WO2011162142A1 - 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子 - Google Patents

分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子 Download PDF

Info

Publication number
WO2011162142A1
WO2011162142A1 PCT/JP2011/063700 JP2011063700W WO2011162142A1 WO 2011162142 A1 WO2011162142 A1 WO 2011162142A1 JP 2011063700 W JP2011063700 W JP 2011063700W WO 2011162142 A1 WO2011162142 A1 WO 2011162142A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
replaced
compound
alkyl
diyl
Prior art date
Application number
PCT/JP2011/063700
Other languages
English (en)
French (fr)
Inventor
弘毅 佐郷
長谷場 康宏
Original Assignee
Jnc株式会社
チッソ石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, チッソ石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2012521434A priority Critical patent/JP5765339B2/ja
Priority to CN201180030382.7A priority patent/CN102947262B/zh
Priority to US13/806,146 priority patent/US20130100369A1/en
Priority to KR1020137000663A priority patent/KR101797991B1/ko
Priority to EP11798028.4A priority patent/EP2586764B1/en
Publication of WO2011162142A1 publication Critical patent/WO2011162142A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • C09K2019/323Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring containing a binaphthyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • C09K2019/3408Five-membered ring with oxygen(s) in fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3438Crown ethers

Definitions

  • the present invention relates to a liquid crystal compound and a liquid crystal medium useful as materials for optical elements. Specifically, the present invention relates to a compound having a large dielectric anisotropy and a refractive index anisotropy and a low melting point, and a liquid crystal medium having a wide liquid crystal phase temperature range, a large dielectric anisotropy and a refractive index anisotropy. In addition, the present invention relates to an optical element using the liquid crystal medium. Specifically, the present invention relates to an optical element that can be used in a wide temperature range, can be driven at a low voltage, and can obtain a high-speed electro-optic response.
  • Liquid crystal display elements using a liquid crystal composition are widely used in displays such as watches, calculators, word processors and the like. These liquid crystal display elements utilize the refractive index anisotropy and dielectric anisotropy of liquid crystal compounds.
  • PC phase change
  • TN twisted nematic
  • STN super twisted nematic
  • BTN Battery twisted nematic
  • ECB mainly using one or more polarizing plates
  • OCB electrically controlled birefringence
  • OCB optically compensated bend
  • IPS in-plane switching
  • VA vertical alignment
  • wavelength tunable filters, wavefront control elements, liquid crystal lenses, aberration correction elements, aperture control elements, optical head devices, etc. that utilize electric birefringence in the blue phase, which is one of the optically isotropic liquid crystal phases, have been proposed.
  • Patent Documents 10 to 12 The classification based on the element driving method is PM (passive matrix) and AM (active matrix). PM (passive matrix) is classified into static and multiplex, and AM is classified into TFT (thin film transistor) and MIM (metal insulator metal).
  • liquid crystal display elements contain a liquid crystal composition having appropriate physical properties.
  • the liquid crystal composition preferably has appropriate physical properties.
  • General physical properties necessary for the liquid crystal compound which is a component of the liquid crystal composition are as follows. (1) being chemically stable and physically stable; (2) having a high clearing point (liquid crystal phase-isotropic phase transition temperature); (3) The lower limit temperature of the liquid crystal phase (such as an optically isotropic liquid crystal phase such as a nematic phase, a cholesteric phase, a smectic phase, or a blue phase) is low.
  • the voltage holding ratio can be increased.
  • the temperature range of a nematic phase or an optically isotropic liquid crystal phase is set. It can be expanded and can be used as a display element in a wide temperature range.
  • the liquid crystal compound is generally used as a liquid crystal composition prepared by mixing with many other liquid crystal compounds in order to develop characteristics that are difficult to be exhibited by a single compound.
  • the liquid crystal compound used in the liquid crystal display element preferably has good compatibility with other liquid crystal compounds and the like as shown in (4).
  • the liquid crystal display elements that have particularly higher display performance such as contrast, display capacity, response time characteristics, and the like.
  • a liquid crystal composition having a low driving voltage is required for the liquid crystal material used.
  • Patent Document 14 there is a report that a compound having a linear alkyl similar to the present compound has a large dielectric anisotropy and a large refractive index anisotropy.
  • the compound described in Patent Document 14 has a high melting point. Therefore, the composition using the compound described in Patent Document 14 is not sufficiently compatible with other liquid crystal compounds at low temperatures, and the amount of use thereof is limited.
  • the compound of the present invention having a branched alkyl or branched alkenyl of the present invention has a large dielectric anisotropy and a large refractive index anisotropy, and has an extremely low melting point as compared with the compound described in Patent Document 14. It is characterized by showing. For example, when the melting points of the compound (S1) having a skeleton similar to those of the compounds (ref.01) and (ref.02) described in Patent Document 14 are compared, the melting point of the compound of the present invention is about 20 ° C. lower. ing.
  • Patent Document 16 exhibits a large dielectric anisotropy, since the leftmost ring is 1,4-cyclohexylene, a sufficiently large refractive index difference is obtained. It has no directionality. Further, a compound having an alkenyl group in which two double bonds are adjacent like the compound (ref. 04) has low chemical stability. In particular, the stability to UV is low, and the voltage holding ratio after UV irradiation is significantly deteriorated.
  • a first object of the present invention is to provide a liquid crystal compound having stability against heat, light, etc., a large refractive index anisotropy, a large dielectric anisotropy, and a low melting point.
  • the second purpose is a liquid crystal medium having stability against heat, light, etc., a wide liquid crystal phase temperature range, a large refractive index anisotropy, a large dielectric anisotropy, and an optically isotropic liquid crystal phase. Is to provide.
  • a third object is to provide various optical elements that contain this liquid crystal medium, can be used in a wide temperature range, have a short response time, a large contrast, and a low driving voltage.
  • the present invention provides the following liquid crystal compound, liquid crystal medium (liquid crystal composition or polymer / liquid crystal composite), an optical element containing the liquid crystal medium, and the like.
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms, and any —CH 2 — in the branched alkyl or branched alkenyl may be replaced by —O—, Any —CH 2 —CH 2 — in the branched alkyl or branched alkenyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and this branched alkyl or branched alkenyl in Any hydrogen may be replaced by fluorine; rings A 1 , A 2 , A 3 , A 4 , and A 5 are independently 1,4-phenylene, 1,3-dioxane-2,5-diyl Tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, pyridine-2,5-dii
  • any one of the rings A 1 , A 2 , A 3 and A 4 is 1,4-phenylene in which one or two hydrogens are replaced by fluorine, ] The compound of description.
  • R 1 is alkyl having 4 to 20 carbon atoms branched by carbon at the 2-position.
  • R 1 is alkenyl having 4 to 20 carbon atoms branched by carbon at the 2-position.
  • R 1 is an alkyl having 5 to 20 carbon atoms branched by a 3-position carbon.
  • R 1 is alkyl having 6 to 20 carbon atoms branched at the 4-position carbon.
  • R 1 is alkenyl having 6 to 20 carbon atoms branched by carbon at the 4-position.
  • R 1 is alkyl having 4 to 20 carbon atoms branched by the 1-position carbon.
  • R 1 is alkenyl having 4 to 20 carbon atoms branched at the 1-position carbon.
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms
  • ring A 1 is 1,4-phenylene, 1,3-dioxane-2 , 5-diyl, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, and any hydrogen in the ring is Optionally substituted with fluorine;
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, —CH 2 CH 2 —, —COO—, or —CF 2 O—, Any one of Z 1 , Z 2 , Z 3 , and Z 4 is —COO— or —CF 2 O—;
  • Y 1 is
  • R 1a is alkyl having 1 to 10 carbons, Any —CH 2 — in the alkyl may be replaced with —O—, and any —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—;
  • R 1b Is hydrogen or alkyl having 1 to 10 carbon atoms, and any —CH 2 — in the alkyl may be replaced by —O—, and any —CH 2 —CH 2 — in the alkyl is — Optionally substituted with CH ⁇ CH—;
  • M is —CH 2 — or —O—;
  • L 2 , L 3 , L 4 and L 5 are independently hydrogen, fluorine, or chlorine;
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms, and any —CH 2 — in the branched alkyl or branched alkenyl may be replaced by —O—, Any —CH 2 —CH 2 — in the branched alkyl or branched alkenyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and this branched alkyl or branched alkenyl in Any hydrogen may be replaced by fluorine; rings A 1 , A 2 , A 3 , A 4 , and A 5 are independently 1,4-phenylene, 1,3-dioxane-2,5-diyl Tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-
  • any one of the rings A 1 , A 2 , A 3 and A 4 is 1,4-phenylene in which one or two hydrogens are replaced by fluorine, ]
  • R 1 is an alkyl having 4 to 20 carbon atoms branched by a carbon at the 2-position, and a chiral agent, and expresses an optically isotropic liquid crystal phase
  • R 1 is an alkenyl having 4 to 20 carbon atoms branched by carbon at the 2-position, and a chiral agent, and exhibits an optically isotropic liquid crystal phase
  • an optically isotropic liquid crystal phase is developed containing a compound in which R 1 is an alkenyl having 5 to 20 carbon atoms branched by a carbon at the 3-position and a chiral agent
  • R 1 is an alkenyl having 5 to 20 carbon atoms branched by a carbon at the 3-position
  • a chiral agent The liquid crystal composition according to item [18].
  • R 1 is an alkyl having 6 to 20 carbon atoms branched by carbon at the 4-position, and a chiral agent, and expresses an optically isotropic liquid crystal phase
  • R 1 is an alkenyl having 6 to 20 carbon atoms branched by carbon at the 4-position, and a chiral agent, and expresses an optically isotropic liquid crystal phase
  • R 1 is an alkyl having 6 to 20 carbon atoms branched at the 1-position carbon and a chiral agent, and exhibits an optically isotropic liquid crystal phase
  • an optically isotropic liquid crystal phase is developed containing a compound in which R 1 is an alkenyl having 6 to 20 carbon atoms branched by a carbon at position 1 and a chiral agent
  • R 1 is an alkenyl having 6 to 20 carbon atoms branched by a carbon at position 1 and a chiral agent
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms
  • ring A 1 is 1,4-phenylene, 1,3-dioxane-2 , 5-diyl, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, and any hydrogen in the ring is Optionally substituted with fluorine;
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, —CH 2 CH 2 —, —COO—, or —CF 2 O—, Any one of Z 1 ,
  • [34] Contains a compound represented by any of formulas (1-1-1) to (1-1-8) and formulas (1-2-1) to (1-2-16), and a chiral agent
  • the liquid crystal composition according to item [33] which exhibits an optically isotropic liquid crystal phase.
  • R 1a is alkyl having 1 to 10 carbons, Any —CH 2 — in the alkyl may be replaced with —O—, and any —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—;
  • M is —CH 2 — or —O—;
  • L 2 , L 3 , L 4 and L 5 are independently hydrogen, fluorine, or chlorine;
  • a 1 is 1,4-phenylene 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, Tiger tetrahydropyran-3,6-diyl,
  • R 2 is straight-chain alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — May be replaced by —O—;
  • X 2 is fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 ;
  • ring B 1 , ring B 2 , and ring B 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, tetrahydro Pyran-2,5-
  • R 3 is straight-chain alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in alkyl and alkenyl, any hydrogen may be replaced by fluorine, and any —CH 2 — May be replaced by —O—;
  • X 3 is —C ⁇ N or —C ⁇ C—C ⁇ N;
  • Ring C 1 , Ring C 2 and Ring C 3 are independently 1,4 -Cyclohexylene, 1,4-phenylene, 1,4-phenylene in which arbitrary hydrogen is replaced by fluorine, naphthalene-2,6-diyl, naphthalene-2,6- in which arbitrary hydrogen is replaced by fluorine or chlorine Diyl, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl
  • liquid crystal composition according to any one of items [18] to [34], further containing at least one compound selected from the group of compounds represented by formula (6).
  • R 4 and R 5 are independently straight-chain alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, in which any hydrogen is replaced by fluorine.
  • Ring D 1 , Ring D 2 , and Ring D 3 are independently 1,4-cyclohexylene, pyrimidine-2,5- Diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene;
  • Z 10 is —C ⁇ C—, —COO—, — (CH 2 ) 2 —, —CH ⁇ CH—, or a single bond.
  • liquid crystal composition according to item [36] further comprising at least one compound selected from the group of compounds represented by formula (6) according to item [37].
  • R 6 is straight-chain alkyl having 1 to 10 carbon atoms, alkenyl having 2 to 10 carbon atoms or alkynyl having 2 to 10 carbon atoms, and in the alkyl, alkenyl and alkynyl, any hydrogen is replaced with fluorine.
  • liquid crystal composition according to any one of items [18] to [41], further containing at least one compound selected from the group of compounds represented by formula (11):
  • R 7 is straight-chain alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons or alkynyl having 2 to 10 carbons, and in the alkyl, alkenyl and alkynyl, any hydrogen is replaced with fluorine.
  • any —CH 2 — may be replaced by —O—;
  • X 5 is —C ⁇ N, —N ⁇ C ⁇ S, or —C ⁇ C—C ⁇ N;
  • F 1 , ring F 2 and ring F 3 are independently 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which any hydrogen is replaced by fluorine or chlorine, naphthalene-2,6 -Diyl, naphthalene-2,6-diyl, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl or pyrimidine-2,5 in which any hydrogen is replaced by fluorine or chlorine Be diyl;
  • Z 14 is - (CH 2) 2 -, - COO -, - CF 2 O -, - OCF 2 -, - C ⁇ C -, - CH 2 O-, or a single bond;
  • liquid crystal composition according to any one of items [18] to [42], comprising at least one antioxidant and / or ultraviolet absorber.
  • the liquid crystal composition is obtained by adding a chiral agent to a composition in which the difference between the upper limit temperature and the lower limit temperature at which the chiral nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C. , A liquid crystal composition according to item [44] or [45].
  • the liquid crystal composition is obtained by adding a chiral agent to a composition in which the difference between the upper limit temperature and the lower limit temperature at which the chiral nematic phase and the non-liquid crystal isotropic phase coexist is 5 to 150 ° C. , A liquid crystal composition according to item [44] or [45].
  • the liquid crystal composition is obtained by adding a chiral agent to a composition in which the difference between the upper limit temperature and the lower limit temperature at which the nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C., The liquid crystal composition according to item [44] or [45].
  • liquid crystal composition according to item [49] or [50], wherein the liquid crystal composition exhibits a chiral nematic phase at any temperature of 70 to ⁇ 20 ° C. and has a helical pitch of 700 nm or less in at least a part of this temperature range. .
  • the chiral agent comprises at least one compound selected from the group of compounds represented by formulas (K1) to (K5).
  • the chiral agent is represented by each of formulas (K2-1) to (K2-8), formulas (K4-1) to (K4-6), and formulas (K5-1) to (K5-3).
  • Item 52. The liquid crystal composition according to any one of items [49] to [51], comprising at least one compound selected from the group of compounds.
  • R K is independently alkyl having 3 to 10 carbon atoms, and —CH 2 — adjacent to the ring in this alkyl may be replaced by —O—, and any —CH 2 — 2 —CH 2 — may be replaced by —CH ⁇ CH—.
  • a mixture comprising the liquid crystal composition according to any one of items [18] to [53] and a polymerizable monomer.
  • a polymer / liquid crystal composite material used for an element driven in an optically isotropic liquid crystal phase obtained by polymerizing the mixture according to item [54] or [55].
  • An optical element comprising an electrode disposed on one or both surfaces, a liquid crystal medium disposed between substrates, and an electric field applying means for applying an electric field to the liquid crystal medium via the electrode,
  • An optical device which is the liquid crystal composition according to any one of items [49] to [53] or the polymer / liquid crystal composite material according to any one of items [56] to [60].
  • An electrode is disposed on one or both surfaces, at least one of which is a transparent substrate, a liquid crystal medium disposed between the substrates, and a polarizing plate disposed on the outside of the substrate, with the electrodes interposed
  • An optical element comprising an electric field applying means for applying an electric field to the liquid crystal medium, wherein the liquid crystal medium is the liquid crystal composition according to any one of items [49] to [53] or the items [56] to [53]. 60].
  • An optical element which is the polymer / liquid crystal composite material according to any one of [1] to [6].
  • each pixel includes an active element, and the active element is a thin film transistor (TFT).
  • TFT thin film transistor
  • the liquid crystal compound represents a compound having a mesogen and is not limited to a compound having a liquid crystal phase.
  • the liquid crystal medium is a general term for a liquid crystal composition and a polymer / liquid crystal composite.
  • the optical element refers to various elements that perform functions such as light modulation and optical switching by utilizing the electro-optic effect. For example, display elements (liquid crystal display elements), optical communication systems, optical information processing, And a light modulation element used in the sensor system.
  • the Kerr effect is known for light modulation using a change in refractive index caused by voltage application to an optically isotropic liquid crystal medium.
  • the electric birefringence value is a refractive index anisotropy value induced when an electric field is applied to the isotropic medium.
  • a liquid crystal compound is a generic term for a compound having a liquid crystal phase such as a nematic phase or a smectic phase and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition.
  • the chiral agent is an optically active compound and is added to give a desired twisted molecular arrangement to the liquid crystal composition.
  • a liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module.
  • a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be abbreviated as a compound, a composition, and an element, respectively.
  • the upper limit temperature of the liquid crystal phase is the phase transition temperature of the liquid crystal phase-isotropic phase, and may simply be abbreviated as the clearing point or the upper limit temperature.
  • the lower limit temperature of the liquid crystal phase may be simply abbreviated as the lower limit temperature.
  • the compound represented by formula (1) may be abbreviated as compound (1). This abbreviation may also apply to compounds represented by formula (2) and the like.
  • symbols such as B, D, and E surrounded by hexagons correspond to Ring B, Ring D, and Ring E, respectively.
  • the amount of the compound expressed as a percentage is a weight percentage (% by weight) based on the total weight of the composition.
  • a plurality of the same symbols such as rings A 1 , Y 1 , and B are described in the same formula or different formulas, but these may be the same or different.
  • “Arbitrary” indicates that not only the position but also the number is arbitrary, but the case where the number is 0 is not included.
  • the expression that any A may be replaced by B, C or D is in addition to any A being replaced by B, any A being replaced by C and any A being replaced by D.
  • “any —CH 2 — may be replaced with —O—
  • the liquid crystal compound of the present invention is a liquid crystal compound having a stability to heat, light, etc., a large refractive index anisotropy, a large dielectric anisotropy, and a low melting point. A high content of the compound is possible inside.
  • the liquid crystal composition exhibits stability against heat, light, etc., a high upper limit temperature and a lower lower limit temperature of an optically isotropic liquid crystal phase, and a low driving voltage in an element driven by an optically isotropic liquid crystal phase.
  • the polymer / liquid crystal composite material of the present invention having an optically isotropic liquid crystal phase exhibits a high maximum temperature and a low minimum temperature of the optically isotropic liquid crystal phase, and is optically isotropic.
  • the element driven in the liquid crystal phase has a low driving voltage.
  • the optical element driven by the optically isotropic liquid crystal phase of the present invention has a wide usable temperature range, a short response time, a large contrast ratio, and a low driving voltage.
  • the comb-shaped electrode substrate used in the Example is shown.
  • the optical system used in the Example is shown.
  • the liquid crystal compound of the present invention is a compound represented by the above formula (1), and the liquid crystal composition having an optically isotropic liquid crystal phase of the present invention comprises the compound represented by the above formula (1) as a component. Include as A.
  • the first aspect of the liquid crystal composition of the present invention is a composition containing only the component A or a composition containing the component A and other components not particularly indicated in the present specification.
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms, and any —CH 2 — in the branched alkyl or branched alkenyl may be replaced by —O—.
  • Any —CH 2 —CH 2 — in alkyl or branched alkenyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and any branched alkyl or branched alkenyl
  • the hydrogen of may be replaced by fluorine.
  • branched alkyl are as shown in the following formulas (CHN1-1) to (CHN1-9).
  • R 1a is alkyl having 1 to 10 carbon atoms, and any —CH 2 — in the alkyl may be replaced by —O—, and any —CH 2 —CH 2 in this alkyl may be substituted.
  • May be replaced by —CH ⁇ CH—;
  • R 1b is hydrogen or alkyl having 1 to 10 carbons, and any —CH 2 — in the alkyl may be replaced by —O—.
  • any —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—.
  • Alkyl compounds branched at the 2-position, 3-position, 4-position or 1-position carbon as in the formulas (CHN1-1) to (CHN-9) show a very low melting point as compared with a straight-chain compound.
  • branched alkenyl are as shown in the following formulas (CHN2-1) to (CHN2-32). (Wherein R 1a and R 1b represent the same structure as described above.)
  • the characteristics of the compound having a branched alkenyl depend on the branch position. Alkyl compounds branched at the 2nd, 3rd, 4th or 1st position as in the formulas (CHN2-1) to (CHN2-32) have a very low melting point compared to the straight-chain compounds.
  • the preferred configuration of —CH ⁇ CH— in alkenyl depends on the position of the double bond. For example, in an alkenyl having a double bond at an odd position such as the formula (CHN2-1), a trans configuration is generally preferable. In an alkenyl having a double bond at an even position such as the formula (CHN2-5), In general, the cis configuration is preferred.
  • An alkenyl compound having a preferred configuration has a wide temperature range of the liquid crystal phase.
  • Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
  • the position of the double bond is preferably a position that does not form a conjugation with another double bond or a ring such as 1,4-phenylene.
  • branched alkoxy and branched alkoxyalkenyl are as shown in the following formulas (CHN3-1) to (CHN3-15). (Wherein R 1a and R 1b represent the same structure as described above.)
  • the characteristics of the compound having branched alkoxy and branched alkoxyalkenyl depend on the branch position. Alkyl compounds branched at the 2nd, 3rd or 4th carbon as shown by the formulas (CHN3-1) to (CHN3-15) have a very low melting point compared to the straight-chain compounds. Further, the position of the double bond in the branched alkoxyalkenyl is preferably a position that does not form a conjugation with another double bond and a ring such as 1,4-phenylene.
  • R 1a and R 1b are hydrogen, —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17, —C 9 H 19 , and —C 10 H 21 . More preferably, any of R 1a and R 1b is —CH 3 , —C 2 H 5 or —C 3 H 7 .
  • any —CH 2 — in R 1a is replaced with —O—
  • any —CH 2 —CH 2 — is replaced with —C ⁇ C— or —CH ⁇ CH—.
  • the rings A 1 , A 2 , A 3 , A 4 , and A 5 are independently 1,4-phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5 -Diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, or naphthalene-2,6-diyl, any hydrogen in the ring is fluorine or chlorine May be replaced.
  • Preferred examples of the rings A 1 , A 2 , A 3 , A 4 , and A 5 are the formulas (RG-1) to (RG-16).
  • rings A 1 , A 2 , A 3 , A 4 , and A 5 include formulas (RG-1) to (RG-3), formulas (RG-5) to (RG-7), formula ( RG-12) to (RG-16).
  • a compound having the formula (RG-2) or (RG-3), which is 1,4-phenylene in which one or two hydrogens are replaced by fluorine has a large dielectric anisotropy.
  • a compound having two or more rings represented by the formula (RG-2) or (RG-3) has a particularly large dielectric anisotropy.
  • the compound in which ring A 1 is the formula (RG-2) or (RG-3) has a low melting point.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a single bond or alkylene having 1 to 4 carbon atoms, and any —CH 2 — in the alkylene is —O— , —COO—, —OCO—, or —CF 2 O—, where any —CH 2 —CH 2 — in the alkylene is —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C- may be substituted.
  • Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, —CH 2 —, — (CH 2 ) 2 —, —COO—, —CF 2 O—, or —CH ⁇ CH—. is there. More preferably, any one of Z 1 , Z 2 , Z 3 , and Z 4 is —COO— or —CF 2 O—.
  • Y 1 is fluorine, chlorine, —SF 5 , —C ⁇ N, —N ⁇ C ⁇ S, or alkyl having 1 to 3 carbon atoms in which any hydrogen is replaced by fluorine or chlorine,
  • any —CH 2 — may be replaced with —O—
  • any —CH 2 —CH 2 — in this alkyl may be replaced with —CH ⁇ CH— or —C ⁇ C—. May be.
  • alkyl in which any hydrogen is replaced by fluorine or chlorine include —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 ,-(CH 2 ) 3 -F,-(CF 2 ) 3 -F, -CF 2 CHFCF 3 , and -CHFCF 2 CF 3 .
  • alkoxy in which any hydrogen is replaced by fluorine or chlorine include —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— ( CF 2 ) 3 —F, —OCF 2 CHFCF 3 , and —OCHFCF 2 CF 3 .
  • alkenyl in which arbitrary hydrogen is replaced by fluorine or chlorine
  • -CH CF 2
  • -CF CHF
  • -CH CHCH 2 F
  • -CH CHCF 3
  • - (CH 2) 2 - CH CF 2 , —CH 2 CH ⁇ CHCF 3 , and —CH ⁇ CHCF 2 CF 3 .
  • preferred Y 1 are fluorine, chlorine, —C ⁇ N, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 . More preferred examples of Y 1 are fluorine, chlorine, —C ⁇ N, —CF 3 and —OCF 3 .
  • Y 1 is chlorine or fluorine, the melting point is low, and the compatibility with other liquid crystal compounds is particularly excellent.
  • Y 1 is —C ⁇ N, —CF 3 , —CHF 2 , —OCF 3, and —OCHF 2 , particularly large dielectric anisotropy is exhibited.
  • n, and p are independently 0 or 1, and 1 ⁇ m + n + p ⁇ 3.
  • R 1 is a branched alkyl or branched alkenyl having 3 to 20 carbon atoms
  • a 1 is 1,4-phenylene, 1,3-dioxane-2, 5-diyl, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, any hydrogen in the ring is fluorine
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, —CH 2 CH 2 —, —COO—, or —CF 2 O—, 1 , Z 2 , Z 3 , and Z 4 are —COO— or —CF 2 O—
  • Y 1 is fluorine, chlorine, —C ⁇ N, or any hydrogen is fluorine
  • a substituted 1,3-dioxane-2, 5-diyl, tetrahydropyr
  • R 1 is a structure represented by any one of formulas (CHN1-1) to (CHN1-9); Z 1 , Z 2 , Z 3 , and Z 4 are each independently A bond, — (CH 2 ) 2 —, —COO— or —CF 2 O—, but at least one is —COO— or —CF 2 O—; X is fluorine or chlorine, and Y 1 is Compounds that are fluorine, chlorine, —C ⁇ N, —CF 3 , or —OCF 3 are particularly preferred.
  • R 1a is alkyl having 1 to 10 carbons or alkenyl having 1 to 10 carbons
  • R 1b is hydrogen, alkyl having 1 to 10 carbons
  • M is —CH 2 — or —
  • a 1 is 1,4-phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, tetrahydropyran-3,6-diyl, pyrimidine-2,5 -Diyl, or pyridine-2,5-diyl, any hydrogen in the ring may be replaced by fluorine;
  • L 2 , L 3 , L 4 and L 5 are independently hydrogen, fluorine
  • Y 1 is fluorine, chlorine, —C ⁇ N, alkyl having 1 to 3 carbon atoms in which arbitrary hydrogen is replaced with fluorine, alkenyl in which arbitrary hydrogen is replaced with fluorine, or arbitrary hydrogen is Fluorine Is replaced by alkoxy.
  • L 1 , L 2 , L 3 , L 4 , and L 5 is independently hydrogen, fluorine, or chlorine.
  • L 1 is fluorine
  • the melting point is low and the compatibility with other liquid crystal compounds is excellent.
  • at least one of L 2 , L 3 , L 4 , and L 5 is chlorine or fluorine, it has a large dielectric anisotropy, a low melting point of the compound, and compatibility with other liquid crystal compounds. Are better. It is preferred that some or one is hydrogen or fluorine.
  • Compound (1) is a liquid crystal compound having a branched alkyl group or a branched alkenyl group. This compound is extremely physically and chemically stable under the conditions in which the device is normally used, and has good compatibility with other liquid crystal compounds. Furthermore, it is difficult to develop a smectic phase. A composition containing this compound is stable under conditions in which the device is normally used. Therefore, the temperature range of the optically isotropic liquid crystal phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range.
  • this compound since this compound has a large dielectric anisotropy and refractive index anisotropy, it is useful as a component for lowering the driving voltage of a composition driven with an optically isotropic liquid crystal phase.
  • a blue phase when a blue phase is expressed in a composition prepared from the compound (1) and a chiral agent, a uniform blue phase that does not coexist with the N * phase or the isotropic phase tends to be obtained. That is, the compound (1) is a compound that easily develops a uniform blue phase.
  • the combination of m, n, and p of the compound (1) and the left terminal group R 1 , the right terminal group Y 1 , or the linking groups Z 1 to Z 4 , the clearing point, the refractive index anisotropic It is possible to arbitrarily adjust physical properties such as property and dielectric anisotropy.
  • the combination of m, n, and p, the left terminal group R 1 , the right terminal group Y 1 , the linking groups Z 1 to Z 4 , and the types of L 2 to L 5 in 1,4-phenylene are the compounds The effect on the physical properties will be described below.
  • a compound in which R 1 is an optically active group is useful as a chiral dopant.
  • a compound in which R 1 is not an optically active group is useful as a component of the composition.
  • R 1 is alkenyl
  • the preferred configuration depends on the position of the double bond.
  • An alkenyl compound having a preferred configuration has a wide temperature range of the liquid crystal phase.
  • the linking groups Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, —CH 2 CH 2 —, —CH ⁇ CH—, —CF 2 O—, —OCF 2 —, —CH 2 O—, —OCH 2 —, —CF ⁇ CF—, — (CH 2 ) 3 —O—, —O— (CH 2 ) 3 —, — (CH 2 ) 2 —CF 2 O—, —OCF 2 — (CH 2 ) 2 -, or - (CH 2) 4 - is when the viscosity is small at.
  • the bonding group is a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, or —CH ⁇ CH—, the viscosity is smaller.
  • the bonding group is —CH ⁇ CH—, the temperature range of the liquid crystal phase is wide, and the elastic constant ratio K 33 / K 11 (K 33 : bend elastic constant, K 11 : spray elastic constant) is large.
  • the bonding group is —C ⁇ C—, the refractive index anisotropy is large.
  • the bonding group is —COO— or —CF 2 O—, the dielectric anisotropy is large.
  • Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, — (CH 2 ) 2 —, —CH 2 O—, —CF 2 O—, —OCF 2 —, — (CH 2 ) 4 —. Sometimes it is chemically stable and difficult to degrade.
  • Y 1 When the right terminal group Y 1 is fluorine, chlorine, —C ⁇ N, —SF 5 , —CF 3 , —OCF 3 , or —CH ⁇ CH—CF 3 , the dielectric anisotropy is large. When Y 1 is fluorine, —CF 3 , or —OCF 3 , it is chemically stable.
  • L 2 , L 3 , L 4 and L 5 are hydrogen or chlorine, the melting point is low, and when L 2 is fluorine, the dielectric anisotropy is large. When at least two of L 1 to L 5 are fluorine, the dielectric anisotropy is very large. Further, when at least one of L 1 to L 5 is chlorine, the compatibility with other liquid crystal compounds is good.
  • a compound having desired physical properties can be obtained by appropriately selecting the kind of ring structure, terminal group, bonding group and the like.
  • Preferred examples of the compound (1) are the formulas (1-1) to (1-2). More preferred examples are formulas (1-1-1) to (1-1-8) and formulas (1-2-1) to (1-2-16). Of these, the formulas (1-1-1) to (1-1-8) and the formulas (1-2-1) to (1-2-6) are more preferable.
