WO2019128919A1 - 内燃机余热利用系统 - Google Patents

内燃机余热利用系统 Download PDF

Info

Publication number
WO2019128919A1
WO2019128919A1 PCT/CN2018/123077 CN2018123077W WO2019128919A1 WO 2019128919 A1 WO2019128919 A1 WO 2019128919A1 CN 2018123077 W CN2018123077 W CN 2018123077W WO 2019128919 A1 WO2019128919 A1 WO 2019128919A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
cooling medium
storage tank
energy
Prior art date
Application number
PCT/CN2018/123077
Other languages
English (en)
French (fr)
Inventor
朱珍珍
朱林
Original Assignee
朱珍珍
朱林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱珍珍, 朱林 filed Critical 朱珍珍
Priority to EP18896636.0A priority Critical patent/EP3734051A4/en
Priority to KR1020207017887A priority patent/KR20200090850A/ko
Priority to JP2020554357A priority patent/JP2021508018A/ja
Publication of WO2019128919A1 publication Critical patent/WO2019128919A1/zh
Priority to US16/899,675 priority patent/US11066974B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an efficient energy-saving waste heat utilization technology for an internal combustion engine.
  • the direct fuel efficiency of the mainstream mass-produced gasoline internal combustion engine is about 30%.
  • a few mass-produced engines with supercharging technology can reach about 40%, such as advanced gasoline engines such as BMW.
  • the bottleneck that restricts efficiency is mainly the technical and physical problems of friction, fuel sufficiency, etc. that need to be overcome.
  • cycle efficiency mechanical efficiency, combustion efficiency, gas chamber efficiency, airtight efficiency and manufacturing process.
  • Technology and so on At present, many laboratories and automobile manufacturers are striving to improve overall efficiency, such as composite ceramic cylinder technology, thermoelectric conversion (recovery energy technology), supercharging technology, fuel efficiency (ignition, atomization), etc.
  • thermoelectric conversion the power output efficiency of the whole vehicle is strictly not the direct efficiency of the engine.
  • the internal combustion engine is a very wasteful mechanical device: only 1/3 of the energy contained in the fuel is converted into mechanical motion by the internal combustion engine, driving the car to travel, and the rest of the energy is wasted through the exhaust pipe. In order to keep the temperature of the internal combustion engine from being too high, the heat absorbed by the circulating fluid is dissipated to the heat sink.
  • the current commonly used methods mainly include the use of fuel treasure, turbocharged, frequent cleaning of the gas circuit, etc.
  • the use of fuel treasure can fully fuel the fuel, improve the efficiency of fuel use, use turbocharged energy
  • make the kinetic energy of the internal combustion engine more powerful, improve the efficiency of use, and often clean the gas path oil circuit can also improve the efficiency of the fuel and increase the kinetic energy.
  • these methods can only improve the efficiency from a small amount on the surface in practical applications, and cannot fundamentally Significantly improve fuel utilization. Therefore, how to recover energy has always been an important technical issue and a development trend of future internal combustion engine technology.
  • the object of the present invention is to provide an efficient energy-saving waste heat utilization technology for an internal combustion engine, which fully utilizes the residual heat of the internal combustion engine and the exhaust heat of the exhaust gas, and generates high-pressure gas generated by the low-boiling substance under normal pressure to promote the output kinetic energy of the steam turbine, and converts the recovered waste heat into kinetic energy, thereby improving The efficiency of fuel use, increase the energy conversion rate of internal combustion engines, save energy, and reduce the pollution of exhaust gas to the atmosphere.
  • the technical solution adopted for achieving the object of the present invention is to install a circulation system on the internal combustion engine, the circulation system includes a cooling medium, a cooling medium storage tank, a cooling medium conveying pipe, a circulation pump, a high pressure pipeline, an energy storage tank, a steam turbine, and a heat dissipation.
  • the cooling medium is a low-boiling substance under normal pressure
  • the cooling medium storage tank is connected to the circulating pump through a cooling medium conveying pipe, and the circulating pump is connected to the circulating liquid inlet of the internal combustion engine via a connecting pipe; and a sealing is arranged on the outer wall of the exhaust pipe of the internal combustion engine
  • the mezzanine layer connects the circulating fluid outlet of the internal combustion engine to one end of the exhaust pipe interlayer, and the other end of the exhaust pipe interlayer is connected to the energy storage tank through a high-pressure pipe.
  • the energy storage tank is connected to the steam turbine, and the output end of the steam turbine outputs kinetic energy, and the gas-liquid mixture after work is completed. After entering the heat sink, completely liquefy, enter the cooling medium storage tank and proceed to the next cycle.
  • the cooling medium is a liquid substance having a boiling point of 35 to 65 degrees under normal pressure.
  • the cooling medium is preferably vinegar, dichloromethane, t-butyl bromoacetate or methanol.
  • the steam turbine uses one or more stages of steam turbines.
