of diester, the type and amount of diamine, the amount of distilled water, the final reaction temperature during polyamide production, etc. were changed as shown in Table 1 below. Also, no dicarboxylic acid was added during polyamide production. Further, 3.7 g of tri-n-butylamine was added as a trialkylamine during the production of the aqueous salt solution. The other conditions were the same as in Example 1, and the aqueous salt solution and the polyamide were produced. Table 1 below shows the charged amount and reaction temperature, the analysis result of the aqueous salt solution, and the analysis result of the polyamide.
  • Example 6 The type and amount of diester, the type and amount of diamine, the amount of distilled water, the amount of additional dicarboxylic acid, the final reaction temperature during polyamide production, etc. were changed as shown in Table 1 below. Further, 1.9 g of pyridine was added as a trialkylamine during the production of the aqueous salt solution. The other conditions were the same as in Example 1, and the aqueous salt solution and the polyamide were produced. Table 1 below shows the charged amount and reaction temperature, the analysis result of the aqueous salt solution, and the analysis result of the polyamide.
  • Example 7 and 8 The type and amount of diester, the type and amount of diamine, the amount of distilled water, the type and amount of additional dicarboxylic acid, the final reaction temperature during polyamide production, and the like were changed as shown in Table 1 below. The other conditions were the same as in Example 1, except that the aqueous salt solution and the polyamide were produced. Table 1 below shows the charged amount and reaction temperature, the analysis result of the aqueous salt solution, and the analysis result of the polyamide.
  • a polyamide was produced by the hot melt polymerization method using the salt aqueous solution as follows.
  • Polyamide was produced in the same manner as in Example 1 except that the salt aqueous solution was charged into an autoclave having an internal volume of 500 mL (manufactured by Nitto Koatsu) without adding dicarboxylic acid and the final reaction temperature was changed to 270 ° C.
  • the obtained polyamide was analyzed based on the above measurement method. The analysis results of the polyamide are shown in Table 1.
  • the obtained mixed solution was cooled to 10 ° C., about 30 mL of 35% hydrochloric acid was added, and the precipitated white solid was collected by filtration. This solid was washed with distilled water and dried at 80 ° C. under reduced pressure. From the NMR analysis of the obtained solid, the purity of 1,4-cyclohexanedicarboxylic acid was 99%. Moreover, the amount of impurities (S) in the salt was less than 0.1 ppm, and the amount of impurities (Na) was 320 ppm. Table 1 below shows the charged amount and the analysis result of the aqueous salt solution.
  • diamine / dicarboxylate aqueous solutions suitable for polyamide production could be produced from dicarboxylic acid diesters in one reaction vessel in a simple process. Moreover, it turned out that the obtained diamine dicarboxylate aqueous solution is a high quality thing with few amounts of impurities called S and Na. Furthermore, it was found that the polyamide obtained by the polycondensation reaction using a diamine / dicarboxylate aqueous solution as a raw material has a high melting point and a sufficiently high molecular weight.
  • the production method of the present invention has industrial applicability as a raw material production technique capable of simplifying the polyamide production process and as an efficient polyamide production technique.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyamides (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】簡易な工程で質の高いジアミン・ジカルボン酸の塩水溶液を製造する方法及びポリアミドを製造する方法を提供することを目的とする。 【解決手段】本発明のジアミン・ジカルボン酸の塩水溶液の製造方法は、ジカルボン酸ジエステルと、ジアミンとを、混合させる工程を含み、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である。また、本発明のポリアミドの製造方法は、ジカルボン酸ジエステルと、ジアミンとを、混合させ、形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程を含み、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である。