  • R 1a and R 1b are hydrogen or alkyl having 1 to 10 carbon atoms
  • L 1 , L 2 , L 3 , and L 4 are hydrogen, fluorine or chlorine
  • Y 1 is fluorine, chlorine , —SF 5 , —C ⁇ N, —N ⁇ C ⁇ S, —CF 3 , —CF 2 H, —OCF 3 , or —OCF 2 H.
  • branched alkyl There are several methods for introducing branched alkyl into the left terminal group. Basically, a halogenated derivative (93) of branched alkyl is prepared by the following method, and then a palladium catalyst is prepared. In the presence of the branched alkyl group, a branched alkyl group is introduced by a cross-coupling reaction between a Grignard reagent of this halogen derivative and a halogen derivative (94) such as aromatic.
  • a halogenated derivative (93) of branched alkyl is prepared by the following method, and then a palladium catalyst is prepared.
  • a branched alkyl group is introduced by a cross-coupling reaction between a Grignard reagent of this halogen derivative and a halogen derivative (94) such as aromatic.
  • Alkyl is a branched alkyl
  • X 1 is a halogen, a triflate group, a mesyl group, or a tosyl group
  • Core is an organic group having a ring structure, an alcohol derivative into which a protecting group (Pro) is introduced, or an ester derivative
  • the halogenated derivative of branched alkyl (93) is commercially available, or the halogen derivative is derived from the corresponding branched alkyl carboxylic acid derivative (91) or branched alkyl alcohol derivative (92) by a known method. (93).
  • branched alkyls can be constructed from general synthetic reagents by various methods. An example is shown below. (Wherein X 1 represents halogen, triflate group, mesyl group, and tosyl group; X 2 represents MgBr, MgCl, and Li)
  • X 1 represents halogen, triflate group, mesyl group, and tosyl group
  • X 2 represents MgBr, MgCl, and Li
  • magnesium is allowed to act on the corresponding halogen derivative (100) to prepare a Grignard reagent, and a formylating agent is added to derive the aldehyde derivative (101).
  • Compound (101) is obtained by repeating the Wittig reaction using (methoxymethyl) triphenylphosphine boromide and a base and the subsequent hydrolysis reaction ((a)) to obtain an aldehyde derivative ( (102), (103), (104), and (10m)) are prepared.
  • the compound (102) When synthesizing an alkyl or alkenyl branched at the 2-position, the compound (102) is reacted with a corresponding alkyl Grignard reagent, etc., and then subjected to an oxidation reaction to induce the compound (102-1).
  • a branched alkyl alcohol derivative (102-2) is obtained by reacting an alkyl Grignard reagent or the like.
  • the branched alkenyl (102-3) is obtained by subjecting the alcohol derivative (102-2) to a dehydration reaction with an acid or the like, and the branched alkyl (102-4) performs hydrogen reduction of the compound (102-3). Can be obtained.
  • Branched alkenyl (103-3) and branched alkyl (103-4) at position 3 Branched alkenyl (104-3) and branched alkyl (104-4) at position 4, Branched alkenyl (101-3) and branched at position 1 Alkyl (101-4) can also be synthesized by the same method.
  • branched alkenyls ((103-5 and (103-6)) are synthesized from the above-described derivatives, for example, the compound (103-1) using the Tube reaction, Wittig reaction, or olefin metathesis reaction as described below. There is also a way to do it.
  • An ether bond is introduced into a branched alkyl by deriving the alcohol derivative (10m-1) from a corresponding derivative, for example, the compound (10m) by a reduction reaction, and then performing etherification by acting a halogen derivative and a base. be able to.
  • An ether bond can be introduced to the branched alkenyl by the same method.
  • the corresponding halogen derivative (100) is reacted with an alkyne derivative by Sonogashira reaction using a palladium catalyst and Cu to obtain compound (105-1), and then subjected to oxidation reaction and Grignard reaction to give compound (105- 3).
  • a branched compound (105-4) can be obtained by reacting this compound (105-3) with triethylsilane and a boron halide.
  • MSG 1 or MSG 2 is a monovalent organic group having at least one ring.
  • a plurality of MSG 1 (or MSG 2 ) used in the scheme may be the same or different.
  • Compounds (1A) to (1J) correspond to compound (1).
  • 1-4-4 Method for Synthesizing Compound (1)
  • a branched alkyl halogen derivative (110) is prepared by the method shown in 1-4-1, and a compound obtained by allowing magnesium or the like to act on the compound (110) and the corresponding halogen derivative (111) are cross-cups.
  • Compound (112) can be obtained by carrying out a ring reaction.
  • the intermediate (114) can be obtained by repeating the coupling reaction using a palladium catalyst as many times as necessary.
  • the compound (1) having a single bond can be obtained by further performing a coupling reaction with the boronic acid derivative (115). Further, after the action of alkyllithium and dibromodifluoromethane, by carrying out the etherification reaction with the phenol derivative (116), to give compound having a CF 2 O bond (1). Moreover, after converting into a carboxylic acid derivative using alkyllithium and dry ice, an esterification reaction is carried out using DCC (dicyclohexylcarbodiimide) and DMAP (dimethylaminopyridine) to obtain the compound (1) having an ester bond. Obtainable.
  • DCC dicyclohexylcarbodiimide
  • DMAP dimethylaminopyridine
  • a second aspect of the present invention is a liquid crystal composition obtained by adding a component selected from components B, C, D and E shown below to component A which is a compound represented by the formula (1).
  • the driving voltage, the liquid crystal phase temperature range, the refractive index anisotropy value, the dielectric anisotropy value, the viscosity, and the like can be freely adjusted as compared with the composition containing only component A.
  • Component A The component added to Component A was selected from Component B consisting of at least one compound selected from the group consisting of Formulas (2), (3) and (4), or from the group consisting of Formula (5).
  • Component C consisting of at least one compound, or Component D consisting of at least one compound selected from the group consisting of Formula (6), or a group consisting of Formulas (7) to (10)
  • a mixture of Component E consisting of at least one compound or Component F consisting of at least one compound selected from the group consisting of Formula (11) is preferred.
  • an analog composed of an isotope element of each element can be used because there is no great difference in physical properties.
  • formulas (2-1) to (2-16) are preferred examples of the compound represented by formula (2), and formula (3-1) are preferred examples of the compound represented by formula (3).
  • formulas (2-1) to (2-16) are preferred examples of the compound represented by formula (2), and formula (3-1) are preferred examples of the compound represented by formula (3).
  • formulas (4-1) to (4-52) include formulas (4-1) to (4-52), respectively.
  • These compounds represented by the formulas (2) to (4), that is, the component B have a positive dielectric anisotropy value and are very excellent in thermal stability and chemical stability. It is used when preparing a liquid crystal composition.
  • the content of component B in the liquid crystal composition of the present invention is suitably in the range of 1 to 99% by weight with respect to the total weight of the liquid crystal composition, preferably 10 to 97% by weight, more preferably 40 to 95% by weight. It is.
  • Preferred examples of the compound represented by the formula (5), that is, the component C include formulas (5-1) to (5-62).
  • the compound represented by the formula (5) that is, the component C has a positive dielectric anisotropy value and a very large value.
  • the composition driving voltage can be reduced.
  • the viscosity, the refractive index anisotropy value, and the liquid crystal phase temperature range can be expanded.
  • the content of component C is preferably in the range of 0.1 to 99.9% by weight, more preferably in the range of 10 to 97% by weight, and still more preferably in the range of 40 to 95% by weight with respect to the total amount of the composition.
  • the threshold voltage, the liquid crystal phase temperature range, the refractive index anisotropy value, the dielectric anisotropy value, the viscosity, and the like can be adjusted by mixing the components described later.
  • Preferred examples of the compound represented by formula (6) (component D) include formulas (6-1) to (6-6), respectively.
  • the compound (component D) represented by the formula (6) is a compound having a small absolute value of dielectric anisotropy and close to neutrality.
  • the compound represented by the formula (6) has an effect of expanding the temperature range of the optically isotropic liquid crystal phase, such as increasing the clearing point, or adjusting the refractive index anisotropy value.
  • the content of component D is preferably 60% by weight or less, more preferably 40% by weight or less based on the total amount of the composition.
  • the liquid crystal composition of the present invention preferably contains at least one compound represented by the formula (1) of the present invention at a ratio of 0.1 to 99% by weight in order to develop excellent characteristics.
  • the liquid crystal composition of the present invention is generally prepared by a known method, for example, a method of dissolving necessary components at a high temperature.
  • the third aspect of the present invention is a liquid crystal composition obtained by adding a component selected from components E and F shown below to component A.
  • component E consisting of at least one compound selected from the group consisting of the above formulas (7), (8), (9) and (10), or a group consisting of the above formula (11)
  • component F which consists of at least 1 sort (s) of compound chosen from these is preferable.
  • each component of the liquid crystal composition used in the present invention is not greatly different in physical properties even if it is an analog composed of an isotope element of each element.
  • formulas (7-1) to (7-8) are preferred examples of the compound represented by formula (7)
  • formula (8-1) is a preferred example of the compound represented by formula (8).
  • preferred examples of the compound represented by formula (9) are formulas (9-1) to (9-22)
  • preferred examples of the compound represented by formula (10) are formula (10). -1) to (10-5).
  • these compounds represented by the formulas (7) to (10), ie, the component E have a positive dielectric anisotropy value and a very large value, they have excellent thermal stability and chemical stability. It is suitable for preparing a liquid crystal composition for active driving such as TFT driving.
  • the content of Component F in the liquid crystal composition of the present invention is suitably in the range of 1 to 99% by weight, preferably 10 to 97% by weight, more preferably 40 to 95% by weight, based on the total weight of the liquid crystal composition. It is.
  • a clearing point and a viscosity can be adjusted by further containing the compound (component D) represented by Formula (6).
  • Preferred examples of the compound represented by formula (11), that is, component F, include formulas (11-1) to (11-37).
  • the content of component F is preferably in the range of 0.1 to 99.9% by weight, more preferably in the range of 10 to 97% by weight, and still more preferably in the range of 40 to 95% by weight with respect to the total amount of the composition. .
  • a fourth aspect of the present invention is a composition comprising a compound represented by formula (1) and a chiral agent, and is optically equivalent. It is a liquid crystal composition that can be used for an optical element driven in a isotropic liquid crystal phase.
  • the liquid crystal composition is a composition that exhibits an optically isotropic liquid crystal phase. Since the compound represented by the formula (1) has a low clearing point and a large dielectric anisotropy and a large refractive index anisotropy, the content thereof is an achiral liquid crystal composition to which no chiral agent is added.
  • the chiral agent is preferably contained in an amount of 1 to 40% by weight, more preferably 3 to 25% by weight, and most preferably 5 to 15% by weight based on the total weight of the liquid crystal composition.
  • a liquid crystal composition containing a chiral agent in these ranges is preferable because it tends to have an optically isotropic liquid crystal phase.
  • the chiral agent contained in the liquid crystal composition may be one type or two or more types.
  • the chiral agent contained in the optically isotropic liquid crystal composition is an optically active compound, and the chiral agent is preferably a compound having a large twisting power.
  • a compound having a large torsional force can reduce the amount of addition necessary to obtain a desired pitch, so that an increase in driving voltage can be suppressed and is practically advantageous.
  • compounds represented by the following formulas (K1) to (K5) are preferable.
  • Any —CH 2 —CH 2 — in the alkylene may be replaced by —CH ⁇ CH —, —CF ⁇ CF— or —C ⁇ C— may be substituted, and any hydrogen may be substituted with halogen;
  • X is a single bond, —COO—, —OCO—, —CH 2 O— , —OCH 2 —, —CF 2 O—, —OCF 2 —, or —CH 2 CH 2 —;
  • mK is 1-4.
  • the chiral agent added to the liquid crystal composition includes the formula (K2-1) to the formula (K2-8) included in the formula (K2) and the formula (K4-1) included in the formula (K4).
  • Formula (K4-6) and Formula (K5-1) to Formula (K5-3) included in Formula (K5) are preferable.
  • the optically isotropic liquid crystal phase liquid crystal composition is optically isotropic. Although the liquid crystal molecular alignment is isotropic macroscopically, it is optically isotropic. Microscopically, it means that liquid crystal order exists. “Pitch based on microscopic order of liquid crystal composition (hereinafter, sometimes referred to as pitch)” is preferably 700 nm or less, more preferably 500 nm or less, and 350 nm or less. Is most preferred.
  • non-liquid crystal isotropic phase is a generally defined isotropic phase, that is, a disordered phase, and even if a region where the local order parameter is not zero is generated, the cause is due to fluctuations.
  • Isotropic phase For example, an isotropic phase appearing on the high temperature side of the nematic phase corresponds to a non-liquid crystal isotropic phase in this specification.
  • the same definition shall apply to the chiral liquid crystal in this specification.
  • the “optically isotropic liquid crystal phase” refers to a phase that expresses an optically isotropic liquid crystal phase instead of fluctuations, for example, a phase that expresses a platelet structure (in a narrow sense). Blue phase) is an example.
  • optically isotropic liquid crystal composition of the present invention although it is an optically isotropic liquid crystal phase, a platelet structure typical of a blue phase may not be observed under a polarizing microscope. Therefore, in this specification, a phase that develops a platelet structure is referred to as a blue phase, and an optically isotropic liquid crystal phase including the blue phase is referred to as an optically isotropic liquid crystal phase. That is, the blue phase is included in the optically isotropic liquid crystal phase.
  • blue phases are classified into three types (blue phase I, blue phase II, and blue phase III), and these three types of blue phases are all optically active and isotropic.
  • blue phase I or blue phase II two or more types of diffracted light caused by Bragg reflection from different lattice planes are observed.
  • the blue phase is generally observed between the non-liquid crystal isotropic phase and the chiral nematic phase.
  • the state in which the optically isotropic liquid crystal phase does not show diffracted light of two or more colors means that the platelet structure observed in the blue phase I and the blue phase II is not observed and is generally monochromatic. To do. In an optically isotropic liquid crystal phase that does not show diffracted light of two or more colors, it is not necessary until the color brightness is uniform in the plane.
  • An optically isotropic liquid crystal phase that does not show diffracted light of two or more colors has an advantage that the reflected light intensity due to Bragg reflection can be suppressed or shifted to the lower wavelength side.
  • the liquid crystal material that reflects visible light may have a problem of color when used as a display element.
  • the reflection wavelength is shifted by a low wavelength. Therefore, the reflection of visible light can be eliminated at a pitch longer than the narrowly defined blue phase (phase that expresses the platelet structure).
  • the optically isotropic liquid crystal composition of the present invention can be obtained by adding a chiral agent to a composition having a nematic phase. At this time, the chiral agent is preferably added at a concentration such that the pitch is 700 nm or less. In addition, the composition which has a nematic phase contains the compound represented by Formula (1) and another component as needed.
  • the optically isotropic liquid crystal composition of the present invention can also be obtained by adding a chiral agent to a composition having a chiral nematic phase and not having an optically isotropic liquid crystal phase. .
  • the composition which has a chiral nematic phase and does not have an optically isotropic liquid crystal contains the compound represented by Formula (1), an optically active compound, and other components as needed.
  • the optically active compound is preferably added at a concentration such that the pitch is 700 nm or more so as not to develop an optically isotropic liquid crystal phase.
  • the optically active compound to be added is a compound (K1) to (K5), a formula (K2-1) to (K2-8), or a formula (K4-1) K4-6) or compounds represented by formulas (K5-1) to (K5-3) can be used.
  • the optically active compound to be added may be a compound that does not have a very large twisting force. Examples of such an optically active compound include a compound added to a liquid crystal composition for an element (TN mode, STN mode, etc.) driven in a nematic phase.
  • the temperature range of the optically isotropic liquid crystal composition of the present invention is such that a chiral agent is added to a liquid crystal composition having a wide coexistence temperature range of a nematic phase or a chiral nematic phase and an isotropic phase, and the optical It can be widened by developing an isotropic liquid crystal phase.
  • a liquid crystal compound having a high clearing point and a liquid crystal compound having a low clearing point are mixed to prepare a liquid crystal composition having a wide coexisting temperature range of a nematic phase and an isotropic phase over a wide temperature range, and a chiral agent is added thereto.
  • a composition that exhibits an optically isotropic liquid crystal phase in a wide temperature range can be prepared.
  • the difference between the maximum temperature and the minimum temperature at which the chiral nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C.
  • a liquid crystal composition is preferable, and a liquid crystal composition having a difference of 5 to 150 ° C. is more preferable.
  • a liquid crystal composition in which the difference between the upper limit temperature and the lower limit temperature at which the nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C. is preferable.
  • the optically isotropic liquid crystal composition of the present invention may be further added with other compounds such as a polymer substance as long as the properties of the composition are not affected.
  • the liquid crystal composition of the present invention may contain, for example, a dichroic dye and a photochromic compound in addition to the polymer substance.
  • dichroic dyes include merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine.
  • a fifth aspect of the present invention is a composite material of a liquid crystal composition and a polymer containing a compound represented by formula (1) and a chiral agent, and optically Isotropic.
  • This is an optically isotropic polymer / liquid crystal composite material that can be used in an optical element driven in an optically isotropic liquid crystal phase.
  • Such a polymer / liquid crystal composite material is composed of, for example, the liquid crystal composition (liquid crystal composition CLC) described in the items [1] to [30] and a polymer.
  • the “polymer / liquid crystal composite material” of the present invention is not particularly limited as long as it is a composite material containing both a liquid crystal material and a polymer compound, but part or all of the polymer is dissolved in the liquid crystal material.
  • the polymer may be in a state of being phase-separated from the liquid crystal material.
  • a nematic phase means a nematic phase in a narrow sense that does not include a chiral nematic phase.
  • the optically isotropic polymer / liquid crystal composite material according to a preferred embodiment of the present invention can exhibit an optically isotropic liquid crystal phase in a wide temperature range. Further, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention has an extremely fast response speed. Moreover, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention can be suitably used for an optical element such as a display element based on these effects.
  • the composite material of the present invention can be produced by mixing an optically isotropic liquid crystal composition and a polymer obtained by polymerizing in advance, but it is a low polymer material. It is preferably produced by mixing a monomer having a molecular weight, a macromonomer, an oligomer, etc. (hereinafter collectively referred to as “monomer etc.”) and the liquid crystal composition CLC, and then performing a polymerization reaction in the mixture.
  • a mixture containing a monomer or the like and a liquid crystal composition is referred to as a “polymerizable monomer / liquid crystal mixture”.
  • the “polymerizable monomer / liquid crystal mixture” includes a polymerization initiator, a curing agent, a catalyst, a stabilizer, a dichroic dye, or a photochromic compound, which will be described later, as necessary, as long as the effects of the present invention are not impaired. But you can.
  • the polymerizable monomer / liquid crystal mixture of the present invention may contain 0.1 to 20 parts by weight of a polymerization initiator with respect to 100 parts by weight of the polymerizable monomer.
  • the polymerization temperature is preferably a temperature at which the polymer / liquid crystal composite material exhibits high transparency and isotropic properties. More preferably, the polymerization is terminated at a temperature at which the mixture of the monomer and the liquid crystal material develops an isotropic phase or a blue phase, and at the isotropic phase or the optically isotropic liquid crystal phase. That is, after polymerization, the polymer / liquid crystal composite material is preferably set to a temperature that does not substantially scatter light on the longer wavelength side than visible light and develops an optically isotropic state.
  • the polymer raw material constituting the composite material of the present invention for example, a low molecular weight monomer, macromonomer, and oligomer can be used.
  • the high molecular weight raw material monomer is a low molecular weight monomer, macromonomer. , Used to include oligomers and the like.
  • the obtained polymer has a three-dimensional crosslinked structure. Therefore, it is preferable to use a polyfunctional monomer having two or more polymerizable functional groups as a raw material monomer for the polymer.
  • the polymerizable functional group is not particularly limited, and an acrylic group, a methacryl group, a glycidyl group, an epoxy group, an oxetanyl group, a vinyl group, and the like can be raised, but an acrylic group and a methacryl group are preferable from the viewpoint of polymerization rate.
  • a monomer having two or more polymerizable functional groups in the polymer raw material monomer is contained in an amount of 10% by weight or more, high transparency and isotropy are easily exhibited in the composite material of the present invention. This is preferable.
  • the polymer preferably has a mesogen moiety, and a raw material monomer having a mesogen moiety can be used as a part or all of the polymer as a polymer raw material monomer.
  • the monofunctional or bifunctional monomer having a mesogen moiety is not particularly limited in terms of structure.
  • the following formula (M1) or (M2) The compound represented by these can be mentioned.
  • each R a is independently hydrogen, halogen, —C ⁇ N, —N ⁇ C ⁇ O, —N ⁇ C ⁇ S, or alkyl having 1 to 20 carbons.
  • any —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and any —CH 2 —CH 2 — in the alkyl may be substituted.
  • R b is each independently a polymerizable group of formula (M3-1) to formula (M3-7).
  • R a is hydrogen, halogen, —C ⁇ N, —CF 3 , —CF 2 H, —CFH 2 , —OCF 3 , —OCF 2 H, alkyl having 1 to 20 carbons, or alkyl having 1 to 19 carbons. Alkoxy, alkenyl having 2 to 21 carbons, and alkynyl having 2 to 21 carbons. Particularly preferred R a is —C ⁇ N, alkyl having 1 to 20 carbons and alkoxy having 1 to 19 carbons.
  • each R b is independently a polymerizable group of the formulas (M3-1) to (M3-7).
  • R d in the formulas (M3-1) to (M3-7) is each independently hydrogen, halogen or alkyl having 1 to 5 carbon atoms, and in these alkyls, arbitrary hydrogen is replaced with halogen. May be.
  • Preferred R d is hydrogen, halogen and methyl.
  • Particularly preferred R d is hydrogen, fluorine and methyl.
  • the formula (M3-2), the formula (M3-3), the formula (M3-4), and the formula (M3-7) are preferably polymerized by radical polymerization.
  • the formulas (M3-1), (M3-5), and (M3-6) are preferably polymerized by cationic polymerization.
  • a polymerization initiator can be used for the purpose of accelerating the generation of active species. For example, light or heat can be used to generate the active species.
  • a M is each independently an aromatic or non-aromatic 5-membered ring, 6-membered ring, or condensed ring having 9 or more carbon atoms.
  • CH 2 — may be —O—, —S—, —NH—, or —NCH 3 —, and —CH ⁇ in the ring may be replaced by —N ⁇ , the hydrogen atom on the ring is halogen, and carbon number It may be replaced with 1 to 5 alkyls or alkyl halides.
  • a M 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4 -Phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2-methyl-1,4-phenylene, 2-trifluoromethyl-1,4-phenylene, 2 , 3-bis (trifluoromethyl) -1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7- Diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl, and pyrimidine-2,5-diyl.
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene is structurally identical to 3-fluoro-1,4-phenylene, the latter was not exemplified. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • each Y is independently a single bond or alkylene having 1 to 20 carbon atoms, and in these alkylenes, any —CH 2 — is replaced by —O— or —S—. And any —CH 2 —CH 2 — in the alkylene may be replaced by —CH ⁇ CH—, —C ⁇ C—, —COO—, or —OCO—.
  • Preferred Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 20) .
  • Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 10). is there.
  • —Y—R a and —Y—R b may be —O—O—, —O—S—, —S—O—, or —S—S in their groups. It is preferable not to have-.
  • Z M each independently represents a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —O ( CH 2 ) m 3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, —OCO—, — (CF 2 ) 2 —, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —C ⁇ C—COO—, —OCO—C ⁇ C—, —CH ⁇ CH— (CH 2 ) 2 —, — (CH 2 ) 2 —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—CH ⁇ CH—, —CH ⁇ CH—C ⁇ C—, —OCF 2 — (CH 2 ) 2 —,
  • Preferred Z M is a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, — OCO—, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —OCF 2 —, and —CF 2 O— It is.
  • m1 is an integer of 1 to 6.
  • Preferred m1 is an integer of 1 to 3.
  • m1 is 1, it is a bicyclic compound having two rings such as a 6-membered ring.
  • m1 is 2 or 3, they are tricyclic and tetracyclic compounds, respectively.
  • two A M may be may be the same or different.
  • three A M or two Z M ) may be the same or different.
  • m1 is 3-6.
  • R a , R b , R d , Z M , A M and Y The same applies.
  • the compound (M1) represented by the formula (M1) and the compound (M2) represented by the formula (M2) contain isotopes such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance. However, since it has the same characteristics, it can be preferably used.
  • More preferred examples of the compound (M1) and the compound (M2) include the compounds (M1-1) represented by the formulas (M1-1) to (M1-41) and the formulas (M2-1) to (M2-27). To (M1-41) and compounds (M2-1) to (M2-27).
  • R a , R b , R d , Z M , A M , Y and p are the same as those in formula (M1) and formula (M2) described in the embodiments of the present invention.
  • the partial structure (a1) represents 1,4-phenylene in which arbitrary hydrogen is replaced by fluorine.
  • the partial structure (a2) represents 1,4-phenylene in which arbitrary hydrogen may be replaced by fluorine.
  • the partial structure (a3) represents 1,4-phenylene in which arbitrary hydrogen may be replaced by either fluorine or methyl.
  • the partial structure (a4) represents fluorene in which the hydrogen at the 9-position may be replaced with methyl.
  • a monomer having no mesogen moiety and a polymerizable compound other than the monomers (M1) and (M2) having a mesogen moiety can be used as necessary.
  • a monomer having a mesogenic moiety and having three or more polymerizable functional groups may be used.
  • known compounds can be suitably used. Examples thereof include compounds (M4-1) to (M4-3), and more specific examples are as follows. And compounds described in JP-A No. 2000-327632, JP-A No. 2004-182949, and JP-A No. 2004-59772. However, in the formulas (M4-1) to (M4-3), R b , Za, Y, and (F) have the same meaning as described above.
  • Monomer having a polymerizable functional group not having a mesogen moiety for example, a linear or branched acrylate having 1 to 30 carbon atoms
  • Monomers having 1 to 30 carbon atoms or straight chain or branched diacrylates, and monomers having three or more polymerizable functional groups include glycerol propoxylate (1PO / OH) triacrylate, pentaerythritol propoxylate triacrylate, penta Erythritol triacrylate, trimethylolpropane ethoxylate triacrylate, trimethylolpropane propoxylate triacrylate, trimethylolpropane triacrylate, di (trimethylolpropane) tetraacrylate, pentaerythritol Examples thereof include, but are not limited to, tetraacrylate, di (pentaerythritol) pentaacrylate, di (
  • the polymerization reaction in the production of the polymer constituting the composite material of the present invention is not particularly limited, and for example, photoradical polymerization, thermal radical polymerization, photocationic polymerization and the like are performed.
  • photo radical polymerization initiator examples include DAROCUR (registered trademark) 1173 and 4265 (both trade names, Ciba Specialty Chemicals), Irgacure (IRGACURE, registered trademark). 184, 369, 500, 651, 784, 819, 907, 1300, 1700, 1800, 1850, and 2959 (all trade names, Ciba Specialty Chemicals Co., Ltd.).
  • thermal radical polymerization examples include benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate , T-butyl peroxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), di-t-butyl peroxide (DTBPO), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbox Nitrile (ACN) and the like.
  • MAIB dimethyl 2,2′-azobisisobutyrate
  • DTBPO di-t-butyl peroxide
  • AIBN azobisisobutyronitrile
  • ACN azobiscyclohexanecarbox Nitrile
  • photocationic polymerization initiator examples include diaryliodonium salts (hereinafter referred to as “DAS”), triarylsulfonium salts (hereinafter referred to as “TAS”), and the like.
  • DAS diaryliodonium salts
  • TAS triarylsulfonium salts
  • DAS includes diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyliodoniumtetra (pentafluorophenyl) ) Borate, 4-methoxyphenyl phenyl iodonium tetrafluoroborate, 4-methoxyphenyl phenyl iodonium hexafluorophosphonate, 4-methoxyphenyl phenyl iodonium hexafluoroarsenate, 4-methoxyphenyl phenyl iodonium trifluoromethanesulfonate, 4-methoxyphen
  • Sensitivity can be increased by adding a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
  • a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
  • TAS includes triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, Triphenylsulfonium tetra (pentafluorophenyl) borate, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium trifluoromethane Sulfona
  • Examples of specific trade names of the photocationic polymerization initiator include Cyracure (registered trademark) UVI-6990, Cyracure UVI-6974, Cyracure UVI-6922 (trade names, UCC Co., Ltd.) and Adekaoptomer SP, respectively.
  • Cyracure registered trademark
  • UVI-6990 Cyracure UVI-6974
  • Cyracure UVI-6922 trade names, UCC Co., Ltd.
  • Adekaoptomer SP Adekaoptomer SP, respectively.
  • -150, SP-152, SP-170, SP-172 (trade names, ADEKA Corporation), Rhodorsil® Photoinitiator 2074 (trade name, Rhodia Japan Co., Ltd.), Irgacure (registered trademark) 250 (trade name) Ciba Specialty Chemicals Co., Ltd.), UV-9380C (trade name, GE Toshiba Silicone Co., Ltd.), and the like.
  • the curing agent a conventionally known latent curing agent that is usually used as a curing agent for epoxy resins can be used.
  • the latent epoxy resin curing agent include amine curing agents, novolak resin curing agents, imidazole curing agents, and acid anhydride curing agents.
  • amine curing agents include aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, and isophoronediamine.
  • 1,3-bisaminomethylcyclohexane bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, alicyclic polyamines such as laromine, fragrances such as diaminodiphenylmethane, diaminodiphenylethane, metaphenylenediamine Group polyamines and the like.
