WO2011160439A1 - 压气回流压缩系统 - Google Patents

压气回流压缩系统 Download PDF

Info

Publication number
WO2011160439A1
WO2011160439A1 PCT/CN2011/001033 CN2011001033W WO2011160439A1 WO 2011160439 A1 WO2011160439 A1 WO 2011160439A1 CN 2011001033 W CN2011001033 W CN 2011001033W WO 2011160439 A1 WO2011160439 A1 WO 2011160439A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
gas
gas outlet
jet pump
return passage
Prior art date
Application number
PCT/CN2011/001033
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
Jin Beibiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Beibiao filed Critical Jin Beibiao
Publication of WO2011160439A1 publication Critical patent/WO2011160439A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection

Definitions

  • This invention relates to the field of gas compression, engine and jet propulsion, and more particularly to a gas compression system.
  • gas compression is an important process.
  • impeller compression is an important process.
  • piston compression is an important process.
  • the efficiency of gas compression is low.
  • How to simplify the structure, increase the compression ratio of the compression system, and improve the gas compression efficiency are important issues for energy conservation and environmental protection in the field of gas compression, engine and jet propulsion. To this end, a new technical solution needs to be invented to solve such problems.
  • a compressed air recirculation compression system includes a return passage, a compression boost system, a compression boost system intake port, and a compression boost system gas outlet, the compression boost system intake port and the compression a pressurization system is in communication, the compression boosting system is in communication with the compressed boost system gas outlet, and the compressed booster system gas outlet is connected to the compressed booster system intake passage via the return passage a gas injection direction of the gas outlet of the return passage is generally directed by a gas flow direction in an intake port of the compression ram system at a gas outlet of the return passage, and a gas injection of a gas outlet of the return passage a velocity greater than a gas flow velocity in the inlet of the compression boosting system at a gas outlet of the return passage, a ratio of a flow rate of the refluxed gas in the return passage to a gas flow of the compressed boost system gas outlet More than 5% to increase the total gas pressure at the gas inlet of the compression booster system, thereby increasing the gas pressure at the gas outlet of the compression booster system.
  • the compressed air recirculation compression system further includes a jet pump, the intake port of the compression boosting system sequentially passing through a jet pump low pressure gas inlet of the jet pump, a jet pump gas outlet of the jet pump, and the compression increase a pressure system communication, a jet pump passage connecting the jet pump low pressure gas inlet and the jet pump gas outlet to form a portion of the compression booster system air passage, the gas outlet of the return passage being The jet pump power gas injection port of the jet pump.
  • Providing a jet pump in the inlet of the compression boosting system wherein a gas flow direction of the jet pump gas outlet of the jet pump is in the inlet of the compression boosting system where the jet pump gas outlet is located
  • the gas flow direction is the overall orientation, and the gas outlet of the return passage is set as the jet pump power gas injection port of the jet pump.
  • the return passage is disposed within a housing wall of the compression booster system.
  • the compression boosting system is an axial flow compressor/diameter compressor, and the return passage is provided in a rotating shaft of the axial compressor/diameter compressor.
  • a finished compressed gas outlet is provided at the compressed pressurization system gas outlet, and/or the compressed booster system gas outlet is in communication with the combustion chamber, the combustion chamber being in communication with the work mechanism.
  • a finished compressed gas outlet is provided at the jet pump gas outlet, and/or the jet pump gas outlet is in communication with the combustion chamber, the combustion chamber being in communication with the working mechanism.
  • the compression boosting system is set as a turbocharger compressor of the internal combustion engine, or the compression boosting system is set as a gas turbine compressor, or the compression boosting system is set as a jet engine compressor, or the compression
  • the booster system is set to a piston compressor.
  • the compression boosting system is configured as a ramjet intake port, the compressed boosting system intake port is set as a low static pressure zone of the ramjet intake port, and the compressed boosting system gas outlet is provided It is a high static pressure zone of the ramjet engine intake.
  • a return channel heating chamber is provided on the return passage, and/or a control valve is provided on the return passage.
  • a control valve is provided on the return passage.
  • a method for improving the efficiency and environmental protection of the gas pressure recirculation compression system adjusting the temperature of the gas working medium to be started to work below 2000K, adjusting the pressure of the gas working medium to be started to work to 15 Pa or more, so that The temperature and pressure of the gaseous working fluid that starts to work are in a class of adiabatic relationships.
  • a compressed air recirculation compression system includes a return passage, a compression boost system, a compression boost system intake port, and a compression boost system gas outlet, the compression boost system intake port and the compression a supercharging system is connected, the compression boosting system is in communication with the compressed boosting system gas outlet, the compression boosting system is configured as a multi-stage compressor, and a certain stage of the multi-stage compressor is compressed.
  • Gas outlet of the machine through the reflux The passage is in communication with a gas inlet of the compressor of the stage and/or a gas inlet of a higher stage compressor, and a gas injection direction of the gas outlet of the return passage is a gas outlet of the return passage at a gas outlet of the return passage