Description

ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法
 本発明は、ジアミン・ジカルボン酸塩水溶液及びポリアミドの製造方法に関する。
 ポリアミド6及びポリアミド66(以下、それぞれ、PA6及びPA66と略称する場合がある。)等に代表されるポリアミドは、成形加工性、機械物性、耐薬品性に優れていることから、自動車用、電気・電子用、産業資材用、工業材料用、日用及び家庭品用等の各種部品材料として広く用いられている。
 自動車産業においては、環境に対する取り組みとして、排出ガス低減のために、金属代替による車体軽量化の要求がある。
 このような要求に応えるために、外装材料や内装材料等にポリアミドが一段と利用されるようになっており、ポリアミド材料に対する耐熱性、強度、及び外観等の要求特性のレベルは一層向上している。中でも、エンジンルーム内の温度は上昇傾向にあるため、ポリアミド材料に対する高耐熱化の要求が強まっている。
 また、家電等の電気・電子産業においては、表面実装(SMT)ハンダの鉛フリー化に対応するべく、ハンダの融点上昇に耐えることができる材料として、ポリアミド材料に対する高耐熱化が要求されている。
 前記PA6及びPA66等のポリアミドでは、融点が低く、耐熱性の点でこれらの要求を満たすことができないため、従来から高融点ポリアミドに関する研究がなされ、各種材料が提案されている。
 具体的には、アジピン酸とテトラメチレンジアミンとからなる高融点脂肪族系ポリアミド(以下、「PA46」と略称する場合がある。)や、テレフタル酸とヘキサメチレンジアミンとを主成分とする高融点半芳香族ポリアミド(以下、「6T系共重合ポリアミド」と略称する場合がある。)等が提案されており、そのいくつかは実用化されている。
 しかしながら、前記PA46は、良好な成形性、耐熱性を有するものの、吸水率が高く、吸水による寸法変化や機械物性の低下が著しく大きいという問題点を持っており、自動車用途等で要求される寸法変化の面で要求を満たせない場合がある。
 また、前記6T系共重合ポリアミドは、低吸水性、高耐熱性、高耐薬品性という特性を有しているが、流動性が低く成形性や成形品表面外観が不十分である可能性や、靭性、耐光性に劣る可能性がある。そのため、外装部品のような成形品の外観が要求されたり、日光等に曝されたりする用途では改善が望まれている。また比重も大きく、軽量性の面でも改善が望まれている。
 このような状況の中、PA46や6T系共重合ポリアミドと異なる構造を有する高融点ポリアミドとして、1,4-シクロヘキサンジカルボン酸を用いた半脂環族ポリアミドが提案されている(例えば、特許文献1参照。)。この半脂環族ポリアミドは、耐光性、靭性、成形性、耐熱性等に優れていることが開示されている。
 この半脂環族ポリアミドの原料となる1,4-シクロヘキサンジカルボン酸の製造方法については、いくつかの方法が知られている。例えば、テレフタル酸をパラジウム触媒で水素添加反応を行い、1,4-シクロヘキサンジカルボン酸を得る方法、テレフタル酸のナトリウム塩をルテニウム触媒の存在下で水素添加反応を行い、さらに得られた1,4-シクロヘキサンジカルボン酸ナトリウム塩を塩酸等の酸と作用させることにより1,4-シクロヘキサンジカルボン酸を得る方法、また、テレフタル酸ジメチルエステルを水素添加することによって得られる、1,4-シクロヘキサンジカルボン酸ジメチルエステル(以下、「DMCD」と称することがある)を、硫酸又は水酸化ナトリウムの存在下で加水分解して、1,4-シクロヘキサンジカルボン酸を得る方法が提案されている(例えば、特許文献2参照。)。これらの方法では、1,4-シクロヘキサンジカルボン酸を固体として単離して得ている。
 また、ポリアミドの製造方法については、(1)ジカルボン酸とジアミンとの混合物の水溶液を出発原料とする製造方法が一般的である(例えば、特許文献1参照)。この反応形態では、1,4-シクロヘキサンジカルボン酸及び2-メチルペンタメチレンジアミンに対して、水を加えて均一な混合液とした後で、加えた水を除き、さらに反応で副生する水を除いていくことによってアミド結合を形成して重縮合を行う。
 一方で、(2)ジカルボン酸エステルとジアミンとの混合物を出発原料とする製造方法も知られている。例えば、1,4-シクロヘキサンジカルボン酸ジメチルエステルとヘキサメチレンジアミンとの混合物をオートクレーブに仕込み、加熱することにより反応で副生するメタノールを除いていくことによってアミド結合を形成して重合を行っている(例えば、特許文献3参照。)
 また、(3)ジカルボン酸ジエステルとジアミンとの混合物の水溶液を出発原料とする製造方法としては、ジカルボン酸ジメチルエステルとヘキサメチレンジアミンとを用いた製造方法が知られている(例えば、特許文献4参照)。ここでは、セバシン酸ジメチルエステルとヘキサメチレンジアミンとを用いた製造方法としてメタノールを除去してポリアミド中間体を得た後、重縮合反応を進めている。
国際公開第2002/048239号 特開2005-330239号公報 国際公開第2010/117098号 特開昭57-80426号公報
 上述した1,4-シクロヘキサンジカルボン酸の製造方法はいずれも、高温で水を溶媒として用いて反応を行うものであり、生成物である1,4-シクロヘキサンジカルボン酸は、水を除去することにより単離している。
 一方で、上述した(1)の1,4-シクロヘキサンジカルボン酸を原料にしてポリアミドを製造する場合には、1,4-シクロヘキサンジカルボン酸とジアミンとを、水の存在下で等モルを混合して塩水溶液を得て、該塩水溶液を高圧条件の下に加熱して、前記塩水溶液の溶媒としての水と、ジアミンとジカルボン酸の重縮合で発生する水とを、蒸留により留去することにより反応を進める。
 すなわち、1,4-シクロヘキサンジカルボン酸の製造工程においては、水を含む混合物として生成物が得られる。そのため、1,4-シクロヘキサンジカルボン酸を単離するためには水を除かなければならない。さらにこの1,4-シクロヘキサンジカルボン酸を原料としてポリアミド重合を行う際には、再び水を加えて行っており、ポリアミドの製造工程全体として、作業が重複したり煩雑化したりしているという問題を有している。
 また、上記(2)の1,4-シクロヘキサンジカルボン酸ジメチルを原料にしてポリアミドを製造する場合は、1,4-シクロヘキサンジカルボン酸とジアミンとを、混合して、メタノールを除くことで重合反応を進める。この反応では、水を使用しないということで簡易化は可能であるが、反応でメタノールを除く際に、1,4-シクロヘキサンジカルボン酸やジアミンが同時に除かれてしまい、ポリアミドのジカルボン酸成分とジアミン成分とのモル比がずれてしまうため重合度が上がりにくいという問題が見られる。
 一方、上記(3)のジカルボン酸ジメチルエステルとヘキサメチレンジアミンとを用いた製造方法では、ジカルボン酸ジメチルエステルとヘキサメチレンジアミンとを等モル混合して、ジカルボン酸ジメチルエステルの加水分解を実施する。このジカルボン酸ジメチルエステルの加水分解反応は、反応初期では速やかに進行し、原料のジカルボン酸ジメチルエステルは消費されていくが、ジカルボン酸モノメチルエステルが残ってしまう。この残ったモノメチルエステルは蒸気圧がジカルボン酸に比べて高い。そのため、280℃以上の高い融点を持ったポリアミドを重合するためにポリアミドの融点よりも高い反応温度に上げる場合には、ジカルボン酸モノメチルエステルやジアミンが蒸気として系外に逃げていくため、ポリアミドのジカルボン酸成分とジアミン成分とのモル比がずれてしまうため重合度が上がりにくいという問題が顕著に見られる。
 そこで、本発明においては、ポリアミドを製造する工程全体を簡易化することが可能な、ジアミン・ジカルボン酸塩水溶液の製造方法及びポリアミドの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ポリアミドの製造に使用することが可能なジアミンの存在下で、ジカルボン酸ジエステルの加水分解を行って、ジカルボン酸を製造し、同時にジアミンとの塩を得ることにより上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
〔1〕
 ジカルボン酸ジエステルと、ジアミンとを、混合させる工程を含み、
 前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である、ジアミン・ジカルボン酸の塩水溶液の製造方法。
〔2〕
 前記ジカルボン酸ジエステルが、テレフタル酸ジエステル又はシクロヘキサンジカルボン酸ジエステルである、前記〔1〕に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
〔3〕
 前記ジアミンが、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,9-ジアミノノナン、1,10-ジアミノデカン及び2-メチル-1,5-ジアミノペンタンからなる群より選択されるいずれかのジアミンを含む、前記〔1〕又は〔2〕に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
〔4〕
 前記ジカルボン酸ジエステル及びジアミンに、さらにトリアルキルアミン類を混合させる、前記〔1〕~〔3〕のいずれか一に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
〔5〕
 前記〔1〕~〔4〕のいずれか一に記載のジアミン・ジカルボン酸の塩水溶液の製造方法で得られたジアミン・ジカルボン酸の塩水溶液を用いる、ポリアミドの製造方法。
〔6〕
 前記ポリアミドの融点が280℃以上である、前記〔5〕に記載のポリアミドの製造方法。
〔7〕
 前記ジアミン・ジカルボン酸の塩水溶液にジカルボン酸を添加し、ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が0.95~1.05の混合物を得る工程と、
 前記工程で得られた混合物中のジアミンとジカルボン酸との重縮合反応を行う工程と、
を含む、前記〔5〕又は〔6〕に記載のポリアミドの製造方法。
〔8〕
 ジカルボン酸ジエステルと、ジアミンとを、混合させ、ジアミン・ジカルボン酸の塩水溶液を形成する工程と、
 前記工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程と、
