WO2011160440A1 - 动力流体气体工质压缩系统 - Google Patents

动力流体气体工质压缩系统 Download PDF

Info

Publication number
WO2011160440A1
WO2011160440A1 PCT/CN2011/001034 CN2011001034W WO2011160440A1 WO 2011160440 A1 WO2011160440 A1 WO 2011160440A1 CN 2011001034 W CN2011001034 W CN 2011001034W WO 2011160440 A1 WO2011160440 A1 WO 2011160440A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
jet pump
power
outlet
Prior art date
Application number
PCT/CN2011/001034
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
Jin Beibiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Beibiao filed Critical Jin Beibiao
Publication of WO2011160440A1 publication Critical patent/WO2011160440A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/601Fluid transfer using an ejector or a jet pump

Definitions

  • the present invention relates to the field of thermal energy and power, and more particularly to a gas compression system. Background technique
  • a power fluid gas working fluid compression system comprising a jet pump, a gas-liquid separator, a high-pressure liquid pump and a gas working fluid source, wherein a jet pump fluid outlet of the jet pump is in communication with the gas-liquid separator,
  • the gas-liquid separator is provided with a power liquid outlet, and the power liquid outlet is in communication with a liquid inlet of the high-pressure liquid pump, and a high-pressure power liquid outlet of the high-pressure liquid pump is connected to a jet pump power fluid injection port of the jet pump,
  • the jet pump low pressure gas inlet of the jet pump is in communication with the gas working fluid source, and a compressed gas working fluid outlet is disposed on a gas space portion of the gas liquid separator.
  • a power fluid gas working fluid compression system comprising a jet pump, a gas-liquid separator, a high-pressure liquid pump and a gas working fluid source, the jet pump fluid outlet of the first jet pump and the first one of the gas-liquid separation Connected to, in the first gas-liquid separator, a power liquid outlet, the power liquid outlet being in communication with a liquid inlet of the first high-pressure liquid pump, the first high-pressure liquid pump of the high-pressure liquid pump An outlet is in communication with a jet pump power fluid injection port of the first jet pump, and a jet pump low pressure gas inlet of the first jet pump is in communication with the gas source
  • a jet pump fluid outlet of the second jet pump is in communication with the second gas-liquid separator, and a power liquid outlet is disposed on the second gas-liquid separator, the power liquid outlet and the second chamber a liquid inlet of the high pressure liquid pump is in communication, a high pressure power liquid outlet of the second high pressure liquid pump is in communication with a jet pump power fluid injection port of the second jet pump, and in the second gas liquid separator Gas empty a compressed gas working medium outlet is disposed at a position, and a jet pump low pressure gas inlet of the second jet pump is disposed in a gas space portion of the first gas liquid separator or in the first gas a gas working space outlet portion of the liquid separator is provided with a compressed gas working medium outlet, wherein the first gas jet separator is provided with a compressed gas working medium outlet, and the second said jet pump The jet pump low pressure gas inlet is in communication with the compressed gas working fluid outlet of the first gas phase separator of the gas liquid separator; or the like.
  • a power fluid gas working fluid compression system comprising a jet pump, a gas-liquid separator, a high-pressure liquid pump and a gas working fluid source, the jet pump fluid outlet of the first jet pump and the first one of the gas-liquid separation Communicating, a power liquid outlet is disposed on the first gas-liquid separator, the power liquid outlet is in communication with a liquid inlet of the high-pressure liquid pump, and the high-pressure liquid pump outlet of the high-pressure liquid pump is connected to the first a jet pump power fluid injection port of the jet pump is connected, and a jet pump low pressure gas inlet of the first jet pump is in communication with the gas source
  • a jet pump fluid outlet of the second jet pump is in communication with a second one of the gas-liquid separators, and a second of the gas-liquid separators is provided with a power liquid outlet, the power liquid outlet and the high-pressure liquid a liquid inlet of the pump is in communication, the high pressure power liquid outlet of the high pressure liquid pump is in communication with a jet pump power fluid injection port of the second jet pump, and a pressure is applied to a gas space portion of the second gas liquid separator a gas-reducing medium outlet, a jet pump low-pressure gas inlet of the second jet pump is disposed in a gas space portion of the first gas-liquid separator or a gas in the first gas-liquid separator a compressed gas working fluid outlet is arranged in the space portion, wherein the gas flow space portion of the first gas-liquid separator is provided with a compressed gas working fluid outlet, and the second jet pump has a jet pump low pressure gas inlet. Connected to the compressed gas working outlet of the gas space portion of the first gas-liquid separator; or the
  • the compressed gas working fluid outlet is in communication with the engine combustion chamber or with the intake port of the thermodynamic system, or the compressed gas working fluid outlet is in communication with the combustion chamber, the combustion chamber being in communication with the working mechanism.
  • the high pressure liquid outlet of the high pressure liquid pump being in communication with the jet pump power fluid injection port through the vaporizer, through the high pressure liquid pump
  • the pressurized high pressure liquid enters the jet pump power fluid injection port of the jet pump after vaporization in the vaporizer to form high pressure steam.
  • a bypass port is provided at a high-pressure power liquid outlet of the high-pressure liquid pump, and a nozzle is disposed on the gas-liquid separator, and the bypass port communicates with the nozzle.
  • a heat sink is disposed between the power liquid outlet and the bypass port and/or between the bypass port and the nozzle.
  • a ram is disposed between the jet pump fluid outlet and the gas-liquid separator, and fluid ejected from the jet pump fluid outlet is compressed in the ram.
  • gas compressor is disposed in the gas space portion of the gas-liquid separator, and/or at the outlet of the compressed gas working fluid.
  • a method for improving the efficiency and environmental protection of the power fluid gas working fluid compression system adjusting the temperature of the gas working fluid to be started to work below 2000K, and adjusting the pressure of the gas working fluid to be started to work to 15 MPa or more,
  • the temperature and pressure of the gaseous working fluid that is about to start work are in accordance with the adiabatic relationship.
  • the so-called gas working source of the present invention refers to the atmosphere, low-pressure oxygen, low-pressure oxygen-containing gas or other gases (such as helium gas, etc.);
  • the so-called dynamic fluid refers to a fluid that compresses other fluids, and its pressure is higher than that of the jet pump.
  • the pressure at the inlet of a low pressure fluid (such as the atmosphere), which may be a gaseous power fluid or a liquid power fluid (such as water, alcohol, etc., and the alcohol may be antifreeze).
  • the so-called environmental protection is an index for measuring the pollution emission of the engine (i.e., the combustion chamber and the working mechanism constitutes an engine), the environmental protection is high, the engine emissions are less, and the environmental protection is low, and the engine emissions are much more polluted.
  • the so-called jet pump refers to a device that discharges a non-powered fluid through a motive fluid, and the two fluids interact to discharge from an outlet.
  • the so-called jet pump may be a gas jet pump (ie, a jet pump) or a liquid jet. Pump;
  • the so-called jet pump can be a conventional jet pump or a non-conventional jet pump.
  • the so-called conventional jet pump is composed of two sets of tubes, which provide a high-pressure power fluid to the inner tube, and the inner tube high-pressure power fluid is sprayed in the outer tube, and the inner tube is combined with the high-pressure power fluid jet and the outer tube.
  • the outer tube of the so-called jet pump may have a constricted area
  • the tube can be set as a venturi tube
  • the inner tube nozzle can be set as a Laval nozzle
  • the so-called constricted area refers to a region where the cross-sectional area of the outer tube changes
  • the jet pump has at least three interfaces or channels, that is, a jet pump Power fluid injection port, jet pump low pressure gas inlet and jet pump fluid outlet.
  • the so-called non-conventional jet pump is composed of two or more tubes arranged in a nested manner or juxtaposed to each other, wherein at least one of the tubes is in communication with a source of motive fluid and the motive fluid in the source of motive fluid
  • the flow can cause the directional flow of the fluid in the other tube