  • the positive effect of the invention is that the whole system has a simple structure and is easy to install, and can fully utilize the residual heat of the internal combustion engine and the waste heat of the exhaust gas, and the low-boiling substance under normal pressure absorbs heat and then gasifies to generate high-pressure gas to promote the output kinetic energy of the steam turbine, and the waste heat to be recovered. It is converted into kinetic energy, which in turn improves the efficiency of fuel use, increases the energy conversion rate of internal combustion engines, saves energy, and reduces the pollution of exhaust gas to the atmosphere.
  • Figure 1 is a working principle diagram of the present invention.
  • a circulating system is installed on the internal combustion engine 4, and the circulating system includes a cooling medium, a cooling medium storage tank 9, a cooling medium conveying pipe 8, a circulation pump 7, a high pressure pipe 15, and a storage.
  • the energy tanks 14, 12, the steam turbines 13, 11, the radiator 10, the cooling medium storage tank 9 are connected to the circulation pump 7 via the cooling medium delivery pipe 8, and the circulation pump 7 is connected to the circulating fluid inlet of the internal combustion engine 4 via the connection pipe 6;
  • the outer wall of the exhaust pipe 1 is provided with a closed interlayer 2, and the circulating liquid outlet of the internal combustion engine 4 is connected to one end of the interlayer 2 of the exhaust pipe, and the other end of the interlayer 2 of the exhaust pipe is connected to the first energy storage tank 14 via a high pressure pipe 15.
  • the first energy storage tank 14 is connected to the first-stage steam turbine 13, and the output end of the first-stage steam turbine 13 outputs kinetic energy, and the high-pressure high-temperature gas after the work enters the second energy storage tank 12, and the second energy storage tank 12 is connected to the second-stage steam turbine 11 to perform work.
  • the subsequent gas-liquid mixture enters the radiator 10 to be cooled, and after complete liquefaction, enters the cooling medium storage tank 9 for the next cycle.
  • the cooling medium is a liquid substance having a boiling point of 35 to 65 degrees under normal pressure, such as dichloromethane, methanol, etc.
  • the cooling medium storage tank 9 is connected to the circulation pump via a cooling medium conveying pipe, and the circulation pump 7 is connected to the internal combustion engine 4 via the connecting pipe 6. Circulating fluid inlet.
  • the circulation pump 7 When the machine is working, the circulation pump 7 is started, the cooling medium enters from the circulating liquid inlet of the internal combustion engine 4, and the residual heat of the internal combustion engine is absorbed by the cooling medium of the internal combustion engine 4, and the cooling medium from the circulating fluid outlet of the internal combustion engine is initially heated and then enters the exhaust pipe.
  • the interlayer 2 absorbs the residual heat of the exhaust gas again. Since the operating temperature of the internal combustion engine is generally maintained at about 90, and the temperature of the exhaust gas of the internal combustion engine is generally several hundred degrees, the medium that is initially heated by the internal combustion engine 4 generally reaches a working temperature of about 90 degrees, and then comes out into the interlayer 2 of the exhaust pipe. After a few Baidu's exhaust gas heating.
  • the pressure of the cooling medium that has entered the high pressure pipe 15 and absorbs the preheating is rapidly increased.
  • the high-temperature and high-pressure temperature-reducing medium in the high-pressure pipe 15 enters the first energy storage tank 14, it rapidly vaporizes due to the sudden increase of the volume of the container, forming a high-temperature and high-pressure gas, and the high-pressure gas then enters the first-stage steam turbine 13, and the high-temperature high-pressure gas passes through the first-stage steam turbine 13 Converting thermal energy into kinetic energy, for example, by connecting a shaft or driving a generator to generate electricity or by a flexible drive shaft to help the mainframe work together (the patent application is additionally patented in this section), the temperature and pressure of the cooling medium after the work of the first-stage steam turbine 13 are greatly increased.
  • the reduction of the secondary steam turbine 11 can also be continued to reduce the temperature and pressure, and after the secondary steam turbine 11 is cooled down by the work, the gas-liquid mixture enters the radiator 10.
  • the radiator 10 is equipped with an electric fan and a temperature sensor, and the temperature sensor is set at a temperature lower than the liquefaction temperature of the cooling medium. If the temperature reducing medium is cooled down by the secondary steam turbine, the liquefaction temperature is still not reached, and the heat sink 10 is The electronic fan is activated, and finally the temperature of the cooling medium passing through the radiator 10 reaches the liquefaction temperature, and the liquefied cooling medium enters the cooling medium storage tank 9 through the pipeline, and then enters the circulation system piping of the internal combustion engine.
  • a temperature sensor 5 is installed at a cooling cylinder of the combustion of the cylinder block of the internal combustion engine.
  • the temperature sensor is connected to the circulation pump 7, and the operating temperature of the internal combustion engine is set on the temperature sensor 5. If the operating temperature of the internal combustion engine 4 is higher than the set temperature, the circulating pump 7 Start the work and stop below the set temperature to ensure the normal operation of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种内燃机余热利用系统,包括降温介质、降温介质储罐(9)、降温介质输送管(8)、循环泵(7)、高压管道(15)、储能罐(14,12)、汽轮机(13,11)、散热器(10),降温介质通过吸收内燃机和尾气余热而形成高温高压气体,以此带动汽轮机做功,将热能转变为动能。