を、含み、
 前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、
 前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である、ポリアミドの製造方法。
〔9〕
 前記工程で形成されたジアミン・ジカルボン酸の塩水溶液において、
 ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量が、ジカルボン酸、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量に対して、1mol%以下である、前記〔8〕に記載のポリアミドの製造方法。
〔10〕
 前記重縮合反応を行う工程に用いるジアミン・ジカルボン酸の塩水溶液に、ジカルボン酸を添加して、ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が0.95~1.05の混合物を得る工程を、さらに含む、前記〔8〕又は〔9〕に記載のポリアミドの製造方法。
〔11〕
 前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、
 前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.01~2.00である、前記〔8〕~〔10〕のいずれか一に記載のポリアミドの製造方法。
 本発明の製造方法によれば、ポリアミド製造用の原料として好適な、不純物含有量の極めて少ない、高品質のジアミン・ジカルボン酸塩水溶液が、簡易な工程により製造できる。
 本発明の製造方法に従いジアミン・ジカルボン酸塩水溶液を製造することにより、これを原料としたポリアミド製造工程において、ジカルボン酸の単離工程が省略でき、工程や設備を簡略化でき、工業的に極めて有利であるという効果が得られる。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。
 本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔ジアミン・ジカルボン酸の塩水溶液の製造方法〕
 本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法は、ジカルボン酸ジエステルと、ジアミンとを混合させる工程を含み、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である。
(ジカルボン酸ジエステル)
 ジカルボン酸ジエステルは、2個のエステル基を置換基として有する炭化水素化合物である。
 前記炭化水素化合物のうち、脂肪族炭化水素化合物としては、例えば、n-ブタン、n-ペンタン、n-ヘキサン、n-ノナン、n-デカン、n-ドデカン、2-メチルペンタン、2,5-ジメチルヘキサン、2-メチルオクタン等が挙げられる。
 脂環式炭化水素化合物としては、例えば、シクロペンタン、シクロヘキサン、デカヒドロナフタレン等が挙げられる。
 芳香族環を有する炭化水素化合物としては、例えば、ベンゼン、トルエン、キシレン、ナフタレン、アントラセン等が挙げられる。
 エステル基は、下記化学式(I)で表すことができる。
 -COOR ・・・(I)
 ここで、式(I)中、Rは、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアリールアルキル基から選ばれる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、イソプロピル基、n-ブチル基が挙げられる。
 炭素数6~20のアリール基としては、フェニル基、p-トリル基が挙げられる。
 炭素数7~20のアリールアルキル基としては、ベンジル基、フェネチル基が挙げられる。
 Rとしては、アルキル基が好ましく、特にメチル基が好ましい。
 前記ジカルボン酸ジエステルとしては、テレフタル酸ジエステル又はシクロヘキサンジカルボン酸ジエステルが好適である。これらのジカルボン酸ジエステルを用いた場合は、ジアミン・ジカルボン酸の塩水溶液を用いて得られるポリアミドは、ジアミンの種類にかかわらず高い耐熱性を持ったポリアミドを容易に得ることができる。
 シクロヘキサンジカルボン酸ジエステルは、シクロヘキサン骨格にエステル基を2個有する化合物である。
 エステル基の位置は、1,2-位、1,3-位、1,4-位のいずれであってもよい。
 前記シクロヘキサンジカルボン酸ジエステルは、シクロヘキサン骨格にエステル基を2個有する化合物である。
 前記シクロヘキサンジカルボン酸ジエステルとしては、1,4-シクロヘキサンジカルボン酸ジメチルエステル、1,3-シクロヘキサンジカルボン酸ジメチルエステル、1,4-シクロヘキサンジカルボン酸ジエチルエステル、1,2-シクロヘキサンジカルボン酸ジn-ブチルエステル等が好ましく、1,4-シクロヘキサンジカルボン酸ジメチルエステルがより好ましい。
 1,4-シクロヘキサンジカルボン酸ジメチルエステルは、テレフタル酸ジメチルエステルを、例えばパラジウム触媒の存在下で高温高圧の条件で水素添加反応をすることで容易に得られる。
(ジアミン)
 ジアミンとは、2個のアミノ基を置換基として有する炭化水素化合物である。
 ジアミンは、単独で用いても、2種類以上の混合物として用いてもよい。
 本実施形態の製造方法において用いるジアミンを構成する前記炭化水素化合物としては、炭素数1~20の脂肪族炭化水素化合物、炭素数5~20の脂環式炭化水素化合物、炭素数6~20の芳香族環を有する炭化水素化合物が好ましい。
 脂肪族炭化水素化合物としては、例えば、n-ブタン、n-ペンタン、n-ヘキサン、n-ノナン、n-デカン、n-ドデカン、2-メチルペンタン、2,5-ジメチルヘキサン、2-メチルオクタン等が挙げられる。
 脂環式炭化水素化合物としては、例えば、シクロペンタン、シクロヘキサン、シクロオクタン、デカヒドロナフタレン等が挙げられる。
 芳香族環を有する炭化水素化合物としては、例えば、ベンゼン、トルエン、キシレン、ナフタレン、アントラセン等が挙げられる。
 アミノ基の位置は、炭化水素化合物の任意の位置であってかまわない。
 本実施形態の製造方法において用いるジアミンは、1級ジアミン、2級ジアミンが好ましい。
 3級ジアミンは、ジカルボン酸ジエステルを加水分解するに際し、反応速度が高いため効率的に反応を進めることができるが、ポリアミドの原料にすることはできない。
 本実施形態の製造方法において用いるジアミンは、1級ジアミンであることが好ましい。2級ジアミンは、1級ジアミンに比べ反応速度が高いが、ポリアミドの原料としては1級ジアミンのほうがポリアミドの安定性の観点から適しているからである。
 本実施形態の製造方法において用いるジアミンは、具体的には、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,12-ジアミノドデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、メタキシレンジアミン、3,5-ジアミノトルエン等が挙げられる。
 特に、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,9-ジアミノノナン、1,10-ジアミノデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタンが好ましく、1,6-ジアミノヘキサン、1,10-ジアミノデカン、2-メチル-1,5-ジアミノペンタンがより好ましい。
(水)
 本実施形態のジアミン・ジカルボン酸の塩水溶液では水を溶媒とする。水はジカルボン酸ジエステル及びジアミンに対して加えておく。この場合、ジカルボン酸ジエステルの種類や水の量によっては、油水の二層に分離することもあるし、均一になることもあるがいずれの場合でもかまわない。水の量は、ジアミンとジカルボン酸との混合物が析出せず均一な水溶液であれば任意の量を選択することができるが、ジアミン及びジカルボン酸の重量の和を1としたときに、水の重量は好ましくは0.2~10の範囲、より好ましくは0.3~5の範囲、さらに好ましくは0.5~2の範囲である。前記水の重量が0.2より少ない場合は、ジアミン・ジカルボン酸が特に低温にした場合に析出してしまい、前記水の重量が10より多い場合はジアミン・ジカルボン酸の塩水溶液を原料としてポリアミドを製造する際に、同じ重合のリアクターに対してポリアミドの得られる量が少なくなるため効率が悪くなる。
(ジカルボン酸ジエステルとジアミンとの作用)
 本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法においては、上述したジカルボン酸ジエステルと、上述したジアミンとを、水の存在下で混合、加熱し、反応させる。反応器は、副生するアルコールさらに必要に応じ溶媒である水を蒸留で除いていくことが好ましい。蒸留で除かれた水に対して反応中に水を加えてもよい。
 反応工程においては、ラクタム又はω-アミノカルボン酸を任意に加えてもよい。
 ラクタムは、以下に制限されないが、例えば、ピロリドン、カプロラクタム、ウンデカラクタムやドデカラクタムが挙げられる。
 一方、ω-アミノカルボン酸としては、以下に制限されないが、例えば、上記ラクタムの水による開環化合物であるω-アミノ脂肪酸が挙げられる。
 なお、ラクタム又はω-アミノカルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(ジカルボン酸ジエステルとジアミンとの混合比)
 ジカルボン酸ジエステルとジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)は、1.005以上であり、1.01以上であることが好ましく、1.03以上であることがより好ましく、1.05以上であることがさらに好ましい。また、当該混合モル比(ジアミン/ジカルボン酸ジエステル)は、3.00以下であることが好ましく、2.50以下であることがより好ましく、2.00以下であることがさらに好ましい。