  • the so-called jet pump tube can have a constriction zone, can be set as a venturi tube, the injection port of the tube can be set as a Laval nozzle, the so-called constriction zone is a region where the cross-sectional area of the tube changes
  • the jet pump has at least three interfaces or channels, namely a jet pump power fluid injection port, a jet pump low pressure gas inlet, and a jet pump fluid outlet
  • the jet pump may include a plurality of jet pumps a power fluid injection port, in a structure including a plurality of jet pump power fluid injection ports, the jet pump power fluid injection port may be disposed in a pipe center area of the jet pump low pressure gas inlet
  • the jet pump includes a multi-stage jet pump, a multi-jet pump, a pulse jet pump, and the like.
  • the gas space portion of the gas-liquid separator of the present invention refers to a portion corresponding to the space in which the gas inside the gas-liquid separator is located.
  • the work mechanism refers to a mechanism that can expand the work medium generated by the combustion chamber, such as a power turbine and a piston work mechanism, and the work mechanism outputs power externally.
  • FIG. 18 is a graph showing the relationship between the temperature T and the pressure P of the gas working medium, and the curve indicated by 0-AH is a gas working adiabatic relationship curve passing through the zero point of the state parameter of 298 K and 0.1 MPa;
  • the curve shown by EBD is the adiabatic relationship curve passing through point B.
  • the pressures at point A and point B are the same;
  • the curve shown by FG is passed through 2800K and 10MPa (that is, the current internal combustion engine is about to start work).
  • the adiabatic relationship curve of the working point of the gas working fluid is passed through 2800K and 10MPa (that is, the current internal combustion engine is about to start work).
  • > cr in Fig. 18 is the gas refrigerant adiabatic index
  • P is the gas working fluid pressure
  • is the gas working fluid temperature
  • C is a constant.
  • the so-called adiabatic relationship includes the following three cases: 1.
  • the state parameter of the gaseous working medium ie, the temperature and pressure of the working medium
  • the number is on the curve shown by 0-A-H in Figure 18;
  • the state parameter of the gas working fluid ie, the temperature and pressure of the working fluid
  • the state parameter point is on the left side of the curve shown by 0-AH in Figure 18.
  • the state parameter of the gas working fluid (ie, the temperature and pressure of the working fluid) is on the right side of the adiabatic relationship curve of the working fluid, that is, the gas working fluid.
  • the state parameter point is on the right side of the curve shown by 0-AH in Fig.
  • the temperature of the gas working fluid is not higher than the temperature calculated from the adiabatic relationship of the gas working fluid plus 1000K sum, plus 950K sum, Add 900K, add 850K, add 800K, add 750K, add 700K, add 650K, add 600K, add 550K, add 500K and add 450K, Add 400K sum, add 350K sum, add 300K sum, add 250K sum, add 200K sum, force [1 1 90K sum, force [ ⁇ 80 ⁇ sum, force U 1 70K sum, add 1 60K And, add 150K, add 140K and add 130K, add 120K, add 1 10K, add 100K, add 90K, add 80K , adding 70K sum, adding 60K sum, adding 50K sum, adding 40K sum, adding 30K and or not adding more than plus 20K, that is, as shown in Fig.
  • point A is the point on the same adiabatic relationship curve as point B.
  • the temperature difference between point A and point B should be less than 1000 ⁇ , 900 ⁇ , 850 ⁇ , 800 ⁇ , 750 ⁇ , 700 ⁇ , 650 ⁇ , 600 ⁇ , 550 ⁇ , 500 ⁇ , 450 ⁇ , 400 ⁇ , 350 ⁇ , 300 ⁇ , 250 ⁇ , 200 ⁇ , 1 90 ⁇ , 180 ⁇ , 1 70 ⁇ , 160 ⁇ , 150 ⁇ , 140 ⁇ , 130 ⁇ , 120 ⁇ , 1 10 ⁇ , 100 ⁇ , 90 ⁇ , 80 ⁇ , 70 ⁇ , 60 ⁇ , 50 ⁇ , 40 ⁇ , 30 ⁇ or Less than 20 inches.
  • the so-called adiabatic relationship may be any one of the above three cases, that is, the state parameter of the gas working medium (ie, the temperature and pressure of the gas working medium) to be started to work is as shown in FIG. 8 shows the adiabatic process curve through the defect point ⁇ - in the left area of the BD.
  • the so-called gas working medium which is about to start work refers to a gas working material which is about to expand and work.
  • an engine system i.e., a thermodynamic system
  • the state parameters of the gaseous working medium i.e., the temperature and pressure of the gaseous working medium
  • the working state of the jet pump is adjusted, the temperature, pressure and flow rate of the original working medium entering the combustion chamber are adjusted, the amount of fuel introduced into the combustion chamber is adjusted, and the combustion chamber deriving gas working medium is adjusted.
  • the amount of gas and then adjust the temperature of the gas working fluid that is about to start work to below 2000 ,, and adjust the pressure of the gas working fluid that is about to start work to 15 MPa or more.
  • the original working fluid refers to a working fluid that flows into the combustion chamber of the engine and the combustion chamber.
  • the disclosed hydrodynamic gas working fluid compression system can cool the motive fluid by using the motive fluid to cool the gas in the compression process, so that the cooling efficiency is high and the constant temperature can be achieved. Compressed or approximately constant temperature compression, even cooling compression.
  • the disclosed liquid power gas working fluid compression system can provide compressed air to the combustion chamber, and then use the working fluid generated by the combustion chamber to push the working mechanism to output power externally.
  • the working mechanism is set as a power turbine, it is equivalent to constituting a new type of gas turbine.
  • the working mechanism is a piston type working mechanism, it constitutes a new type of piston type internal combustion engine.
  • the so-called vaporizer in the present invention refers to a device for vaporizing a liquid or a device for criticalizing a liquid (so-called criticalization includes criticalization, supercriticalization, and super-supercriticalization), which may be a boiler or other vaporization device.
  • the vaporizer of the present invention is arranged to vaporize the liquid to form a larger fluid flow rate by using thermal energy, to more efficiently compress the gaseous working medium from the gas working medium source, and to enter the dynamic fluid (such as water vapor) of the gas-liquid separator after passing through the jet pump. ) is liquefied to achieve separation.
  • the fluid in the gas-liquid separator can be cooled and cooled.
  • the gas generated by the vaporizer should be in a state where the pressure is high and the temperature is low.
  • the gas-liquid separator in the present invention means a device capable of separating a gas and a liquid.
  • thermodynamic system of the present invention refers to a piston engine, a gas turbine.
  • the so-called ram tube of the present invention refers to an intake port in a ramjet that converts a high-speed fluid into a high-pressure fluid.
  • the core component of the power fluid gas working fluid compression system disclosed in the present invention is a jet pump.
  • the efficiency of the jet pump is about 15% to 25%, but in the present invention, liquid is used as the power, especially
  • the process of compressing the gas working fluid has no moving parts other than the liquid pump, and is not converted into pressure by the heat conversion. Process (The efficiency of this process is very low, for example, we assume that the efficiency of success by heat conversion is 30%, the efficiency of conversion from work to pressure is 50%, and the overall efficiency of the system is only about 15%).
  • Conventional compression systems have a large number of moving parts (such as piston crank linkages and impeller mechanisms), and must also have a process of successful conversion from heat to pressure. So with traditional compression Compared to the system, the disclosed dynamic fluid gas working fluid compression system has significant advantages.
  • the invention has simple structure, low manufacturing cost and high reliability.
  • the present invention is highly efficient when used as a booster system for an engine or as a compression system alone.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural view of Embodiment 3 of the present invention.
  • Figure 4 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 5 is a schematic view showing the structure of Embodiment 5 of the present invention.
  • Figure 6 is a schematic view showing the structure of Embodiment 6 of the present invention.
  • Embodiment 7 of the present invention are schematic structural views of Embodiment 7 of the present invention.
  • Figure 10 is a schematic view showing the structure of Embodiment 8 of the present invention.
  • Figure 1 is a schematic structural view of Embodiment 9 of the present invention.
  • Figure 17 is a schematic structural view of Embodiment 12 of the present invention.
  • Figure 18 is a graph showing the relationship between the temperature T of the gaseous working fluid and the pressure P.
  • the power fluid gas working fluid compression system shown in FIG. 1 includes a jet pump 1, a gas-liquid separator 2, a high-pressure liquid pump 3, and a gas working fluid source 4, and a jet pump fluid outlet 102 of the jet pump 1 is separated from the gas-liquid.