Description

[根据细则37.2由ISA制定的发明名称] 内燃机余热利用系统 技术领域
本发明涉及一种内燃机高效节能余热利用技术。
背景技术
据资料介绍,目前主流的量产汽油内燃机的直接燃油效率在30%上下,有少数采用增压技术的量产发动机可以达到40%左右,比如BMW等先进量产的汽油发动机。制约效率的瓶颈主要在做功是需要克服的摩擦力、燃油的充分性等等的技术物理问题,因素有很多,比如循环效率、机械效率、燃烧效率、气室效率、气密性效率及制造工艺技术等等。目前很多实验室以及汽车厂家都在致力提高综合效率,比如复合陶瓷缸体技术、热电转换(回收能量技术)、增压技术、燃油效率(点火、雾化)等等,理论效率高的能达到60%左右,主要是低摩擦技术、热电转换的混合动力输出(整车的动力输出效率,严格说并不是发动机的直接效率)。 从本质上来讲,内燃机是一种非常浪费的机械设备:燃料中所蕴含的能量只有1/3被内燃机转换为机械运动,驱动汽车行驶,而其余的能量一部分通过排气管白白浪费掉了,一部分为了使内燃机工作时温度不至于过高,通过循环液吸收的热量到散热片处被白白的散发掉了。
技术问题
为了提高汽车燃油效率节省能量,目前常用的方法主要有使用燃油宝、涡轮增压、经常清洗气路油路等,使用燃油宝能使燃料充分燃烧,提高燃料的使用效率,使用涡轮增压能使内燃机动能更加强劲,提高使用效率,经常清洗气路油路也能使燃料的效率提高增加动能,但是这几种方法在实际应用中也只能从表面上少量提高一点效率,不能从根本上大幅度提高燃料的利用率。因此,如何回收能量一直都是一项重要的技术课题,也是未来内燃机技术的一个发展趋势。
技术解决方案
本发明的目的是:提供一种内燃机高效节能余热利用技术,充分利用内燃机余热和尾气余热,通过常压下低沸点物质产生高压气体推动汽轮机输出动能,亦即将回收的余热转化为动能,继而提高燃料的使用效率、提高内燃机的能量转化率,节省能源,减少尾气排放对大气的污染。
实现本发明目的所采用的技术方案是:在内燃机上安装一套循环系统,该循环系统包括降温介质、降温介质储罐、降温介质输送管、循环泵、高压管道、储能罐、汽轮机、散热器,降温介质为常压下低沸点物质,降温介质储罐经降温介质输送管连接循环泵,循环泵经连接管连接在内燃机的循环液进口上;在内燃机的排气管外壁设有一个密闭的夹层,将内燃机的循环液出口连接在排气管夹层一端,排气管夹层另一端经高压管道连接储能罐,储能罐连接汽轮机,汽轮机的输出端输出动能,做功后的气液混合物进入散热片,完全液化后进入降温介质储罐,进行下一循环。
降温介质为常压下沸点为35至65度的液体物质。
降温介质优选醋、二氯甲烷、溴乙酸叔丁酯、甲醇。
汽轮机采用一级或多级汽轮机。
有益效果
本发明的积极效果是:整套系统结构简单,容易安装,能充分利用内燃机余热和尾气余热,通过常压下低沸点的物质吸热后气化产生高压气体推动汽轮机输出动能,亦即将回收的余热转化为动能,继而提高燃料的使用效率、提高内燃机的能量转化率,节省能源,减少尾气排放对大气的污染。
附图说明
附图1为本发明工作原理图。
本发明的实施方式