  • novolak resin-based curing agents examples include phenol novolac resins and bisphenol novolac resins.
  • the imidazole curing agent include 2-methylimidazole, 2-ethylhexylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, and the like.
  • acid anhydride curing agents examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride and the like can be mentioned.
  • a curing accelerator for accelerating the curing reaction between the polymerizable compound having a glycidyl group, an epoxy group, or an oxetanyl group and the curing agent may be further used.
  • the curing accelerator include tertiary amines such as benzyldimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methyl.
  • Imidazoles such as imidazole, organophosphorus compounds such as triphenylphosphine, quaternary phosphonium salts such as tetraphenylphosphonium bromide, 1,8-diazabicyclo [5.4.0] undecene-7, and organic acid salts thereof
  • examples include diazabicycloalkenes, quaternary ammonium salts such as tetraethylammonium bromide and tetrabutylammonium bromide, and boron compounds such as boron trifluoride and triphenylborate.
  • These curing accelerators can be used alone or in admixture of two or more.
  • a stabilizer is preferably added in order to prevent undesired polymerization during storage.
  • All compounds known to those skilled in the art can be used as stabilizers.
  • Representative examples of stabilizers include 4-ethoxyphenol, hydroquinone, butylated hydroxytoluene (BHT) and the like.
  • the content ratio of the liquid crystal composition in the polymer / liquid crystal composite material of the present invention is possible as long as the composite material can express an optically isotropic liquid crystal phase. It is preferable that the content is as high as possible. This is because the electric birefringence value of the composite material of the present invention increases as the content of the liquid crystal composition is higher.
  • the content of the liquid crystal composition is preferably from 60 to 99% by weight, more preferably from 60 to 95% by weight, particularly from 65 to 95% by weight, based on the composite material.
  • the content of the polymer is preferably 1 to 40% by weight, more preferably 5 to 40% by weight, and particularly preferably 5 to 35% by weight with respect to the composite material.
  • the polymer / liquid crystal composite material of the present invention may contain, for example, a dichroic dye and a photochromic compound as long as the effects of the present invention are not impaired.
  • EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict
  • a sixth aspect of the present invention is a liquid crystal composition or a polymer / liquid crystal composite material (hereinafter, the liquid crystal composition and polymer / liquid crystal composite material of the present invention may be collectively referred to as a liquid crystal medium). ) Including an optically isotropic liquid crystal phase. When no electric field is applied, the liquid crystal medium is optically isotropic, but when an electric field is applied, the liquid crystal medium exhibits optical anisotropy, and light modulation by the electric field becomes possible. As an example of the structure of the liquid crystal display element, as shown in FIG.
  • GC analysis GC-14B gas chromatograph manufactured by Shimadzu Corporation was used as a measuring device.
  • a capillary column CBP1-M25-025 (length: 25 m, inner diameter: 0.22 mm, film thickness: 0.25 ⁇ m) manufactured by Shimadzu Corporation; dimethylpolysiloxane; nonpolar) as the stationary liquid phase was used.
  • Helium was used as the carrier gas, and the flow rate was adjusted to 1 ml / min.
  • the temperature of the sample vaporizing chamber was set to 300 ° C., and the temperature of the detector (FID) portion was set to 300 ° C.
  • the sample was dissolved in toluene to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber.
  • a recorder a C-R6A type Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used.
  • the obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by Agilent Technologies Inc.
  • HP-1 length 30 m, inner diameter 0
  • Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m)
  • BP-1 from SGE International Corporation Pty. Ltd (length 30 m, inner diameter) 0.32 mm, film thickness of 0.25 ⁇ m) or the like
  • SGE International Corporation Pty. Ltd length 30 m, inner diameter 0.32 mm, film thickness of 0.25 ⁇ m
  • the peak area ratio in the gas chromatogram corresponds to the ratio of the component compounds.
  • the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
  • the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
  • an internal standard method based on the gas chromatogram is used.
  • the liquid crystal compound component (test component) weighed in a certain amount accurately and the reference liquid crystal compound (reference material) are simultaneously measured by gas chromatography, and the area ratio between the peak of the obtained test component and the peak of the reference material Is calculated in advance.
  • the composition ratio of the liquid crystal compound in the liquid crystal composition can be determined more accurately from gas chromatography analysis.
  • Samples for Measuring Physical Property Values of Liquid Crystal Compounds There are two types of samples for measuring the physical property values of liquid crystal compounds: when the compound itself is used as a sample, and when the compound is mixed with mother liquid crystals as a sample.
  • the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method based on the following calculation formula. This extrapolated value is taken as the physical property value of this compound.
  • ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal>) / ⁇ Weight% of liquid crystal compound>
  • the ratio between the liquid crystal compound and the mother liquid crystal is this ratio, when the smectic phase or crystal is precipitated at 25 ° C., the ratio between the liquid crystal compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight. %: 95% by weight, 1% by weight: 99% by weight, and the physical properties of the sample were measured with a composition in which the smectic phase or crystals did not precipitate at 25 ° C., and extrapolated according to the above formula. This is taken as the physical property value of the liquid crystal compound.
  • mother liquid crystals A there are various types of mother liquid crystals used for measurement.
  • the composition (% by weight) of the mother liquid crystals A is as follows.
  • Phase structure and phase transition temperature Measurement was performed by the following methods (1) and (2).
  • a compound is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope, and a phase state and its change are observed with a polarizing microscope while heating at a rate of 3 ° C./min. , Identified the type of liquid crystal phase.
  • (2) Using a scanning calorimeter DSC-7 system or Diamond DSC system manufactured by PerkinElmer, Inc., the temperature is increased and decreased at a rate of 3 ° C / min. The phase transition temperature was determined by onset.
  • the crystal is expressed as K, and when the crystal can be distinguished, it is expressed as K 1 or K 2 , respectively.
  • the smectic phase is represented as Sm
  • the nematic phase is represented as N.
  • the liquid (isotropic) was designated as I.
  • SmB or SmA When the smectic phase can be distinguished from the smectic B phase or the smectic A phase, it is expressed as SmB or SmA, respectively.
  • BP represents a blue phase or an optically isotropic liquid crystal phase.
  • the coexistence state of two phases may be expressed in the form of (N * + I) and (N * + BP).
  • (N * + I) represents a phase in which a non-liquid crystal isotropic phase and a chiral nematic phase coexist
  • (N * + BP) represents a BP phase or an optically isotropic liquid crystal phase.
  • Un represents an unidentified phase that is not optically isotropic.
  • K 50.0 N 100.0 I means that the phase transition temperature (KN) from the crystal to the nematic phase is 50.0 ° C., and the phase from the nematic phase to the liquid
  • the transition temperature (NI) is 100.0 ° C. The same applies to other notations.
  • T NI Maximum temperature of nematic phase
  • a sample (mixture of liquid crystal compound and mother liquid crystal) is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope. The polarizing microscope was observed while heating at a rate of ° C / min.
  • the temperature at which a part of the sample changed from a nematic phase to an isotropic liquid was defined as the upper limit temperature of the nematic phase.
  • the upper limit temperature of the nematic phase may be simply abbreviated as “upper limit temperature”.
  • Low temperature compatibility A sample in which a mother liquid crystal and a liquid crystal compound were mixed so that the liquid crystal compound was in an amount of 20% by weight, 15% by weight, 10% by weight, 5% by weight, 3% by weight, and 1% by weight. Make and place sample in glass bottle. The glass bottle was stored in a freezer at ⁇ 10 ° C. or ⁇ 20 ° C. for a certain period, and then it was observed whether crystals or smectic phases were precipitated.
  • Viscosity ( ⁇ ; measured at 20 ° C .; mPa ⁇ s): A mixture of a liquid crystal compound and a mother liquid crystal was measured using an E-type viscometer.
  • Pitch P; measured at 25 ° C .; nm
  • the pitch length was measured using selective reflection (Liquid Crystal Manual 196 pages 2000, Maruzen).
  • ⁇ n> represents an average refractive index and is given by the following equation.
  • ⁇ n> ⁇ (n ⁇ 2 + n ⁇ 2) / 2 ⁇ 1/2.
  • the selective reflection wavelength was measured with a microspectrophotometer (JEOL Ltd., trade name MSV-350). The pitch was obtained by dividing the obtained reflection wavelength by the average refractive index.
  • the pitch of cholesteric liquid crystals having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the optically active compound in the region where the optically active compound concentration is low.
  • the length was measured at several points and determined by a linear extrapolation method.
  • the “optically active compound” corresponds to the chiral agent in the present invention.
  • Step 1-1 Synthesis of Compound (S1-03) Under a nitrogen stream, 1-bromo-3-fluoro-4-iodobenzene (S1-01) (21.5 g, 71.6 mmol), 3,5-difluoro -Phenylboronic acid (S1-02) (11.3 g, 71.6 mmol), dichloro (bistriphenylphosphine) palladium (0.503 g, 0.716 mmol), triphenylphosphine (0.375 g, 1.43 mmol), potassium carbonate (14.8 g, 107 mmol) ), Tetrabutylammonium bromide (5.71 g, 17.9 mmol), ethanol (100 mL), and toluene (100 mL) were heated and stirred at 80 ° C.
  • Step 1-3 Synthesis of Compound (S1-07) Under a nitrogen stream, Compound (S1-06) (30.0 g, 259 mmol) obtained in the previous step, triphenylphosphine (84.8 g, 323 mmol) in dichloromethane (200 mL) The carbon tetrabromide (129 g, 388 mmol) / dichloromethane solution was slowly added dropwise to the mixed solution at 0 ° C. and stirred at room temperature for 30 minutes. The reaction solution was poured into water, dichloromethane (500 mL) was added, and the mixture was washed 3 times with water, and then the organic phase was concentrated at normal pressure. The residue was purified by silica gel column chromatography (solvent: n-pentane) to obtain compound (S1-07) (33.4 g, 186 mmol, yield: 72%).
  • compound (S1) was synthesized according to the following scheme.
  • Step 1-4 Synthesis of Compound (S1-08) Under a stream of nitrogen, a mixture of magnesium (3.39 g, 140 mmol) and THF (10 mL) was added to the compound (S1-07) obtained in the previous step ( A 25.0 g, 140 mmol) / THF (100 mL) solution was slowly added dropwise to prepare a Grignard reagent while maintaining the system at 20-30 ° C.
  • Step 1-5) Synthesis of Compound (S1-09) Under a nitrogen stream, a solution of the compound (S1-08) (24.5 g, 80.0 mmol) obtained in the previous step in a THF (150 mL) solution at ⁇ 60 ° C. N-Butyllithium / hexane solution (1.67 mol / L) (52.7 mL, 88.1 mmol) was slowly added dropwise and stirred at the same temperature for 1 hour. Further, iodine (22.3 g, 88.1 mmol) / THF (100 mL) solution was slowly dropped into the system, and the mixture was stirred at the same temperature for 2 hours.
  • reaction solution was poured into water, extracted twice with toluene (300 mL), washed three times with water and once with an aqueous sodium thiosulfate solution, and then the organic phase was concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (solvent: n-heptane) to obtain compound (S1-09) (27.6 g, 63.9 mmol, yield: 80%).
  • Step 1-6 Synthesis of Compound (S1-10) Under a nitrogen stream, compound (S1-09) (27.6 g, 63.9 mmol) obtained in the previous step, 3,5-difluorophenylboronic acid (10.6) g, 67.1 mmol), potassium carbonate (35.3 g, 256 mmol), tetra (butylammonium) bromide (6.17 g, 19.2 mmol) in toluene (100 mL) / ethanol (100 mL) / water (10 mL) at 70 ° C. And stirred for 3 hours.
  • Step 1-7) Synthesis of Compound (S1-11) Under a nitrogen stream, a solution of compound (S1-10) (23.2 g, 55.5 mmol) obtained in the previous step in a THF (150 mL) solution at ⁇ 40 ° C. N-Butyllithium / hexane solution (1.67 mol / L) (34.9 mL, 58.3 mmol) was slowly added dropwise and stirred at the same temperature for 1 hour. Next, a dibromodifluoromethane (12.8 g, 61.1 mmol) / THF (50 mL) solution was slowly dropped into the system at the same temperature, followed by stirring for 1 hour while gradually returning to room temperature.
  • reaction solution was poured into water, extracted with toluene (300 mL), washed three times with water, and then the organic phase was concentrated under reduced pressure.
  • Step 1-8) Synthesis of Compound (S1) Under a nitrogen stream, a mixture (5.00 g (75%), 6.40 mmol) of Compound (S1-11) and Compound (S1-11 ′) obtained in the previous step A mixed solution of potassium carbonate (1.85 g, 13.4 mmol) and tetrabutylammonium bromide (0.206 g, 0.640 mmol) in DMF (50 mL) was stirred with heating at 40 ° C. for 30 minutes. Thereafter, 3,5-difluoro-4-trifluoromethylphenol (S1-12) (1.33 g, 6.72 mmol) was slowly added to the system, and the mixture was heated and stirred at 80 ° C. for 5 hours.
  • the reaction solution was poured into water, extracted with toluene (100 mL), washed three times with water and twice with aqueous sodium bicarbonate, and then the organic phase was concentrated under reduced pressure.
  • the target compound (S1) (1.50 g, 2.26 mmol, yield: 35%) was obtained.
  • the phase transition temperature (° C.) of this compound was C 72.8 (SmA 56.9 N 69.1) I.
  • a liquid crystal composition AS1 composed of 85% by weight of the mother liquid crystal A and 15% by weight of (S1) obtained in Example 1 was prepared.
  • the physical property value of the obtained liquid crystal composition AS1 was measured, and the extrapolated value of the physical property of the liquid crystal compound (S1) was calculated by extrapolating the measured value.
  • the liquid crystal compound (S1) has a low melting point and an excellent compatibility with other liquid crystal compounds, and has a dielectric anisotropy ( ⁇ ) and a refractive index anisotropy ( ⁇ n). Was found to be a large compound.
  • Example 2 Synthesis of compound (S2) (In Formula (1-1-2i), R 1a is —C 4 H 9 , R 1b is —CH 3 , L 1 is hydrogen, L 2 , L 3 , and L 4 are fluorine, and Y 1 is — A compound that is CF 3. ) 1-Bromo-3-ethylheptane (S2-07) is commercially available. A synthesis scheme of the compound (S2) is shown.
  • Step 2-2 Synthesis of Compound (S2)
  • the phase transition temperature (° C.) of this compound was C 64.5 I.
  • Step 3-1 Synthesis of Compound (S3-03) Under a nitrogen stream, pyridine (0.3 mL) was added to a toluene (100 mL) solution of the carboxylic acid derivative (S3-01) (30.0 g, 195 mmol), and the system was Thionyl chloride (25.5 g, 214 mmol) was slowly added while keeping the inside at 40 to 50 ° C., and the mixture was heated and stirred at the same temperature for 30 minutes. The reaction solution was directly concentrated under reduced pressure to obtain compound (S3-02) (32.0 g, 185 mmol).
  • n-butylmagnesium was added to a solution of the compound (S3-02) (32.0 g, 185 mmol) obtained in the previous step and acetylacetonate iron (III) (0.960 g) in THF (250 mL) at ⁇ 30 ° C.
  • a bromide / THF solution (0.91 mol / L) (224 mL, 204 mmol) was slowly added dropwise and stirred at the same temperature for 3 hours.
  • the reaction solution was poured into 1N-HCl aqueous solution and extracted with toluene (600 mL), washed 3 times with water and once with aqueous sodium bicarbonate, and the organic phase was concentrated under reduced pressure.
  • reaction solution was poured into water, extracted with toluene (100 mL), washed three times with water and twice with an aqueous sodium thiosulfate solution, and the organic phase was concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (solvent: n-heptane) to obtain compound (S3-05) (1.80 g, 5.92 mmol, yield: 81%).
  • a liquid crystal composition AS3 comprising 85% by weight of the mother liquid crystals A of the liquid crystal compound (S3) and 15% by weight of the (S3) obtained in Example 3 was prepared.
  • the physical property value of the obtained liquid crystal composition AS3 was measured, and the extrapolated value of the physical property of the liquid crystal compound (S3) was calculated by extrapolating the measured value.
  • the liquid crystal compound (S3) has a low melting point and an excellent compatibility with other liquid crystal compounds, and has a dielectric anisotropy ( ⁇ ) and a refractive index anisotropy ( ⁇ n). Was found to be a large compound.
  • Step 4-3 The compound (S4-06) was obtained from (S4-06) (1.83 g, 7.00 mmol) obtained in the previous stage by carrying out the same operations as in (Step 1-5) to (Step 1-8) of Example 1. (0.890 g, 1.47 mmol, overall yield: 21%).
  • the phase transition temperature (° C.) of this compound was C 89.4 C ⁇ 93.0 I.
  • Compound (S5) was synthesized according to the following scheme. Using a mixture (4.00 g (75%), 5.48 mmol) of the compound (S1-11) and the compound (S1-11 ′) obtained in Example 1 (stage 1-7) as starting materials (first Compound (S5) (1.20 g, 1.69 mmol) in exactly the same manner except that compound (S5-01) (1.39 g, 5.76 mmol) is used instead of compound (S1-12). The overall yield was 29%). The phase transition temperature (° C.) of this compound was C 77.4 N 165.0 I.
  • a liquid crystal composition AS5 comprising 85% by weight of the mother liquid crystal A and 15% by weight of (S5) obtained in Example 5 was prepared.
  • the physical property value of the obtained liquid crystal composition AS5 was measured, and the extrapolated value of the physical property of the liquid crystal compound (S5) was calculated by extrapolating the measured value.
  • the liquid crystal compound (S5) has a low melting point and an excellent compatibility with other liquid crystal compounds, and has a dielectric anisotropy ( ⁇ ) and a refractive index anisotropy ( ⁇ n). Was found to be a large compound.
  • Compound (S6) was synthesized according to the following scheme. Using a mixture (4.00 g (75%), 5.48 mmol) of the compound (S1-11) and the compound (S1-11 ′) obtained in Example 5 (stage 1-7) as a starting material (first Compound (S6) (1.05 g, 1.38 mmol) in exactly the same manner except that compound (S6-01) (1.57 g, 5.37 mmol) is used instead of compound (S1-12) The overall yield was 26%). The phase transition temperature (° C.) of this compound was C 116.4 SmA 135.2 N 169.1 I.
  • Example 7 Synthesis of compound (S7) (In the formula (1-1-2i), a compound wherein R 1a is ethyl, R 1b is hydrogen, L 1 is hydrogen, L 2 , L 3 , and L 4 are fluorine, and Y 1 is —CF 3 . )
  • Compound (S7) was synthesized according to the following scheme. The same operation as in Example 1 was carried out to obtain compound (S7) (2.50 g, 3.93 mmol, yield: 11%) from compound (S7-01). The phase transition temperature (° C.) of this compound was C 84.5 (N 69.9) I.
  • the compound (S8-06) (7.0 g, 12.8 mmol) is obtained from the compound (S8-01) by performing the same operations as in (Step 1-1) to (Step 1-7) of Example 1. It was. Then, the same operation as in Example 5 was performed to obtain compound (S8) (3.17 g, 4.48 mmol, yield: 35%) from compound (S8-04).
  • the phase transition temperature (° C.) of this compound was C 95.5 SA 102.2 N 153.1 I.
  • Compound (S9) was synthesized according to the following scheme.
  • the compound (S9-06) (7.5 g, 13.7 mmol) is obtained from the compound (S9-01) by performing the same operations as in (Step 1-1) to (Step 1-7) of Example 1. It was. Then, the same operation as in Example 5 was performed to obtain compound (S8) (3.55 g, 5.01 mmol, yield: 36%) from compound (S8-04).
  • the phase transition temperature (° C.) of this compound was C 93.6 (SA 64.2) N 163.0 I.
  • Compound (S10-04) is commercially available. The same operation as in Example 5 was performed to obtain compound (S10) (2.00 g, 2.82 mmol, yield: 33%) from compound (S10-04). The phase transition temperature (° C.) of this compound was C 115.4 N 176.6 I.
  • the compound (S1) of the present application was found to have a melting point of about 20 ° C. lower than the similar compounds (ref.01) and (ref.02). Similarly, it was found that the compound (S3) of the present application had a melting point of about 32 ° C. lower than the similar compounds (ref.01) and (ref.02). Similarly, the present compound (S5) was found to have a melting point of about 17 ° C. lower than that of the similar compound (ref. 03).
  • composition of the present invention the characteristic value of the liquid crystal composition can be measured according to the following method. Most of them are the methods described in the Standard of Electric Industries Association of Japan EIAJ / ED-2521A or a modified method thereof. No TFT was attached to the TN device used for measurement.
  • NI Maximum temperature of nematic phase
  • a sample was placed on a hot plate of a melting point measuring device equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • T C Minimum temperature of nematic phase
  • Transition temperature of optically isotropic liquid crystal phase Place the sample on the hot plate of a melting point measuring device equipped with a polarizing microscope, and first raise the temperature to the temperature at which the sample becomes non-liquid crystal isotropic in a crossed Nicol state Thereafter, the temperature was lowered at a rate of 1 ° C./min, and a completely chiral nematic phase or an optically isotropic liquid crystal phase appeared. The temperature at which the phase transition in the temperature lowering process was measured, then the temperature was increased at a rate of 1 ° C./min, and the temperature at which the phase transition in the temperature rising process was measured. In the present invention, unless otherwise specified, the phase transition temperature in the temperature rising process is defined as the phase transition temperature. In the optically isotropic liquid crystal phase, when it was difficult to determine the phase transition temperature in the dark field under crossed Nicols, the phase transition temperature was measured by shifting the polarizing plate by 1 to 10 ° from the crossed Nicols state.
  • Viscosity ( ⁇ ; measured at 20 ° C .; mPa ⁇ s): An E-type viscometer was used for measurement.
  • Rotational viscosity ( ⁇ 1; measured at 25 ° C .; mPa ⁇ s): 1) Sample having positive dielectric anisotropy: Measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. The voltage was applied to the TN device stepwise in the range of 16 to 19.5 volts every 0.5 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • the peak current and peak time of the transient current generated by this application were measured.
  • the value of rotational viscosity was obtained from these measured values and the calculation formula (8) on page 40 of the paper by M. Imai et al.
  • the value of dielectric anisotropy necessary for this calculation was obtained by the following dielectric anisotropy measurement method using the element used for the measurement of the rotational viscosity.
  • the refractive index anisotropy was measured by this method.
  • the refractive index anisotropy was measured after mixing the compound with an appropriate composition.
  • the refractive index anisotropy of the compound is an extrapolated value.
  • Dielectric Anisotropy ( ⁇ ; measured at 25 ° C.): When the sample was a compound, the compound was mixed with an appropriate composition, and then the dielectric anisotropy was measured. The dielectric anisotropy of the compound is an extrapolated value.
  • Threshold voltage (Vth; measured at 25 ° C .; V): When the sample was a compound, the threshold voltage was measured after mixing the compound with an appropriate composition. The threshold voltage of the compound is an extrapolated value.
  • a composition having a positive dielectric anisotropy a normally white mode (normally white mode) in which a distance (gap) between two glass substrates is (0.5 / ⁇ n) ⁇ m and a twist angle is 80 degrees.
  • ⁇ n is a value of refractive index anisotropy measured by the above method.
  • a rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was increased and the value of the voltage when the transmittance of light passing through the element reached 90% was measured.
  • composition having a negative dielectric anisotropy For a normally black mode liquid crystal display element in which the distance (gap) between two glass substrates is about 9 ⁇ m and processed in homeotropic alignment A sample was placed. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was raised, and the value of the voltage when the transmittance of light passing through the element reached 10% was measured.
  • Voltage holding ratio (VHR; measured at 25 ° C .;%):
  • the TN device used for the measurement has a polyimide alignment film, and the distance between two glass substrates (cell gap) is 6 ⁇ m. This element was sealed with an adhesive polymerized by ultraviolet rays after putting a sample.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is an area when it is not attenuated.
  • the voltage holding ratio is a percentage of the area A with respect to the area B.
  • the pitch length was measured using selective reflection (Liquid Crystal Manual 196 (issued in 2000, Maruzen).
  • the selective reflection wavelength is a microspectrophotometer (JEOL Ltd., product)
  • the pitch was determined by dividing the obtained reflection wavelength by the average refractive index.
  • the pitch of a cholesteric liquid crystal having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the chiral agent in a region where the chiral agent concentration is low, so the pitch length of a liquid crystal having a selective reflection wavelength in the visible light region is increased.
  • the ratio (percentage) of the component or liquid crystal compound is a weight percentage (% by weight) based on the total weight of the liquid crystal compound.
  • the composition is prepared by measuring the weight of components such as a liquid crystal compound and then mixing them. Therefore, it is easy to calculate the weight percentage of the component.
  • a liquid crystal composition A was prepared by mixing the liquid crystal compounds shown in the figure below at the following ratio. The correspondence with the general formula is shown on the right side of the structural formula. The compound number was indicated about this compound. Liquid crystal composition A The liquid crystal composition A had a phase transition temperature (° C.) of I 94.0 to 91.4 N.
  • liquid crystal composition B composed of a liquid crystal composition A (94.0 wt%) and a chiral agent BN-H5 (6.0 wt%) represented by the following formula was obtained.
  • the liquid crystal composition B had a phase transition temperature (° C.) of N * 77.1BP> 78I.
  • the BP structure was uniform at least immediately above the N * phase without coexistence with the isotropic phase. Also, the BP-I transition could not be clearly confirmed with a polarizing microscope.
  • BN-H5 was obtained by esterification from (R)-(+)-1,1′-bi (2-naphthol) and the corresponding carboxylic acid using dicyclohexylcarbodiimide (DCC).
  • DCC dicyclohexylcarbodiimide
  • liquid crystal composition B was 88.3% by weight
  • n-dodecyl acrylate was 6.0% by weight
  • 1,4-di (4- (6 Liquid crystal mixed with 4.7% by weight of (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (LCA-6) and 1.0% by weight of 2,2′-dimethoxyphenylacetophenone as a photopolymerization initiator Mixture B-1M was prepared.
  • LCA-6 Liquid crystal mixed with 4.7% by weight of (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene
  • the electrodes of the comb-shaped electrode substrate are alternately arranged with electrodes 1 extending from the left side and electrodes 2 extending from the right side. Therefore, when there is a potential difference between the electrode 1 and the electrode 2, it is possible to provide a state in which electric fields in two directions, ie, an upper direction and a lower direction, exist on the comb-shaped electrode substrate as shown in FIG.
  • Example 13 The cell in which the polymer / liquid crystal composite material B-1P obtained in Example 12 was held was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
  • a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
  • the cell was set in the optical system so that the temperature was 0 °.
  • the relationship between applied voltage and transmittance at room temperature was examined. When a 55 V rectangular wave was applied, the transmittance was 85%, and the transmitted light intensity was saturated.
  • a liquid crystal composition C was prepared by mixing the liquid crystal compound shown in the figure below at the following ratio. The correspondence with the general formula is shown on the right side of the structural formula. The compound number was indicated about this compound. Liquid crystal composition C The liquid crystal composition C had a phase transition temperature (° C.) of 86 to 88N.
  • liquid crystal composition C (93.7 wt%), a chiral agent BN-H4 represented by the following formula, (3.0 wt%), and the above-described chiral agent BN-H5 (3.3 wt%) are included.
  • a liquid crystal composition D was obtained.
  • the liquid crystal composition D had a phase transition temperature (° C.) of N * 71.4 to 71.8 BP 74.3 to 77.4 I.
  • the BP structure was uniform without coexistence with the N * phase and the isotropic phase.
  • liquid crystal composition D was 88.3% by weight
  • n-dodecyl acrylate was 6.0% by weight
  • 1,4-di (4- (6 Liquid crystal mixed with 4.7% by weight of (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (LCA-6) and 1.0% by weight of 2,2′-dimethoxyphenylacetophenone as a photopolymerization initiator Composition D-1M was prepared.
  • a liquid crystal composition D-1M was sandwiched between a comb-shaped electrode substrate not subjected to alignment treatment and a counter glass substrate (non-electrode provided) (cell thickness 9 ⁇ m), and obtained.
  • the cell was cooled from 40 ° C. at 2 ° C./min and cooled to a blue phase of 33.0 ° C. (supercooled blue phase).
  • ultraviolet light (ultraviolet light intensity 23 mWcm ⁇ 2 (365 nm)) was irradiated for 1 minute to carry out a polymerization reaction.
  • the polymer / liquid crystal composite material D-1P thus obtained maintained an optically isotropic liquid crystal phase even when cooled to room temperature.
  • Example 16 The cell sandwiched with the polymer / liquid crystal composite material D-1P obtained in Example 15 was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
  • a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
  • the cell was set in the optical system so that the temperature was 0 °.
  • the relationship between applied voltage and transmittance at room temperature was examined. When a 62.5 V rectangular wave was applied, the transmitted light intensity was saturated.
  • a liquid crystal composition E was prepared by mixing the liquid crystal compounds shown in the figure below at the following ratio. The correspondence with the general formula is shown on the right side of the structural formula. The compound number was indicated about this compound. Liquid crystal composition E The liquid crystal composition E had a phase transition temperature (° C.) of N 81.5 to 82.2 I.
  • liquid crystal composition F composed of the liquid crystal composition E (94.7 wt%) and the above-described chiral agent BN-H5 (5.3 wt%) was obtained.
  • the liquid crystal composition F had a phase transition temperature (° C.) of N * 72.5 to 72.6 BP 73.6 to 74.6 I. At 72.5 to 73.6 ° C., the BP structure was uniform without coexistence with the N * phase and the isotropic phase.
  • liquid crystal composition F was 88.3% by weight
  • n-dodecyl acrylate was 6.0% by weight
  • 1,4-di (4- (6 Liquid crystal mixed with 4.7% by weight of (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (LCA-6) and 1.0% by weight of 2,2′-dimethoxyphenylacetophenone as a photopolymerization initiator Composition F-1M was prepared.
  • Liquid crystal composition F-1M was sandwiched between a comb-shaped electrode substrate not subjected to alignment treatment and a counter glass substrate (non-electrode provided) (cell thickness 9 ⁇ m), and obtained.
  • the cell was heated from 38.0 ° C. at 2 ° C./min to a blue phase of 43.0 ° C.
  • ultraviolet light (ultraviolet light intensity 23 mWcm ⁇ 2 (365 nm)) was irradiated for 1 minute to carry out a polymerization reaction.
  • the polymer / liquid crystal composite material F-1P thus obtained maintained an optically isotropic liquid crystal phase even when cooled to room temperature.
  • Example 19 The cell sandwiched with the polymer / liquid crystal composite material F-1P obtained in the example was set in the optical system shown in FIG. 2, and the electro-optical characteristics were measured.
  • a white light source of a polarizing microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is 45 with respect to the Polarizer and Analyzer polarizer, respectively.
  • the cell was set in the optical system so that the temperature was 0 °.
  • the relationship between applied voltage and transmittance at room temperature was examined. When a rectangular wave of 40.0 V was applied, the transmitted light intensity was saturated.
  • an optical element such as a display element using a liquid crystal medium can be mentioned.