  • the gas 2 separator is connected to a compressed gas working fluid outlet 201 and a power liquid outlet 202.
  • the power liquid outlet 202 communicates with the liquid inlet of the high pressure liquid pump 3, and the high pressure liquid liquid outlet and jet of the high pressure liquid pump 3
  • the jet pump power fluid injection port 101 of the pump 1 is in communication, and the jet pump low pressure gas inlet 103 of the jet pump 1 is in communication with the gaseous working fluid source 4.
  • the power fluid gas working fluid compression system shown in FIG. 2 differs from the first embodiment in that: the compressed gas working fluid outlet 201 is in communication with the engine combustion chamber 2007, and the temperature and pressure of the gaseous working fluid that is about to start work. Meet the class of adiabatic relationship.
  • the power fluid gas working fluid compression system shown in FIG. 3 differs from the embodiment 1 in that a vaporizer 1 133 is provided between the high pressure liquid pump 3 and the jet pump power fluid injection port 101, and the high pressure liquid pump ( 3)
  • the high pressure liquid outlet is communicated with the jet pump power fluid injection port 101 via the vaporizer 1133, and the high pressure liquid pressurized by the high pressure liquid pump 3 is vaporized in the vaporizer 1 133 to form a high pressure steam and then enters the jet pump of the jet pump 1 Power fluid injection port 101.
  • the power fluid gas working fluid compression system shown in Fig. 4 differs from the first embodiment in that a heat dissipating structure 205 is provided on the gas-liquid separator 2.
  • the power fluid gas working fluid compression system shown in Fig. 5 differs from the first embodiment in that a cooler 206 is provided in the gas-liquid separator 2.
  • a cooler 206 may be disposed in the gas-liquid separator 2, and/or a liquid circulation passage between the power liquid outlet 202 and the jet pump power fluid injection port 101 may be provided. Cooler.
  • the power fluid gas working fluid compression system shown in FIG. 6 differs from the first embodiment in that:
  • the high-pressure liquid pump 3 of the high-pressure liquid pump 3 is provided with a bypass port 31 1, and a nozzle 21 1 is provided in the gas-liquid separator 2, and the bypass port 31 1 and the nozzle 21 1 are in communication.
  • the power fluid gas working fluid compression system shown in Fig. 7 differs from the embodiment 6 in that a heat sink 232 is provided between the power liquid outlet 202 and the high pressure liquid pump 3.
  • the power fluid gas working fluid compression system shown in Fig. 8 differs from the embodiment 6 in that a heat sink 232 is provided between the high pressure liquid pump 3 and the bypass port 31 1 .
  • the power fluid gas working fluid compression system shown in Fig. 9 differs from the embodiment 6 in that a heat sink 232 is provided between the bypass port 31 1 and the nozzle 21 1 .
  • the power fluid gas working fluid compression system shown in Fig. 10 differs from the first embodiment in that the compressed gas working fluid outlet 201 is in communication with the intake port 2008 of the thermodynamic system.
  • the power fluid gas working fluid compression system shown in FIG. 11 is different from the first embodiment in that: between the jet pump fluid outlet 102 of the jet pump 1 and the gas-liquid separator 2 A ram tube 1 122, the fluid ejected from the jet pump fluid outlet 102 is compressed in the ram tube 1 122.
  • the power fluid gas working fluid compression system shown in Figures 12, 13, 14 and 15 includes a jet pump 1, a gas-liquid separator 2, a high-pressure liquid pump 3, and a gas source 4, the first of said jets
  • the jet pump fluid outlet 102 of the pump 1 is in communication with the first one of the gas-liquid separators 2, and a power liquid outlet 202 is provided on the first gas-liquid separator 2, the power liquid outlet 202 and the first
  • the liquid inlet of the high pressure liquid pump 3 is in communication, and the high pressure power liquid outlet of the first high pressure liquid pump 3 is in communication with the jet pump power fluid injection port 101 of the first jet pump 1, the first of the jet pumps
  • the jet pump low pressure gas inlet 103 of 1 is in communication with the gas working fluid source 4, and the jet pump fluid outlet 102 of the second jet pump 1 is in communication with the second gas liquid separator 2, in the second
  • the gas-liquid separator 2 is provided with a power liquid outlet 202, the power liquid outlet 202 is in communication with the liquid inlet of the second high
  • Two jet pumps 1 of the jet pump power fluid injection port 101 in the second gas-liquid separator 2 gas space portion 2200 is provided with a compressed gas working fluid outlet 201, and a jet pump low pressure gas inlet 103 of the second jet pump 1 is disposed in the gas space portion 2200 of the first gas-liquid separator 2 or at the first
  • the gas space portion 2200 of the gas-liquid separator 2 is provided with a compressed gas working fluid outlet 201, and the structure of the compressed gas working fluid outlet 201 is disposed on the gas space portion 2200 of the first gas-liquid separator 2
  • the jet pump low pressure gas inlet 103 of the second jet pump 1 is in communication with the compressed gas working outlet 201 of the gas space portion 2200 of the first gas-liquid separator 2; or the like.
  • the jet pump and the gas-liquid separator in FIG. 12 are provided in two stages, and the power liquid outlet of the gas-liquid separator in each stage is not subjected to the high-pressure liquid pump and the jet pump
  • the jet pump power fluid injection port is connected, and the power liquid can be supplied from an external system and sent back to the external system
  • the jet pump and the gas-liquid separator described in FIG. 13 are provided with three stages, the gas-liquid separator in each stage
  • the power liquid outlet is in communication with the jet pump power fluid injection port of the jet pump without a high pressure liquid pump, and the power liquid can be supplied by an external system and sent back to the external system
  • the jet pump and the The gas-liquid separator is provided in two stages
  • the jet pump and the gas-liquid separator described in Fig. 15 are provided in three stages.
  • the embodiment may further have the following embodiments:
  • a power fluid gas working fluid compression system including a jet pump 1, a gas-liquid separator 2, a high-pressure liquid pump 3, and a gas source 4,
  • the jet pump fluid outlet 102 of the jet pump 1 is in communication with the first gas-liquid separator 2, and the first liquid gas separator 2 is provided with a power liquid outlet 202, the power liquid outlet 202 and
  • the liquid inlet of the high pressure liquid pump 3 is in communication, and the high pressure power liquid outlet of the high pressure liquid pump 3 is in communication with the jet pump power fluid injection port 101 of the first jet pump 1, the first of the jet pumps 1 a jet pump low pressure gas inlet 103 is in communication with the gas working fluid source 4,
  • the jet pump fluid outlet 102 of the second jet pump 1 is in communication with the second gas-liquid separator 2, and the second liquid-gas separator 2 is provided with a power liquid outlet 202, the power liquid outlet 202 is in communication with a liquid inlet of the high pressure liquid pump 3, the high pressure power liquid outlet of the high pressure liquid pump 3 is in communication with the jet pump power fluid injection port 101 of the second jet pump 1 in the second gas
  • the gas space portion 2200 of the liquid separator 2 is provided with a compressed gas working fluid outlet 201, and the second jet pump 1 has a jet pump low pressure gas inlet 103 provided in the gas of the first gas-liquid separator 2
  • a compressed gas working fluid outlet 201 is disposed in the space portion 2200 or in the gas space portion 2200 of the first gas-liquid separator 2, and the gas space portion 2200 of the first gas-liquid separator 2 is pressurized.
  • the second jet pump of the jet pump 1 has a low-pressure gas inlet 103 and a The compressed gas working outlet 201 of the gas space portion 2200 of one of the gas-liquid separators 2 is connected; or the like.
  • the power fluid gas working fluid compression system shown in Fig. 16 differs from the embodiment 12 in that a compressor 1221 is provided between the gas working fluid source 4 and the jet pump low pressure gas inlet 103.
  • a compressor 1221 is disposed in the low pressure gas zone 1100; or a compressor 1221 is disposed in the gas space portion 2200 of the gas-liquid separator 2, and/or at the compressed gas working fluid outlet 201.
  • the power fluid gas working fluid compression system shown in FIG. 17 is different from the first embodiment in that the compressed gas working fluid outlet 201 is in communication with the combustion chamber 2010, and the combustion chamber 2010 and the working mechanism 201 1 Connected, adjust the temperature of the gas working fluid that is about to start work to below 2000K, adjust the pressure of the gas working fluid that is about to start work to 15MPa or more, so that the temperature and pressure of the gas working fluid that is about to start work are in accordance with the adiabatic relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