本发明的工作原理如附图1所示,在内燃机4上安装一套循环系统,该循环系统包括降温介质、降温介质储罐9、降温介质输送管8、循环泵7、高压管道15、储能罐14、12、汽轮机13、11、散热器10,降温介质储罐9经降温介质输送管8连接循环泵7,循环泵7经连接管6连接内燃机4的循环液进口;在内燃机4的排气管1外壁设有一个密闭的夹层2,将内燃机4的循环液出口连接在排气管的夹层2一端,排气管的夹层2另一端经一个高压管道15连接第一储能罐14,第一储能罐14连接一级汽轮机13,一级汽轮机13的输出端输出动能,做功后的高压高温气体进入第二储能罐12,第二储能罐12连接二级汽轮机11,做功后的气液混合物进入散热器10冷却,完全液化后进入降温介质储罐9,进行下一循环。
降温介质为常压下沸点为35至65度的液体物质,如二氯甲烷、甲醇等,降温介质储罐9经降温介质输送管连接循环泵,循环泵7经连接管6连接在内燃机4的循环液进口上。
工业实用性
机器工作时,循环泵7启动,降温介质从内燃机4的循环液入口进入,经过内燃机4的降温介质吸收内燃机余热被加热,从内燃机循环液出口出来的降温介质被初步加热后进入排气管的夹层2,再次吸收尾气余热。由于内燃机的工作温度一般保持在90左右,而内燃机排气的温度一般都为几百度,经过内燃机4初步加热的介质一般都达到工作温度90度左右,然后出来进入排气管的夹层2内,再经过几百度的尾气加热。由于降温介质的温度被大幅度提高而又大大的超过本介质的沸点温度,所以进入高压管道15内的吸收了预热的降温介质压力迅速增高。高压管道15内的高温高压降温介质进入第一储能罐14后由于容器体积突然增大而迅速气化,形成高温高压气体,高压气体随后进入一级汽轮机13,高温高压气体经过一级汽轮机13将热能转化为动能做功,比如可通过连接轴或者带动发电机发电或者通过柔性传动轴帮助主机一起做功(本部分内容另外申请专利),经过一级汽轮机13做功后的降温介质温度和压力大幅度的降低,还可设置二级汽轮机11继续降温降压,经过二级汽轮机11做功降温降压后,气液混合物进入散热器10。散热器10安装有电子扇和温度传感器,温度传感器设定温度为低于本降温介质的液化温度,如果降温介质经过二级汽轮机降温降压后仍达不到液化的温度,散热器10上的电子扇启动,最终使通过散热器10的降温介质达到液化的温度,液化后的降温介质通过管道进入降温介质储罐9,然后进入内燃机循环系统管道。在内燃机缸体燃烧的冷却缸处安装有温度传感器5,此温度传感器和循环泵7相连,在温度传感器5上设定内燃机的工作温度,如果内燃机4的工作温度高于设定温度,循环泵7就启动工作,低于设定温度就停止,以此来保证内燃机的正常工作。

Claims (4)

  1. 一种内燃机高效节能余热利用技术,其特征在于:在内燃机上安装一套循环系统,该循环系统包括降温介质、降温介质储罐、降温介质输送管、循环泵、高压管道、储能罐、汽轮机、散热器,降温介质为常压下低沸点物质,降温介质储罐经降温介质输送管连接循环泵,循环泵经连接管连接在内燃机的循环液进口上;在内燃机的排气管外壁设有一个密闭的夹层,将内燃机的循环液出口连接在排气管夹层一端,排气管夹层另一端经高压管道连接储能罐,储能罐连接汽轮机,汽轮机的输出端输出动能,做功后的气液混合物进入散热片,完全液化后进入降温介质储罐,进行下一循环。
  2. 根据权利要求1所述的内燃机高效节能余热利用技术,其特征在于:降温介质为常压下沸点为35至65度的液体物质。
  3. 根据权利要求2所述的内燃机高效节能余热利用技术,其特征在于:降温介质优选醋、二氯甲烷、溴乙酸叔丁酯、甲醇。
  4. 根据权利要求1所述的内燃机高效节能余热利用技术,其特征在于:汽轮机采用一级或多级汽轮机。
     