Abstract

本発明の第一の目的は、熱、光などに対する安定性、大きな屈折率異方性、大きな誘電率異方性を有し、かつ融点が低い液晶化合物を提供することである。第二の目的は、熱、光などに対する安定性、広い液晶相温度範囲、大きな屈折率異方性、大きな誘電率異方性を有し、光学的に等方性の液晶相を有する液晶媒体を提供することである。第三の目的は、この液晶媒体を含有し、広い温度範囲で使用可能であり、短い応答時間、大きなコントラスト、および低い駆動電圧を有する各種光素子を提供することである。 本発明は、式(1)で表される分岐アルキルまたは分岐アルケニルを有する液晶化合物、その液晶化合物を含有する液晶媒体(液晶組成物または高分子/液晶複合体)およびその液晶媒体を含有する光素子等を提供する。 (式(1)において、Rは例えば炭素数3~20の分岐アルキルまたは分岐アルケニルであり;環A、A、A、A、およびAは、例えば1,4-フェニレン、1,3-ジオキサン-2,5-ジイルであり;Z、Z、Z、およびZは独立して、例えば単結合または炭素数1~4のアルキレンであり;Yは例えばフッ素であり;m、nおよびpは独立して、0または1であり、1≦m+n+p≦3である。)

Description

分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
 本発明は光素子用の材料として有用な液晶化合物、液晶媒体に関する。詳しくは、大きな誘電率異方性、屈折率異方性を有し、融点が低い化合物、および広い液晶相温度範囲、大きな誘電率異方性、屈折率異方性を持つ液晶媒体に関する。加えて、この液晶媒体を用いた光素子に関する。詳しくは、幅広い温度範囲で使用可能であり、低電圧駆動が可能であり、高速な電気光学応答を得ることができる光素子に関する。
 液晶組成物を用いた液晶表示素子は、時計、電卓、ワ-プロなどのディスプレイに広く利用されている。これらの液晶表示素子は液晶化合物の屈折率異方性、誘電率異方性などを利用したものである。液晶表示素子における動作モードとしては、主として1枚以上の偏光板を利用して表示するPC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、BTN(Bistable twisted nematic)、ECB(electrically controlled birefringence)、OCB(opticallycompensated bend)、IPS(in-plane switching)、VA(vertical alignment)などが知られている。さらに近年は光学的に等方性の液晶相において電場を印加し、電気複屈折を発現させるモードも盛んに研究されている(特許文献1~16、非特許文献1~3)。
 さらに光学的に等方性の液晶相の一つであるブルー相における電気複屈折を利用した波長可変フィルター、波面制御素子、液晶レンズ、収差補正素子、開口制御素子、光ヘッド装置などが提案されている(特許文献10~12)。
 素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PM(passive matrix)はスタティック(static)とマルチプレックス(multiplex)などに分類され、AMはTFT(thin film transistor)、MIM(metal insulator metal)などに分類される。
 これらの液晶表示素子は、適切な物性を有する液晶組成物を含有する。液晶表示素子の特性を向上させるには、この液晶組成物が適切な物性を有するのが好ましい。液晶組成物の成分である液晶化合物に必要な一般的物性は、次のとおりである。
(1)化学的に安定であること、および物理的に安定であること、
(2)高い透明点(液晶相-等方相の相転移温度)を有すること、
(3)液晶相(ネマチック相、コレステリック相、スメクチック相、ブルー相などの光学的に等方性の液晶相等)の下限温度が低いこと、
(4)他の液晶化合物との相溶性に優れること、
(5)適切な大きさの誘電率異方性を有すること、
(6)適切な大きさの屈折率異方性を有すること、
である。
 特に、光学的に等方性の液晶相においては、誘電率異方性と屈折率異方性が大きな液晶化合物が駆動電圧低減の観点から好ましい。
 (1)のように化学的、物理的に安定な液晶化合物を含む液晶組成物を液晶表示素子に用いると、電圧保持率を高くすることができる。
 また、(2)および(3)のように、高い透明点、あるいは液晶相の低い下限温度を有する液晶化合物を含む液晶組成物ではネマチック相や光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。液晶化合物は、単一の化合物では発揮することが困難な特性を発現させるために、他の多くの液晶化合物と混合して調製した液晶組成物として用いることが一般的である。したがって、液晶表示素子に用いられる液晶化合物は、(4)のように、他の液晶化合物等との相溶性が良好であることが好ましい。近年は特に表示性能、例えばコントラスト、表示容量、応答時間特性等のより高い液晶表示素子が要求されている。さらに使用される液晶材料には駆動電圧の低い液晶組成物が要求されている。また光学的に等方性の液晶相で駆動させる光素子を低電圧で駆動させるためには、誘電率異方性および屈折率異方性が大きい液晶化合物を用いることが好ましい。
 特許文献14の中に、本願化合物に類似の直鎖アルキルを有する化合物が大きな誘電率異方性および大きな屈折率異方性を有することについての報告がある。しかしながら、特許文献14に記載の化合物は高い融点を示す。そのため、特許文献14に記載の化合物を使用した組成物は、低温における他の液晶化合物との相溶性が十分ではなく、その使用量が限定されていた。
 一方で、本件発明の分岐アルキルまたは分岐アルケニルを有する本願化合物は、大きな誘電率異方性および大きな屈折率異方性を有し、かつ特許文献14に記載の化合物と比較して、極めて低い融点を示すことを特徴とする。
例えば、特許文献14に記載の化合物(ref.01)および(ref.02)と類似の骨格を有する本願化合物(S1)の融点を比較すると、本件発明化合物の融点の方が約20℃低くなっている。

(比較化合物1)

Figure JPOXMLDOC01-appb-I000023

(本願化合物)

Figure JPOXMLDOC01-appb-I000024

特許文献14中には、分岐アルキルおよび分岐アルケニルを有する液晶化合物の合成方法、および具体的な化合物の開示例はなく、本願のような融点を低下させる効果に関する説明は一切ない。このような効果は、本件発明によって初めて見出された知見である。
また、特許文献15および16の中で、分岐アルキルおよび分岐アルケニルに関する報告がある。

(比較化合物2)
Figure JPOXMLDOC01-appb-I000025

特許文献15に記載の3環化合物(ref.03)は、左側に位置する環がいずれも1,4-フェニレンであるために十分に大きな誘電率異方性を有しない。特許文献16に記載の3環化合物(ref.04)は、大きな誘電率異方性を示すものの、一番左側に位置する環が1,4-シクロヘキシレンであるために十分に大きな屈折率異方性を有しない。さらに化合物(ref.04)のように2つの二重結合が隣接するアルケニルを有する化合物は化学的安定性が低い。特にUVに対する安定性が低く、UV照射後の電圧保持率が著しく劣化するという欠点があった。
特開2003-327966号公報 国際公開2005/90520号パンフレット 特開2005-336477号公報 特開2006-89622号公報 特開2006-299084号公報 特表2006-506477号公報 特表2006-506515号公報 国際公開2006/063662号パンフレット 特開2006-225655号公報 特開2005-157109号公報 国際公開2005/80529号パンフレット 特開2006-127707号公報 国際公開1998/023561号パンフレット 特願2008-295842号公報 特願2007-291046号公報 DE10251016公報
Nature Materials, 1, 64, (2002) Adv. Mater., 17, 96, (2005) Journal of the SID, 14, 551, (2006)
 本発明の第一の目的は、熱、光などに対する安定性、大きな屈折率異方性、大きな誘電率異方性を有し、かつ融点が低い液晶化合物を提供することである。第二の目的は、熱、光などに対する安定性、広い液晶相温度範囲、大きな屈折率異方性、大きな誘電率異方性を有し、光学的に等方性の液晶相を有する液晶媒体を提供することである。第三の目的は、この液晶媒体を含有し、広い温度範囲で使用可能であり、短い応答時間、大きなコントラスト、および低い駆動電圧を有する各種光素子を提供することである。
 本発明は、以下のような液晶化合物、液晶媒体(液晶組成物または高分子/液晶複合体)および液晶媒体を含有する光素子等を提供する。
[1] 式(1)で表される化合物。

Figure JPOXMLDOC01-appb-I000026

(式(1)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり、この分岐アルキルまたは分岐アルケニル中の任意の-CH-は-O-で置き換えられてもよく、この分岐アルキルまたは分岐アルケニル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、この分岐アルキル、または分岐アルケニル中の任意の水素はフッ素で置き換えられてもよく;環A、A、A、A、およびAは独立して、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、またはナフタレン-2,6-ジイルであり、この環中の任意の水素はフッ素または塩素で置き換えられてもよく;Z、Z、Z、およびZは独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH-は、-O-、-COO-、-OCO-、または-CFO-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;Yはフッ素、塩素、-SF、-C≡N、-N=C=S、または任意の水素がハロゲンで置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は、-CH=CH-、または-C≡C-で置き換えられてもよく;m、nおよびpは独立して、0または1であり、1≦m+n+p≦3である。)
[2] 式(1)において、環A、A、AおよびAのうち、いずれかは1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、項[1]に記載の化合物。
[3] 式(1)において、環Aが1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、項[1]に記載の化合物。
[4] 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルキルである、項[1]に記載の化合物。
[5] 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルケニルである、項[1]に記載の化合物。
[6] 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルキルである、項[1]に記載の化合物。
[7] Rが3位の炭素で分岐されている炭素数5~20のアルケニルである、項[1]に記載の化合物。
[8] 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルキルである、項[1]に記載の化合物。
[9] 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルケニルである、項[1]に記載の化合物。
[10] 式(1)において、Rが1位の炭素で分岐されている炭素数4~20のアルキルである、項[1]に記載の化合物。
[11] 式(1)において、Rが1位の炭素で分岐されている炭素数4~20のアルケニルである、項[1]に記載の化合物。
[12] 式(1)において、m=1、n=1、かつp=0である、項[1]~[11]のいずれか一項に記載の化合物。
[13] 式(1)において、m=1、n=1、かつp=1である、項[1]~[11]のいずれか一項に記載の化合物。
[14] 式(1)において、m=1、n=1、かつp=0であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である、項[1]~[11]のいずれか一項に記載の化合物。
[15] 式(1)において、m=1、n=1、かつp=1であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である、項[1]~[11]のいずれか一項に記載の化合物。
[16] 式(1-1)~(1-2)のいずれかで示される、項[1]に記載の化合物。

Figure JPOXMLDOC01-appb-I000027

(式(1-1)~(1-2)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり; 環Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Z、Z、Z、およびZは独立して、単結合、-CHCH-、-COO-、または-CFO-であるが、Z、Z、Z、およびZのうちいずれか1つは-COO-または-CFO-であり; Yはフッ素、塩素、-C≡N、または任意の水素がフッ素で置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよく;Xは、フッ素または塩素であり; また、下記のような1,4-フェニレンと(X)を直線で結んだ表記は、1つまたは2つの水素がXで置き換えられていてもよい1,4-フェニレンを示す。)

Figure JPOXMLDOC01-appb-I000028
[17] 式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)のいずれかで示される、項[16]に記載の化合物。

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031


(式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)において、R1aは炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; R1bは水素、または炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; Mは-CH-または-O-であり; L、L、LおよびLは独立して水素、フッ素、または塩素であり;Aは1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Yはフッ素、塩素、-C≡N、任意の水素がフッ素で置き換えられた炭素数1~3のアルキル、任意の水素がフッ素で置き換えられたアルケニル、任意の水素がフッ素で置き換えられたアルコキシである。)
[18] 式(1)で示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現することを特徴とする液晶組成物。

Figure JPOXMLDOC01-appb-I000032

(式(1)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり、この分岐アルキルまたは分岐アルケニル中の任意の-CH-は-O-で置き換えられてもよく、この分岐アルキルまたは分岐アルケニル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、この分岐アルキル、または分岐アルケニル中の任意の水素はフッ素で置き換えられてもよく;環A、A、A、A、およびAは独立して、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、またはナフタレン-2,6-ジイルであり、この環中の任意の水素はフッ素または塩素で置き換えられてもよく;Z、Z、Z、およびZは独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH-は、-O-、-COO-、-OCO-、または-CFO-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;Yはフッ素、塩素、-SF、-C≡N、-N=C=S、または任意の水素がハロゲンで置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は、-CH=CH-、または-C≡C-で置き換えられてもよく;m、nおよびpは独立して、0または1であり、1≦m+n+p≦3である。)
[19] 式(1)において、環A、A、AおよびAのうち、いずれかは1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、項[18]に記載の液晶組成物。
[20] 式(1)において、環Aが1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、項[18]に記載の液晶組成物。
[21] 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[22] 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[23] 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[24] 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[25] 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[26] 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[27] 式(1)において、Rが1位の炭素で分岐されている炭素数6~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[28] 式(1)において、Rが1位の炭素で分岐されている炭素数6~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[29] 式(1)において、m=1、n=1、かつp=0である化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[30] 式(1)において、m=1、n=1、かつp=1である化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[31] 式(1)において、m=1、n=1、かつp=0であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である請求項1に記載の液晶化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[32] 式(1)において、m=1、n=1、かつp=1であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である請求項1に記載の液晶化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。
[33] 式(1-1)~(1-2)のいずれかで示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[18]に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000033

(式(1-1)~(1-2)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり; 環Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Z、Z、Z、およびZは独立して、単結合、-CHCH-、-COO-、または-CFO-であるが、Z、Z、Z、およびZのうちいずれか1つは-COO-または-CFO-であり; Yはフッ素、塩素、-C≡N、または任意の水素がフッ素で置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよく;Xは、フッ素または塩素であり; また、下記のような1,4-フェニレンと(X)を直線で結んだ表記は、1つまたは2つの水素がXで置き換えられていてもよい1,4-フェニレンを示す。)

Figure JPOXMLDOC01-appb-I000034
[34] 式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)のいずれかで示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、項[33]に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037


(式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)において、R1aは炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; R1bは水素、または炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-; Mは-CH-または-O-であり; L、L、LおよびLは独立して水素、フッ素、または塩素であり;Aは1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Yはフッ素、塩素、-C≡N、任意の水素がフッ素で置き換えられた炭素数1~3のアルキル、任意の水素がフッ素で置き換えられたアルケニル、任意の水素がフッ素で置き換えられたアルコキシである。)
[35] 式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[18]~[34]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000038
これらの式において、Rは直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xはフッ素、塩素、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、または-OCF2CHFCF3であり;環B、環B、および環Bは独立して、1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素で置き換えられた1,4-フェニレン、または任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイルであり;ZおよびZは独立して、-(CH22-、-(CH24-、-COO-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-、-CHO-、または単結合であり;LおよびLは独立して、水素またはフッ素である。
[36] 式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[18]~[34]のいずれか一項記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000039
これらの式において、Rは直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xは-C≡Nまたは-C≡C-C≡Nであり;環C、環Cおよび環Cは独立して、1,4-シクロヘキシレン、1,4-フェニレン、任意の水素がフッ素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;Zは-(CH22-、-COO-、-CF2O-、-OCF2-、-C≡C-、-CHO-、または単結合であり;LおよびLは独立して、水素またはフッ素であり;rは1または2であり、sは0または1であり、r+s=0、1または2である。
[37] 式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[18]~[34]のいずれか一項記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000040

これらの式において、RおよびRは独立して、直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;環D、環D、および環Dは独立して、1,4-シクロヘキシレン、ピリミジン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z10は、-C≡C-、-COO-、-(CH22-、-CH=CH-、または単結合である。
[38] 項[36]に記載の式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[35]に記載の液晶組成物。
[39] 項[37]に記載の式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[35]に記載の液晶組成物。
[40] 項[37]に記載の式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[36]に記載の液晶組成物。
[41] 式(7)、(8)、(9)および(10)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[18]~[40]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000041

これらの式において、Rは直鎖の炭素数1~10のアルキル、炭素数2~10のアルケニルまたは炭素数2~10のアルキニルであり、アルキル、アルケニルおよびアルキニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xはフッ素、塩素、-SF、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、または-OCF2CHFCF3であり;環E、環E、環Eおよび環Eは独立して、1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられた1,4-フェニレン、または任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイルであり;Z11、Z12およびZ13は独立して、-(CH22-、-(CH24-、-COO-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-、-CHO-、または単結合であり;L10およびL11は独立して、水素またはフッ素である。
[42] 式(11)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[18]~[41]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000042

これらの式において、Rは直鎖の炭素数1~10のアルキル、炭素数2~10のアルケニルまたは炭素数2~10のアルキニルであり、アルキル、アルケニルおよびアルキニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xは-C≡N、-N=C=S、または-C≡C-C≡Nであり;環F、環Fおよび環Fは独立して、1,4-シクロヘキシレン、1,4-フェニレン、任意の水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;Z14は-(CH22-、-COO-、-CF2O-、-OCF2-、-C≡C-、-CHO-、または単結合であり;L12およびL13は独立して、水素またはフッ素であり;aaは0、1または2であり、abは0または1であり、aa+abは0、1または2である。
[43] 少なくとも1つの酸化防止剤および/または紫外線吸収剤を含む項[18]~[42]のいずれか1項に記載の液晶組成物。
[44] 光学的に等方性の液晶相が二色以上の回折光を示さない、項[18]~[42]のいずれか1項に記載の液晶組成物。
[45] 光学的に等方性の液晶相が二色以上の回折光を示す、項[18]~[42]のいずれか1項に記載の液晶組成物。
[46] 液晶組成物が、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である組成物にキラル剤を添加して得られるものである、項[44]または[45]に記載の液晶組成物。
[47] 液晶組成物が、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が5~150℃である組成物にキラル剤を添加して得られるものである、項[44]または[45]に記載の液晶組成物。
[48] 液晶組成物が、ネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である組成物にキラル剤を添加して得られるものである、項[44]または[45]に記載の液晶組成物。
[49] 液晶組成物の全重量に対して、キラル剤の割合が1~40重量%である、項[44]または[48]のいずれか1項に記載の液晶組成物。
[50] 液晶組成物の全重量に対して、キラル剤の割合が2~10重量%である、項[44]または[48]のいずれか1項に記載の液晶組成物。
[51] 70~-20℃のいずれかの温度においてカイラルネマチック相を示し、この温度範囲の少なくとも一部において螺旋ピッチが700nm以下である、項[49]または[50]に記載の液晶組成物。
[52] キラル剤が、式(K1)~(K5)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含む、項[49]~[51]のいずれか1項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000043


(式(K1)~(K5)中、Rは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の任意の-CH-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の任意の水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性あるいは非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性または非芳香族性の3から8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであるが、任意の-CH-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、または-N=CH-、で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
 Xは単結合、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、または-CHCH-であり;
 mKは1~4の整数である。)
[53] キラル剤が、式(K2-1)~(K2-8)、式(K4-1)~(K4-6)および式(K5-1)~(K5-3)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含む、項[49]~[51]のいずれか1項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

(これらの式中、Rは独立して、炭素数3~10のアルキルであり、このアルキル中の環に隣接する-CH-は-O-で置き換えられてもよく、任意の-CH-CH-は、-CH=CH-で置き換えられてもよい。)
[54] 項[18]~[53]のいずれかに記載の液晶組成物と、重合性モノマーとを含む混合物。
[55] 重合性モノマーが光重合性モノマーまたは熱重合性モノマーである、項[54]に記載の混合物。
[56] 項[54]または[55]に記載の混合物を重合して得られる、光学的に等方性の液晶相で駆動される素子に用いられる高分子/液晶複合材料。
[57] 項[54]または[55]に記載の混合物を非液晶等方相または光学的に等方性の液晶相で重合させて得られる、項[56]に記載の高分子/液晶複合材料。
[58] 高分子/液晶複合材料に含まれる高分子がメソゲン部位を有する、項[56]または[57]に記載の高分子/液晶複合材料。
[59] 高分子/液晶複合材料に含まれる高分子が架橋構造を有する、項[56]または[58]のいずれかに記載の高分子/液晶複合材料。
[60] 液晶組成物の割合が70~99重量%であり、高分子の割合が1~30重量%である、項[56]または[58]のいずれか1項に記載の高分子/液晶複合材料。
[61] 一方または両方の面に電極が配置され、基板間に配置された液晶媒体、および電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、項[49]~[53]のいずれか1項に記載の液晶組成物または項[56]~[60]のいずれか1項に記載の高分子/液晶複合材料である、光素子。
[62] 一方または両方の面に電極が配置され、少なくとも一方が透明な一組の基板、基板間に配置された液晶媒体、および基板の外側に配置された偏光板を有し、電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、項[49]~[53]のいずれか1項に記載の液晶組成物または項[56]~[60]のいずれか1項に記載の高分子/液晶複合材料である、光素子。
[63] 一組の基板の少なくとも一方の基板上において、少なくとも2方向に電界を印加できるように電極が構成されている項[62]に記載の光素子。
[64] 互いに平行に配置された一組の基板の一方または両方に、少なくとも2方向に電界を印加できるように電極が構成されている項[62]に記載の光素子。
[65] 電極がマトリックス状に配置されて、画素電極を構成し、各画素がアクティブ素子を備え、このアクティブ素子が薄膜トランジスター(TFT)である項[61]~[64]のいずれか1項に記載の光素子。
 本発明において、液晶化合物とはメソゲンを有する化合物を表し、液晶相を有する化合物に限定されない。液晶媒体とは、液晶組成物および高分子/液晶複合体の総称である。また、光素子とは、電気光学効果を利用して、光変調や光スイッチングなどの機能を奏する各種の素子を指し、たとえば、表示素子(液晶表示素子)、光通信システム、光情報処理や種々のセンサーシステムに用いられる光変調素子が挙げられる。光学的に等方性の液晶媒体への電圧印加による屈折率の変化を利用した光変調については、カー効果が知られている。カー効果とは電気複屈折値Δn(E)が電場Eの二乗に比例する現象であり、カー効果を示す材料ではΔn(E)=KλEが成立する(K:カー係数(カー定数)、λ:波長))。ここで、電気複屈折値とは、等方性媒体に電界を印加した時に誘起される屈折率異方性値である。
 この明細書における用語の使い方は次のとおりである。液晶化合物は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有しないが液晶組成物の成分として有用な化合物の総称である。キラル剤は、光学活性化合物であり、液晶組成物に所望のねじれた分子配列を与える為に添加される。液晶表示素子は液晶表示パネルおよび液晶表示モジュールの総称である。液晶化合物、液晶組成物、液晶表示素子をそれぞれ化合物、組成物、素子と略すことがある。また、例えば液晶相の上限温度は液晶相-等方相の相転移温度であり、そして単に透明点または上限温度と略すことがある。液晶相の下限温度を単に下限温度と略すことがある。式(1)で表わされる化合物を化合物(1)と略すことがある。この略記は式(2)などで表される化合物にも適用することがある。式(1)から式(11)において、六角形で囲んだB、D、Eなどの記号はそれぞれ環B、環D、環Eなどに対応する。百分率で表した化合物の量は組成物の全重量に基づいた重量百分率(重量%)である。環A、Y、Bなど複数の同じ記号を同一の式または異なった式に記載したが、これらはそれぞれが同一であってもよいし、または異なってもよい。
 「任意の」は、位置だけでなく個数についても任意であることを示すが、個数が0である場合を含まない。任意のAがB、CまたはDで置き換えられてもよいという表現は、任意のAがBで置き換えられる場合、任意のAがCで置き換えられる場合および任意のAがDで置き換えられる場合に加えて、複数のAがB~Dの少なくとも2つで置き換えられる場合をも含むことを意味する。例えば、「任意の-CH-が-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよいアルキル」には、アルキル、アルケニル、アルコキシ、アルコキシアルキル、アルコキシアルケニル、アルケニルオキシアルキルなどが含まれる。なお、本発明においては、連続する2つの-CH-が-O-で置き換えられて、-O-O-のようになることは好ましくない。そして、アルキルにおける末端の-CH-が-O-で置き換えられることも好ましくない。以下に本発明をさらに説明する。式(1)で表わされる化合物における末端基、環および結合基等に関して好ましい例も述べる。
 本発明の液晶化合物は、熱、光などに対する安定性、大きな屈折率異方性、大きな誘電率異方性を有し、かつ融点が低い液晶化合物であり、融点が低いことによって、液晶組成物中において当該化合物の高い含有率が可能となる。液晶組成物は熱、光などに対する安定性、光学的に等方性の液晶相の高い上限温度、低い下限温度を示し、光学的に等方性の液晶相で駆動させる素子において低い駆動電圧を有する。本発明の高分子/液晶複合材料で光学的に等方性の液晶相を有するものは、光学的に等方性の液晶相の高い上限温度、低い下限温度を示し、光学的に等方性の液晶相で駆動させる素子において低い駆動電圧を有する。
 本発明の光学的に等方性の液晶相で駆動される光素子は、使用できる広い温度範囲、短い応答時間、大きなコントラスト比、および低い駆動電圧を有する。
実施例で用いた櫛型電極基板を示す。 実施例で用いた光学系を示す。
1-1 化合物(1)
 本発明の液晶化合物は前記式(1)で表される化合物であり、本発明の光学的に等方性の液晶相を有する液晶組成物は、前記式(1)で表される化合物を成分Aとして含む。本発明の液晶組成物の第1の態様は、この成分Aのみの組成物、または成分Aと本明細書中で特に成分名を示していないその他の成分を含有する組成物である。まず、式(1)で表される化合物について説明する。

Figure JPOXMLDOC01-appb-I000048

式(1)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり、この分岐アルキルまたは分岐アルケニル中の任意の-CH-は-O-で置き換えられてもよく、この分岐アルキルまたは分岐アルケニル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、この分岐アルキル、または分岐アルケニル中の任意の水素はフッ素で置き換えられてもよい。
分岐アルキルの具体的な例は、以下の式(CHN1-1)~(CHN1-9)に示すとおりである。
(式中、R1aは炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; R1bは水素、または炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよい。)

Figure JPOXMLDOC01-appb-I000049
分岐アルキルを有する化合物の特徴は、分岐位置に依存する。式(CHN1-1)~(CHN-9)のように2位、3位、4位または1位の炭素で分岐したアルキル化合物は、直鎖化合物と比較して、非常に低い融点を示す。
分岐アルケニルの具体的な例は、以下の式(CHN2-1)~(CHN2-32)に示すとおりである。
(式中のR1aおよびR1bは前述と同じ構造を表す。)

Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052
 分岐アルケニルを有する化合物の特徴は、分岐位置に依存する。式(CHN2-1)~(CHN2-32)のように2位、3位、4位または1位の炭素で分岐したアルキル化合物は、直鎖化合物と比較して、非常に低い融点を示す。
 アルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。例えば、式(CHN2-1)のような奇数位に二重結合をもつアルケニルにおいては、一般にトランス配置が好ましく、式(CHN2-5)のような偶数位に二重結合をもつアルケニルにおいては、一般にシス配置が好ましい。好ましい立体配置を有するアルケニル化合物は、液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109およびMol. Cryst. Liq. Cryst., 1985, 131, 327に詳細な説明がある。また二重結合の位置は、他の二重結合および1,4-フェニレンなどの環と共役を作らない位置が望ましい。
 分岐アルコキシ、および分岐アルコキシアルケニルの具体的な例は、以下の式(CHN3-1)~(CHN3-15)に示されるとおりである。
(式中のR1aおよびR1bは、前述と同じ構造を表す。)