说 明 书
动力流体气体工质压縮系统 技术领域 本发明涉及热能与动力领域, 尤其涉及一种气体压縮系统。 背景技术
在发动机(热动力系统)领域, 如何简化气体压縮机构, 提高气体压縮机 构的效率是最重要的问题, 特别是在气体压縮过程中, 如何在压縮进程中对气 体进行冷却是长期以来一直没有解决的问题。 因此, 急需发明一种新型气体压 縮系统。
发明内容
为了解决上述发动机中存在的问题, 本发明的技术方案如下:
一种动力流体气体工质压縮系统, 包括射流泵、 气液分离器、 高压液体泵 和气体工质源, 所述射流泵的射流泵流体出口与所述气液分离器连通, 在所述 气液分离器上设动力液体出口,所述动力液体出口与所述高压液体泵的液体入 口连通,所述高压液体泵的高压动力液体出口与所述射流泵的射流泵动力流体 喷射口连通, 所述射流泵的射流泵低压气体入口与所述气体工质源连通, 在所 述气液分离器的气体空间部位上设压縮气体工质出口。
一种动力流体气体工质压縮系统, 包括射流泵、 气液分离器、 高压液体泵 和气体工质源, 第一个所述射流泵的射流泵流体出口与第一个所述气液分离器 连通, 在第一个所述气液分离器上设动力液体出口, 所述动力液体出口与第一 个所述高压液体泵的液体入口连通, 第一个所述高压液体泵的高压动力液体出 口与第一个所述射流泵的射流泵动力流体喷射口连通,第一个所述射流泵的射 流泵低压气体入口与所述气体工质源连通,
第二个所述射流泵的射流泵流体出口与第二个所述气液分离器连通,在第 二个所述气液分离器上设动力液体出口, 所述动力液体出口与第二个所述高压 液体泵的液体入口连通, 第二个所述高压液体泵的高压动力液体出口与第二个 所述射流泵的射流泵动力流体喷射口连通,在第二个所述气液分离器的气体空 间部位上设压縮气体工质出口, 第二个所述射流泵的射流泵低压气体入口设在 所述第一个所述气液分离器的气体空间部位内或在第一个所述气液分离器的 气体空间部位上设压縮气体工质出口,在于第一个所述气液分离器的气体空间 部位上设压縮气体工质出口的结构中, 第二个所述射流泵的射流泵低压气体入 口与第一个所述气液分离器的气体空间部位的压縮气体工质出口连通; 或依此 类推。
一种动力流体气体工质压縮系统, 包括射流泵、 气液分离器、 高压液体泵 和气体工质源, 第一个所述射流泵的射流泵流体出口与第一个所述气液分离器 连通, 在第一个所述气液分离器上设动力液体出口, 所述动力液体出口与所述 高压液体泵的液体入口连通,所述高压液体泵的高压动力液体出口与第一个所 述射流泵的射流泵动力流体喷射口连通, 第一个所述射流泵的射流泵低压气体 入口与所述气体工质源连通,
第二个所述射流泵的射流泵流体出口与第二个所述气液分离器连通,在第 二个所述气液分离器上设动力液体出口,所述动力液体出口与所述高压液体泵 的液体入口连通,所述高压液体泵的高压动力液体出口与第二个所述射流泵的 射流泵动力流体喷射口连通,在第二个所述气液分离器的气体空间部位上设压 縮气体工质出口, 第二个所述射流泵的射流泵低压气体入口设在所述第一个所 述气液分离器的气体空间部位内或在第一个所述气液分离器的气体空间部位 上设压縮气体工质出口, 在于第一个所述气液分离器的气体空间部位上设压縮 气体工质出口的结构中, 第二个所述射流泵的射流泵低压气体入口与第一个所 述气液分离器的气体空间部位的压縮气体工质出口连通; 或依此类推。
所述压縮气体工质出口与发动机燃烧室连通或与热动力系统的进气道连 通, 或所述压縮气体工质出口与燃烧室连通, 所述燃烧室与作功机构连通。
在所述高压液体泵和所述射流泵动力流体喷射口之间设汽化器,所述高压 液体泵的高压液体出口经所述汽化器与所述射流泵动力流体喷射口连通, 经所 述高压液体泵加压的高压液体在所述汽化器内汽化形成高压蒸汽后进入所述 射流泵的射流泵动力流体喷射口。
在所述气液分离器上设散热结构, 和 /或在所述气液分离器内设冷却器, 和 /或在所述动力液体出口和所述射流泵动力流体喷射口之间的液体流通通道 上设冷却器。
在所述高压液体泵的高压动力液体出口设旁通口,在所述气液分离器上设 喷嘴, 所述旁通口和所述喷嘴连通。
在所述动力液体出口与所述旁通口之间和 /或在所述旁通口与所述喷嘴之 间设散热器。
在所述射流泵流体出口与所述气液分离器之间设冲压管, 自所述射流泵流 体出口喷出的流体在所述冲压管中被压縮。
在所述气体工质源和所述射流泵低压气体入口之间, 和 /或在所述射流泵 低压气体入口处, 和 /或在所述射流泵的低压气体区内, 和 /或在所述气液分离 器的气体空间部位内, 和 /或在所述压縮气体工质出口处设压气机。
一种提高所述动力流体气体工质压縮系统效率和环保性的方法, 调整即将 开始作功的气体工质的温度到 2000K以下, 调整即将开始作功的气体工质的压 力到 15MPa以上, 使即将开始作功的气体工质的温度和压力符合类绝热关系。
本发明所谓的气体工质源是指大气、 低压氧气、 低压含氧气体或其他气体 (如氦气等)等; 所谓动力流体是指压縮其他流体的流体, 它的压力高于射流 泵的低压流体(比如大气)入口处的压力, 动力流体可以是气态动力流体, 也 可以是液态动力流体 (如水、 酒精等, 并且酒精可以防冻)。
本发明中, 所谓的环保性是衡量发动机(即所述燃烧室与作功机构构成发 动机)污染排放的指标, 环保性高发动机排放污染少, 环保性低发动机排放污 染多。
本发明中, 所谓的射流泵是指通过动力流体引射非动力流体, 两流体相互 作用从一个出口排出的装置, 所谓的射流泵可以是气体射流泵 (即喷射泵), 也可以是液体射流泵; 所谓的射流泵可以是传统射流泵, 也可以是非传统射流 泵。
本发明中, 所谓的传统射流泵是指由两个套装设置的管构成的, 向内管提 供高压动力流体, 内管高压动力流体在外管内喷射, 在内管高压动力流体喷射 和外管的共同作用下使内外管之间的其他流体(从外管进入的流体)沿内管高 压动力流体的喷射方向产生运动的装置; 所谓射流泵的外管可以有縮扩区, 外 管可以设为文丘里管, 内管喷嘴可以设为拉瓦尔喷管, 所谓的縮扩区是指外管 内截面面积发生变化的区域; 所述射流泵至少有三个接口或称通道, 即射流泵 动力流体喷射口、 射流泵低压气体入口和射流泵流体出口。
本发明中,所谓的非传统射流泵是指由两个或两个以上相互套装设置或相 互并列设置的管构成的, 其中至少一个管与动力流体源连通, 并且动力流体源 中的动力流体的流动能够引起其他管中的流体产生定向流动的装置; 所谓射流 泵的管可以有縮扩区, 可以设为文丘里管, 管的喷射口可以设为拉瓦尔喷管, 所谓的縮扩区是指管内截面面积发生变化的区域; 所述射流泵至少有三个接口 或称通道,即射流泵动力流体喷射口、射流泵低压气体入口和射流泵流体出口; 所述射流泵可以包括多个射流泵动力流体喷射口, 在包括多个射流泵动力流体 喷射口的结构中,所述射流泵动力流体喷射口可以布置在所述射流泵低压气体 入口的管道中心区, 也可以布置在所述射流泵低压气体入口的管道壁附近, 所 述射流泵动力流体喷射口也可以是环绕所述射流泵低压气体入口管道壁的环 形喷射口。
本发明中, 所述射流泵包括多级射流泵, 多股射流泵和脉冲射流泵等。 本发明所谓气液分离器的气体空间部位是指气液分离器内部的气体所在 空间所对应的部位。
本发明中, 所述作功机构是指一切可以将所述燃烧室产生的工质进行膨胀 作功的机构, 例如动力透平和活塞式作功机构, 所述作功机构对外输出动力。
本发明中, 图 18是气体工质的温度 T和压力 P的关系图, 0-A-H所示曲线 是通过状态参数为 298K和 0. 1 MPa的 0点的气体工质绝热关系曲线; B点为气 体工质的实际状态点, E-B-D所示曲线是通过 B点的绝热关系曲线, A点和 B 点的压力相同; F-G所示曲线是通过 2800K和 10MPa (即目前内燃机中即将开 始作功的气体工质的状态点) 的工质绝热关系曲线。