 前記混合モル比(ジアミン/ジカルボン酸ジエステル)が1.005より小さい場合は、ジカルボン酸ジエステルの加水分解反応が進むにつれて反応の進行が遅くなっていき、時間をかけてもジカルボン酸ジエステルやジカルボン酸モノエステルといった加水分解反応が進行しなかった未反応物が残存してしまう。前記混合モル比(ジアミン/ジカルボン酸ジエステル)が3.00よりも大きい場合は、ジカルボン酸ジエステルの加水分解は速やかに進行するが、得られたジアミン・ジカルボン酸の塩水溶液を用いてポリアミドを製造する際に、ジアミンとジカルボン酸とのモル数を後述するように等モル近くに調整する必要があり、その調整の量が大きくなるため効率が悪くなる。
 また、ジアミン・ジカルボン酸の塩水溶液中に、ジカルボン酸ジエステルやジカルボン酸モノエステルが混入していると、ポリアミドを製造する際にそれらが重合を阻害するため、重合度が期待通りに上がらなくなる。ジアミン・ジカルボン酸の塩水溶液において、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量としては、ジカルボン酸、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量に対して、好ましくは1mol%以下、より好ましくは0.5mol%以下、さらに好ましくは0.3mol%以下とする。
 なお、ジアミン・ジカルボン酸の塩水溶液における、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量は、後述の実施例に記載の方法で測定することができる。
 本実施形態の製造方法により得られるジアミン・ジカルボン酸の塩水溶液をポリアミド製造用の原料として用いる場合、得られたジアミン・ジカルボン酸にジアミン又はジカルボン酸を添加して、ジアミンとジカルボン酸とのモル数を特定の範囲とすることが好ましい。
 例えば、ジアミンの量が過剰で、本実施形態の製造方法による反応が行われた場合、得られたジアミン・ジカルボン酸の塩水溶液に対してジカルボン酸を添加することが好ましい。ジアミンとジカルボン酸とのモル数が特定の範囲のときに、後に行うポリアミドの重合反応が効率よく進行し、ポリアミドの重合度を向上させることができる。ジアミン・ジカルボン酸の塩水溶液に対してジカルボン酸を添加して混合物を調製する場合、該混合物中のジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)は、0.95~1.05とすることが好ましく、0.98~1.04とすることがより好ましく、0.99~1.03とすることがさらに好ましい。
 ジアミン・ジカルボン酸の塩水溶液の製造の際には、水を加えて反応を行うが、ジカルボン酸ジエステル1モルに対して、水の量は、モル比で2~20が好ましく、2~15がより好ましく、4~10がさらに好ましい。
 水の量をモル比で20以下とすることにより、塩水溶液の濃度が低くなり過ぎることを防止でき、製造効率を高く維持できる。また、水の量をモル比で2以上とすることにより、短時間で反応を完了させることができる。
(トリアルキルアミン類)
 本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法において、ジカルボン酸ジエステルとジアミンとを反応させる際に、さらにトリアルキルアミン類を混合させることができる。トリアルキルアミン類を混合させることにより、ジカルボン酸ジエステルの加水分解の反応速度を向上させることや、ジカルボン酸ジエステルに対するジアミンの量比を小さくすることができる傾向にある。
 本実施形態に用いるトリアルキルアミン類とは、3級アミンや環状のアミンのように窒素原子に水素が結合していない窒素化合物を言う。本実施形態に用いるトリアルキルアミン類は、「NR」であらわされる。Nは窒素原子、Rは脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基を示し、Rは同一の1種類でもかまわないし、複数の2種類、3種類の組み合わせでもかまわない。またR同士が環状構造をとっておいてもよい。
 トリアルキルアミン類の例としては、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、ジエチルメチルアミン、ピリジン、2-メチルピリジン等が挙げられる。
 トリアルキルアミン類は、反応中にアルコール、水とともに一部あるいは全部が蒸留により除かれていてもかまわない。また、塩水溶液を原料とするポリアミドの製造工程に残ってもかまわないし、ポリアミドの製造工程において水と共に除かれてもかまわない。
 ジアミン・ジカルボン酸の塩水溶液の製造について、反応温度や反応圧力は反応で副生するアルコールを蒸留し除去することができれば任意の値を用いることができるが、反応温度としては50~150℃が好ましく、80~120℃がさらに好ましく、圧力は真空状態の-0.1MPa(ゲージ圧力)~0.1MPa(ゲージ圧)が好ましい。
 本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法を実施することによる反応の進行に従い、エステルに対応するアルコールが生成する。
 このアルコールは、反応容器に戻すこともできるし、反応の系から蒸留により抜き出すこともできる。
 アルコールの除去に際して、水を同時に蒸留により抜き出すことも可能である。系内に水を添加してもよい。
 アルコールを除去することにより反応の平衡がアルコール生成側に傾くため、本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法による反応を有利に進めることができる。また、本実施形態のジアミン・ジカルボン酸の塩水溶液の製造方法の反応においては、水が必要であるため、水を反応系に適宜戻したり、添加したりする。
〔ポリアミドの製造方法〕
 本実施形態のポリアミドの製造方法は、ジカルボン酸ジエステルと、ジアミンとを、混合させ、ジアミン・ジカルボン酸の塩水溶液を形成する工程と、前記工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程とを含み、前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である。
 本実施形態のポリアミドの製造方法において、重縮合反応とは、一般に知られているジアミンとジカルボン酸との脱水縮合反応のことをいう。当該脱水縮合することによって得られるポリアミドは、ジアミン成分とジカルボン酸由来成分とが交互にアミド結合で連結されたものである。
 本実施形態のポリアミドの製造方法は、上述のジアミン・ジカルボン酸の塩水溶液の製造方法で得られたジアミン・ジカルボン酸の塩水溶液を用いることが好ましい。
 すなわち、本実施形態のポリアミドの製造方法は、上述のジアミン・ジカルボン酸の塩水溶液の製造方法によりジアミン・ジカルボン酸の塩水溶液を形成する工程と、前記工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程とを含むことが好ましい。
 本実施形態のポリアミドの製造方法は、前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上であり、1.01以上であることが好ましく、1.03以上であることがより好ましく、1.05以上であることがさらに好ましい。また、当該混合モル比(ジアミン/ジカルボン酸ジエステル)は、3.00以下であることが好ましく、2.50以下であることがより好ましく、2.00以下であることがさらに好ましい。当該混合モル比(ジアミン/ジカルボン酸ジエステル)が前記範囲内であると、ジアミン・ジカルボン酸の塩水溶液を形成する工程において、ジカルボン酸ジエステルの加水分解反応が速やかに進行し、ジカルボン酸ジエステルやジカルボン酸モノエステルといった未反応物の残存量を抑制することができる。また、ジアミンとジカルボン酸との重縮合反応を行う工程を行う際に、ジアミンとジカルボン酸とのモル数を後述するように等モル近くに調整するためのジカルボン酸の添加作業を軽減でき、ポリアミドの製造効率を向上させることができる。
 本実施形態のポリアミドの製造方法は、前記工程で形成されたジアミン・ジカルボン酸の塩水溶液において、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量は、ジカルボン酸、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量に対して、1mol%以下であることが好ましく、0.5mol%以下であることがより好ましく、0.3mol%以下であることがさらに好ましい。ジアミン・ジカルボン酸の塩水溶液において、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量が前記範囲内であると、重合度の高いポリアミドが効率良く得られる傾向にある。
 本実施形態のポリアミドの製造方法は、前記重縮合反応を行う工程に用いるジアミン・ジカルボン酸の塩水溶液に、ジカルボン酸を添加して、ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が0.95~1.05の混合物を得る工程を、さらに含むことが好ましい。該混合物中のジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)は、0.98~1.04とすることがより好ましく、0.99~1.03とすることがさらに好ましい。該混合物中のジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が前記範囲であると、該混合物中のジアミンとジカルボン酸との重縮合反応が効率よく進行し、重合度の高いポリアミドを得ることができる。
 本実施形態のポリアミドの製造方法は、前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、前記ジカルボン酸ジエステル及びジアミンに、さらにトリアルキルアミン類を混合させることが好ましい。トリアルキルアミン類を混合させることにより、ジカルボン酸ジエステルの加水分解の反応速度を向上したり、ジカルボン酸ジエステルに対するジアミンの量比を小さくすることができる傾向にある。
 本実施形態のポリアミドの製造方法で用いる、カルボン酸ジエステル、ジアミン、トリアルキルアミン類は、上述したジアミン・ジカルボン酸の塩水溶液の製造方法で用いるものと同様である。