Figure JPOXMLDOC01-appb-I000053
 分岐アルコキシおよび分岐アルコキシアルケニルを有する化合物の特徴は、分岐位置に依存する。式(CHN3-1)~(CHN3-15)のように2位、3位または4位の炭素で分岐したアルキル化合物は、直鎖化合物と比較して非常に低い融点を示す。また分岐アルコキシアルケニルにおける二重結合の位置は、他の二重結合および1,4-フェニレンなどの環と共役を作らない位置が望ましい。
 R1aおよびR1bの好ましい例は、水素、-CH、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、および-C1021である。より好ましくは、R1aおよびR1bのうちのいずれかが、-CH、-Cまたは-Cである。
 R1aおよびR1bにおいて任意の-CH-を-O-で置き換えた、または任意の-CH-CH-を-CH=CH-で置き換えた基の例は、CH(CHO-、CH-O-(CH-、CH-O-CH-O-、CH=CH-(CH-、CH-CH=CH-(CH-、CH-CH=CH-CHO-などである。
また、R1a中の任意の-CH-を-O-で置き換えた、または任意の-CH-CH-を-C≡C-または-CH=CH-で置き換えた基中の任意の水素がハロゲンに置き換えられた基の例として、CF=CH-、CHF(CHO-、CHFCHC≡C-が挙げられる。
式(1)において環A、A、A、A、およびAは独立して、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、またはナフタレン-2,6-ジイルであり、この環中の任意の水素はフッ素または塩素で置き換えられてもよい。
 環A、A、A、A、およびAの好ましい例は、式(RG-1)~(RG-16)である。
 

Figure JPOXMLDOC01-appb-I000054
 環A、A、A、A、およびAのより好ましい例は、式(RG-1)~(RG-3)、式(RG-5)~(RG-7)、式(RG-12)~(RG-16)で表される構造である。特に、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである式(RG-2)または(RG-3)を有する化合物は、誘電率異方性が大きい。また式(RG-2)または(RG-3)で表される環を2つ以上有する化合物は特に誘電率異方性が大きい。
また、環Aが式(RG-2)または(RG-3)である化合物は、融点が低い。
 式(1)においてZ、Z、Z、およびZは独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH-は、-O-、-COO-、-OCO-、または-CFO-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよい。
 Z、Z、Z、およびZの好ましい例は、単結合、-CH-、-(CH-、-COO-、-CFO-、または-CH=CH-である。より好ましくは、Z、Z、Z、およびZのうち、いずれか一つが-COO-、または-CFO-である。
 式(1)においてYはフッ素、塩素、-SF、-C≡N、-N=C=S、または任意の水素がフッ素または塩素で置き換えられた炭素数1~3のアルキルであり、このアルキルにおいて任意の-CH-は、-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-、または-C≡C-で置き換えられてもよい。
 任意の水素がフッ素または塩素で置き換えられたアルキルの具体的な例は、-CHF、-CF、-CFCHF、-CFCHF、-CHCF、-CFCF、-(CH-F、-(CF-F、-CFCHFCF、および-CHFCFCFである。
 任意の水素がフッ素または塩素で置き換えられたアルコキシの具体的な例は、-OCHF、-OCF、-OCFCHF、-OCFCHF、-OCHCF、-O-(CF-F、-OCFCHFCF、および-OCHFCFCFである。
 任意の水素がフッ素または塩素で置き換えられたアルケニルの具体的な例は、-CH=CF、-CF=CHF、-CH=CHCHF、-CH=CHCF、-(CH-CH=CF、-CHCH=CHCF、および-CH=CHCFCFである。
 好ましいYの具体的な例は、フッ素、塩素、-C≡N、-CF、-CHF、-OCFおよび-OCHFである。より好ましいYの例は、フッ素、塩素、-C≡N、-CFおよび-OCFである。Yが塩素、フッ素である場合は融点が低く、他の液晶化合物との相溶性が特に優れている。Yが-C≡N、-CF、-CHF、-OCFおよび-OCHFである場合は、特に大きな誘電率異方性を示す。
 式(1)においてm、n、およびpは独立して、0または1であり、1≦m+n+p≦3である。
 式(1)において好ましいのは、式(1-1)および(1-2)で表される構造である。

Figure JPOXMLDOC01-appb-I000055

(式(1-1)~(1-2)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり; Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Z、Z、Z、およびZは独立して、単結合、-CHCH-、-COO-、または-CFO-であるが、Z、Z、Z、およびZのうちいずれか1つは-COO-、または-CFO-であり; Yはフッ素、塩素、-C≡N、または任意の水素がフッ素で置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよく;Xは、フッ素または塩素であり; また、下記のような1,4-フェニレンと(X)を直線で結んだ表記は、1つまたは2つの水素がXで置き換えられていてもよい1,4-フェニレンを示す。)

Figure JPOXMLDOC01-appb-I000056
これらの中でも、Rが式(CHN1-1)~(CHN1-9)のいずれか1つで表される構造であり; Z、Z、Z、およびZは独立して、単結合、-(CH-、-COO-または-CFO-であるが、少なくとも一つは-COO-または-CFO-であり; Xはフッ素または塩素であり、Yはフッ素、塩素、-C≡N、-CF3、または-OCFである化合物が特に好ましい。
 式(1-1)~(1-2)で表される化合物において、より好ましくは、下記式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)である。これらの中で、より好ましくは、式(1-1-1)~(1-1-2)、式(1-2-1)~(1-2-6)である。

Figure JPOXMLDOC01-appb-I000057

Figure JPOXMLDOC01-appb-I000058

Figure JPOXMLDOC01-appb-I000059
 これらの式において、R1aは炭素数1~10のアルキル、または炭素数1~10のアルケニルであり; R1bは水素、炭素数1~10のアルキルであり; Mは-CH-または-O-であり; Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; L、L、LおよびLは独立して、水素、フッ素または塩素であり; Yはフッ素、塩素、-C≡N、任意の水素がフッ素で置き換えられた炭素数1~3のアルキル、任意の水素がフッ素で置き換えられたアルケニル、または任意の水素がフッ素で置き換えられたアルコキシである。
 式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)において、L、L、L、L、およびLは独立して、水素、フッ素、または塩素である。Lがフッ素である場合は融点が低く、他の液晶化合物との相溶性に優れる。L、L、L、およびLのうち少なくとも一つが塩素またはフッ素である場合は、大きな誘電率異方性を有し、化合物の融点が低く、他の液晶化合物との相溶性に優れている。あるか1つがが水素またはフッ素であることが好ましい。
1-2 化合物(1)の性質
 本発明に用いられる化合物(1)をさらに詳細に説明する。化合物(1)は分岐アルキル基または分岐アルケニル基を有する液晶化合物である。この化合物は、素子が通常使用される条件下において物理的および化学的に極めて安定であり、そして他の液晶化合物との相溶性がよい。さらにスメクチック相を発現しにくい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物において光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は誘電率異方性と屈折率異方性が大きい為、光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。また、化合物(1)とキラル剤から調製された組成物でブルー相を発現させると、N*相や等方相との共存がない均一なブルー相となりやすい。すなわち、化合物(1)は均一なブルー相を発現させやすい化合物である。
 化合物(1)のm、n、およびpの組み合わせと、左末端基R、右末端基Y、あるいは結合基Z~Zを適切に選択することによって、透明点、屈折率異方性、誘電率異方性などの物性を任意に調整することが可能である。m、n、およびpの組み合わせ、左末端基R、右末端基Y、結合基Z~Z、および1,4-フェニレン中のL~Lの種類が、化合物(1)の物性に与える効果を以下に説明する。
 一般に、m+n+p=3である化合物は透明点が高く、大きな屈折率異方性を示す。m+n+p=2である化合物は融点が低く、他の液晶化合物との相溶性が良い。m+n+p=1である化合物は融点が非常に低い。
 Rが光学活性基である化合物は、キラルドーパントとして有用である。Rが光学活性基でない化合物は組成物の成分として有用である。Rがアルケニルであるとき、好ましい立体配置は二重結合の位置に依存する。好ましい立体配置を有するアルケニル化合物は液晶相の広い温度範囲を有する。
 結合基Z、Z、Z、およびZが単結合、-CHCH-、-CH=CH-、-CFO-、-OCF-、-CH2O-、-OCH2-、-CF=CF-、-(CH-O-、-O-(CH-、-(CH-CFO-、-OCF-(CH-、または-(CH-であるときは粘度が小さい。結合基が単結合、-(CH-、-CFO-、-OCF-、または-CH=CH-であるときは粘度がより小さい。結合基が-CH=CH-であるときは液晶相の温度範囲が広く、そして弾性定数比K33/K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)が大きい。結合基が-C≡C-のときは屈折率異方性が大きい。結合基が-COO-、-CFO-であるときは誘電率異方性が大きい。Z、Z、Z、およびZが単結合、-(CH-、-CHO-、-CFO-、-OCF-、-(CH-であるときは化学的に安定であって劣化をおこしにくい。
 右末端基Yがフッ素、塩素、-C≡N、-SF、-CF、-OCF、または-CH=CH-CFであるときは誘電率異方性が大きい。Yがフッ素、-CF、または-OCFであるときは、化学的に安定である。
 L、L、LおよびLが、水素または塩素であるときは融点が低く、フッ素であるときは誘電率異方性が大きい。L~Lのうち少なくとも2つ以上がフッ素であるときは誘電率異方性が非常に大きい。またL~Lのうち、少なくとも1つが塩素であるときは他の液晶化合物との相溶性が良い。
 以上のように、環構造、末端基、結合基などの種類を適当に選択することにより目的の物性を有する化合物を得ることができる。
1-3 化合物(1)の具体例
 化合物(1)の好ましい例は、式(1-1)~(1-2)である。より好ましい例は、式(1-1-1)~(1-1-8)および式(1-2-1)~(1-2-16)である。これらの中で、式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-6)がさらに好ましい。
 具体的化合物として、下記式(1-1-1a)~(1-2-16j)の化合物を挙げることができる。
(式中において、R1aおよびR1bは水素または炭素数1~10のアルキルであり;L、L、L、およびLは水素、フッ素または塩素であり;Yはフッ素、塩素、-SF、-C≡N、-N=C=S、-CF、-CFH、-OCF、または-OCFHである。)

Figure JPOXMLDOC01-appb-I000060

Figure JPOXMLDOC01-appb-I000061

Figure JPOXMLDOC01-appb-I000062

Figure JPOXMLDOC01-appb-I000063

Figure JPOXMLDOC01-appb-I000064

Figure JPOXMLDOC01-appb-I000065

Figure JPOXMLDOC01-appb-I000066

Figure JPOXMLDOC01-appb-I000067

Figure JPOXMLDOC01-appb-I000068

Figure JPOXMLDOC01-appb-I000069

Figure JPOXMLDOC01-appb-I000070

Figure JPOXMLDOC01-appb-I000071

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073

Figure JPOXMLDOC01-appb-I000074

Figure JPOXMLDOC01-appb-I000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078

Figure JPOXMLDOC01-appb-I000079

Figure JPOXMLDOC01-appb-I000080

Figure JPOXMLDOC01-appb-I000081

Figure JPOXMLDOC01-appb-I000082

Figure JPOXMLDOC01-appb-I000083

Figure JPOXMLDOC01-appb-I000084

Figure JPOXMLDOC01-appb-I000085

Figure JPOXMLDOC01-appb-I000086

Figure JPOXMLDOC01-appb-I000087

Figure JPOXMLDOC01-appb-I000088

Figure JPOXMLDOC01-appb-I000089

Figure JPOXMLDOC01-appb-I000090
1-4 化合物(1)の合成
 次に、化合物(1)の合成について説明する。化合物(1)は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニックシンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
1-4-1 分岐アルキルの合成
 分岐アルキルを左末端基に導入する方法はいくつか存在するが、基本的には、下記の方法により分岐アルキルのハロゲン誘導体(93)を準備し、次いでパラジウム触媒の存在下で、このハロゲン誘導体のグリニャール試薬と、芳香族などのハロゲン誘導体(94)とのクロスカップリング反応によって分岐アルキル基を導入する。
(式中、Alkylは分岐アルキル; Xはハロゲン、トリフレート基、メシル基、またはトシル基;Coreは、環構造を有する有機基、保護基(Pro)を導入したアルコール誘導体、またはエステル誘導体を表す。)

Figure JPOXMLDOC01-appb-I000091

分岐アルキルのハロゲン誘導体(93)は市販されているものを使用するか、もしくは、対応する分岐アルキルのカルボン酸誘導体(91)、または分岐アルキルのアルコール誘導体(92)などから既知の方法によってハロゲン誘導体(93)に変換できる。
 また、一般の合成試薬から種種の方法によって分岐アルキルを構築できる。下記にその一例を示す。
(式中、Xはハロゲン、トリフレート基、メシル基、およびトシル基を表し;XはMgBr、MgCl、およびLiを表す。)

Figure JPOXMLDOC01-appb-I000092

 対応するハロゲン誘導体(100)に、例えばマグネシウムを作用させてグリニャール試薬を調製し、ホルミル化剤を加えることによりアルデヒド誘導体(101)に誘導することができる。化合物(101)は、(メトキシメチル)トリフェニルホスフィンボロミドと塩基を用いたWittig反応と、それに続く加水分解反応の操作((a))を繰り返すことにより、必要となる鎖長のアルデヒド誘導体((102)、(103)、(104)、および(10m))を準備する。
 2位で分岐されたアルキルまたはアルケニルを合成する場合には、化合物(102)を対応するアルキルグリニャール試薬などと反応させた後に、酸化反応を行って化合物(102-1)に誘導し、さらに対応するアルキルグリニャール試薬などを作用させることにより、分岐アルキルのアルコール誘導体(102-2)を得る。
分岐アルケニル(102-3)は、アルコール誘導体(102-2)を酸などで脱水反応を行うことにより得られ、また分岐アルキル(102-4)は、化合物(102-3)を水素還元を行うことにより得られる。
3位の分岐アルケニル(103-3)および分岐アルキル(103-4)、4位の分岐アルケニル(104-3)および分岐アルキル(104-4)、1位の分岐アルケニル(101-3)および分岐アルキル(101-4)も、同様の方法により合成できる。
 また、前述の誘導体、例えば化合物(103-1)から、下記のようにTebbe反応、Wittig反応、またはオレフィンメタセシス反応を用いて、分岐アルケニル((103-5、および(103-6))を合成する方法もある。

Figure JPOXMLDOC01-appb-I000093
さらに、分岐アルキルおよび分岐アルケニルに、酸素を導入する方法の一例を下記に示す。

Figure JPOXMLDOC01-appb-I000094
 対応する誘導体、例えば化合物(10m)から、還元反応によりアルコール誘導体(10m-1)に誘導した後に、ハロゲンの誘導体と塩基を作用させてエーテル化を行うことにより、分岐アルキルにエーテル結合を導入することができる。分岐アルケニルに対しても、同様の方法によりエーテル結合を導入できる。
 その他、分岐アルキルおよび分岐アルケニルに、アルキンを導入する方法の一例を下記に示す。

Figure JPOXMLDOC01-appb-I000095
 対応するハロゲン誘導体(100)から、パラジウム触媒とCuを使用した薗頭反応によってアルキン誘導体と反応させて化合物(105-1)を得て、次いで酸化反応、グリニャール反応を行うことによって化合物(105-3)に変換できる。この化合物(105-3)にトリエチルシランとハロゲン化ホウ素を作用させて、分岐化合物(105-4)を得ることができる。
1-4-2 結合基Z ~Z を生成する方法
 化合物(1)における結合基Z~Zを生成する方法の一例は、下記のスキームの通りである。このスキームにおいて、MSGまたはMSGは少なくとも一つの環を有する1価の有機基である。スキームで用いた複数のMSG(またはMSG)は、同一であってもよいし、または異なってもよい。化合物(1A)~(1J)は、化合物(1)に相当する。

Figure JPOXMLDOC01-appb-I000096

Figure JPOXMLDOC01-appb-I000097
 次に、化合物(1)における結合基Z~Zについて、各種の結合の生成方法を以下の(I)~(X)項で説明する。
(I)単結合の生成
 アリールホウ酸(20)と公知の方法で合成される化合物(21)とを、炭酸塩水溶液とテトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて化合物(1A)を合成する。この化合物(1A)は、公知の方法で合成される化合物(22)にn-ブチルリチウムを、次いで塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下で化合物(21)を反応させることによっても合成される。
(II)-COO-と-OCO-の生成
 化合物(22)にn-ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸(23)を得る。化合物(23)と、公知の方法で合成されるフェノール(24)とをDCC(1,3-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて-COO-を有する化合物(1B)を合成する。この方法によって-OCO-を有する化合物も合成する。
(III)-CFO-と-OCF-の生成
 化合物(1B)をローソン試薬のような硫黄化剤で処理して化合物(25)を得る。化合物(25)をフッ化水素ピリジン錯体とNBS(N-ブロモスクシンイミド)でフッ素化し、-CFO-を有する化合物(1C)を合成する。M. Kuroboshi et al., Chem. Lett., 1992,827.を参照。化合物(1C)は化合物(25)を(ジエチルアミノ)サルファートリフルオリド(DAST)でフッ素化しても合成される。W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768.を参照。この方法によって-OCF-を有する化合物も合成する。Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480.に記載の方法によってこれらの結合基を生成させることも可能である。
(IV)-CH=CH-の生成
 化合物(22)をn-ブチルリチウムで処理した後、N,N-ジメチルホルムアミド(DMF)などのホルムアミドと反応させてアルデヒド(27)を得る。公知の方法で合成されるホスホニウム塩(26)をカリウムtert-ブトキシドのような塩基で処理して発生させたリンイリドを、アルデヒド(27)に反応させて化合物(1D)を合成する。反応条件によってはシス体が生成するので、必要に応じて公知の方法によりシス体をトランス体に異性化する。
(V)-(CH-の生成
 化合物(1D)をパラジウム炭素のような触媒の存在下で水素化することにより、化合物(1E)を合成する。
(VI)-(CH-の生成
 ホスホニウム塩(26)の代わりにホスホニウム塩(28)を用い、項(IV)の方法に従って-(CH-CH=CH-を有する化合物を得る。これを接触水素化して化合物(1F)を合成する。
(VII)-C≡C-の生成
 ジクロロパラジウムとハロゲン化銅との触媒存在下で、化合物(22)に2-メチル-3-ブチン-2-オールを反応させたのち、塩基性条件下で脱保護して化合物(29)を得る。ジクロロビストリフェニルホスフィンパラジウムとハロゲン化銅との触媒存在下、化合物(29)を化合物(21)と反応させて、化合物(1G)を合成する。
(VIII)-CF=CF-の生成
 化合物(22)をn-ブチルリチウムで処理したあと、テトラフルオロエチレンを反応させて化合物(30)を得る。化合物(21)をn-ブチルリチウムで処理したあと化合物(30)と反応させて化合物(1H)を合成する。
(IX)-CHO-または-OCH-の生成
 化合物(27)を水素化ホウ素ナトリウムなどの還元剤で還元して化合物(31)を得る。これを臭化水素酸などでハロゲン化して化合物(32)を得る。炭酸カリウムなどの存在下で、化合物(32)を化合物(24)と反応させて化合物(1I)を合成する。
(X)-(CH23O-または-O(CH23-の生成
 化合物(27)の代わりに化合物(33)を用いて、前項(IX)と同様な方法にて化合物(1J)を合成する。
1-4-3 環A ~A を合成する方法
 1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5,6-テトラフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、などの環に関しては出発物が市販されているか、または合成法がよく知られている。
1-4-4 化合物(1)を合成する方法
 式(1)で表される化合物を合成する方法は複数あり、市販の試薬から適宜、本明細書
実施例や文献、書籍を参考にして合成することが可能である。下記にその一例を示す。化合物(1)の合成方法は、ここで示す合成例に限定するものではない。

Figure JPOXMLDOC01-appb-I000098

Figure JPOXMLDOC01-appb-I000099

最初に、1-4-1に示した方法により分岐アルキルのハロゲン誘導体(110)を準備し、化合物(110)にマグネシウムなどを作用させたものと、対応するハロゲン誘導体(111)とのクロスカップリング反応を行うことによって、化合物(112)を得ることができる。化合物(112)をハロゲン誘導体などに変換した後に、パラジウム触媒を用いたカップリング反応を必要な回数だけ繰り返すことにより、中間体(114)を得ることができる。
 中間体(114)を出発原料として、様々な種類の化合物(1)を得ることができる。
例えば、ボロン酸誘導体(115)とのカップリング反応をさらに行うことにより、単結合をもつ化合物(1)を得ることができる。
また、アルキルリチウムとジブロモジフルオロメタンを作用させた後に、フェノール誘導体(116)とエーテル化反応を行うことにより、CFO結合を有する化合物(1)を得ることができる。
また、アルキルリチウムとドライアイスを用いてカルボン酸誘導体に変換した後に、DCC(ジシクロヘキシルカルボジイミド)とDMAP(ジメチルアミノピリジン)を用いてエステル化反応を行うことにより、エステル結合を有する化合物(1)を得ることができる。
2 化合物(2)~(11)
 本発明の第2の態様は、前記式(1)で表される化合物である成分Aに以下に示す成分B、C、DおよびEから選ばれた成分を加えることにより得られる液晶組成物であり、成分Aのみの組成物に比べて、駆動電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度等を自由に調整することができる。
 成分Aに加える成分として、前記式(2)、(3)および(4)からなる群から選ばれた少なくとも1種の化合物からなる成分B、または前記式(5)からなる群から選ばれた少なくとも1種の化合物からなる成分C、または前記式(6)からなる群から選ばれた少なくとも1種の化合物からなる成分D、または前記式(7)~(10)からなる群から選ばれた少なくとも1種の化合物からなる成分E、または前記式(11)からなる群から選ばれた少なくとも1種の化合物からなる成分Fを混合したものが好ましい。
 また、本発明に使用される液晶組成物の各成分においては、各元素の同位体元素からなる類縁体でもその物理特性に大きな差異がないので、使用出来る。
 上記成分Bのうち、式(2)で表される化合物の好適例として式(2-1)~(2-16)、式(3)で表される化合物の好適例として式(3-1)~(3-112)、式(4)で表される化合物の好適例として式(4-1)~(4-52)をそれぞれ挙げることができる。

Figure JPOXMLDOC01-appb-I000100

Figure JPOXMLDOC01-appb-I000101

Figure JPOXMLDOC01-appb-I000102

Figure JPOXMLDOC01-appb-I000103

Figure JPOXMLDOC01-appb-I000104

Figure JPOXMLDOC01-appb-I000105

Figure JPOXMLDOC01-appb-I000106

Figure JPOXMLDOC01-appb-I000107

(式中、R、Xは前記と同じ定義を表す)
 これらの式(2)~(4)で表される化合物すなわち成分Bは、誘電率異方性値が正であり、熱安定性や化学的安定性が非常に優れているので、TFT用の液晶組成物を調製する場合に用いられる。本発明の液晶組成物における成分Bの含有量は、液晶組成物の全重量に対して1~99重量%の範囲が適するが、好ましくは10~97重量%、より好ましくは40~95重量%である。
 前記、式(5)で表される化合物すなわち成分Cのうちの好適例として、式(5-1)~(5-62)を挙げることができる。

Figure JPOXMLDOC01-appb-I000108

Figure JPOXMLDOC01-appb-I000109

Figure JPOXMLDOC01-appb-I000110

(これらの式において、RおよびXは前記と同じ定義である)
 これらの式(5)で表される化合物すなわち成分Cは、誘電率異方性値が正でその値が非常に大きい。この成分Cを含有させることにより、組成物駆動電圧を小さくすることができる。また、粘度の調整、屈折率異方性値の調整および液晶相温度範囲を広げることができる。
 成分Cの含有量は、組成物全量に対して好ましくは0.1~99.9重量%の範囲、より好ましくは10~97重量%の範囲、さらに好ましくは40~95重量%の範囲である。また、後述の成分を混合することによりしきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度などを調整できる。
 式(6)で表わされる化合物(成分D)の好適例として、それぞれ式(6-1)~(6-6)を挙げることができる。

Figure JPOXMLDOC01-appb-I000111

(式中、RおよびRは前記と同じ定義を表す)
 式(6)で表される化合物(成分D)は、誘電率異方性値の絶対値が小さく、中性に近い化合物である。式(6)で表される化合物は透明点を高くするなどの光学的に等方性の液晶相の温度範囲を広げる効果、または屈折率異方性値の調整の効果がある。
 成分Dで表される化合物の含有量を増加させると液晶組成物の駆動電圧が高くなり、粘度が低くなるので、液晶組成物の駆動電圧の要求値を満たす限り、含有量は多いほうが望ましい。TFT用の液晶組成物を調製する場合に、成分Dの含有量は、組成物全量に対して好ましくは60重量%以下、より好ましくは40重量%以下である。
 本発明の液晶組成物は、本発明の式(1)で表される化合物の少なくとも1種類を0.1~99重量%の割合で含有することが、優良な特性を発現せしめるために好ましい。
 本発明の液晶組成物の調製は、公知の方法、例えば必要な成分を高温度下で溶解させる方法などにより一般に調製される。
3 化合物(7)~(11)
 本発明の第3の態様は、成分Aに以下に示す成分EおよびFから選ばれた成分を加えることにより得られる液晶組成物である。
 成分Aに加える成分として、前記式(7)、(8)、(9)および(10)からなる群から選ばれた少なくとも1種の化合物からなる成分E、または前記式(11)からなる群から選ばれた少なくとも1種の化合物からなる成分Fを混合したものが好ましい。
 また、本発明に使用される液晶組成物の各成分は、各元素の同位体元素からなる類縁体でもその物理特性に大きな差異がない。
 上記成分Fのうち、式(7)で表される化合物の好適例として式(7-1)~(7-8)、式(8)で表される化合物の好適例として式(8-1)~(8-26)、式(9)で表される化合物の好適例として式(9-1)~(9-22)、式(10)で表される化合物の好適例として式(10-1)~(10-5)をそれぞれ挙げることができる。

Figure JPOXMLDOC01-appb-I000112

Figure JPOXMLDOC01-appb-I000113

Figure JPOXMLDOC01-appb-I000114


Figure JPOXMLDOC01-appb-I000115

(式中、R、X4は前記と同じ定義を表し、(F)は水素またはフッ素を表し、(F,Cl)は水素、フッ素または塩素を表す。)
 これらの式(7)~(10)で表される化合物すなわち成分Eは、誘電率異方性値が正でありかつ非常に大きく、熱安定性や化学的安定性が非常に優れているので、TFT駆動などのアクティブ駆動用の液晶組成物を調製する場合に好適である。本発明の液晶組成物における成分Fの含有量は、液晶組成物の全重量に対して1~99重量%の範囲が適するが、好ましくは10~97重量%、より好ましくは40~95重量%である。また式(6)で表される化合物(成分D)をさらに含有させることにより透明点および粘度調整をすることができる。
 前記、式(11)で表される化合物すなわち成分Fのうちの好適例として、式(11-1)~(11-37)を挙げることができる。

Figure JPOXMLDOC01-appb-I000116

Figure JPOXMLDOC01-appb-I000117

(これらの式において、R、X、(F)および(F,Cl)は前記と同じ定義である)
 これらの式(11)で表される化合物すなわち成分Fは、誘電率異方性値が正でその値が非常に大きいので光学的に等方性の液晶相で駆動される素子、PDLCD、PNLCD、PSCLCDなどの素子を低駆動電圧化する場合に主として用いられる。この成分Gを含有させることにより、組成物の駆動電圧を小さくすることができる。また、粘度の調整、屈折率異方性値の調整および液晶相温度範囲を広げることができる。さらに急峻性の改良にも利用できる。
 成分Fの含有量は、組成物全量に対して好ましくは0.1~99.9重量%の範囲、より好ましくは10~97重量%の範囲、さらに好ましくは40~95重量%の範囲である。
4 光学的に等方性の液晶相を有する組成物
4.1 光学的に等方性の液晶相を有する組成物の組成
 本発明の第4の態様は、式(1)で表される化合物およびキラル剤を含む組成物であり、光学的に等方性の液晶相で駆動される光素子に用いることのできる液晶組成物である。液晶組成物は、光学的等方性の液晶相を発現する組成物である。
 式(1)で表される化合物は、透明点が低く、大きな誘電率異方性と大きな屈折率異方性を有するため、その含有量は、キラル剤が添加されていないアキラルな液晶組成物の全重量に対して、5~100重量%でもよく、好ましくは5~80重量%、より好ましくは10~70重量%である。
 液晶組成物の全重量に対して、キラル剤を1~40重量%含むことが好ましく、3~25重量%含むことがさらに好ましく、5~15重量%含むことが最も好ましい。これらの範囲でキラル剤を含有する液晶組成物は、光学的に等方性の液晶相を有するようになりやすく、好ましい。
 液晶組成物に含有されるキラル剤は1種でも2種以上でもよい。
4.2 キラル剤
 光学的に等方性の液晶組成物が含有するキラル剤は光学活性化合物であり、キラル剤としては、ねじり力(Helical Twisting Power)が大きい化合物が好ましい。ねじり力が大きい化合物は所望のピッチを得るために必要な添加量が少なくできるので、駆動電圧の上昇を抑えられ、実用上有利である。具体的には、下記式(K1)~(K5)で表される化合物が好ましい。

Figure JPOXMLDOC01-appb-I000118

式(K1)~(K5)中、Rは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の任意の-CH-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の任意の水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性あるいは非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性または非芳香族性の3から8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであるが、任意の-CH-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、または-N=CH-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;Xは単結合、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、または-CHCH-であり;mKは1~4である。
 これらの中でも、液晶組成物に添加されるキラル剤としては、式(K2)に含まれる式(K2-1)~式(K2-8)、式(K4)に含まれる式(K4-1)~式(K4-6)および、式(K5)に含まれる式(K5-1)~式(K5-3)が好ましい。

Figure JPOXMLDOC01-appb-I000119

Figure JPOXMLDOC01-appb-I000120

Figure JPOXMLDOC01-appb-I000121

Figure JPOXMLDOC01-appb-I000122

(式中、Rは独立して、炭素数3~10のアルキルであり、このアルキル中の環に隣接する-CH-は-O-で置き換えられてもよく、任意の-CH-CH-は、-CH=CH-で置き換えられてもよい。)。