本发明中, 图 18中的 > = cr 中的 是气体工质绝热指数, P是气体工质 的压力, Γ是气体工质的温度, C是常数。
本发明中, 所谓的类绝热关系包括下列三种情况: 1 .气体工质的状态参数 (即工质的温度和压力)点在所述工质绝热关系曲线上, 即气体工质的状态参 数点在图 18中 0-A- H所示曲线上; 2.气体工质的状态参数 (即工质的温度和 压力) 点在所述工质绝热关系曲线左侧, 即气体工质的状态参数点在图 18 中 0-A-H所示曲线的左侧; 3.气体工质的状态参数 (即工质的温度和压力) 点在 所述工质绝热关系曲线右侧, 即气体工质的状态参数点在图 18中 0-A-H所示 曲线的右侧,但是气体工质的温度不高于由此气体工质的压力按绝热关系计算 所得温度加 1000K的和、 加 950K的和、 加 900K的和、 加 850K的和、 加 800K 的和、 加 750K的和、 加 700K的和、 加 650K的和、 加 600K的和、 加 550K的 和、 加 500K的和、 加 450K的和、 加 400K的和、 加 350K的和、 加 300K的和、 加 250K的和、 加 200K的和、 力 [1 1 90K的和、 力 [Π 80Κ的和、 力 U 1 70K的和、 加 1 60K的和、加 150K的和、加 140K的和、加 130K的和、加 120K的和、加 1 10K 的和、 加 100K的和、 加 90K的和、 加 80K的和、 加 70K的和、 加 60K的和、 加 50K的和、 加 40K的和、 加 30K的和或不高于加 20K的和, 即如图 18所示, 所述气体工质的实际状态点为 B点, A点是压力与 B点相同的绝热关系曲线上 的点, A点和 B点之间的温差应小于 1000Κ、 900Κ、 850Κ、 800Κ、 750Κ、 700Κ、 650Κ、 600Κ、 550Κ、 500Κ、 450Κ、 400Κ、 350Κ、 300Κ、 250Κ、 200Κ、 1 90Κ、 180Κ、 1 70Κ、 160Κ、 150Κ、 140Κ、 130Κ、 120Κ、 1 10Κ、 100Κ、 90Κ、 80Κ、 70Κ、 60Κ、 50Κ、 40Κ、 30Κ或小于 20Κ。
本发明中,所谓类绝热关系可以是上述三种情况中的任何一种,也就是指- 即将开始作功的气体工质的状态参数(即气体工质的温度和压力)点在如图 1 8 所示的通过 Β点的绝热过程曲线 Ε- B-D的左侧区域内。
本发明中, 所谓的即将开始作功的气体工质是指即将膨胀作功的气体工 质。
本发明中, 将即将开始作功的气体工质的状态参数(即气体工质的温度和 压力) 符合类绝热关系的发动机系统 (即热动力系统) 定义为低熵发动机。
本发明中, 调整所述射流泵的工作状态, 调整进入所述燃烧室内的原工质 的温度、 压力和流量, 调整向所述燃烧室导入燃料的量, 调整所述燃烧室导出 气体工质的量, 进而调整即将开始作功的气体工质的温度到 2000Κ以下, 调整 即将开始作功的气体工质的压力到 15MPa以上。 本发明中, 所谓原工质是指流入所述发动机燃烧室和所述燃烧室的工质。 本发明中,所公开的液体动力气体工质压縮系统可以通过对所述动力流体 进行冷却, 再利用所述动力流体对压縮进程中的气体进行冷却, 所以冷却效率 高, 而且可以实现恒温压縮或近似恒温压縮, 甚至降温压縮。
本发明中, 所公开的液体动力气体工质压縮系统可以为所述燃烧室提供压 縮空气, 再利用所述燃烧室产生的工质推动所述作功机构对外输出动力, 当把 所述作功机构设为动力透平时相当于构成一种新型燃气轮机, 当把所述作功机 构设为活塞式作功机构时相当于构成一种新型活塞式内燃机。
本发明中所谓汽化器是指将液体进行汽化的装置或将液体临界化的装置 (所谓临界化包括临界化、 超临界化和超超临界化), 它可以是锅炉或其他汽 化装置。 本发明中汽化器的设置是利用热能将液体汽化形成更大的流体流量, 更高效地将来自气体工质源的气态工质压縮,通过射流泵后进入气液分离器的 动力流体(如水蒸气)被液化, 从而实现分离。 为了使通过射流泵后的动力流 体更有效地液化, 可对气液分离器内的流体进行冷却降温。 为了降低被压縮气 体的温度, 应当使所述汽化器所产生的气体处于压力高温度低的状态。
本发明中当所述动力流体不足时, 需进行动力流体补足。
本发明中所谓气液分离器是指能将气体和液体进行分离的装置。
本发明所谓的热动力系统是指活塞式发动机, 燃气轮机。
本发明所谓的冲压管是指冲压发动机中的将高速流体转换成高压流体的 进气道。
本发明所公开的动力流体气体工质压縮系统中的核心部件是射流泵, 一般 说来射流泵的效率较低约在 15%到 25%左右, 但是在本发明中采用液体作为动 力, 特别是在设有所述汽化器用热能产生高压蒸汽作为动力流体的结构中, 压 縮气体工质的过程除了液体泵之外, 没有运动的部件, 也没有由热转换成功再 由功转换成压力的过程(此过程的效率非常低, 例如我们假设由热转换成功的 效率为 30%, 由功转换成压力的效率为 50%, 其系统整体效率也仅仅有 15%左 右)。 传统压縮系统均具有大量的运动部件 (如活塞曲柄连杆机构和叶轮机构 等), 也都必须具有由热转换成功再由功转换成压力的过程。 所以与传统压縮 系统相比, 本发明所公开的动力流体气体工质压縮系统具有明显优势。
本发明中,根据发动机领域的公知技术,应在必要的地方设置必要的部件、 单元或系统, 如喷油器、 火花塞、 传感器、 控制阀等。
本发明的有益效果如下:
1、 本发明结构简单、 制造成本低、 可靠性高。
2、 本发明作为发动机的增压系统或单独作为压縮系统使用时, 效率高。 附图说明
图 1所示的是本发明实施例 1的结构示意图;
图 2所示的是本发明实施例 2的结构示意图;
图 3所示的是本发明实施例 3的结构示意图;
图 4所示的是本发明实施例 4的结构示意图;
图 5所示的是本发明实施例 5的结构示意图;
图 6所示的是本发明实施例 6的结构示意图;
图 7、 8和图 9所示的是本发明实施例 7的结构示意图;
图 10所示的是本发明实施例 8的结构示意图;
图 1 1所示的是本发明实施例 9的结构示意图;
图 12、 13、 14和图 15所示的是本发明实施例 10的结构示意图; 图 1 6所示的是本发明实施例 1 1的结构示意图;
图 1 7所示的是本发明实施例 12的结构示意图;
图 18是气体工质的温度 T和压力 P的关系图。
图中:
1射流泵、 2气液分离器、 3高压液体泵、 4气体工质源、
101射流泵动力流体喷射口、 1221压气机、 102射流泵流体出口、
103射流泵低压气体入口、 201压縮气体工质出口、 202动力液体出口、 205散热结构、 206冷却器、 21 1喷嘴、 232散热器、 31 1旁通口、
2007发动机燃烧室、 2008热动力系统的进气道、 2010燃烧室、
201 1作功机构、 2200气体空间部位、 1 133汽化器、 1 122冲压管
具体实施方式 实施例 1
如图 1所示的动力流体气体工质压縮系统, 包括射流泵 1、 气液分离器 2、 高压液体泵 3和气体工质源 4, 射流泵 1的射流泵流体出口 102与气液分离器 2连通, 在气液分离器 2上设压縮气体工质出口 201和动力液体出口 202, 动 力液体出口 202与高压液体泵 3的液体入口连通, 高压液体泵 3的高压动力液 体出口与射流泵 1的射流泵动力流体喷射口 101连通,射流泵 1的射流泵低压 气体入口 103与气体工质源 4连通。