 前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において用いるジカルボン酸ジエステルは、テレフタル酸ジエステル又はシクロヘキサンジカルボン酸ジエステルであることが好ましい。テレフタル酸ジエステルは、基礎的な石油化学品であるパラキシレンを酸化することによって容易に得ることができる。特にテレフタル酸ジメチルは古くからポリエチレンテレフタレート(PET)の原料として使用されることもあり、工業的に生産され広く流通しており容易に入手が可能である。また、テレフタル酸ジメチルを水素還元することによって得られるシクロヘキサンジカルボン酸ジエステルも容易に入手が可能である。このようなジカルボン酸ジエステルを用いて得られるジアミン・ジカルボン酸の塩水溶液から得られるポリアミドは融点が高くなる傾向にある。
 前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において用いるジアミンは、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,9-ジアミノノナン、1,10-ジアミノデカン及び2-メチル-1,5-ジアミノペンタンからなる群より選択されるいずれかのジアミンを含むことが好ましい。このようなジアミンは入手が容易であり、またこのようなジアミンを用いたジアミン・ジカルボン酸から結晶性の高いポリアミドが得られる傾向にある。
 本実施形態のポリアミドの製造方法で得られるポリアミドの融点は280℃以上であることが好ましく、285~380℃であることが好ましく、290~360℃であることが好ましい。融点が前記範囲内であるポリアミドは、自動車産業において、金属代替材料として利用可能であり、また電気・電子産業においても、表面実装技術(SMT技術)に対応する高耐熱材料として利用することができ、さらに、溶融状態である重合や押し出し、成型の熱安定性が高くなる傾向にある。
 なお、ポリアミドの融点は、後述の実施例に記載の方法で測定することができる。
 本実施形態のポリアミドの製造は、上述のジカルボン酸ジエステルと、ジアミンとを、混合させ、ジアミン・ジカルボン酸の塩水溶液を形成する工程と、前記工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程とを含み、前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)を上記特定の範囲に制御していれば、当該重縮合反応やポリアミドの重合度を上昇させる工程については公知の方法を用いることができる。例えば、本実施形態のポリアミドの製造方法としては、ポリアミドの重合度を上昇させる工程を、さらに含むことが好ましい。
 本実施形態のポリアミドの製造方法としては、例えば、以下に例示するように種々の方法が挙げられる:
 1)上述の工程で形成されたジアミン・ジカルボン酸の塩水溶液を、加熱し、溶融状態を維持したまま重合させる方法、
 2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法、
 3)上述の工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、析出したプレポリマーをさらにニーダーなどの押出機で再び溶融して重合度を上昇させる方法、
 4)上述の工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法。
 本実施形態のポリアミドの製造方法において、重合度を上昇させてポリアミドの融点を上昇させるための方法としては、加熱の温度を上昇させたり、及び/又は加熱の時間を長くする方法が挙げられる。このような方法を行う場合、加熱によるポリアミドの着色や熱劣化による引張伸度の低下が起こる場合がある。また、分子量の上昇速度が著しく低下する場合がある。
 本実施形態のポリアミドの製造方法において、重合形態としては、バッチ式でも連続式でもよい。
 本実施形態のポリアミドの製造方法において用いる重合装置としては、特に限定されるものではなく、公知の装置、例えば、オートクレーブ型反応器、タンブラー型反応器、及びニーダーなどの押出機型反応器などが挙げられる。
 本実施形態のポリアミドの製造方法の具体例としては、特に限定されるものではなく、以下に記載するバッチ式の熱溶融重合法を挙げることができる。
 バッチ式の熱溶融重合法としては、例えば、以下のとおりである。上述の工程で形成されたジアミン・ジカルボン酸の塩水溶液を、110~180℃の温度及び約0.035~0.6MPa(ゲージ圧)の圧力で操作される濃縮槽で、約65~90質量%に濃縮して濃縮溶液を得る。次いで、該濃縮溶液をオートクレーブに移し、容器における圧力が約1.5~5.0MPa(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を抜きながら圧力を約1.5~5.0MPa(ゲージ圧)に保ち、温度が約250~350℃に達した時点で、大気圧まで降圧する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。その後、窒素などの不活性ガスで加圧し、ポリアミド溶融物をストランドとして押し出す。該ストランドを、冷却、カッティングしてペレットを得る。
 本実施形態のポリアミドの製造方法の具体例としては、特に限定されるものではなく、以下に記載する連続式の熱溶融重合法を挙げることができる。
 連続式の熱溶融重合法としては、例えば、以下のとおりである。上述の工程で形成されたジアミン・ジカルボン酸の塩水溶液を、予備装置の容器において約40~100℃まで予備加熱し、次いで、濃縮層/反応器に移し、約0.1~0.5MPa(ゲージ圧)の圧力及び約200~270℃の温度で約70~90%に濃縮して濃縮溶液を得る。該濃縮溶液を約200~350℃の温度に保ったフラッシャーに排出し、その後、大気圧まで降圧する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧する。その後、ポリアミド溶融物は押し出されてストランドとなり、冷却、カッティングされペレットとなる。
 本実施形態の製造方法で得られるポリアミドを用いて、周知の成形方法、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸などを行うことにより各種成形品を得ることができる。
 以下、本発明を、実施例及び比較例を挙げて具体的に説明するが、本発明は下記の例に限定されるものではない。
〔原料〕
(1)1,4-シクロヘキサンジカルボン酸ジメチル(1,4-DMCD):和光純薬工業社製の試薬を使用した。
(2)1,2-シクロヘキサンジカルボン酸ジエチルエステル(1,2-DECD):東京化成社製の試薬を使用した。
(3)テレフタル酸ジメチル(DMT):和光純薬工業社製の試薬を使用した。
(4)テレフタル酸ジエチル(DET):東京化成社製の試薬を使用した。
(5)セバシン酸ジメチル(DMC10D):東京化成社製の試薬を使用した。
(6)1,6-ジアミノヘキサン(C6DA):和光純薬工業社製の試薬を使用した。
(7)1,10-ジアミノデカン(C10DA):東京化成社製の試薬を使用した。
(8)2-メチルペンタメチレンジアミン(MC5DA):アルドリッチ社製の試薬(2-メチル-1,5-ジアミノペンタン)を使用した。
(9)1,9-ジアミノノナン(C9DA):アルドリッチ社製の試薬を使用した。
(10)硫酸(96%):和光純薬工業社製の試薬を使用した。
(11)水酸化ナトリウム:和光純薬工業社製の試薬を使用した。
(12)トリ-n-ブチルアミン(TBA):和光純薬工業製の試薬を使用した。
(13)ピリジン(PY):和光純薬工業製の試薬を使用した。
(14)蒸留水:和光純薬工業製の試薬を使用した。
(15)1,4-シクロヘキサンジカルボン酸(1,4-CHDA):東京化成社製の試薬を使用した。
(16)テレフタル酸(TPA):和光純薬工業製の試薬を使用した。
〔評価方法〕
 以下、後述する実施例及び比較例における生成物の評価方法について説明する。
<ジエステル転化率>
 GC-14A(島津製作所社製)、DB-5カラム、FID検出器の装置でガスクロマトグラフ分析を行い、反応前後のジエステル量の変化を内部標準法で決定した。
<ジカルボン酸収率>
 ジカルボン酸を単離する場合は、蒸留水で洗浄し真空乾燥を行ったのち秤量して決定した。
<ジカルボン酸純度>
 塩水溶液の一部を採取し、80℃で加熱しながら減圧して水を留去して塩(固体)を得た。得られた塩、又はジカルボン酸を重ヘキサフルオロイソプロパノールに溶解し、400MHzのNMR装置で、H-NMR分析を行い、純度99.9%以上のジカルボン酸との積分値の違いで決定した。
<塩水溶液中のエステル量>
 塩水溶液の一部を採取し、80℃で加熱しながら減圧して水を留去して塩(固体)を得た。得られた塩を重ヘキサフルオロイソプロパノールに溶解し、400MHzのNMR装置で、H-NMR分析を行い、エステル基のピーク及びカルボン酸由来のピークの積分値より塩水溶液中のエステル量〔(ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量)/(ジカルボン酸、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量)×100)をモル%で算出し決定した。
<不純物(Na)>
 塩水溶液を80℃で加熱しながら減圧して水を留去して塩(固体)を得た。得られた塩又はジカルボン酸について、ICP-MS法分析を行い、決定した。
<不純物(S)>
 塩水溶液を80℃で加熱しながら減圧して水を留去して塩(固体)を得た。得られた塩又はジカルボン酸について、イオンクロマト法で分析を行い、決定した。
<ポリアミドの融点Tm2>
 ポリアミドの融点Tm2(℃)について、JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて以下のとおり測定した。