4.3 光学的に等方性の液晶相
 液晶組成物が光学的に等方性を有するとは、巨視的には液晶分子配列は等方的であるため光学的に等方性を示すが、微視的には液晶秩序が存在することをいう。「液晶組成物が微視的に有する液晶秩序に基づくピッチ(以下では、ピッチと呼ぶことがある)」は700nm以下であることが好ましく、500nm以下であることがさらに好ましく、350nm以下であることが最も好ましい。
 ここで、「非液晶等方相」とは一般的に定義される等方相、すなわち、無秩序相であり、局所的な秩序パラメーターがゼロでない領域が生成したとしても、その原因がゆらぎによるものである等方相である。たとえばネマチック相の高温側に発現する等方相は、本明細書では非液晶等方相に該当する。本明細書におけるキラルな液晶についても、同様の定義があてはまるものとする。そして、本明細書において「光学的に等方性の液晶相」とは、ゆらぎではなく光学的に等方性の液晶相を発現する相を表し、たとえばプレートレット組織を発現する相(狭義のブルー相)はその一例である。
 本発明の光学的に等方性の液晶組成物において、光学的に等方性の液晶相ではあるが、偏光顕微鏡観察下、ブルー相に典型的なプレートレット組織が観測されないことがある。そこで本明細書において、プレートレット組織を発現する相をブルー相と称し、ブルー相を含む光学的に等方性の液晶相を光学的に等方性の液晶相と称する。すなわちブルー相は光学的に等方性の液晶相に包含される。
 一般的に、ブルー相は3種類に分類され(ブルー相I、ブルー相II、ブルー相III)、これら3種類のブルー相はすべて光学活性であり、かつ、等方性である。ブルー相Iやブルー相IIのブルー相では異なる格子面からのブラッグ反射に起因する2種以上の回折光が観測される。ブルー相は一般的に非液晶等方相とキラルネマチック相の間で観測される。
 光学的に等方性の液晶相が二色以上の回折光を示さない状態とは、ブルー相I、ブルー相IIに観測されるプレートレット組織が観測されず、概ね一面単色であることを意味する。二色以上の回折光を示さない光学的に等方性の液晶相では、色の明暗が面内で均一であることまでは不要である。
 二色以上の回折光を示さない光学的に等方性の液晶相は、ブラッグ反射による反射光強度が抑えられる、あるいは低波長側にシフトするという利点がある。
 また、可視光の光を反射する液晶材料では、表示素子として利用する場合に色味が問題となることがあるが、二色以上の回折光を示さない液晶では、反射波長が低波長シフトするため、狭義のブルー相(プレートレット組織を発現する相)より長いピッチで可視光の反射を消失させることができる。
 本発明の光学的に等方性の液晶組成物は、ネマチック相を有する組成物にキラル剤を添加して得ることが出来る。この際に、キラル剤は好ましくはピッチが700nm以下になるような濃度で添加される。なお、ネマチック相を有する組成物は、式(1)で表される化合物および必要に応じてその他の成分を含む。また、本発明の光学的に等方性の液晶組成物は、キラルネマチック相を有し、光学的に等方性の液晶相を有さない組成物にキラル剤を添加して得ることも出来る。なお、キラルネマチック相を有し光学的に等方性の液晶を有さない組成物は、式(1)で表される化合物、光学活性化合物および必要に応じてその他の成分を含む。この際に、光学活性化合物は光学的に等方性の液晶相を発現させないために、好ましくはピッチが700nm以上になるような濃度で添加される。ここで、添加される光学活性化合物は、前述のねじり力が大きい化合物である式(K1)~(K5)、式(K2-1)~(K2-8)、式(K4-1)~(K4-6)または式(K5-1)~(K5-3)で表される化合物が使用出来る。また、添加される光学活性化合物は、ねじり力がそれほど大きくない化合物であってもよい。そのような光学活性化合物としては、ネマチック相で駆動される素子(TN方式、STN方式など)用の液晶組成物に添加される化合物を挙げることができる。
 ねじり力がそれほど大きくない光学活性化合物の例として、以下の光学活性化合物(Op-1)~(Op-13)を挙げることができる。

Figure JPOXMLDOC01-appb-I000123
 なお本発明の光学的に等方性の液晶組成物の温度範囲は、ネマチック相またはキラルネマチック相と等方相の共存温度範囲が広い液晶組成物に、キラル剤を添加し、光学的に等方性の液晶相を発現させることにより、広くすることができる。例えば、透明点の高い液晶化合物と透明点の低い液晶化合物とを混合し、広い温度範囲でネマチック相と等方相の共存温度範囲が広い液晶組成物を調製し、これにキラル剤を添加することで、広い温度範囲で光学的に等方性の液晶相を発現する組成物を調製することができる。
 ネマチック相またはキラルネマチック相と等方相の共存温度範囲が広い液晶組成物としては、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である液晶組成物が好ましく、差が5~150℃である液晶組成物が更に好ましい。また、ネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である液晶組成物が好ましい。
 光学的に等方性の液晶相において本発明の液晶媒体に電界を印加すると、電気複屈折が生じるが、必ずしもカー効果である必要はない。
光学的に等方性の液晶相における電気複屈折はピッチが長くなるほど大きくなるので、その他の光学特性(透過率、回折波長など)の要求を満たす限り、キラル剤の種類と含有量を調整して、ピッチを長く設定することにより、電気複屈折を大きくすることができる。
4.4 その他の成分
 本発明の光学的に等方性の液晶組成物は、その組成物の特性に影響を与えない範囲で、さらに高分子物質等の他の化合物が添加されてもよい。本発明の液晶組成物は、高分子物質の他にも、たとえば二色性色素、フォトクロミック化合物を含有していてもよい。二色性色素の例としては、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などが挙げられる。
5.光学的に等方性の高分子/液晶複合材料
 本発明の第5の態様は、式(1)で表される化合物およびキラル剤を含む液晶組成物と高分子の複合材料であり、光学的に等方性を示すものである。光学的に等方性の液晶相で駆動される光素子に用いることのできる光学的に等方性の高分子/液晶複合材料である。このような高分子/液晶複合材料は例えば、項[1]~[30]に記載の液晶組成物(液晶組成物CLC)と高分子で構成される。
 本発明の、「高分子/液晶複合材料」とは、液晶材料と高分子の化合物の両者を含む複合材料であれば特に限定されないが、高分子の一部または全部が液晶材料に溶解していない状態で高分子が液晶材料と相分離している状態でもよい。なお、本明細書において、特に言及がなければ、ネマチック相はキラルネマチック相を含まない、狭義のネマチック相を意味する。
 本発明の好ましい態様に係る光学的に等方性の高分子/液晶複合材料は、光学的に等方性の液晶相を広い温度範囲で発現させることが可能である。また、本発明の好ましい態様に係る高分子/液晶複合材料は、応答速度が極めて速い。また、本発明の好ましい態様に係る高分子/液晶複合材料は、これらの効果に基づいて表示素子等の光素子等に好適に用いることができる。
5.2 高分子
 本発明の複合材料は、光学的に等方性の液晶組成物と、予め重合されて得られた高分子とを混合しても製造できるが、高分子の材料となる低分子量のモノマー、マクロモノマー、オリゴマー等(以下、まとめて「モノマー等」という)と液晶組成物CLCとを混合してから、当該混合物において重合反応を行うことによって、製造されることが好ましい。モノマー等と液晶組成物とを含む混合物を本件明細書では、「重合性モノマー/液晶混合物」と呼ぶ。「重合性モノマー/液晶混合物」には必要に応じて、後述する重合開始剤、硬化剤、触媒、安定剤、二色性色素、またはフォトクロミック化合物等を、本発明の効果を損なわない範囲で含んでもよい。たとえば、本件発明の重合性モノマー/液晶混合物には必要に応じて、重合開始剤を重合性モノマー100重量部に対して0.1~20重量部含有してもよい。
 重合温度は、高分子/液晶複合材料が高透明性と等方性を示す温度であることが好ましい。より好ましくはモノマーと液晶材料の混合物が等方相またはブルー相を発現する温度で、かつ、等方相ないしは光学的に等方性の液晶相で重合を終了する。すなわち、重合後は高分子/液晶複合材料が可視光線より長波長側の光を実質的に散乱せずかつ光学的に等方性の状態を発現する温度とするのが好ましい。
 本発明の複合材料を構成する高分子の原料としては、例えば低分子量のモノマー、マクロモノマー、オリゴマーを使用することができ、本明細書において高分子の原料モノマーとは低分子量のモノマー、マクロモノマー、オリゴマー等を包含する意味で用いる。また、得られる高分子が三次元架橋構造を有するものが好ましく、そのために、高分子の原料モノマーとして2つ以上の重合性官能基を有する多官能性モノマーを用いることが好ましい。重合性の官能基は特に限定されないが、アクリル基、メタクリル基、グリシジル基、エポキシ基、オキセタニル基、ビニル基などを上げることができるが、重合速度の観点からアクリル基およびメタクリル基が好ましい。高分子の原料モノマー中、二つ以上の重合性のある官能基を持つモノマーをモノマー中に10重量%以上含有させると、本発明の複合材料において高度な透明性と等方性を発現しやすくなるので好ましい。
 また、好適な複合材料を得るためには、高分子はメソゲン部位を有するものが好ましく、高分子の原料モノマーとしてメソゲン部位を有する原料モノマーをその一部に、あるいは全部に用いることができる。
5.2.1 メソゲン部位を有する単官能性・二官能性モノマー
 メソゲン部位を有する単官能性、または二官能性モノマーは構造上特に限定されないが、例えば下記の式(M1)または式(M2)で表される化合物を挙げることができる。
-Y-(A-Zm1-A-Y-R(M1)
-Y-(A-Zm1-A-Y-R (M2)

Figure JPOXMLDOC01-appb-I000124
 式(M1)中、Rは、それぞれ独立して水素、ハロゲン、-C≡N、-N=C=O、-N=C=S、または炭素数1~20のアルキルであり、これらのアルキルにおいて任意の-CH2-は-O-、-S-、-CO-、-COO-、または-OCO-、で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、これらのアルキルにおいて任意の水素はハロゲンまたは-C≡Nで置き換えられてもよい。Rは、それぞれ独立して、式(M3-1)~式(M3-7)の重合性基である。
 好ましいRは、水素、ハロゲン、-C≡N、-CF、-CFH、-CFH、-OCF、-OCFH、炭素数1~20のアルキル、炭素数1~19のアルコキシ、炭素数2~21のアルケニル、および炭素数2~21のアルキニルである。特に好ましいRは、-C≡N、炭素数1~20のアルキルおよび炭素数1~19のアルコキシである。
 式(M2)中、Rは、それぞれ独立して、式(M3-1)~(M3-7)の重合性基である。
 ここで、式(M3-1)~(M3-7)におけるRは、それぞれ独立して水素、ハロゲンまたは炭素数1~5のアルキルであり、これらのアルキルにおいて任意の水素はハロゲンで置き換えられてもよい。好ましいRは、水素、ハロゲンおよびメチルである。特に好ましいRは、水素、フッ素およびメチルである。
 また、式(M3-2)、式(M3-3)、式(M3-4)、式(M3-7)はラジカル重合で重合するのが好適である。式(M3-1)、式(M3-5)、式(M3-6)はカチオン重合で重合するのが好適である。いずれもリビング重合なので、少量のラジカルあるいはカチオン活性種が反応系内に発生すれば重合は開始する。活性種の発生を加速する目的で重合開始剤を使用できる。活性種の発生には例えば光または熱を使用できる。
 式(M1)および(M2)中、Aは、それぞれ独立して芳香族性または非芳香族性の5員環、6員環または炭素数9以上の縮合環であるが、環中の-CH-は-O-、-S-、-NH-、または-NCH-で、環中の-CH=は-N=で置き換わってもよく、環上の水素原子はハロゲン、および炭素数1~5のアルキル、またはハロゲン化アルキルで置き換わってもよい。好ましいAの具体例は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、またはビシクロ[2.2.2]オクタン-1,4-ジイルであり、これらの環において任意の-CH-は-O-で置き換えられてもよく、任意の-CH=は-N=で置き換えられてもよく、これらの環において任意の水素はハロゲン、炭素数1~5のアルキルまたは炭素数1~5のハロゲン化アルキルで置き換えられてもよい。
 化合物の安定性を考慮して、酸素と酸素とが隣接した-CH-O-O-CH-よりも、酸素と酸素とが隣接しない-CH-O-CH-O-の方が好ましい。硫黄においても同様である。
 これらの中でも、特に好ましいAは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2-メチル-1,4-フェニレン、2-トリフルオロメチル-1,4-フェニレン、2,3-ビス(トリフルオロメチル)-1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、1,3-ジオキサン-2,5-ジイル、ピリジン-2,5-ジイル、およびピリミジン-2,5-ジイルである。なお、前記1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置はシスよりもトランスの方が好ましい。
 2-フルオロ-1,4-フェニレンは、3-フルオロ-1,4-フェニレンと構造的に同一であるので、後者は例示しなかった。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンの関係などにも適用される。
 式(M1)および(M2)中、Yは、それぞれ独立して単結合または炭素数1~20のアルキレンであり、これらのアルキレンにおいて任意の-CH2-は-O-、-S-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-C≡C-、-COO-、または-OCO-で置き換えられてもよい。好ましいYは、単結合、-(CH2m2-、-O(CH2m2-、および-(CH2m2O-(前記式中、m2は1~20の整数である)である。特に好ましいYは、単結合、-(CH2m2-、-O(CH2m2-、および-(CH2m2O-(前記式中、m2は1~10の整数である)である。化合物の安定性を考慮して、-Y-Rおよび-Y-Rは、それらの基中に-O-O-、-O-S-、-S-O-、または-S-S-を有しない方が好ましい。
 式(M1)および(M2)中、Zは、それぞれ独立して単結合、-(CH2m3-、-O(CH2m3-、-(CH2m3O-、-O(CH2m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CF22-、-(CH2-COO-、-OCO-(CH2-、-CH=CH-COO-、-OCO-CH=CH-、-C≡C-COO-、-OCO-C≡C-、-CH=CH-(CH22-、-(CH22-CH=CH-、-CF=CF-、-C≡C-CH=CH-、-CH=CH-C≡C-、-OCF-(CH2-、-(CH2-CFO-、-OCF-または-CFO-(前記式中、m3は1~20の整数である)である。
 好ましいZは単結合、-(CH2m3-、-O(CH2m3-、-(CH2m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CH2-COO-、-OCO-(CH2-、-CH=CH-COO-、-OCO-CH=CH-、-OCF-、および-CFO-である。
 式(M1)および(M2)中、m1は1~6の整数である。好ましいm1は、1~3の整数である。m1が1のときは、6員環などの環を2つ有する二環の化合物である。m1が2と3のときは、それぞれ三環と四環の化合物である。例えばm1が1であるとき、2つのAは同一であってもよいし、または異なってもよい。また、例えばm1が2であるとき、3つのA(または2つのZ)は同一であってもよいし、または異なってもよい。m1が3~6であるときについても同様である。R、R、R、Z、AおよびYについても同様である。
 式(M1)で表される化合物(M1)および式(M2)で表される化合物(M2)はH(重水素)、13Cなどの同位体を天然存在比の量よりも多く含んでいても同様の特性を有するので好ましく用いることができる。
 化合物(M1)および化合物(M2)の更に好ましい例は、式(M1-1)~(M1-41)および式(M2-1)~(M2-27)で表される化合物(M1-1)~(M1-41)および化合物(M2-1)~(M2-27)である。これらの化合物において、R、R、R、Z、A、Yおよびpの意味は、本発明の態様に記載した式(M1)および式(M2)のそれらと同一である。
 化合物(M1-1)~(M1-41)および化合物(M2-1)~(M2-27)における下記の部分構造について説明する。部分構造(a1)は、任意の水素がフッ素で置き換えられた1,4-フェニレンを表す。部分構造(a2)は、任意の水素がフッ素で置き換えられてもよい1,4-フェニレンを表す。部分構造(a3)は、任意の水素がフッ素またはメチルのいずれかで置き換えられてもよい1,4-フェニレンを表す。部分構造(a4)は、9位の水素がメチルで置き換えられてもよいフルオレンを表す。

Figure JPOXMLDOC01-appb-I000125

Figure JPOXMLDOC01-appb-I000126

Figure JPOXMLDOC01-appb-I000127

Figure JPOXMLDOC01-appb-I000128

Figure JPOXMLDOC01-appb-I000129

Figure JPOXMLDOC01-appb-I000130

Figure JPOXMLDOC01-appb-I000131

Figure JPOXMLDOC01-appb-I000132

Figure JPOXMLDOC01-appb-I000133

Figure JPOXMLDOC01-appb-I000134

Figure JPOXMLDOC01-appb-I000135
 前述のメソゲン部位を有さないモノマー、およびメソゲン部位を持つモノマー(M1)、および(M2)以外の重合性化合物を必要に応じて使用することができる。
 本発明の高分子/液晶複合材料の光学的に等方性を最適化する目的で、メソゲン部位を持ち3つ以上の重合性官能基を持つモノマーを使用することもできる。メソゲン部位を持ち3つ以上の重合性官能基を持つモノマーとしては公知の化合物を好適に使用できるが、例えば、化合物(M4-1)~(M4-3)であり、より具体的な例として、特開2000-327632号、特開2004-182949号、特開2004-59772号に記載された化合物をあげることができる。ただし、式(M4-1)~(M4-3)において、R、Za、Y、および(F)は前述と同一の意味を示す。

Figure JPOXMLDOC01-appb-I000136
5.2.2 メソゲン部位を有さない重合性のある官能基を持つモノマー
 メソゲン部位を有さない重合性のある官能基を持つモノマーとして、例えば、炭素数1~30の直鎖あるいは分岐アクリレート、炭素数1~30の直鎖あるいは分岐ジアクリレート、三つ以上の重合性官能基を有するモノマーとしては、グリセロール・プロポキシレート(1PO/OH)トリアクリレート、ペンタエリスリトール・プロポキシレート・トリアクリレート、ペンタエリスリトール・トリアクリレート、トリメチロールプロパン・エトキシレート・トリアクリレート、トリメチロールプロパン・プロポキシレート・トリアクリレート、トリメチロールプロパン・トリアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ペンタエリスリトール・テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート、トリメチロールプロパン・トリアクリレートなどを挙げることができるが、これらに限定されるものではない。
5.2.3 重合開始剤
 本発明の複合材料を構成する高分子の製造における重合反応は特に限定されず、例えば、光ラジカル重合、熱ラジカル重合、光カチオン重合等が行われる。
 光ラジカル重合において用いることができる光ラジカル重合開始剤の例は、ダロキュア(DAROCUR、登録商標)1173および4265(いずれも商品名、チバ・スペシャリティ・ケミカルズ(株))、イルガキュア(IRGACURE、登録商標)184、369、500、651、784、819、907、1300、1700、1800、1850、および2959(いずれも商品名、チバ・スペシャリティ・ケミカルズ(株))、などである。
 熱ラジカル重合において用いることができる熱によるラジカル重合の好ましい開始剤の例は、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、ジt-ブチルパーオキシド(DTBPO)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)などである。
 光カチオン重合において用いることができる光カチオン重合開始剤として、ジアリールヨードニウム塩(以下、「DAS」という。)、トリアリールスルホニウム塩(以下、「TAS」という。)などがあげられる。
 DASとしては、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホネート、ジフェニルヨードニウムテトラ(ペンタフルオロフェニル)ボレート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホネート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4-メトキシフェニルフェニルヨードニウム-p-トルエンスルホナートなどが挙げられる。
 DASには、チオキサントン、フェノチアジン、クロロチオキサントン、キサントン、アントラセン、ジフェニルアントラセン、ルブレンなどの光増感剤を添加することで高感度化することもできる。
 TASとしては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホネート、トリフェニルスルホニウムテトラ(ペンタフルオロフェニル)ボレート、4-メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4-メトキシフェニルジフェニルスルホニウムトリフルオロメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウム-p-トルエンスルホネートなどが挙げられる。
 光カチオン重合開始剤の具体的な商品名の例は、サイラキュア(Cyracure、登録商標)UVI-6990、サイラキュアUVI-6974、サイラキュアUVI-6992(それぞれ商品名、UCC(株))、アデカオプトマーSP-150、SP-152、SP-170、SP-172(それぞれ商品名、(株)ADEKA)、Rhodorsil Photoinitiator 2074(商品名、ローディアジャパン(株))、イルガキュア(IRGACURE、登録商標)250(商品名、チバ・スペシャリティ・ケミカルズ(株))、UV-9380C(商品名、GE東芝シリコーン(株))などである。
5.2.4 硬化剤等
 本発明の複合材料を構成する高分子の製造において、前記モノマー等および重合開始剤の他にさらに1種または2種以上の他の好適な成分、例えば、硬化剤、触媒、安定剤等を加えてもよい。
 硬化剤としては、通常、エポキシ樹脂の硬化剤として使用されている従来公知の潜在性硬化剤が使用できる。潜在性エポキシ樹脂用硬化剤は、アミン系硬化剤、ノボラック樹脂系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤等が挙げられる。アミン系硬化剤の例としては、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン等の脂環式ポリアミン、ジアミノジフェニルメタン、ジアミノジフェニルエタン、メタフェニレンジアミン等の芳香族ポリアミンなどが挙げられる。
 ノボラック樹脂系硬化剤の例としては、フェノールノボラック樹脂、ビスフェノールノボラック樹脂などが挙げられる。イミダゾール系硬化剤としては、2-メチルイミダゾール、2-エチルへキシルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウム・トリメリテートなどが挙げられる。
 酸無水物系硬化剤の例としては、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物などが挙げられる。
 また、グリシジル基、エポキシ基、オキセタニル基を有する重合性化合物と硬化剤との硬化反応を促進するための硬化促進剤をさらに用いてもよい。硬化促進剤としては、例えば、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、ジメチルシクロヘキシルアミン等の3級アミン類、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン等の有機リン系化合物、テトラフェニルホスホニウムブロマイド等の4級ホスホニウム塩類、1,8-ジアザビシクロ[5.4.0]ウンデセン-7等やその有機酸塩等のジアザビシクロアルケン類、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩類、三フッ化ホウ素、トリフェニルボレート等のホウ素化合物などが挙げられる。これらの硬化促進剤は単独または2種以上を混合して使用することができる。
 また、例えば貯蔵中の不所望な重合を防止するために、安定剤を添加することが好ましい。安定剤として、当業者に知られているすべての化合物を用いることができる。安定剤の代表例としては、4-エトキシフェノール、ハイドロキノン、ブチル化ヒドロキシトルエン(BHT)等が挙げられる。
5.3 液晶組成物等の含有率
 本発明の高分子/液晶複合材料中における液晶組成物の含有率は、複合材料が光学的に等方性の液晶相を発現できる範囲であれば、可能な限り高含有率であることが好ましい。液晶組成物の含有率が高い方が、本発明の複合材料の電気複屈折値が大きくなるからである。
 本発明の高分子/液晶複合材料において、液晶組成物の含有率は複合材料に対して60~99重量%であることが好ましく、60~95重量%がさらに好ましく、65~95重量%が特に好ましい。高分子の含有率は複合材料に対して1~40重量%であることが好ましく、5~40重量%がさらに好ましく、5~35重量%が特に好ましい。
5.4 その他の成分
 本発明の高分子/液晶複合材料は、たとえば二色性色素、フォトクロミック化合物を本発明の効果を損なわない範囲で含有していてもよい。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。なお特に断りのない限り、「%」は「重量%」を意味する。
6 光素子
 本発明の第6の態様は、液晶組成物または高分子/液晶複合材料(以下では、本発明の液晶組成物および高分子/液晶複合材料を総称して液晶媒体と呼ぶことがある)を含む光学的に等方性の液晶相で駆動される光素子である。
 電界無印加時には液晶媒体は光学的に等方性であるが、電場を印加すると、液晶媒体は光学的異方性を生じ、電界による光変調が可能となる。
 液晶表示素子の構造例としては、図1に示すように、櫛型電極基板の電極が、左側から伸びる電極1と右側から伸びる電極2が交互に配置された構造を挙げることができる。電極1と電極2との間に電位差がある場合、図1に示すような櫛型電極基板上では、上方向と下方向の2つの方向の電界が存在する状態を提供できる。
 得られた化合物は、1H-NMR分析で得られる核磁気共鳴スペクトル、ガスクロマトグラフィー(GC)分析で得られるガスクロマトグラムなどにより同定したので、まず分析方法について説明をする。
 1H-NMR分析:測定装置は、DRX-500(ブルカーバイオスピン(株)社製)を用いた。測定は、実施例等で製造したサンプルを、CDCl3等のサンプルが可溶な重水素化溶媒に溶解し、室温で、500MHz、積算回数24回の条件で行った。なお、得られた核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットであることを意味する。また、化学シフトδ値のゼロ点の基準物質としてはテトラメチルシラン(TMS)を用いた。
 GC分析:測定装置は、島津製作所製のGC-14B型ガスクロマトグラフを用いた。カラムは、島津製作所製のキャピラリーカラムCBP1-M25-025(長さ25m、内径0.22mm、膜厚0.25μm);固定液相はジメチルポリシロキサン;無極性)を用いた。キャリアーガスとしてはヘリウムを用い、流量は1ml/分に調整した。試料気化室の温度を300℃、検出器(FID)部分の温度を300℃に設定した。
 試料はトルエンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。
 記録計としては島津製作所製のC-R6A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
 なお、試料の希釈溶媒としては、例えば、クロロホルム、ヘキサンを用いてもよい。また、カラムとしては、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm)、Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty.Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。
 ガスクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶化合物における補正係数に大きな差異がないからである。ガスクロマトグラムにより液晶組成物中の液晶化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶化合物成分(被検成分)と基準となる液晶化合物(基準物質)を同時にガスクロ測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶化合物の組成比をガスクロ分析からより正確に求めることができる。
液晶化合物等の物性値の測定試料
 液晶化合物の物性値を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
 化合物を母液晶と混合した試料を用いる後者の場合には、以下の方法で測定を行う。まず、得られた液晶化合物15重量%と母液晶85重量%とを混合して試料を作製する。そして、得られた試料の測定値から、下記の計算式に基づく外挿法にしたがって、外挿値を計算する。この外挿値をこの化合物の物性値とする。
〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉)/〈液晶化合物の重量%〉
 液晶化合物と母液晶との割合がこの割合であっても、スメクチック相、または結晶が25℃で析出する場合には、液晶化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、スメクチック相、または結晶が25℃で析出しなくなった組成で試料の物性値を測定し上記式にしたがって外挿値を求めて、これを液晶化合物の物性値とする。
 測定に用いる母液晶としては様々な種類が存在するが、例えば、母液晶Aの組成(重量%)は以下のとおりである。
 母液晶A:

Figure JPOXMLDOC01-appb-I000137
液晶化合物等の物性値の測定方法
 物性値の測定は後述する方法で行った。これら測定方法の多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。また、測定に用いたTN素子には、TFTを取り付けなかった。
 測定値のうち、液晶化合物そのものを試料とした場合は、得られた値を実験データとして記載した。液晶化合物と母液晶との混合物を試料として用いた場合は、外挿法で得られた値を実験データとして記載した。
 相構造および相転移温度(℃):以下(1)、および(2)の方法で測定を行った。
(1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に化合物を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、液晶相の種類を特定した。
(2)パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、相転移温度を決定した。
 以下、結晶はKと表し、さらに結晶の区別がつく場合は、それぞれK1またはK2と表した。また、スメクチック相はSm、ネマチック相はNと表した。液体(アイソトロピック)はIと表した。スメクチック相の中で、スメクチックB相、またはスメクチックA相の区別がつく場合は、それぞれSmB、またはSmAと表した。BPはブルー相または光学的に等方性の液晶相を表す。2相の共存状態は(N+I)、(N+BP)という形式で表記することがある。具体的には、(N+I)は、それぞれ非液晶等方相とキラルネマチック相がと共存する相を表し、(N+BP)は、BP相または光学的に等方性の液晶相とキラルネマチック相が共存した相を表す。Unは光学的等方性ではない未確認の相を表す。相転移温度の表記として、例えば、「K 50.0 N 100.0 I」とは、結晶からネマチック相への相転移温度(KN)が50.0℃であり、ネマチック相から液体への相転移温度(NI)が100.0℃であることを示す。他の表記も同様である。
 ネマチック相の上限温度(TNI;℃):偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に、試料(液晶化合物と母液晶との混合物)を置き、1℃/分の速度で加熱しながら偏光顕微鏡を観察した。試料の一部がネマチック相から等方性液体に変化したときの温度をネマチック相の上限温度とした。以下、ネマチック相の上限温度を、単に「上限温度」と略すことがある。
 低温相溶性:母液晶と液晶化合物とを、液晶化合物が、20重量%、15重量%、10重量%、5重量%、3重量%、および1重量%の量となるように混合した試料を作製し、試料をガラス瓶に入れる。このガラス瓶を、-10℃または-20℃のフリーザー中に一定期間保管したあと、結晶もしくはスメクチック相が析出しているかどうか観察をした。
 粘度(η;20℃で測定;mPa・s):液晶化合物と母液晶との混合物を、E型粘度計を用いて測定した。
 屈折率異方性(Δn):測定は25℃の温度下で、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料(液晶化合物と母液晶との混合物)を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。屈折率異方性(Δn)の値は、Δn=n∥-n⊥の式から計算した。
 誘電率異方性(Δε;25℃で測定):2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料(液晶化合物と母液晶との混合物)を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
 ピッチ(P;25℃で測定;nm)
 ピッチ長は選択反射を用いて測定した(液晶便覧196頁 2000年発行、丸善)。選択反射波長λには、関係式<n>p/λ=1が成立する。ここで<n>は平均屈折率を表し、次式で与えられる。<n>={(n 2+n 2)/2}1/2。選択反射波長は顕微分光光度計(日本電子(株)、商品名MSV-350)で測定した。得られた反射波長を平均屈折率で除すことにより、ピッチを求めた。可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、光学活性化合物濃度が低い領域では光学活性化合物の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。「光学活性化合物」は本発明におけるキラル剤に相当する。
[実施例1]
化合物(S1)の合成 

Figure JPOXMLDOC01-appb-I000138

(式(1-1-2i)において、R1aが-C、R1bが水素、Lが水素、L、L、およびLがフッ素であり、Yが-CFである化合物。)
 最初に、下記に中間原料である化合物(S1-03)および化合物(S1-07)の合成スキームを示す。
Figure JPOXMLDOC01-appb-I000139