实施例 2
如图 2所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 压 縮气体工质出口 201与发动机燃烧室 2007连通, 即将开始作功的气体工质的 温度和压力符合类绝热关系。
实施例 3
如图 3所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 在 高压液体泵 3和射流泵动力流体喷射口 101之间设汽化器 1 133,所述高压液体 泵 (3) 的高压液体出口经所述汽化器 1133与所述射流泵动力流体喷射口 101 连通, 经高压液体泵 3加压的高压液体在汽化器 1 133内汽化形成高压蒸汽后 进入射流泵 1的射流泵动力流体喷射口 101。
实施例 4
如图 4所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 在 气液分离器 2上设散热结构 205。
实施例 5
如图 5所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 在 气液分离器 2内设冷却器 206。
具体实施时,还可以在所述气液分离器 2内设冷却器 206,和 /或在所述所 述动力液体出口 202和所述射流泵动力流体喷射口 101之间的液体流通通道上 设冷却器。
实施例 6
如图 6所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 在 高压液体泵 3的高压动力液体出口设旁通口 31 1,在气液分离器 2上设喷嘴 21 1 , 旁通口 31 1和喷嘴 21 1连通。
实施例 7
如图 7所示的动力流体气体工质压縮系统, 其与实施例 6的区别在于: 在 动力液体出口 202与高压液体泵 3之间设散热器 232。
如图 8所示的动力流体气体工质压縮系统, 其与实施例 6的区别在于: 在 高压液体泵 3与旁通口 31 1之间设散热器 232。
如图 9所示的动力流体气体工质压縮系统, 其与实施例 6的区别在于: 在 旁通口 31 1与喷嘴 21 1之间设散热器 232。
实施例 8
如图 10所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 压縮气体工质出口 201与热动力系统的进气道 2008连通。
实施例 9
如图 1 1所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于: 在所述射流泵 1的所述射流泵流体出口 102与所述气液分离器 2之间设冲压管 1 122, 自所述射流泵流体出口 102喷出的流体在所述冲压管 1 122中被压縮。
实施例 10
如图 12、 13、 14和图 15所示的动力流体气体工质压縮系统, 包括射流泵 1、 气液分离器 2、 高压液体泵 3和气体工质源 4, 第一个所述射流泵 1的射流 泵流体出口 102与第一个所述气液分离器 2连通, 在第一个所述气液分离器 2 上设动力液体出口 202, 所述动力液体出口 202与第一个所述高压液体泵 3的 液体入口连通, 第一个所述高压液体泵 3的高压动力液体出口与第一个所述射 流泵 1的射流泵动力流体喷射口 101连通, 第一个所述射流泵 1的射流泵低压 气体入口 103与所述气体工质源 4连通, 第二个所述射流泵 1的射流泵流体出 口 102与第二个所述气液分离器 2连通,在第二个所述气液分离器 2上设动力 液体出口 202, 所述动力液体出口 202与第二个所述高压液体泵 3的液体入口 连通, 第二个所述高压液体泵 3的高压动力液体出口与第二个所述射流泵 1的 射流泵动力流体喷射口 101连通,在第二个所述气液分离器 2的气体空间部位 2200上设压縮气体工质出口 201, 第二个所述射流泵 1的射流泵低压气体入口 103设在所述第一个所述气液分离器 2的气体空间部位 2200内或在第一个所述 气液分离器 2的气体空间部位 2200上设压縮气体工质出口 201,在于第一个所 述气液分离器 2的气体空间部位 2200上设压縮气体工质出口 201 的结构中, 第二个所述射流泵 1的射流泵低压气体入口 103与第一个所述气液分离器 2的 气体空间部位 2200的压縮气体工质出口 201连通; 或依此类推。
其中, 图 12 中所述射流泵和所述气液分离器设有两级, 每级中的所述气 液分离器的所述动力液体出口不经高压液体泵与所述射流泵的所述射流泵动 力流体喷射口连通, 动力液体可以由外部系统提供再回送给外部系统; 图 13 中所述射流泵和所述气液分离器设有三级,每级中的所述气液分离器的所述动 力液体出口不经高压液体泵与所述射流泵的所述射流泵动力流体喷射口连通, 动力液体可以由外部系统提供再回送给外部系统; 图 14中所述射流泵和所述 气液分离器设有两级; 图 15中所述射流泵和所述气液分离器设有三级。
具体实施时, 本实施例还可以有下述实施方式: 一种动力流体气体工质压 縮系统, 包括射流泵 1、 气液分离器 2、 高压液体泵 3和气体工质源 4, 第一个 所述射流泵 1的射流泵流体出口 102与第一个所述气液分离器 2连通,在第一 个所述气液分离器 2上设动力液体出口 202, 所述动力液体出口 202与所述高 压液体泵 3的液体入口连通,所述高压液体泵 3的高压动力液体出口与第一个 所述射流泵 1的射流泵动力流体喷射口 101连通, 第一个所述射流泵 1的射流 泵低压气体入口 103与所述气体工质源 4连通,
第二个所述射流泵 1的射流泵流体出口 102与第二个所述气液分离器 2连 通,在第二个所述气液分离器 2上设动力液体出口 202,所述动力液体出口 202 与所述高压液体泵 3的液体入口连通,所述高压液体泵 3的高压动力液体出口 与第二个所述射流泵 1的射流泵动力流体喷射口 101连通,在第二个所述气液 分离器 2的气体空间部位 2200上设压縮气体工质出口 201,第二个所述射流泵 1的射流泵低压气体入口 103设在所述第一个所述气液分离器 2的气体空间部 位 2200内或在第一个所述气液分离器 2的气体空间部位 2200上设压縮气体工 质出口 201,在于第一个所述气液分离器 2的气体空间部位 2200上设压縮气体 工质出口 201的结构中, 第二个所述射流泵 1的射流泵低压气体入口 103与第 一个所述气液分离器 2的气体空间部位 2200的压縮气体工质出口 201连通; 或依此类推。
实施例 11
如图 16所示的动力流体气体工质压縮系统, 其与实施例 12的区别在于: 在所述气体工质源 4和所述射流泵低压气体入口 103之间设压气机 1221。
具体实施时, 还可以在所述气体工质源 4和所述射流泵低压气体入口 103 之间, 和 /或在所述射流泵低压气体入口 103处, 和 /或在所述射流泵 1的低压 气体区 1 100内设压气机 1221; 或者在所述气液分离器 2的气体空间部位 2200 内, 和 /或在所述压縮气体工质出口 201处设压气机 1221。
实施例 12
如图 17所示的动力流体气体工质压縮系统, 其与实施例 1的区别在于- 所述压縮气体工质出口 201与燃烧室 2010连通,所述燃烧室 2010与作功机构 201 1连通,调整即将开始作功的气体工质的温度到 2000K以下,调整即将开始 作功的气体工质的压力到 15MPa以上,使即将开始作功的气体工质的温度和压 力符合类绝热关系。
显然, 本发明不限于以上实施例, 根据本领域的公知技术和本发明所公开 的技术方案, 可以推导出或联想出许多变型方案, 所有这些变型方案, 也应认 为是本发明的保护范围。