 まず、窒素雰囲気下、試料約10mgを昇温速度20℃/minで試料の融点に応じて300~350℃まで昇温した。この昇温のときに現れる吸熱ピーク(融解ピーク)の温度をTm1(℃)とした。前記昇温の最高温度の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温し、30℃で2分間保持した。その後、昇温速度20℃/minで前記と同様に昇温したときに現れる吸熱ピーク(融解ピーク)の最大ピーク温度を融点Tm2(℃)とし、その全ピーク面積を融解熱量ΔH(J/g)とした。なお、ΔHが1J/g以上のものをピークとみなし、ピークが複数ある場合には、ΔHが最大の吸熱ピーク温度を融点Tm2(℃)とした。例えば、吸熱ピーク温度295℃、ΔH=20J/gと吸熱ピーク温度325℃、ΔH=5J/gとの二つの吸熱ピーク温度が存在する場合、融点Tm2(℃)は325℃とした。
<ポリアミドの25℃の相対粘度ηr>
 ポリアミドの25℃の相対粘度ηrの測定を、JIS-K6810に準じて実施した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミド1g)/(98%硫酸100mL)の割合)を作成し、25℃の温度条件下で相対粘度ηrを測定した。
〔実施例1〕
<塩水溶液の製造>
 温度計、蒸留管及び冷却管を備えた300mLのガラス製三口フラスコに、1,4-シクロヘキサンジカルボン酸ジメチル40g、1,6-ヘキサメチレンジアミン35g、蒸留水72gを加えて混合液を得た。
 大気圧下で、混合液の温度が100℃になるように連続的に蒸留をさせながらオイルバスで加熱を行った。
 蒸留された量に相当する体積量の蒸留水を三口フラスコに加えながら4時間反応を行うことにより、1,6-ヘキサメチレンジアミン・1,4-シクロヘキサンジカルボン酸塩水溶液が得られた。
 フラスコ中の混合液の一部を採取し、GC分析を行ったところ、1,4-シクロヘキサンジカルボン酸ジメチルの転化率は99.9%超であった。
 また、前記塩水溶液から得られた塩のNMR分析より、1,4-シクロヘキサンジカルボン酸の純度は98%であった。
 また塩中の不純物(S)量、不純物(Na)量とも0.1ppm未満であった。
 下記表1に仕込み量及び塩水溶液の分析結果を示した。
<ポリアミドの製造>
 前記塩水溶液を用いて熱溶融重合法によりポリアミドの製造を以下のとおり実施した。
 上記で得られた1,6-ヘキサメチレンジアミン・1,4-シクロヘキサンジカルボン酸塩水溶液に対して、pH計で確認しながら1,4-シクロヘキサンジカルボン酸17.2gを追加することで、ポリアミド原料として好適な、中和されたジアミン・シクロヘキサンジカルボン酸塩の水溶液を調製した。
 得られた水溶液を内容積500mLのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。オートクレーブの槽内の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、約2.5kg/cmになるまで、液温を約50℃から加熱を続けた。槽内の圧力を約2.5kg/cmに保つため水を系外に除去しながら、加熱を続けて、水溶液の濃度が約85%になるまで濃縮した。水の除去を止め、槽内の圧力が約30kg/cmになるまで加熱を続けた。槽内の圧力を約30kg/cmに保つため水を系外に除去しながら、330℃(最終反応温度-50℃)になるまで加熱を続けた。液温が340℃(最終反応温度-40℃)まで上昇した後に、加熱を続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm)になるまで60分間かけて降圧した。
 その後、樹脂温度(液温)の最終反応温度が380℃になるようにヒーター温度を調整した。樹脂温度はその状態のまま、槽内を真空装置で370torrに減圧して10分維持した。その後、オートクレーブ内を窒素で約0.2kg/cmに加圧した後、オートクレーブをヒーターから取り出して冷却した。オートクレーブを室温まで冷却した後、生成したポリアミドを砕きながらオートクレーブから取り出した。得られたポリアミドの分析を上記測定方法に基づいて行った。当該ポリアミドの分析結果を表1に示す。   
〔実施例2、3及び4〕
 ジアミンの種類及び量、蒸留水の量、追加ジカルボン酸の量、並びにポリアミド製造時の最終の反応温度等を、下記表1に記載のとおりに変えた。
 その他の条件は、実施例1と同様として塩水溶液の製造及びポリアミドの製造を行った。
 下記表1に仕込み量及び反応温度、塩水溶液の分析結果、並びにポリアミドの分析結果を示した。
〔実施例5〕
 ジエステルの種類及び量、ジアミンの種類及び量、蒸留水の量、ポリアミド製造時の最終の反応温度等を、下記表1に記載のとおりに変えた。
 また、ポリアミド製造時にジカルボン酸を追加しなかった。
 さらに塩水溶液の製造時にトリアルキルアミン類としてトリ-n-ブチルアミン3.7gを加えた。
 その他の条件は、実施例1と同様として塩水溶液の製造及びポリアミドの製造を行った。
 下記表1に仕込み量及び反応温度、塩水溶液の分析結果、並びにポリアミドの分析結果を示した。
〔実施例6〕
 ジエステルの種類及び量、ジアミンの種類及び量、蒸留水の量、追加ジカルボン酸の量、ポリアミド製造時の最終の反応温度等を、下記表1に記載のとおりに変えた。
 さらに塩水溶液の製造時にトリアルキルアミン類としてピリジン1.9gを加えた。
 その他の条件は、実施例1と同様として塩水溶液の製造及びポリアミドの製造を行った。
 下記表1に仕込み量及び反応温度、塩水溶液の分析結果、並びにポリアミドの分析結果を示した。
〔実施例7及び8〕
 ジエステルの種類及び量、ジアミンの種類及び量、蒸留水の量、追加ジカルボン酸の種類及び量、ポリアミド製造時の最終の反応温度等を、下記表1に記載のとおりに変えた。
 その他の条件は、実施例1と同様として塩水溶液の製造とポリアミドの製造を行った。
 下記表1に仕込み量及び反応温度、塩水溶液の分析結果、並びにポリアミドの分析結果を示した。
〔比較例1〕
<塩水溶液の製造>
 温度計、蒸留管及び冷却管を備えた500mLのオートクレーブに、セバシン酸ジメチル46g、1,6-ヘキサメチレンジアミン23g、蒸留水108gを加えて混合液を得た。
 密閉系で前記オートクレーブの内温が130℃になるように3時間加熱を行った。次に100℃で連続的に蒸留させながら大気圧下で加熱を行った。
 蒸留された量に相当する体積量の蒸留水をオートクレーブに加えながら4時間反応を行うことにより、1,6-ヘキサメチレンジアミン・セバシン酸塩水溶液が得られた。
 オートクレーブ中の混合液の一部を採取し、GC分析を行ったところ、セバシン酸ジメチルの転化率は99.5%であった。
 また、前記塩水溶液から得られた塩のNMR分析より、セバシン酸の純度は97%であった。
 また塩中の不純物(S)量、不純物(Na)量とも0.1ppm未満であった。
 下記表1に仕込み量及び塩水溶液の分析結果を示した。
<ポリアミドの製造>
 前記塩水溶液を用いて熱溶融重合法によりポリアミドの製造を以下のとおり実施した。
 ジカルボン酸を追加せずに前記塩水溶液を内容積500mLのオートクレーブ(日東高圧製)に仕込み、最終の反応温度を270℃に変えた以外は実施例1と同様にポリアミドの製造を実施した。
 得られたポリアミドの分析を上記測定方法に基づいて行った。当該ポリアミドの分析結果を表1に示す。
〔比較例2〕
 ジエステルの種類及び量、ジアミンの種類及び量、蒸留水の量、ポリアミド製造時の最終の反応温度等を、下記表1に記載のとおりに変えた。
 その他の条件は、比較例1と同様として塩水溶液の製造及びポリアミドの製造を行った。
 下記表1に仕込み量及び反応温度、塩水溶液の分析結果、並びにポリアミドの分析結果を示した。
〔比較例3〕
 温度計、蒸留管及び冷却管を備えた300mLのガラス製の三口フラスコに、1,4-シクロヘキサンジカルボン酸ジメチル40g、硫酸2.0g、蒸留水108gを加えて混合液を得た。
 大気圧下で、混合液の温度が100℃になるように連続的に蒸留をさせながらオイルバスで加熱を行った。
 蒸留された量に相当する体積量の蒸留水を三口フラスコに加えながら、10時間反応を行うことにより、1,4-シクロヘキサンジカルボン酸が得られた。
 フラスコ中の混合液のGC分析を行ったところ、1,4-シクロヘキサンジカルボン酸ジメチルの転化率は99.9%超であった。
 得られた混合溶液を10℃まで冷却し、析出した白色固体をろ過で回収した。
 この固体を蒸留水で洗浄し、80℃で減圧乾燥した。
 得られた固体のNMR分析より1,4-シクロヘキサンジカルボン酸の純度は99%であった。
 また、カルボン酸中の不純物(S)量は0.7ppmで、不純物(Na)量は0.1ppm未満であった。
 下記表1に仕込み量及び塩水溶液の分析結果を示した。
〔比較例4〕
 温度計、還流管を備えた300mLのガラス製三口フラスコに、1,4-シクロヘキサンジカルボン酸ジメチル40g、水酸化ナトリウム17.6g、蒸留水72gを加えて混合液を得た。
 大気圧下で混合液の温度が100℃になるように連続的に蒸留をさせながらオイルバスで加熱を行った。
 これにより、1,4-シクロヘキサンジカルボン酸のナトリウム塩水溶液が得られた。
 フラスコ中の混合液のGC分析を行ったところ、1,4-シクロヘキサンジカルボン酸ジメチルの転化率は99.9%超であった。
 得られた混合溶液を10℃まで冷却し、35%塩酸約30mLを加え、析出した白色固体をろ過で回収した。
 この固体を蒸留水で洗浄し、80℃で減圧乾燥した。
 得られた固体のNMR分析より1,4-シクロヘキサンジカルボン酸の純度は99%であった。
 また、塩中の不純物(S)量は0.1ppm未満で、不純物(Na)量は320ppmであった。
 下記表1に仕込み量及び塩水溶液の分析結果を示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~8によれば、ポリアミド製造に好適なジアミン・ジカルボン酸塩水溶液を、ジカルボン酸ジエステルから1つの反応容器で簡易な工程で製造できた。
 また得られるジアミン・ジカルボン酸塩水溶液は、SやNaという不純物の量が少ない質の高いものであることが分かった。
 さらにジアミン・ジカルボン酸塩水溶液を原料として重縮合反応により得られるポリアミドは、高い融点を持つとともに十分に高い分子量を持つことが分かった。
 本出願は、2010年6月23日出願の日本特許出願(特願2010-142843号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の製造方法は、ポリアミドの製造工程の簡便化可能な原料の製造技術として、また、効率的なポリアミドの製造技術として、産業上の利用可能性がある。