Figure JPOXMLDOC01-appb-I000140
(第1-1段) 化合物(S1-03)の合成
窒素気流下で、1-ブロモ-3-フルオロ-4-ヨードベンゼン(S1-01)(21.5g, 71.6mmol)、3,5-ジフルオロ-フェニルボロン酸(S1-02)(11.3g, 71.6mmol)、ジクロロ(ビストリフェニルホスフィン)パラジウム(0.503g, 0.716mmol)、トリフェニルホスフィン(0.375g, 1.43mmol)、炭酸カリウム(14.8g,107mmol)、テトラブチルアンモニウムブロミド(5.71g, 17.9mmol)、エタノール(100mL)、およびトルエン(100mL)の混合溶液を、80℃で6時間加熱攪拌した。反応液を水に空けてトルエン(300mL)にて2度抽出し、水で3回洗浄した後に有機相を減圧濃縮した。その後に、残渣をシリカゲルカラムクロマトグラフィー(溶媒:ヘプタン)にて精製し、化合物(S1-03)(15.8g, 55.1mmol、収率:77%)を得た。
(第1-2段) 化合物(S1-06)の合成
 窒素気流下で、2-メチル-ヘキサノリックアシッド(S1-04)(54.1g, 413mmol)のメタノールの(150mL)溶液に98%濃硫酸(1.0mL)を加え、70℃で2時間加熱攪拌した。反応液を水に空けてジエチルエーテル(300mL)にて2度抽出し、重曹水で1回、水で3回洗浄した後に有機相を常圧で濃縮して化合物(S1-05)(42.6g,296mmol、収率:72%)を得た。
窒素気流下で、LAH(リチウムアルミニウムハイドライド)(7.88g、207mmol)およびTHF(50mL)の混合液に、先に得られた0~10℃で化合物(S1-05)(42.6g,296mmol)/THF(150mL)溶液をゆっくりと滴下し、そのままの温度で2時間攪拌した。反応液に0℃にて1N-硫酸水溶液を滴下加えた後、水に空けて酢酸エチル(500mL)にて抽出し、水で3回洗浄した後に有機相を常圧で濃縮して、化合物(S1-06)(33.6g,290mmol、収率:98%)を得た。
(第1-3段) 化合物(S1-07)の合成
 窒素気流下で、前段で得た化合物(S1-06)(30.0g,259mmol)、トリフェニルホスフィン(84.8g,323mmol)のジクロロメタン(200mL)の混合溶液に、0℃で四臭化炭素(129g,388mmol)/ジクロロメタン溶液をゆっくりと滴下し、常温にて30分間攪拌した。反応液を水に空けてジクロロメタン(500mL)を加え、水で3回洗浄した後に有機相を常圧で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ペンタン)にて精製し、化合物(S1-07)(33.4g,186mmol、収率:72%)を得た。
 次に、得られた化合物(S1-03)および化合物(S1-07)を用いて、下記のスキームにて化合物(S1)を合成した。

Figure JPOXMLDOC01-appb-I000141
(第1-4段) 化合物(S1-08)の合成
 窒素気流下にて、マグネシウム(3.39g,140mmol)およびTHF(10mL)の混合液に、前段で得られた化合物(S1-07)(25.0g,140mmol)/THF(100mL)溶液をゆっくりと滴下して、系内を20~30℃に保ちながらグリニャール試薬を調製した。別の容器に、第1-1段で得られた化合物(S1-03)(26.7g,93.1mmol)、ジクロロ{ビス(ジフェニルホスフィノ)フェロセン}パラジウム(0.760g,0.931mmol)、およびTHF(200mL)の混合溶液を準備し、30℃にて先に得られたグリニャール試薬をゆっくりと滴下して、50℃で6時間加熱攪拌した。反応液を1N-HCl水溶液に空けてトルエン(400mL)にて2度抽出し、水で3回、重曹水で1回洗浄した後に有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S1-08)(24.5g,80.0mmol、収率:86%)を得た。
(第1-5段) 化合物(S1-09)の合成
 窒素気流下にて、前段で得られた化合物(S1-08)(24.5g, 80.0mmol)のTHF(150mL)溶液に、-60℃にてn-ブチルリチウム/ヘキサン溶液(1.67mol/L)(52.7mL,88.1mmol)をゆっくりと滴下し、そのままの温度で1時間攪拌した。さらに、系内にヨウ素(22.3g,88.1mmol)/THF(100mL)溶液をゆっくりと滴下し、そのままの温度で2時間攪拌した。反応液を水に空けてトルエン(300mL)にて2度抽出し、水で3回、チオ硫酸ナトリウム水溶液で1回洗浄した後に有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S1-09)(27.6g,63.9mmol、収率:80%)を得た。
(第1-6段) 化合物(S1-10)の合成
窒素気流下にて、前段で得られた化合物(S1-09)(27.6g,63.9mmol)、3,5-ジフルオロフェニルボロン酸(10.6g,67.1mmol)、炭酸カリウム(35.3g, 256mmol)、テトラ(ブチルアンモニウム)ブロミド(6.17g,19.2mmol)のトルエン(100mL)/エタノール(100mL)/水(10mL)の混合溶液を70℃にて3時間加熱攪拌した。反応液を水に空け、トルエン(300mL)を加えて水で3回、重曹水で1回洗浄した後に有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S1-10)(23.5g,56.2mmol、収率:88%)を得た。
(第1-7段) 化合物(S1-11)の合成
 窒素気流下にて、前段で得られた化合物(S1-10)(23.2g,55.5mmol)のTHF(150mL)溶液に、-40℃にてn-ブチルリチウム/ヘキサン溶液(1.67mol/L)(34.9mL,58.3mmol)をゆっくりと滴下し、そのままの温度で1時間攪拌した。次いで、そのままの温度で系内にジブロモジフルオロメタン(12.8g,61.1mmol)/THF(50mL)溶液をゆっくりと滴下し、序々に常温に戻しながら1時間攪拌した。反応液を水に空けてトルエン(300mL)にて抽出し、水で3回洗浄した後に有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/n-ヘプタン=1/5(容量比))にて精製し、化合物(S1-11)と化合物(S1-11’)の混合物(27.6g(75%),37.8mmol、収率:68%)を得た。次反応には、混合物のまま使用した。
(第1-8段) 化合物(S1)の合成
 窒素気流下で、前段で得られた化合物(S1-11)と化合物(S1-11’)の混合物(5.00g(75%),6.40mmol)、炭酸カリウム(1.85g,13.4mmol)、テトラブチルアンモニウムブロミド(0.206g,0.640mmol)のDMF(50mL)混合溶液を40℃で30分間加熱攪拌した。その後、系内に3,5-ジフルオロ-4―トリフルオロメチルフェノール(S1-12)(1.33g、6.72mmol)をゆっくりと加え、80℃にて5時間加熱攪拌した。反応液を水に空けてトルエン(100mL)にて抽出し、水で3回、重曹水で2回洗浄したのちに有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/n-ヘプタン=1/5(容量比))、さらに再結晶ろ過(溶媒:エタノール/酢酸エチル=1/1(容量比))にて精製し、最終目的物である化合物(S1)(1.50g,2.26mmol、収率:35%)を得た。この化合物の相転移温度(℃)は、C 72.8(SmA 56.9 N 69.1) Iであった。
H-NMR(CDCl):δ(ppm) 0.893(d,3H)、0.905(t,3H)、1.02-1.37(m,6H)、1.75(m,1H)、2.40(dd,1H)、2.69(dd,1H)、6.98-7.05(m,4H)、7.22(d,2H)、7.26(d,2H)、7.36(dd,1H) 

19F-NMR(CDCl):δ(ppm) -56.8(t,3F)、-62.5(t,2F)、-108.8(m,2F)、-111.3(dt,2F)、-114.7(d,2F)、-118.7(dd,1F)
液晶化合物(S1)の物性
 前述した母液晶Aとして記載された4つの化合物を混合し、ネマチック相を有する母液晶Aを調製した。この母液晶Aの物性は以下のとおりであった。
 上限温度(TNI)=71.7℃;誘電率異方性(Δε)=11.0;屈折率異方性(Δn)=0.137。
 母液晶A 85重量%と、実施例1で得られた(S1)の15重量%とからなる液晶組成物AS1を調製した。得られた液晶組成物AS1の物性値を測定し、測定値を外挿することで液晶化合物(S1)の物性の外挿値を算出した。その値は以下のとおりであった。
 上限温度(TNI)=35.0℃;誘電率異方性(Δε)=57.4;屈折率異方性(Δn)=0.144。
これらのことから液晶化合物(S1)は、低い融点を示すことに加え、他の液晶化合物との優れた相溶性を有し、誘電率異方性(Δε)および屈折率異方性(Δn)の大きい化合物であることがわかった。
[実施例2]
化合物(S2)の合成 

Figure JPOXMLDOC01-appb-I000142

(式(1-1-2i)において、R1aが-C、R1bが-CH、Lが水素、L、L、およびLがフッ素であり、Yが-CFである化合物。)

1-ブロモ-3-エチルヘプタン(S2-07)は市販されている。化合物(S2)の合成スキームを示す。

Figure JPOXMLDOC01-appb-I000143
(第2-1段) 化合物(S2-08)の合成
実施例1の(第1-4段)と同様の操作を行うことによって、化合物(S2-07)(5.04g,26.1mmol)を用い、同様の操作を行うことによって化合物(S2-08)(4.64g,14.5mmol、収率:55%)を得た。
(第2-2段) 化合物(S2)の合成
 実施例1の(第1-5段)~(第1-8段)と同様の操作を行うことによって、前段で得られた(S2-08)(4.64g,14.5mmol)から化合物(S2)(1.20g,1.77mmol、全体収率:12%)を得た。この化合物の相転移温度(℃)は、C 64.5 Iであった。
H-NMR(CDCl):δ(ppm) 0.897(d,3H)、0.902(t,3H)、1.25-1.36(m,8H)、1.61(m,1H)、2.58(m,2H)、6.98-7.06(m,4H)、7.22(d,2H)、7.26(d,2H)、7.35(dd,1H)
19F-NMR(CDCl):δ(ppm) -56.8(t,3F)、-62.5(t,2F)、-108.8(m,2F)、-111.2(dt,2F)、-114.8(d,2F)、-118.7(dd,1F)
[実施例3]
化合物(S3)の合成 

Figure JPOXMLDOC01-appb-I000144

(式(1-1-1i)において、R1aが-C、R1bが水素、Lが水素、L、L、およびLがフッ素であり、Yが-CFである化合物。)

下記のスキームにて化合物(S3)を合成した。

Figure JPOXMLDOC01-appb-I000145
(第3-1段) 化合物(S3-03)の合成
 窒素気流下で、カルボン酸誘導体(S3-01)(30.0g,195mmol)のトルエン(100mL)溶液にピリジン(0.3mL)を加え、系内を40~50℃に保ちながら塩化チオニル(25.5g,214mmol)をゆっくりと加えて、そのままの温度で30分間加熱攪拌した。反応液をそのまま減圧濃縮して化合物(S3-02)(32.0g,185mmol)を得た。
 窒素気流下で、前段で得られた化合物(S3-02)(32.0g,185mmol)、アセチルアセトナート鉄(III)(0.960g)のTHF(250mL)溶液に、-30℃でn-ブチルマグネシウムブロマイド/THF溶液(0.91mol/L)(224mL,204mmol)をゆっくりと滴下し、そのままの温度で3時間攪拌した。反応液を1N-HCl水溶液に空けてトルエン(600mL)にて抽出し、水で3回、重曹水で1回洗浄して有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/n-ヘプタン=1/1(容量比))にて精製し、化合物(S3-03)(25.0g,128mmol、収率:66%)を得た。
(第3-2段)
 窒素気流下で、前段で得た化合物(S3-03)(20.2g,104mmol)のトルエン(100mL)溶液に、-10~0℃でTebbe試薬(0.5mol/L)(250mL,125mmol)をゆっくりと滴下して、0℃で20時間攪拌した。反応液を水に空けてジエチルエーテル(100mL)を加え、水で3回洗浄して有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製して化合物(S3-04)(9.00g,47mmol、収率:45%)を得た。
(第3-3段)
 窒素気流下で、前段で得た化合物(S3-04)(1.40g,7.29mmol)のTHF(50mL)溶液に、-60℃にてsec-ブチルリチウム/シクロヘキサン溶液(1.07mol/L)(14.0mL,14.9mmol)をゆっくりと滴下し、そのままの温度で1時間攪拌した。次いで、ヨウ素(2.04g,8.02mmol)/THF(10mL)溶液をゆっくりと滴下し、徐々に常温に戻しながら1時間攪拌した。反応液を水に空けてトルエン(100mL)にて抽出し、水で3回、チオ硫酸ナトリウム水溶液で2回洗浄して有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S3-05)(1.80g,5.92mmol、収率:81%)を得た。
(第3-4段)
 窒素気流下で、前段で得た化合物(S3-05)(1.80g,5.92mmol)、3,5-ジフルオロフェニルボロン酸(S1-02)(0.982g,6.22mmol)、炭酸カリウム(3.27g,23.7mmol)、テトラブチルアンモニウムブロミド(0.191g,0.592mmol)およびPd/C(NXタイプ)(0.10g)のエタノール(10mL)/トルエン(10mL)溶液を70℃で3時間加熱攪拌した。反応液を水に空けてトルエン(100mL)を加え、水で3回、重曹水で1回洗浄して有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S3-06)(1.40g,4.60mmol、収率:78%)を得た。
(第3-5段)
 実施例1の(第1-5段)~(第1-8段)と全く同様の操作を行うことによって、前段で得られた(S3-06)(1.40g,4.60mmol)から化合物(S3)(0.40g,0.604mmol、全体収率:13%)を得た。この化合物の相転移温度(℃)は、C 59.2 Iであった。
H-NMR(CDCl):δ(ppm) 0.905(t,3H)、1.31(m,2H)、1.44(m,2H)、2.00(t,2H)、3.38(s,2H)、4.79(s,1H)、4.90(d,1H)、7.00(d,2H)、7.05(dd,1H)、7.09(dd,1H)、7.22(d,2H)、7.27(d,2H)、7.38(dd,1H)
19F-NMR(CDCl):δ(ppm) -56.8(t,3F)、-62.5(t,2F)、-108.8(m,2F)、-111.2(dt,2F)、-114.7(d,2F)、-118.4(dd,1F)
液晶化合物(S3)の物性
 母液晶A 85重量%と、実施例3で得られた(S3)の15重量%とからなる液晶組成物AS3を調製した。得られた液晶組成物AS3の物性値を測定し、測定値を外挿することで液晶化合物(S3)の物性の外挿値を算出した。その値は以下のとおりであった。
 上限温度(TNI)=-9.60℃;誘電率異方性(Δε)=49.7;屈折率異方性(Δn)=0.124。
 これらのことから液晶化合物(S3)は、低い融点を示すことに加え、他の液晶化合物との優れた相溶性を有し、誘電率異方性(Δε)および屈折率異方性(Δn)の大きい化合物であることがわかった。
[実施例4]
化合物(S4)の合成 

Figure JPOXMLDOC01-appb-I000146

(式(1-1-1i)において、R1aが-CH、R1bが水素、Lが水素、L、L、およびLがフッ素であり、Yが-CFである化合物。)
下記のスキームにて化合物(S4)を合成した。

Figure JPOXMLDOC01-appb-I000147
(第4-1段)
 実施例1の(第3-1段)で得られた化合物(S3-02)(3.38g,19.6mmol)を出発原料として、(第3-2段)の中で、ブチルマグネシウムブロミドの代わりにメチルマグネシウムブロミドを使用して、その他は全く同様の操作を行うことによって化合物(S4-03)(2.08g,13.7mmol、収率:70%)を得た。
(第4-2段)
実施例3の(第3-3段)~(第3-5段)と全く同様の操作を行うことによって、前段で得られた化合物(S4-03)(2.08g,13.7mmol)から化合物(S4-06)(1.83g,7.00mmol、全体収率:51%)を得た。
(第4-3段)
 実施例1の(第1-5段)~(第1-8段)と全く同様の操作を行うことによって、前段で得られた(S4-06)(1.83g,7.00mmol)から化合物(S4)(0.890g,1.47mmol、全体収率:21%)を得た。この化合物の相転移温度(℃)は、C 89.4 C・93.0 Iであった。
H-NMR(CDCl):δ(ppm) 1.72(s,3H)、3.37(s,2H)、4.80(d,1H)、4.90(s,1H)、7.00(d,2H)、7.06(dd,1H)、7.09(dd,1H)、7.22(d,2H)、7.27(d,2H)、7.38(dd,1H)
19F-NMR(CDCl):δ(ppm) -56.7(t,3F)、-62.4(t,2F)、-108.7(m,2F)、-111.2(dt,2F)、-114.5(d,2F)、-118.3(dd,1F)

[実施例5]
化合物(S5)の合成 

Figure JPOXMLDOC01-appb-I000148

(式(1-2-2f)において、R1aが-C、R1bが水素、Lが水素、L、L、L、およびLがフッ素であり、Yがフッ素である化合物。)
下記のスキームにて化合物(S5)を合成した。
Figure JPOXMLDOC01-appb-I000149

実施例1の(第1-7段)で得られた化合物(S1-11)と化合物(S1-11’)の混合物(4.00g(75%),5.48mmol)を出発原料として、(第1-8段)の中で、化合物(S1-12)の代わりに化合物(S5-01)(1.39g,5.76mmol)を使用する以外は全く同様の方法によって化合物(S5)(1.20g,1.69mmol、全体収率:29%)を得た。この化合物の相転移温度(℃)は、C 77.4 N 165.0 Iであった。
H-NMR(CDCl):δ(ppm) 0.894(d,3H)、0.905(t,3H)、1.19-1.40(m,6H)、1.76(m,1H)、2.41(dd,1H)、2.69(dd,1H)、6.99(d,1H)、7.04(d,1H)、7.15-7.29(m,8H)、7.37(m,2H) 
19F-NMR(CDCl):δ(ppm) -61.8(t,2F)、-111.3(dt,2F)、-111.4(d,2F)、-114.9(dd,1F)、-118.7(dd,1F)、-134.7(dd,2H)、-161.7(tt,1H)
液晶化合物(S5)の物性
 前述した母液晶Aとして記載された4つの化合物を混合し、ネマチック相を有する母液晶Aを調製した。この母液晶Aの物性は以下のとおりであった。
 上限温度(TNI)=71.7℃;誘電率異方性(Δε)=11.0;屈折率異方性(Δn)=0.137。
 母液晶A 85重量%と、実施例5で得られた(S5)の15重量%とからなる液晶組成物AS5を調製した。得られた液晶組成物AS5の物性値を測定し、測定値を外挿することで液晶化合物(S5)の物性の外挿値を算出した。その値は以下のとおりであった。
 上限温度(TNI)=91.0℃;誘電率異方性(Δε)=52.9;屈折率異方性(Δn)=0.190。
これらのことから液晶化合物(S5)は、低い融点を示すことに加え、他の液晶化合物との優れた相溶性を有し、誘電率異方性(Δε)および屈折率異方性(Δn)の大きい化合物であることがわかった。
[実施例6]
化合物(S6)の合成 

Figure JPOXMLDOC01-appb-I000150

(式(1-2-2f)において、R1aが-C、R1bが水素、Lが水素、L、L、L、およびLがフッ素であり、Yが-CFである化合物。)
下記のスキームにて化合物(S6)を合成した。
Figure JPOXMLDOC01-appb-I000151

実施例5の(第1-7段)で得られた化合物(S1-11)と化合物(S1-11’)の混合物(4.00g(75%),5.48mmol)を出発原料として、(第1-8段)の中で、化合物(S1-12)の代わりに化合物(S6-01)(1.57g,5.37mmol)を使用する以外は全く同様の方法によって化合物(S6)(1.05g,1.38mmol、全体収率:26%)を得た。この化合物の相転移温度(℃)は、C 116.4 SmA 135.2 N 169.1 Iであった。
H-NMR(CDCl):δ(ppm) 0.891(d,3H)、0.907(t,3H)、1.16-1.40(m,6H)、1.76(m,1H)、2.41(dd,1H)、2.69(dd,1H)、6.99(dd,1H)、7.04(dd,1H)、7.21-7.28(m,8H)、7.37(t,1H)、7.45(t,1H) 
19F-NMR(CDCl):δ(ppm) -56.8(t,3F)、-61.8(t,2F)、-111.1(m,2F)、-111.3(dt,2F)、-114.1(dd,1F)、-114.8(d,2H)、-118.7(dd,1H)
[実施例7]
化合物(S7)の合成 

Figure JPOXMLDOC01-appb-I000152
(式(1-1-2i)において、R1aがエチル、R1bが水素、Lが水素、L、L、およびLがフッ素であり、Yが-CFである化合物。)

下記のスキームにて化合物(S7)を合成した。

Figure JPOXMLDOC01-appb-I000153

Figure JPOXMLDOC01-appb-I000154

実施例1と同様の操作を行うことによって、化合物(S7-01)から化合物(S7)(2.50g,3.93mmol、収率:11%)を得た。この化合物の相転移温度(℃)は、C 84.5(N 69.9) Iであった。

H-NMR(CDCl):δ(ppm) 0.893(d,3H)、0.939(t,3H)、1.02-1.25(m,1H)、1.38-1.46(m,1H)、1.67-1.72(m,1H)、2.42(dd,1H)、2.69(dd,1H)、6.98-7.06(m,4H)、7.22(d,2H)、7.26(d,2H)、7.36(dd,1H) 
19F-NMR(CDCl):δ(ppm) -56.8(t,3F)、-62.5(t,2F)、-108.8(m,2F)、-111.2(dt,2F)、-114.7(d,2F)、-118.7(dd,1F)


[実施例8]
化合物(S8)の合成 

Figure JPOXMLDOC01-appb-I000155

(式(1-2-3f)において、R1aが-C、R1bが水素、Lが水素、L、L、L、およびLがフッ素であり、Yがフッ素である化合物。)

下記のスキームにて化合物(S8)を合成した。

Figure JPOXMLDOC01-appb-I000156



Figure JPOXMLDOC01-appb-I000157

実施例1の(第1-1段)~(第1-7段)と同様の操作を行うことによって、化合物(S8-01)から化合物(S8-06)(7.0g,12.8mmol)を得た。
次いで、実施例5と同様の操作を行うことによって、化合物(S8-04)から化合物
(S8)(3.17g,4.48mmol、収率:35%)を得た。この化合物の相転移温度(℃)は、C 95.5 SA 102.2 N 153.1 Iであった。

H-NMR(CDCl):δ(ppm) 0.902(t,3H)、0.950(d,3H)、1.16-1.51(m,6H)、1.63-1.67(m,1H)、2.60-2.73(m,2H)、7.03(dd,1H)、7.08(dd,1H)、7.16-7.26(m,8H)、7.36(dd,1H)、7.39(dd,1H) 
19F-NMR(CDCl):δ(ppm) -61.7(t,2F)、-111.2(dt,2F)、-114.7(d,2F)、-114.9(dd,1F)、-118.5(dd,1F)、-134.7(dd,2F)、-161.8(tt,1F)

[実施例9]
化合物(S9)の合成 

Figure JPOXMLDOC01-appb-I000158

(式(1-2-5f)において、R1aがエチル、R1bが水素、Lが水素、L、L、L、およびLがフッ素であり、Yがフッ素である化合物。)

下記のスキームにて化合物(S9)を合成した。

Figure JPOXMLDOC01-appb-I000159

Figure JPOXMLDOC01-appb-I000160

実施例1の(第1-1段)~(第1-7段)と同様の操作を行うことによって、化合物(S9-01)から化合物(S9-06)(7.5g,13.7mmol)を得た。
次いで、実施例5と同様の操作を行うことによって、化合物(S8-04)から化合物
(S8)(3.55g,5.01mmol、収率:36%)を得た。この化合物の相転移温度(℃)は、C 93.6 (SA 64.2) N 163.0 Iであった。

H-NMR(CDCl):δ(ppm) 0.870(t,3H)、0.871(d,3H)、1.14-1.22(m,2H)、1.32-1.40(m,3H)、1.59-1.71(m,2H)、2.61-2.68(m,2H)、7.03(dd,1H)、7.09(dd,1H)、7.16-7.26(m,8H)、7.36(dd,1H)、7.39(dd,1H) 
19F-NMR(CDCl):δ(ppm) -61.8(t,2F)、-111.2(dt,2F)、-114.7(d,2F)、-114.9(dd,1F)、-118.5(dd,1F)、-134.7(dd,2F)、-161.7(tt,1F)

[実施例10]
化合物(S10)の合成 

Figure JPOXMLDOC01-appb-I000161

(式(1-2-7f)において、R1aがメチル、R1bが-C11、Lが水素、L、L、L、およびLがフッ素であり、Yがフッ素である化合物。)

下記のスキームにて化合物(S10)を合成した。

Figure JPOXMLDOC01-appb-I000162

化合物(S10-04)は市販されている。実施例5と同様の操作を行うことによって、化合物(S10-04)から化合物(S10)(2.00g,2.82mmol、収率:33%)を得た。この化合物の相転移温度(℃)は、C 115.4 N 176.6 Iであった。

H-NMR(CDCl):δ(ppm) 0.871(t,3H)、1.18-1.26(m,6H)、1.27(d,3H)、1.57-1.60(m,2H)、2.74(m,1H)、7.02(dd,1H)、7.08(dd,1H)、7.16-7.27(m,8H)、7.37(dd,1H)、7.39(dd,1H) 
19F-NMR(CDCl):δ(ppm) -61.8(t,2F)、-111.3(dt,2F)、-114.8(d,2F)、-114.9(dd,1F)、-118.3(dd,1F)、-134.7(dd,2F)、-161.7(tt,1F)


[比較例]
 特許文献 に含有する化合物(ref.01)~(ref.03)の相転移温度(℃)は以下の通りであった。

Figure JPOXMLDOC01-appb-I000163

Figure JPOXMLDOC01-appb-I000164
 本願化合物(S1)は、その類似化合物(ref.01)および(ref.02)と比較して、融点が約20℃低いことがわかった。
 同様に、本願化合物(S3)は、その類似化合物(ref.01)および(ref.02)と比較して、融点が約32℃低いことがわかった。
 同様に、本願化合物(S5)は、その類似化合物(ref.03)と比較して、融点が約17℃低いことがわかった。
(本件発明の組成物)
 本発明において、液晶組成物の特性値の測定は下記の方法にしたがって行うことができる。それらの多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。測定に用いたTN素子には、TFTを取り付けなかった。
 ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。
 ネマチック相の下限温度(TC;℃):ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶(またはスメクチック相)に変化したとき、TCを≦-20℃と記載する。ネマチック相の下限温度を「下限温度」と略すことがある。
 光学的に等方性の液晶相の転移温度:偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、クロスニコルの状態で、まず試料が非液晶等方相になる温度まで昇温した後、1℃/分の速度で降温し、完全にキラルネマチック相または光学的に等方性の液晶相を出現させた。その降温過程での相転移した温度を測定し、次いで1℃/分の速度で昇熱し、その昇温過程における相転移した温度を測定した。本発明において、特に断りの無い限り、昇温過程での相転移した温度を相転移温度とした。光学的に等方性の液晶相においてクロスニコル下では暗視野で相転移温度の判別が困難な場合は、偏光板をクロスニコルの状態から1~10°ずらして相転移温度を測定した。
 粘度(η;20℃で測定;mPa・s):測定にはE型粘度計を用いた。
 回転粘度(γ1;25℃で測定;mPa・s):
1)誘電率異方性が正である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。TN素子に16ボルトから19.5ボルトの範囲で0.5ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文の40頁の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度の測定で使用した素子にて、下記の誘電率異方性の測定方法で求めた。
2)誘電率異方性が負である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に30ボルトから50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、下記の誘電率異方性で測定した値を用いた。
 屈折率異方性(Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビング(rubbing)したあと、試料を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。屈折率異方性の値は、Δn=n∥-n⊥、の式から計算した。試料が組成物のときはこの方法によって屈折率異方性を測定した。試料が化合物のときは、化合物を適切な組成物に混合したあと屈折率異方性を測定した。化合物の屈折率異方性は外挿値である。
 誘電率異方性(Δε;25℃で測定):試料が化合物のときは、化合物を適切な組成物に混合したあと誘電率異方性を測定した。化合物の誘電率異方性は外挿値である。
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
2)誘電率異方性が負である組成物:ホメオトロピック配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε∥)を測定した。ホモジニアス配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
 しきい値電圧(Vth;25℃で測定;V):試料が化合物のときは、化合物を適切な組成物に混合したあとしきい値電圧を測定した。化合物のしきい値電圧は外挿値である。1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が(0.5/Δn)μmであり、ツイスト角が80度である、ノーマリーホワイトモード(normally white mode)の液晶表示素子に試料を入れた。Δnは上記の方法で測定した屈折率異方性の値である。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率が90%になったときの電圧の値を測定した。
2)誘電率異方性が負である組成物:2枚のガラス基板の間隔(ギャップ)が約9μmであり、ホメオトロピック配向に処理したノーマリーブラックモード(normally black mode)の液晶表示素子に試料を入れた。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率10%になったときの電圧の値を測定した。
 電圧保持率(VHR;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は6μmである。この素子は試料を入れたあと紫外線によって重合する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。
 らせんピッチ(20℃で測定;μm):らせんピッチの測定には、カノのくさび型セル法を用いた。カノのくさび型セルに試料を注入し、セルから観察されるディスクリネーションラインの間隔(a;単位はμm)を測定した。らせんピッチ(P)は、式P=2・a・tanθから算出した。θは、くさび型セルにおける2枚のガラス板の間の角度である。
 あるいは、ピッチ長は選択反射を用いて測定した(液晶便覧196頁(2000年発行、丸善)。選択反射波長λには、関係式<n>p/λ=1が成立する。ここで<n>は平均屈折率を表し、次式で与えられる。<n>={(n∥2+n⊥2)/2}1/2。選択反射波長は顕微分光光度計(日本電子(株)、商品名MSV-350)で測定した。得られた反射波長を平均屈折率で除すことにより、ピッチを求めた。
 可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、キラル剤濃度が低い領域ではキラル剤の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。
 成分または液晶化合物の割合(百分率)は、液晶化合物の全重量に基づいた重量百分率(重量%)である。組成物は、液晶化合物などの成分の重量を測定してから混合することによって調製される。したがって、成分の重量%を算出するのは容易である。
[実施例11]
 下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物Aを調製した。
構造式の右側に一般式との対応を記した。本件化合物については化合物番号を記した。