Claims

权 利 要 求
1、 一种动力流体气体工质压縮系统, 包括射流泵 (1 )、 气液分离器 (2)、 高压液体泵 (3)和气体工质源 (4), 其特征在于: 所述射流泵 (1 ) 的射流泵 流体出口 (102) 与所述气液分离器 (2) 连通, 在所述气液分离器 (2) 上设 动力液体出口 (202), 所述动力液体出口 (202) 与所述高压液体泵 (3) 的液 体入口连通, 所述高压液体泵 (3) 的高压动力液体出口与所述射流泵(1 ) 的 射流泵动力流体喷射口 (101 ) 连通, 所述射流泵 (1 ) 的射流泵低压气体入口
( 103) 与所述气体工质源 (4) 连通, 在所述气液分离器 (2) 的气体空间部 位 (2200) 上设压縮气体工质出口 (201 )。
2、 一种动力流体气体工质压縮系统, 包括射流泵 (1 )、 气液分离器 (2)、 高压液体泵 (3)和气体工质源 (4), 其特征在于: 第一个所述射流泵 (1 ) 的 射流泵流体出口 (102) 与第一个所述气液分离器 (2) 连通, 在第一个所述气 液分离器 (2) 上设动力液体出口 (202), 所述动力液体出口 (202) 与第一个 所述高压液体泵(3) 的液体入口连通, 第一个所述高压液体泵(3) 的高压动 力液体出口与第一个所述射流泵 (1 ) 的射流泵动力流体喷射口 (101 ) 连通, 第一个所述射流泵(1 ) 的射流泵低压气体入口 (103) 与所述气体工质源 (4) 连通,
第二个所述射流泵(1 ) 的射流泵流体出口 (102) 与第二个所述气液分离 器 (2) 连通, 在第二个所述气液分离器 (2) 上设动力液体出口 (202), 所述 动力液体出口 (202) 与第二个所述高压液体泵(3) 的液体入口连通, 第二个 所述高压液体泵(3) 的高压动力液体出口与第二个所述射流泵(1 ) 的射流泵 动力流体喷射口 (101 ) 连通, 在第二个所述气液分离器 (2) 的气体空间部位 (2200) 上设压縮气体工质出口 (201 ), 第二个所述射流泵 (1 ) 的射流泵低 压气体入口(103)设在所述第一个所述气液分离器(2)的气体空间部位(2200) 内或在第一个所述气液分离器 (2 ) 的气体空间部位 (2200) 上设压縮气体工 质出口 (201 ), 在于第一个所述气液分离器 (2) 的气体空间部位 (2200) 上 设压縮气体工质出口 (201 ) 的结构中, 第二个所述射流泵(1 ) 的射流泵低压 气体入口 (103) 与第一个所述气液分离器 (2) 的气体空间部位(2200) 的压 縮气体工质出口 (201 ) 连通; 或依此类推。
3、 一种动力流体气体工质压縮系统, 包括射流泵 (1)、 气液分离器 (2)、 高压液体泵 (3)和气体工质源 (4), 其特征在于: 第一个所述射流泵 (1) 的 射流泵流体出口 (102) 与第一个所述气液分离器 (2) 连通, 在第一个所述气 液分离器 (2)上设动力液体出口 (202), 所述动力液体出口 (202) 与所述高 压液体泵(3) 的液体入口连通, 所述高压液体泵 (3) 的高压动力液体出口与 第一个所述射流泵 (1) 的射流泵动力流体喷射口 (101)连通, 第一个所述射 流泵 (1) 的射流泵低压气体入口 (103) 与所述气体工质源 (4) 连通,
第二个所述射流泵(1) 的射流泵流体出口 (102) 与第二个所述气液分离 器 (2) 连通, 在第二个所述气液分离器 (2) 上设动力液体出口 (202), 所述 动力液体出口 (202) 与所述高压液体泵 (3) 的液体入口连通, 所述高压液体 泵(3) 的高压动力液体出口与第二个所述射流泵(1) 的射流泵动力流体喷射 口 (101) 连通, 在第二个所述气液分离器 (2) 的气体空间部位 (2200) 上设 压縮气体工质出口(201 ),第二个所述射流泵(1 )的射流泵低压气体入口(103) 设在所述第一个所述气液分离器 (2) 的气体空间部位 (2200) 内或在第一个 所述气液分离器(2) 的气体空间部位(2200) 上设压縮气体工质出口 (201), 在于第一个所述气液分离器 (2) 的气体空间部位 (2200) 上设压縮气体工质 出口 (201) 的结构中, 第二个所述射流泵 (1) 的射流泵低压气体入口 (103) 与第一个所述气液分离器 (2) 的气体空间部位 (2200) 的压縮气体工质出口 (201) 连通; 或依此类推。
4、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征在 于: 所述压縮气体工质出口 (201) 与发动机燃烧室 (2007) 连通或与热动力 系统的进气道(2008)连通,或所述压縮气体工质出口(201)与燃烧室(2010) 连通, 所述燃烧室 (2010) 与作功机构 (2011) 连通。
5、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征在 于: 在所述高压液体泵(3)和所述射流泵动力流体喷射口 (101) 之间设汽化 器 (1133), 所述高压液体泵 (3) 的高压液体出口经所述汽化器 (1133) 与所 述射流泵动力流体喷射口 (101) 连通, 经所述高压液体泵(3)加压的高压液 体在所述汽化器 (1133) 内汽化形成高压蒸汽后进入所述射流泵 (1) 的射流 泵动力流体喷射口 (101)。
6、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征在 于:在所述气液分离器(2)上设散热结构(205),和 /或在所述气液分离器(2) 内设冷却器 (206), 和 /或在所述动力液体出口 (202)和所述射流泵动力流体 喷射口 (101) 之间的液体流通通道上设冷却器 (206)。
7、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征在 于: 在所述高压液体泵 (3) 的高压动力液体出口设旁通口 (311), 在所述气 液分离器 (2) 上设喷嘴 (211), 所述旁通口 (311) 和所述喷嘴 (211) 连通。
8、 根据权利要求 7所述的动力流体气体工质压縮系统, 其特征在于: 在 所述动力液体出口(202)与所述旁通口(311)之间和 /或在所述旁通口(311) 与所述喷嘴 (211) 之间设散热器 (232)。
9、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征在 于:在所述射流泵流体出口(102)与所述气液分离器(2)之间设冲压管(1122), 自所述射流泵流体出口 (102) 喷出的流体在所述冲压管 (1122) 中被压縮。
10、 根据权利要求 1、 2或 3所述的动力流体气体工质压縮系统, 其特征 在于: 在所述气体工质源 (4) 和所述射流泵低压气体入口 (103) 之间, 和 / 或在所述射流泵低压气体入口 (103) 处, 和 /或在所述射流泵 (1) 的低压气 体区 (1100) 内, 和 /或在所述气液分离器 (2) 的气体空间部位 (2200) 内, 和 /或在所述压縮气体工质出口 (201) 处设压气机 (1221)。
11、一种提高权利要求 4所述动力流体气体工质压縮系统效率和环保性的 方法, 其特征在于: 调整即将开始作功的气体工质的温度到 2000K以下, 调整 即将开始作功的气体工质的压力到 15MPa以上,使即将开始作功的气体工质的 温度和压力符合类绝热关系。
PCT/CN2011/001034 2010-06-21 2011-06-21 动力流体气体工质压缩系统 WO2011160440A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201010203987 2010-06-21
CN201010203987.9 2010-06-21
CN201010287671.2 2010-09-20
CN201010287671 2010-09-20
CN201010521438.6 2010-10-27
CN201010521438 2010-10-27
CN201110063243.6 2011-03-16
CN201110063243 2011-03-16
CN201110067507.5 2011-03-21
CN201110067507 2011-03-21
CN201110128965.5 2011-05-18
CN201110128965 2011-05-18