Claims (11)

  1.  ジカルボン酸ジエステルと、ジアミンとを、混合させる工程を含み、
     前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である、ジアミン・ジカルボン酸の塩水溶液の製造方法。
  2.  前記ジカルボン酸ジエステルが、テレフタル酸ジエステル又はシクロヘキサンジカルボン酸ジエステルである、請求項1に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
  3.  前記ジアミンが、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,9-ジアミノノナン、1,10-ジアミノデカン及び2-メチル-1,5-ジアミノペンタンからなる群より選択されるいずれかのジアミンを含む、請求項1又は2に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
  4.  前記ジカルボン酸ジエステル及びジアミンに、さらにトリアルキルアミン類を混合させる、請求項1~3のいずれか一項に記載のジアミン・ジカルボン酸の塩水溶液の製造方法。
  5.  請求項1~4のいずれか一項に記載のジアミン・ジカルボン酸の塩水溶液の製造方法で得られたジアミン・ジカルボン酸の塩水溶液を用いる、ポリアミドの製造方法。
  6.  前記ポリアミドの融点が280℃以上である、請求項5に記載のポリアミドの製造方法。
  7.  前記ジアミン・ジカルボン酸の塩水溶液にジカルボン酸を添加し、ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が0.95~1.05の混合物を得る工程と、
     前記工程で得られた混合物中のジアミンとジカルボン酸との重縮合反応を行う工程と、
    を含む、請求項5又は6に記載のポリアミドの製造方法。
  8.  ジカルボン酸ジエステルと、ジアミンとを、混合させ、ジアミン・ジカルボン酸の塩水溶液を形成する工程と、
     前記工程で形成されたジアミン・ジカルボン酸の塩水溶液を加熱し、ジアミンとジカルボン酸との重縮合反応を行う工程と、
    を、含み、
     前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、
     前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.005以上である、ポリアミドの製造方法。
  9.  前記工程で形成されたジアミン・ジカルボン酸の塩水溶液において、
     ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量が、ジカルボン酸、ジカルボン酸ジエステル及びジカルボン酸モノエステルの合計モル量に対して、1mol%以下である、請求項8に記載のポリアミドの製造方法。
  10.  前記重縮合反応を行う工程に用いるジアミン・ジカルボン酸の塩水溶液に、ジカルボン酸を添加して、ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)が0.95~1.05の混合物を得る工程を、さらに含む、請求項8又は9に記載のポリアミドの製造方法。
  11.  前記ジアミン・ジカルボン酸の塩水溶液を形成する工程において、
     前記ジカルボン酸ジエステルと、前記ジアミンとの混合モル比(ジアミン/ジカルボン酸ジエステル)が、1.01~2.00である、請求項8~10のいずれか一項に記載のポリアミドの製造方法。
PCT/JP2011/064448 2010-06-23 2011-06-23 ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法 WO2011162350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800305381A CN102947263A (zh) 2010-06-23 2011-06-23 二胺·二元羧酸盐水溶液和聚酰胺的制造方法
US13/703,508 US20130085257A1 (en) 2010-06-23 2011-06-23 Methods for producing aqueous diamine dicarboxylic acid salt solution and polyamide
JP2012521535A JP5698234B2 (ja) 2010-06-23 2011-06-23 ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法
KR1020127030694A KR101457288B1 (ko) 2010-06-23 2011-06-23 디아민·디카르복실산염 수용액과 폴리아미드의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142843 2010-06-23
JP2010-142843 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011162350A1 true WO2011162350A1 (ja) 2011-12-29