PCT/CN2018/123077 2017-12-28 2018-12-24 内燃机余热利用系统 WO2019128919A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18896636.0A EP3734051A4 (en) 2017-12-28 2018-12-24 HEAT RECOVERY SYSTEM FOR COMBUSTION ENGINE
KR1020207017887A KR20200090850A (ko) 2017-12-28 2018-12-24 내연기관 여열 이용시스템
JP2020554357A JP2021508018A (ja) 2017-12-28 2018-12-24 内燃機関の余熱利用システム
US16/899,675 US11066974B2 (en) 2017-12-28 2020-06-12 Internal combustion engine waste heat utilization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711457764.3A CN107893710A (zh) 2017-12-28 2017-12-28 内燃机高效节能余热利用技术
CN201711457764.3 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/899,675 Continuation US11066974B2 (en) 2017-12-28 2020-06-12 Internal combustion engine waste heat utilization system

Publications (1)

Publication Number Publication Date
WO2019128919A1 true WO2019128919A1 (zh) 2019-07-04

Family

ID=61808437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123077 WO2019128919A1 (zh) 2017-12-28 2018-12-24 内燃机余热利用系统

Country Status (6)

Country Link
US (1) US11066974B2 (zh)
EP (1) EP3734051A4 (zh)
JP (1) JP2021508018A (zh)
KR (1) KR20200090850A (zh)
CN (1) CN107893710A (zh)
WO (1) WO2019128919A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893710A (zh) * 2017-12-28 2018-04-10 朱珍珍 内燃机高效节能余热利用技术
CN109707512A (zh) * 2019-02-01 2019-05-03 至玥腾风科技投资集团有限公司 一种余热回收装置及增程式电动汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003434Y (zh) * 2006-11-03 2008-01-09 孙诚刚 一种内燃机余热回收转换动力装置
CN101285432A (zh) * 2007-04-14 2008-10-15 王庆礼 热能二次转换高效内燃机
CN102606289A (zh) * 2012-03-23 2012-07-25 苏州鑫瑞汽车节能技术有限公司 内燃机废热综合利用系统
CN104265502A (zh) * 2014-07-25 2015-01-07 天津大学 复合式柴油机余热能回收系统
CN107893710A (zh) * 2017-12-28 2018-04-10 朱珍珍 内燃机高效节能余热利用技术
CN207795421U (zh) * 2017-12-28 2018-08-31 朱珍珍 内燃机高效节能余热利用系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069220A (ja) * 1983-08-30 1985-04-19 Mitsubishi Heavy Ind Ltd 廃熱回収システム
JP2000345835A (ja) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd 内燃機関
JP3767785B2 (ja) * 1999-10-22 2006-04-19 本田技研工業株式会社 エンジンの排熱回収装置
DE102005048795B3 (de) * 2005-10-12 2006-12-28 Köhler & Ziegler Anlagentechnik GmbH Kraft-Wärme-Kopplungsanlage
US8528333B2 (en) * 2007-03-02 2013-09-10 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy
JP5481737B2 (ja) * 2010-09-30 2014-04-23 サンデン株式会社 内燃機関の廃熱利用装置
CN102061970A (zh) * 2010-11-29 2011-05-18 北京丰凯换热器有限责任公司 一种利用车辆尾气发电的方法
SE535318C2 (sv) * 2010-12-01 2012-06-26 Scania Cv Ab Arrangemang och förfarande för att omvandla värmeenergi till mekanisk energi
CN102748895B (zh) * 2012-06-28 2014-10-22 烟台大学 基于第三工作介质发电的燃气热泵供能系统
US8893495B2 (en) * 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
CN102787943B (zh) * 2012-08-30 2014-10-29 中国科学院广州能源研究所 一种应用有机工质为冷却液的发动机余热回收利用系统
JP2014092042A (ja) * 2012-11-01 2014-05-19 Toyota Motor Corp ランキンサイクルシステム
JP6064575B2 (ja) * 2012-12-17 2017-01-25 いすゞ自動車株式会社 内燃機関の排熱回収装置と内燃機関の排熱回収方法
CN203655395U (zh) * 2013-11-01 2014-06-18 孟宁 一种低温型有机朗肯循环汽车余热发电设备
DE102013021578A1 (de) 2013-12-19 2014-07-31 Daimler Ag Abwärmenutzungsanlage
AT517911B1 (de) 2015-07-10 2018-03-15 Avl List Gmbh Verfahren und steuerung eines abwärmenutzungssystems für eine brennkraftmaschine
KR101755808B1 (ko) * 2015-07-13 2017-07-07 현대자동차주식회사 폐열회수시스템
CN105464730B (zh) * 2016-01-07 2017-08-11 上海维尔泰克螺杆机械有限公司 一种低温烟气以及低温热流体的余热回收系统
DE102017201206A1 (de) 2017-01-25 2018-07-26 Mahle International Gmbh Abwärmenutzungseinrichtung für ein Elektrofahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003434Y (zh) * 2006-11-03 2008-01-09 孙诚刚 一种内燃机余热回收转换动力装置
CN101285432A (zh) * 2007-04-14 2008-10-15 王庆礼 热能二次转换高效内燃机
CN102606289A (zh) * 2012-03-23 2012-07-25 苏州鑫瑞汽车节能技术有限公司 内燃机废热综合利用系统
CN104265502A (zh) * 2014-07-25 2015-01-07 天津大学 复合式柴油机余热能回收系统
CN107893710A (zh) * 2017-12-28 2018-04-10 朱珍珍 内燃机高效节能余热利用技术
CN207795421U (zh) * 2017-12-28 2018-08-31 朱珍珍 内燃机高效节能余热利用系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734051A4 *