Publications (1)

Publication Number Publication Date
WO2011160440A1 true WO2011160440A1 (zh) 2011-12-29

Family

ID=45370858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001034 WO2011160440A1 (zh) 2010-06-21 2011-06-21 动力流体气体工质压缩系统

Country Status (2)

Country Link
CN (1) CN102588080B (zh)
WO (1) WO2011160440A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249418A (zh) * 1998-09-25 2000-04-05 毛强 增压闪蒸制冷方法和装置
CN2518585Y (zh) * 2001-12-20 2002-10-30 沈阳化工研究院 气喷动外环流反应装置
CN2549236Y (zh) * 2002-05-27 2003-05-07 中国成达化学工程公司 分离和冷却一体化的液环泵
CN201818358U (zh) * 2010-06-21 2011-05-04 靳北彪 流体气相工质压缩系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109373A (zh) * 1985-12-24 1986-09-03 张宝鸡 内燃机蒸汽喷射式增压方法
CN1052927A (zh) * 1989-12-16 1991-07-10 杨业勋 湿式进气内燃机
US5611204A (en) * 1993-11-12 1997-03-18 Cummins Engine Company, Inc. EGR and blow-by flow system for highly turbocharged diesel engines
CN2315305Y (zh) * 1997-11-13 1999-04-21 韦升永 内燃机射流增压装置
US6886544B1 (en) * 2004-03-03 2005-05-03 Caterpillar Inc Exhaust gas venturi injector for an exhaust gas recirculation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249418A (zh) * 1998-09-25 2000-04-05 毛强 增压闪蒸制冷方法和装置
CN2518585Y (zh) * 2001-12-20 2002-10-30 沈阳化工研究院 气喷动外环流反应装置
CN2549236Y (zh) * 2002-05-27 2003-05-07 中国成达化学工程公司 分离和冷却一体化的液环泵
CN201818358U (zh) * 2010-06-21 2011-05-04 靳北彪 流体气相工质压缩系统

Also Published As

Publication number Publication date
CN102588080A (zh) 2012-07-18
CN102588080B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
US10996003B2 (en) Loop heat pipe with vapor-liquid two-phase flow injector
CN102364071B (zh) 涡轮气缸低熵发动机
CN203257540U (zh) 含氧气体液化物发动机
WO2011160439A1 (zh) 压气回流压缩系统
JPS63302169A (ja) ガス焚きディ−ゼルエンジンのガス供給装置
CN102748125B (zh) 高压涡轮活塞复合热动力系统及提高其效率的方法
JP3455765B2 (ja) 液化天然ガスの保存・輸送方法および装置
WO2011160441A1 (zh) 热冲压发动机
CN105509359B (zh) 一种相变波转子自复叠制冷系统及其工作方法
JP2019501059A (ja) エンジンを備える船舶
WO2011160440A1 (zh) 动力流体气体工质压缩系统
CN202132101U (zh) 动力流体气体工质压缩系统
CN201818358U (zh) 流体气相工质压缩系统
WO2011160432A1 (zh) 高效射流泵
CN202273762U (zh) 涡轮增压气体压缩系统
WO1999017001A1 (fr) Moteur de puissance
WO2019128919A1 (zh) 内燃机余热利用系统
US20190292986A1 (en) Gas turbine system
CN202273752U (zh) 涡轮气缸低熵发动机
CN202132112U (zh) 压气回流压缩系统
JP2824946B2 (ja) 断熱型パルス管式冷凍機
CN102748118A (zh) 单工质连续燃烧室活塞热动力系统
CN210861776U (zh) 一种带有涡流管的双级压缩制冷系统
CN205561328U (zh) 一种利用涡流分压的压缩式双温热泵装置
CN102383972A (zh) 内燃液体发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797471

Country of ref document: EP

Kind code of ref document: A1