Family

ID=45371516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064448 WO2011162350A1 (ja) 2010-06-23 2011-06-23 ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法

Country Status (6)

Country Link
US (1) US20130085257A1 (ja)
JP (1) JP5698234B2 (ja)
KR (1) KR101457288B1 (ja)
CN (1) CN102947263A (ja)
TW (1) TWI471302B (ja)
WO (1) WO2011162350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151410A1 (ja) * 2014-04-02 2015-10-08 株式会社クラレ ポリアミド

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675836B1 (en) * 2011-02-15 2018-04-11 DSM IP Assets B.V. Polyamide containing monomer units of 1,4-butylene diamine
CN104371100A (zh) * 2013-08-15 2015-02-25 骏马化纤股份有限公司 一种半芳香聚酰胺树脂工业化连续生产方法
CN110117834B (zh) * 2013-10-28 2021-12-07 上海凯赛生物技术股份有限公司 尼龙纤维及其制备方法
US10865177B2 (en) * 2018-07-02 2020-12-15 Milliken & Company Process for making high purity salts
US20210347946A1 (en) * 2020-05-11 2021-11-11 Industrial Technology Research Institute Copolymer and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780426A (en) * 1980-11-10 1982-05-20 Asahi Chem Ind Co Ltd Manufacture of polyamide
JPH02129225A (ja) * 1988-11-10 1990-05-17 Asahi Chem Ind Co Ltd ポリアミドの重合法
JP2001519447A (ja) * 1997-10-02 2001-10-23 デュポン カナダ インコーポレイテッド 部分的芳香族ポリアミドおよびそれらを製造する方法
WO2002048239A1 (fr) * 2000-12-11 2002-06-20 Asahi Kasei Kabushiki Kaisha Polyamide
WO2010117098A2 (en) * 2009-04-10 2010-10-14 Sk Chemicals Co., Ltd. Method of preparing a heat-resistant polyamide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607840A (en) * 1968-08-02 1971-09-21 Honshu Chemical Ind Method for manufacturing polyhexamethyleneadipamide
US5091572A (en) * 1989-12-11 1992-02-25 Texaco Chemical Company Amine terminated polyamides
DE102004022963A1 (de) * 2004-05-10 2005-12-08 Ems-Chemie Ag Thermoplastische Polyamid-Formmassen
KR101498159B1 (ko) * 2007-11-15 2015-03-03 에스케이케미칼 주식회사 내열성 폴리아미드의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780426A (en) * 1980-11-10 1982-05-20 Asahi Chem Ind Co Ltd Manufacture of polyamide
JPH02129225A (ja) * 1988-11-10 1990-05-17 Asahi Chem Ind Co Ltd ポリアミドの重合法
JP2001519447A (ja) * 1997-10-02 2001-10-23 デュポン カナダ インコーポレイテッド 部分的芳香族ポリアミドおよびそれらを製造する方法
WO2002048239A1 (fr) * 2000-12-11 2002-06-20 Asahi Kasei Kabushiki Kaisha Polyamide
WO2010117098A2 (en) * 2009-04-10 2010-10-14 Sk Chemicals Co., Ltd. Method of preparing a heat-resistant polyamide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151410A1 (ja) * 2014-04-02 2015-10-08 株式会社クラレ ポリアミド
JPWO2015151410A1 (ja) * 2014-04-02 2017-04-13 株式会社クラレ ポリアミド
US10544262B2 (en) 2014-04-02 2020-01-28 Kuraray Co., Ltd. Polyamide

Also Published As

Publication number Publication date
US20130085257A1 (en) 2013-04-04
JP5698234B2 (ja) 2015-04-08
CN102947263A (zh) 2013-02-27
KR20130023248A (ko) 2013-03-07
KR101457288B1 (ko) 2014-11-04
TW201226383A (en) 2012-07-01
JPWO2011162350A1 (ja) 2013-08-22
TWI471302B (zh) 2015-02-01

Similar Documents

Publication Publication Date Title
JP5698234B2 (ja) ジアミン・ジカルボン酸塩水溶液とポリアミドの製造方法
EP2875063B1 (en) Polyamide, method of its preparation and uses thereof
TWI394775B (zh) 聚醯胺樹脂材料
JP2016528312A (ja) 脂肪族又は部分芳香族ポリアミドを連続的に製造する方法
US20180194896A1 (en) Production of a polyamide that contains 2,5-bis(aminomethyl)furan
JP4595883B2 (ja) ヒンジ付き成形品の製造方法
KR101764900B1 (ko) 폴리아미드의 제조방법
US6750318B2 (en) Polyamide resins and process for producing the same
JP2016069644A (ja) ポリアミド樹脂、その製造方法およびその成形品
US9708449B2 (en) Method for the continuous production of an aliphatic or semi-aromatic polyamide oligomer
US9637595B2 (en) Polyamide, preparation process and uses
TWI676643B (zh) 聚醯胺樹脂之製造方法
US4210743A (en) Transparent polyamides from branched chain diamines
WO2019189145A1 (ja) 半芳香族ポリアミド樹脂、及びその製造方法
JP6216956B2 (ja) 高い融解温度を有する溶融加工性ポリアミド
JP4168233B2 (ja) ポリアミド製造法
JPS6115883B2 (ja)
CA1120192A (en) Aliphatic polyamides
JPH07292101A (ja) ポリアミド低次縮合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030538.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521535

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127030694

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13703508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201006682

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798231

Country of ref document: EP

Kind code of ref document: A1