液晶組成物A

Figure JPOXMLDOC01-appb-I000165
 この液晶組成物Aの相転移温度(℃)はI 94.0~91.4 Nであった。
 次に、液晶組成物A(94.0wt%)と、下記の式で表されるキラル剤BN-H5(6.0wt%)からなる液晶組成物Bを得た。
 この液晶組成物Bの相転移温度(℃)はN 77.1 BP >78 Iであった。なお、BP組織は少なくともN相直上においては等方相との共存がなく均一であった。またBP-I転移は偏光顕微鏡では明確には確認できなかった。
 なお、BN-H5は、(R)-(+)-1,1’-ビ(2-ナフトール)と対応するカルボン酸とからジシクロヘキシルカルボジイミド(DCC)を用いてエステル化することによって得た。

BN-H5

Figure JPOXMLDOC01-appb-I000166
[実施例12]
モノマーと液晶組成物の混合物の調製
 液晶組成物とモノマーとの混合物として液晶組成物Bを88.3重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ヘキシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-6)を4.7重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを1.0重量%混合した液晶混合物B-1Mを調製した。

LCA-6

Figure JPOXMLDOC01-appb-I000167
高分子/液晶複合材料の調製
 液晶混合物B-1Mを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚9μm)、得られたセルを46.0℃のブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
 このようにして得られた高分子/液晶複合材料B-1Pは室温まで冷却しても光学的に等方性の液晶相を維持していた。
 なお、図1に示すように、櫛型電極基板の電極は、左側から伸びる電極1と右側から伸びる電極2が交互に配置される。したがって、電極1と電極2との間に電位差がある場合、図1に示すような櫛型電極基板上では、上方向と下方向の2つの方向の電界が存在する状態を提供できる。
[実施例13]
 実施例12で得られた高分子/液晶複合材料B-1Pが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。55Vの矩形波を印加すると、透過率が85%となり、透過光強度は飽和した。
[実施例14]
 下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物Cを調製した。
構造式の右側に一般式との対応を記した。本件化合物については化合物番号を記した。

液晶組成物C

Figure JPOXMLDOC01-appb-I000168

Figure JPOXMLDOC01-appb-I000169

 この液晶組成物Cの相転移温度(℃)はI 86~88 Nであった。
 次に、液晶組成物C(93.7wt%)と、下記の式で表されるキラル剤BN-H4、(3.0wt%)、上述のキラル剤BN-H5(3.3wt%)からなる液晶組成物Dを得た。
 この液晶組成物Dの相転移温度(℃)はN 71.4~71.8 BP 74.3~77.4 Iであった。なお、71.8~74.3℃においてはBP組織はN相や等方相との共存がなく均一であった。
BN-H4

Figure JPOXMLDOC01-appb-I000170
[実施例15]
モノマーと液晶組成物の混合物の調製
 液晶組成物とモノマーとの混合物として液晶組成物Dを88.3重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ヘキシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-6)を4.7重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを1.0重量%混合した液晶組成物D-1Mを調製した。

LCA-6

Figure JPOXMLDOC01-appb-I000171
高分子/液晶複合材料の調製
 液晶組成物D-1Mを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚9μm)、得られたセルを40℃から2℃/分で冷却し、33.0℃のブルー相(過冷却ブルー相)まで冷却した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
 このようにして得られた高分子/液晶複合材料D-1Pは室温まで冷却しても光学的に等方性の液晶相を維持していた。
[実施例16]
 実施例15で得られた高分子/液晶複合材料D-1Pが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。62.5Vの矩形波を印加すると、透過光強度は飽和した。
[実施例17]
下図に示す液晶化合物を、下記の割合で混合することにより液晶組成物Eを調製した。
構造式の右側に一般式との対応を記した。本件化合物については化合物番号を記した。

液晶組成物E

Figure JPOXMLDOC01-appb-I000172


Figure JPOXMLDOC01-appb-I000173


 この液晶組成物Eの相転移温度(℃)はN 81.5~82.2 Iであった。
 次に、液晶組成物E(94.7wt%)と、上述のキラル剤BN-H5(5.3wt%)からなる液晶組成物Fを得た。
 この液晶組成物Fの相転移温度(℃)はN 72.5~72.6 BP 73.6~74.6 Iであった。なお、72.5~73.6℃においてBP組織はN相や等方相との共存がなく均一であった。
BN-H5

Figure JPOXMLDOC01-appb-I000175
[実施例18]
モノマーと液晶組成物の混合物の調製
 液晶組成物とモノマーとの混合物として液晶組成物Fを88.3重量%、n-ドデシルアクリレートを6.0重量%、1,4-ジ(4-(6-(アクリロイルオキシ)ヘキシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-6)を4.7重量%、光重合開始剤として2,2’-ジメトキシフェニルアセトフェノンを1.0重量%混合した液晶組成物F-1Mを調製した。

LCA-6

Figure JPOXMLDOC01-appb-I000176
高分子/液晶複合材料の調製
 液晶組成物F-1Mを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し(セル厚9μm)、得られたセルを38.0℃から2℃/分で43.0℃のブルー相まで昇温した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行った。
 このようにして得られた高分子/液晶複合材料F-1Pは室温まで冷却しても光学的に等方性の液晶相を維持していた。
[実施例19]
 実施例 で得られた高分子/液晶複合材料F-1Pが狭持されたセルを、図2に示した光学系にセットし、電気光学特性を測定した。光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように前記セルを光学系にセットした。室温で印加電圧と透過率の関係を調べた。40.0Vの矩形波を印加すると、透過光強度は飽和した。
 本発明の活用法として、たとえば、液晶媒体を用いる表示素子などの光素子が挙げられる。

Claims (65)

  1. 式(1)で表される化合物。

    Figure JPOXMLDOC01-appb-I000001

    (式(1)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり、この分岐アルキルまたは分岐アルケニル中の任意の-CH-は-O-で置き換えられてもよく、この分岐アルキルまたは分岐アルケニル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、この分岐アルキル、または分岐アルケニル中の任意の水素はフッ素で置き換えられてもよく;環A、A、A、A、およびAは独立して、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、またはナフタレン-2,6-ジイルであり、この環中の任意の水素はフッ素または塩素で置き換えられてもよく;Z、Z、Z、およびZは独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH-は、-O-、-COO-、-OCO-、または-CFO-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;Yはフッ素、塩素、-SF、-C≡N、-N=C=S、または任意の水素がハロゲンで置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は、-CH=CH-、または-C≡C-で置き換えられてもよく;m、nおよびpは独立して、0または1であり、1≦m+n+p≦3である。)
  2. 式(1)において、環A、A、AおよびAのうち、いずれかは1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、請求項1に記載の化合物。
  3. 式(1)において、環Aが1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、請求項1に記載の化合物。
  4. 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルキルである、請求項1に記載の化合物。
  5. 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルケニルである、請求項1に記載の化合物。
  6. 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルキルである、請求項1に記載の化合物。
  7. が3位の炭素で分岐されている炭素数5~20のアルケニルである、請求項1に記載の化合物。
  8. 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルキルである、請求項1に記載の化合物。
  9. 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルケニルである、請求項1に記載の化合物。
  10. 式(1)において、Rが1位の炭素で分岐されている炭素数4~20のアルキルである、請求項1に記載の化合物。
  11. 式(1)において、Rが1位の炭素で分岐されている炭素数4~20のアルケニルである、請求項1に記載の化合物。
  12. 式(1)において、m=1、n=1、かつp=0である、請求項1~11のいずれか一項に記載の化合物。
  13. 式(1)において、m=1、n=1、かつp=1である、請求項1~11のいずれか一項に記載の化合物。
  14. 式(1)において、m=1、n=1、かつp=0であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である、請求項1~11のいずれか一項に記載の化合物。
  15. 式(1)において、m=1、n=1、かつp=1であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である、請求項1~11のいずれか一項に記載の化合物。
  16. 式(1-1)~(1-2)のいずれかで示される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000002

    (式(1-1)~(1-2)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり; 環Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Z、Z、Z、およびZは独立して、単結合、-CHCH-、-COO-、または-CFO-であるが、Z、Z、Z、およびZのうちいずれか1つは-COO-または-CFO-であり; Yはフッ素、塩素、-C≡N、または任意の水素がフッ素で置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよく; Xは、フッ素または塩素であり; また、下記のような1,4-フェニレンと(X)を直線で結んだ表記は、1つまたは2つの水素がXで置き換えられていてもよい1,4-フェニレンを示す。)

    Figure JPOXMLDOC01-appb-I000003
  17. 式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)のいずれかで示される、請求項16に記載の化合物。

    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    Figure JPOXMLDOC01-appb-I000006


    (式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)において、R1aは炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; R1bは水素、または炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; Mは-CH-または-O-であり; L、L、LおよびLは独立して水素、フッ素、または塩素であり;Aは1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Yはフッ素、塩素、-C≡N、任意の水素がフッ素で置き換えられた炭素数1~3のアルキル、任意の水素がフッ素で置き換えられたアルケニル、任意の水素がフッ素で置き換えられたアルコキシである。)
  18. 式(1)で示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現することを特徴とする液晶組成物。

    Figure JPOXMLDOC01-appb-I000007

    (式(1)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり、この分岐アルキルまたは分岐アルケニル中の任意の-CH-は-O-で置き換えられてもよく、この分岐アルキルまたは分岐アルケニル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、この分岐アルキル、または分岐アルケニル中の任意の水素はフッ素で置き換えられてもよく;環A、A、A、A、およびAは独立して、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、またはナフタレン-2,6-ジイルであり、この環中の任意の水素はフッ素または塩素で置き換えられてもよく;Z、Z、Z、およびZは独立して、単結合または炭素数1~4のアルキレンであり、このアルキレン中の任意の-CH-は、-O-、-COO-、-OCO-、または-CFO-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;Yはフッ素、塩素、-SF、-C≡N、-N=C=S、または任意の水素がハロゲンで置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は、-CH=CH-、または-C≡C-で置き換えられてもよく;m、nおよびpは独立して、0または1であり、1≦m+n+p≦3である。)
  19. 式(1)において、環A、A、AおよびAのうち、いずれかは1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、請求項18に記載の液晶組成物。
  20. 式(1)において、環Aが1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンである、請求項18に記載の液晶組成物。
  21. 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  22. 式(1)において、Rが2位の炭素で分岐されている炭素数4~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  23. 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  24. 式(1)において、Rが3位の炭素で分岐されている炭素数5~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  25. 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  26. 式(1)において、Rが4位の炭素で分岐されている炭素数6~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  27. 式(1)において、Rが1位の炭素で分岐されている炭素数6~20のアルキルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  28. 式(1)において、Rが1位の炭素で分岐されている炭素数6~20のアルケニルである化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  29. 式(1)において、m=1、n=1、かつp=0である化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  30. 式(1)において、m=1、n=1、かつp=1である化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  31. 式(1)において、m=1、n=1、かつp=0であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である請求項1に記載の液晶化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  32. 式(1)において、m=1、n=1、かつp=1であり、Z、Z、Z、およびZのうちいずれかは-COO-、または-CFO-である請求項1に記載の液晶化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。
  33. 式(1-1)~(1-2)のいずれかで示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項18に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000008

    (式(1-1)~(1-2)において、Rは炭素数3~20の分岐アルキルまたは分岐アルケニルであり; 環Aは、1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Z、Z、Z、およびZは独立して、単結合、-CHCH-、-COO-、または-CFO-であるが、Z、Z、Z、およびZのうちいずれか1つは-COO-または-CFO-であり; Yはフッ素、塩素、-C≡N、または任意の水素がフッ素で置き換えられた炭素数1~3のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられてもよく; Xは、フッ素または塩素であり; また、下記のような1,4-フェニレンと(X)を直線で結んだ表記は、1つまたは2つの水素がXで置き換えられていてもよい1,4-フェニレンを示す。)

    Figure JPOXMLDOC01-appb-I000009
  34. 式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)のいずれかで示される化合物、およびキラル剤を含有し、光学的に等方性の液晶相を発現する、請求項33に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000010

    Figure JPOXMLDOC01-appb-I000011

    Figure JPOXMLDOC01-appb-I000012


    (式(1-1-1)~(1-1-8)、および式(1-2-1)~(1-2-16)において、R1aは炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-で置き換えられていてもよく; R1bは水素、または炭素数1~10のアルキルであり、このアルキル中の任意の-CH-は-O-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-; Mは-CH-または-O-であり; L、L、LおよびLは独立して水素、フッ素、または塩素であり;Aは1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、テトラヒドロピラン-3,6-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、この環中の任意の水素はフッ素で置き換えられていてもよく; Yはフッ素、塩素、-C≡N、任意の水素がフッ素で置き換えられた炭素数1~3のアルキル、任意の水素がフッ素で置き換えられたアルケニル、任意の水素がフッ素で置き換えられたアルコキシである。)
  35. 式(2)、(3)および(4)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項18~34のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000013
    これらの式において、Rは直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xはフッ素、塩素、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、または-OCF2CHFCF3であり;環B、環B、および環Bは独立して、1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素で置き換えられた1,4-フェニレン、または任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイルであり;ZおよびZは独立して、-(CH22-、-(CH24-、-COO-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-、-CHO-、または単結合であり;LおよびLは独立して、水素またはフッ素である。
  36. 式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項18~34のいずれか一項記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000014
    これらの式において、Rは直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xは-C≡Nまたは-C≡C-C≡Nであり;環C、環Cおよび環Cは独立して、1,4-シクロヘキシレン、1,4-フェニレン、任意の水素がフッ素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;Zは-(CH22-、-COO-、-CF2O-、-OCF2-、-C≡C-、-CHO-、または単結合であり;LおよびLは独立して、水素またはフッ素であり;rは1または2であり、sは0または1であり、r+s=0、1または2である。
  37. 式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項18~34のいずれか一項記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000015

    これらの式において、RおよびRは独立して、直鎖の炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;環D、環D、および環Dは独立して、1,4-シクロヘキシレン、ピリミジン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z10は、-C≡C-、-COO-、-(CH22-、-CH=CH-、または単結合である。
  38. 請求項36に記載の式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項35に記載の液晶組成物。
  39. 請求項37に記載の式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項35に記載の液晶組成物。
  40. 請求項37に記載の式(6)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項36に記載の液晶組成物。
  41. 式(7)、(8)、(9)および(10)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項18~40のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000016

    これらの式において、Rは直鎖の炭素数1~10のアルキル、炭素数2~10のアルケニルまたは炭素数2~10のアルキニルであり、アルキル、アルケニルおよびアルキニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xはフッ素、塩素、-SF、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、または-OCF2CHFCF3であり;環E、環E、環Eおよび環Eは独立して、1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられた1,4-フェニレン、または任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイルであり;Z11、Z12およびZ13は独立して、-(CH22-、-(CH24-、-COO-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-、-CHO-、または単結合であり;L10およびL11は独立して、水素またはフッ素である。
  42. 式(11)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項18~41のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000017

    これらの式において、Rは直鎖の炭素数1~10のアルキル、炭素数2~10のアルケニルまたは炭素数2~10のアルキニルであり、アルキル、アルケニルおよびアルキニルにおいて任意の水素はフッ素で置き換えられてもよく、任意の-CH2-は-O-で置き換えられてもよく;Xは-C≡N、-N=C=S、または-C≡C-C≡Nであり;環F、環Fおよび環Fは独立して、1,4-シクロヘキシレン、1,4-フェニレン、任意の水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、任意の水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;Z14は-(CH22-、-COO-、-CF2O-、-OCF2-、-C≡C-、-CHO-、または単結合であり;L12およびL13は独立して、水素またはフッ素であり;aaは0、1または2であり、abは0または1であり、aa+abは0、1または2である。
  43. 少なくとも1つの酸化防止剤および/または紫外線吸収剤を含む請求項18~42のいずれか1項に記載の液晶組成物。
  44. 光学的に等方性の液晶相が二色以上の回折光を示さない、請求項18~42のいずれか1項に記載の液晶組成物。
  45. 光学的に等方性の液晶相が二色以上の回折光を示す、請求項18~42のいずれか1項に記載の液晶組成物。
  46. 液晶組成物が、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である組成物にキラル剤を添加して得られるものである、請求項44または45に記載の液晶組成物。
  47. 液晶組成物が、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が5~150℃である組成物にキラル剤を添加して得られるものである、請求項44または45に記載の液晶組成物。
  48. 液晶組成物が、ネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である組成物にキラル剤を添加して得られるものである、請求項44または45に記載の液晶組成物。
  49. 液晶組成物の全重量に対して、キラル剤の割合が1~40重量%である、請求項44または48のいずれか1項に記載の液晶組成物。
  50. 液晶組成物の全重量に対して、キラル剤の割合が2~10重量%である、請求項44または48のいずれか1項に記載の液晶組成物。
  51. 70~-20℃のいずれかの温度においてカイラルネマチック相を示し、この温度範囲の少なくとも一部において螺旋ピッチが700nm以下である、請求項49または50に記載の液晶組成物。
  52. キラル剤が、式(K1)~(K5)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含む、請求項49~51のいずれか1項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000018


    (式(K1)~(K5)中、Rは独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、このアルキル中の任意の-CH-は、-O-、-S-、-COO-、または-OCO-で置き換えられてもよく、このアルキル中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、このアルキル中の任意の水素はハロゲンで置き換えられてもよく;Aは独立して、芳香族性あるいは非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Bは独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性または非芳香族性の3から8員環、または、炭素数9以上の縮合環であり、これらの環の任意の水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;Zは独立して、単結合、炭素数1~8のアルキレンであるが、任意の-CH-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-、または-N=CH-で置き換えられてもよく、このアルキレン中の任意の-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
     Xは単結合、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、または-CHCH-であり;
     mKは1~4の整数である。)
  53. キラル剤が、式(K2-1)~(K2-8)、式(K4-1)~(K4-6)および式(K5-1)~(K5-3)のそれぞれで表される化合物の群から選択される少なくとも1つの化合物を含む、請求項49~51のいずれか1項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000019

    Figure JPOXMLDOC01-appb-I000020

    Figure JPOXMLDOC01-appb-I000021

    Figure JPOXMLDOC01-appb-I000022

    (これらの式中、Rは独立して、炭素数3~10のアルキルであり、このアルキル中の環に隣接する-CH-は-O-で置き換えられてもよく、任意の-CH-CH-は、-CH=CH-で置き換えられてもよい。)
  54. 請求項18~53のいずれかに記載の液晶組成物と、重合性モノマーとを含む混合物。
  55. 重合性モノマーが光重合性モノマーまたは熱重合性モノマーである、請求項54に記載の混合物。
  56. 請求項54または55に記載の混合物を重合して得られる、光学的に等方性の液晶相で駆動される素子に用いられる高分子/液晶複合材料。
  57. 請求項54または55に記載の混合物を非液晶等方相または光学的に等方性の液晶相で重合させて得られる、請求項56に記載の高分子/液晶複合材料。
  58. 高分子/液晶複合材料に含まれる高分子がメソゲン部位を有する、請求項56または57に記載の高分子/液晶複合材料。
  59. 高分子/液晶複合材料に含まれる高分子が架橋構造を有する、請求項56または58のいずれかに記載の高分子/液晶複合材料。
  60. 液晶組成物の割合が70~99重量%であり、高分子の割合が1~30重量%である、請求項56または58のいずれか1項に記載の高分子/液晶複合材料。
  61. 一方または両方の面に電極が配置され、基板間に配置された液晶媒体、および電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、請求項49~53のいずれか1項に記載の液晶組成物または請求項56~60のいずれか1項に記載の高分子/液晶複合材料である、光素子。
  62. 一方または両方の面に電極が配置され、少なくとも一方が透明な一組の基板、基板間に配置された液晶媒体、および基板の外側に配置された偏光板を有し、電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、請求項49~53のいずれか1項に記載の液晶組成物または請求項56~60のいずれか1項に記載の高分子/液晶複合材料である、光素子。
  63. 一組の基板の少なくとも一方の基板上において、少なくとも2方向に電界を印加できるように電極が構成されている請求項62に記載の光素子。
  64. 互いに平行に配置された一組の基板の一方または両方に、少なくとも2方向に電界を印加できるように電極が構成されている請求項62に記載の光素子。
  65. 電極がマトリックス状に配置されて、画素電極を構成し、各画素がアクティブ素子を備え、このアクティブ素子が薄膜トランジスター(TFT)である請求項61~64のいずれか1項に記載の光素子。
PCT/JP2011/063700 2010-06-22 2011-06-15 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子 WO2011162142A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012521434A JP5765339B2 (ja) 2010-06-22 2011-06-15 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
CN201180030382.7A CN102947262B (zh) 2010-06-22 2011-06-15 具有分枝烷基或分枝烯基的化合物及光学各向同性的液晶媒体及光元件
US13/806,146 US20130100369A1 (en) 2010-06-22 2011-06-15 Compound having branched alkyl or branched alkenyl, optically isotropic liquid crystal medium and optical element
KR1020137000663A KR101797991B1 (ko) 2010-06-22 2011-06-15 분기 알킬 또는 분기 알케닐을 갖는 화합물, 및 광학적으로 등방성인 액정매체 및 광소자
EP11798028.4A EP2586764B1 (en) 2010-06-22 2011-06-15 Compound having branched alkyl or branched alkenyl, optically isotropic liquid crystal medium and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010141450 2010-06-22
JP2010-141450 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011162142A1 true WO2011162142A1 (ja) 2011-12-29

Family

ID=45371335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063700 WO2011162142A1 (ja) 2010-06-22 2011-06-15 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子

Country Status (7)

Country Link
US (1) US20130100369A1 (ja)
EP (1) EP2586764B1 (ja)
JP (1) JP5765339B2 (ja)
KR (1) KR101797991B1 (ja)
CN (1) CN102947262B (ja)
TW (1) TWI606114B (ja)
WO (1) WO2011162142A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807551A (zh) * 2012-08-09 2012-12-05 江苏和成显示科技股份有限公司 新型的含二氧杂饱和薁类的液晶化合物及其组合物
JP2013117020A (ja) * 2011-10-31 2013-06-13 Semiconductor Energy Lab Co Ltd 液晶組成物、高分子/液晶複合体、液晶素子、および液晶表示装置
WO2013088980A1 (ja) * 2011-12-14 2013-06-20 Jnc株式会社 液晶組成物および液晶表示素子
WO2014065293A1 (ja) * 2012-10-23 2014-05-01 Jnc株式会社 液晶化合物、液晶媒体および光素子
JP2014511358A (ja) * 2011-01-25 2014-05-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶化合物および液晶媒体
WO2014091918A1 (ja) * 2012-12-14 2014-06-19 Jnc株式会社 液晶組成物および液晶表示素子
WO2014192627A1 (ja) * 2013-05-27 2014-12-04 Jnc株式会社 液晶媒体、光素子および液晶化合物
JPWO2013179960A1 (ja) * 2012-05-28 2016-01-18 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
US9862887B2 (en) 2012-04-20 2018-01-09 Merck Patent Gmbh Liquid crystal medium and liquid crystal display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803929B2 (ja) 2010-10-06 2015-11-04 Jnc株式会社 液晶組成物
CN104098535A (zh) * 2014-07-25 2014-10-15 南通市华峰化工有限责任公司 一种4-(3-氟苯基)-2,2-二甲基-5-(4-(甲硫基)苯基)呋喃-3(2h)-酮的制备方法
US10525943B2 (en) 2017-02-20 2020-01-07 Aptiv Technologies Limited Automated vehicle control system with multiple brake-pedal selected disengagement modes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221435A (ja) * 1995-03-23 1997-08-26 Chisso Corp 分岐アルキル基を側鎖に持つ液晶性化合物およびそれを含む液晶組成物
DE10251016A1 (de) * 2001-11-23 2003-06-05 Merck Patent Gmbh Pentadiene
JP2007291046A (ja) * 2006-04-27 2007-11-08 Adeka Corp 新規化合物及び該化合物を含有してなる液晶組成物
WO2010058681A1 (ja) * 2008-11-19 2010-05-27 チッソ株式会社 光学的に等方性の液晶媒体及び光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339252B1 (en) * 1988-04-25 1996-06-12 Dainippon Ink And Chemicals, Inc. 2,5-disubstituted pyrazine derivatives, pyrimidine derivatives, and liquid crystal containing the same
TW343232B (en) * 1994-10-13 1998-10-21 Chisso Corp Difluorooxymethane derivative and liquid crystal composition
JPH08325173A (ja) * 1995-05-25 1996-12-10 Chisso Corp エキソメチレン部位を持つ液晶性化合物およびそれを含む液晶組成物
JPWO2005080529A1 (ja) * 2004-02-20 2007-10-25 旭硝子株式会社 光学素子用液晶材料および光変調素子
WO2007105803A1 (ja) * 2006-03-13 2007-09-20 Chisso Corporation 液晶組成物および液晶素子
US7879413B2 (en) * 2007-08-29 2011-02-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
EP2100944B1 (de) * 2008-03-11 2011-10-05 Merck Patent GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
CN102007197B (zh) * 2008-05-15 2014-09-24 Jnc株式会社 光学等向性的液晶媒体及光学元件
JP5803929B2 (ja) * 2010-10-06 2015-11-04 Jnc株式会社 液晶組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221435A (ja) * 1995-03-23 1997-08-26 Chisso Corp 分岐アルキル基を側鎖に持つ液晶性化合物およびそれを含む液晶組成物
DE10251016A1 (de) * 2001-11-23 2003-06-05 Merck Patent Gmbh Pentadiene
JP2007291046A (ja) * 2006-04-27 2007-11-08 Adeka Corp 新規化合物及び該化合物を含有してなる液晶組成物
WO2010058681A1 (ja) * 2008-11-19 2010-05-27 チッソ株式会社 光学的に等方性の液晶媒体及び光素子

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002310A (ja) * 2011-01-25 2017-01-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶化合物および液晶媒体
JP2014511358A (ja) * 2011-01-25 2014-05-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶化合物および液晶媒体
JP2013117020A (ja) * 2011-10-31 2013-06-13 Semiconductor Energy Lab Co Ltd 液晶組成物、高分子/液晶複合体、液晶素子、および液晶表示装置
WO2013088980A1 (ja) * 2011-12-14 2013-06-20 Jnc株式会社 液晶組成物および液晶表示素子
JPWO2013088980A1 (ja) * 2011-12-14 2015-04-27 Jnc株式会社 液晶組成物および液晶表示素子
US8968598B2 (en) 2011-12-14 2015-03-03 Jnc Corporation Liquid crystal composition and liquid crystal display device
US9862887B2 (en) 2012-04-20 2018-01-09 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
JPWO2013179960A1 (ja) * 2012-05-28 2016-01-18 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
CN102807551A (zh) * 2012-08-09 2012-12-05 江苏和成显示科技股份有限公司 新型的含二氧杂饱和薁类的液晶化合物及其组合物
JPWO2014065293A1 (ja) * 2012-10-23 2016-09-08 Jnc株式会社 液晶化合物、液晶媒体および光素子
WO2014065293A1 (ja) * 2012-10-23 2014-05-01 Jnc株式会社 液晶化合物、液晶媒体および光素子
JPWO2014091918A1 (ja) * 2012-12-14 2017-01-05 Jnc株式会社 液晶組成物および液晶表示素子
WO2014091918A1 (ja) * 2012-12-14 2014-06-19 Jnc株式会社 液晶組成物および液晶表示素子
WO2014192627A1 (ja) * 2013-05-27 2014-12-04 Jnc株式会社 液晶媒体、光素子および液晶化合物
JPWO2014192627A1 (ja) * 2013-05-27 2017-02-23 Jnc株式会社 液晶媒体、光素子および液晶化合物
US9611429B2 (en) 2013-05-27 2017-04-04 Jnc Corporation Liquid crystal medium, optical device and liquid crystal compound

Also Published As

Publication number Publication date
EP2586764A4 (en) 2015-07-22
EP2586764A1 (en) 2013-05-01
KR101797991B1 (ko) 2017-12-12
JPWO2011162142A1 (ja) 2013-08-19
TW201300511A (zh) 2013-01-01
EP2586764B1 (en) 2019-09-18
KR20130096217A (ko) 2013-08-29
US20130100369A1 (en) 2013-04-25
CN102947262A (zh) 2013-02-27
CN102947262B (zh) 2016-04-13
TWI606114B (zh) 2017-11-21
JP5765339B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5477296B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5765339B2 (ja) 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
JP5408130B2 (ja) 光学的に等方性の液晶媒体及び光素子
TWI713492B (zh) 液晶組成物、高分子/液晶複合材料、用途、光元件、化合物
JP5544695B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5621769B2 (ja) クロロベンゼン誘導体、光学的に等方性の液晶媒体及び光素子
JP5625461B2 (ja) クロロフルオロベンゼン化合物、光学的等方性の液晶媒体および光素子
US20090135368A1 (en) Optically isotropic liquid crystal medium and optical device
JP5470757B2 (ja) 光学的に等方性の液晶媒体及び光素子
WO2013065622A1 (ja) 光学的に等方性の液晶媒体及び光素子
JP2016027141A (ja) 液晶媒体、光素子および液晶化合物
EP2028253B1 (en) Optically isotropic liquid crystal medium and optical device
JP6432522B2 (ja) 液晶媒体、光素子および液晶化合物
JP5803929B2 (ja) 液晶組成物
JP5347347B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP6299020B2 (ja) 液晶化合物、液晶媒体および光素子
JP2016121288A (ja) 光学的に等方性の液晶媒体及び光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030382.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521434

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13806146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011798028

Country of ref document: EP