Also Published As

Publication number Publication date
US11066974B2 (en) 2021-07-20
EP3734051A1 (en) 2020-11-04
KR20200090850A (ko) 2020-07-29
US20200300147A1 (en) 2020-09-24
EP3734051A4 (en) 2021-10-27
JP2021508018A (ja) 2021-02-25
CN107893710A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN102410054A (zh) 基于有机朗肯循环的发动机排气余热回收控制系统及方法
CN103775243A (zh) 循环利用发动机冷却液的汽车余热发电技术
CN104196611A (zh) 一种汽车尾气蒸汽涡轮转化系统
CN102748124A (zh) 一种利用内燃机废气余热能实现进气增压的装置
US11066974B2 (en) Internal combustion engine waste heat utilization system
CN102787889A (zh) 柴油机排气余热双效回收系统
CN101328828A (zh) 一种内燃机涡轮增压系统
CN104929805A (zh) 再热式有机朗肯循环技术的车用发动机余热回收装置
CN208594974U (zh) 一种采用压缩式热泵的燃气蒸汽联合循环余热利用机组
US20130291826A1 (en) Systems and vehicles incorporating improved engine cooling and energy generation
CN102174906B (zh) 一种汽车电涡流缓速器制动热能回收利用装置及控制方法
CN206397617U (zh) 油气液多源联用温差发电的节能柴油机
CN103726950B (zh) 二冲程内燃机双回路余热回收系统
CN204877711U (zh) 一种采用闭式布列顿循环的汽车尾气余热发电装置
WO2014183636A1 (zh) 一种超临界内燃直流蒸汽发动机组
CN202266346U (zh) 基于有机朗肯循环的发动机排气余热回收控制系统
CN204984638U (zh) 一种再热式有机朗肯循环技术的车用发动机余热回收装置
JP4595134B2 (ja) インパルスタービン型複合原動機
CN102900511A (zh) 工况自适应排气能量回收系统
CN209892309U (zh) 一种发动机排气系统废气能量回收装置
CN201448144U (zh) 内燃机新型高效节能装置
CN110388241B (zh) 一种汽车发动机废热回收热力循环系统
CN108644021B (zh) 一种车载发动机排气能量多级联合回收控制方法
CN104533604B (zh) 一种基于活塞膨胀机的发动机余热回收系统
CN2481853Y (zh) 发动机热能、废气能量回收再利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554357

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017887

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896636

Country of ref document: EP

Effective date: 20200728