  • the peripheral gas flow direction is an overall orientation, and the gas injection velocity of the gas outlet of the return passage is greater than the gas flow velocity of the gas outlet periphery of the return passage at the gas outlet of the return passage.
  • a return gas nozzle is disposed in the inlet of the compression and boosting system, a gas outlet of the return passage is in communication with the return gas nozzle, and a return gas outlet is provided on the gas outlet of the compressed pressurization system.
  • the compressed pressurization system gas outlet is in communication with the inlet of the compression boosting system via the return gas outlet, the return passage and the return gas nozzle.
  • the compressed air recirculation compression system further includes a two-in-one-out deep-connecting tee, the gas outlet of the return passage is in communication with a gas inlet of the two-in-one-out deep-connecting tee, the compression boost a system inlet port communicates with the compression pressurization system via a gas inlet of the two inlet and outlet deep insertion tees through the two gas inlets of the two inlet and outlet deep tee pipes, the pressure
  • the condensing system gas outlet is in communication with the gas inlet of the return passage.
  • the object of the invention is to increase the pressure ratio of the gas compression system.
  • the ratio of the flow rate of the refluxed gas in the return channel to the gas flow rate of the gas outlet of the compressed pressurization system is greater than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more than 95% to increase the gas inlet of the compression pressurization system
  • the total pressure of the gas thereby increasing the gas pressure at the gas outlet of the compression booster system.
  • the compressed gas in the gas outlet of the compression boosting system is partially or completely returned to the intake port of the compression boosting system
  • the compression boosting system may include a power source or external power.
  • the source inputs power to it.
  • the so-called finished compressed gas refers to the compressed gas that is externally outputted by the compressed gas reflux compression system;
  • the so-called compressed pressurized system refers to any system that can compress and pressurize the gas, such as impeller type compressed gas.
  • the two-in-one-out deep-connecting tee pipe is composed of three pipes connected to each other, wherein
  • the two tubes are fluid inflow tubes, one tube is a fluid outflow tube, and at least one of the two fluid inflow tubes is inserted into a tee tube in the fluid outflow tube.
  • the so-called compression pressurization system refers to any system that can compress and pressurize a gas, and does not include a liquid pump.
  • the compressed air recirculation compression system may be used alone or in parallel or in series to meet the requirements for the finished compressed gas.
  • the so-called environmental protection is an index for measuring the pollution emissions of the engine (i.e., the combustion chamber and the working mechanism constitute an engine), the environmental protection is high, the engine emissions are less, and the environmental protection is low, and the engine emissions are much polluted.
  • the upper compressor in the multistage compressor refers to a compressor that is upstream of the gas flow, that is, in a region where the gas pressure is lower than the reference stage.
  • the so-called motive gas refers to a gas which compresses other gases, and its pressure is higher than the pressure at the inlet of the low-pressure gas (e.g., atmosphere) of the jet pump.
  • the so-called jet pump refers to a device that discharges a non-powered fluid through a motive fluid, and the two fluids interact to discharge from an outlet.
  • the so-called jet pump may be a gas jet pump (ie, a jet pump) or a liquid jet. Pump;
  • the so-called jet pump can be a conventional jet pump or a non-conventional jet pump.
  • the so-called conventional jet pump is composed of two sets of tubes, which provide high-pressure power gas to the inner tube, and the inner tube high-pressure power gas is sprayed in the outer tube, and the high-pressure power gas jet and the outer tube are common in the inner tube.
  • the other gas between the inner and outer tubes (the gas entering from the outer tube) is moved along the injection direction of the high-pressure power gas of the inner tube;
  • the outer tube of the so-called jet pump may have a constricted area, and the outer tube may be set as a venturi
  • the inner tube nozzle can be set as a Laval nozzle, and the so-called constricted area refers to an area in which the cross-sectional area of the outer tube changes;
  • the jet pump has at least three interfaces or channels, that is, a jet pump power gas injection port, Jet pump low pressure gas inlet and jet pump gas outlet.
  • the so-called non-conventional jet pump is composed of two or more tubes arranged in a mutually set or juxtaposed to each other, wherein at least one of the tubes is in communication with a source of motive gas, and the motive gas in the source of the motive gas
  • the flow can cause the directional flow of the gas in the other tubes;
  • the so-called jet pump tube can have a constriction zone, can be set as a venturi tube, and the nozzle of the tube can be set as a Laval nozzle.
  • the constricted area refers to the area where the cross-sectional area of the tube changes; the jet pump has at least three interfaces or channels, namely the jet pump power gas injection port, the jet pump low pressure gas inlet and the jet pump gas outlet; the jet pump A plurality of jet pump power gas injection ports may be included.
  • the jet pump power gas injection ports may be disposed in a central area of the pipeline of the jet pump low pressure gas inlet, or Arranged near the wall of the pipe of the low pressure gas inlet of the jet pump, the jet pump power gas injection port may also be an annular injection port surrounding the wall of the low pressure gas inlet of the jet pump.
  • the jet pump includes a multi-stage jet pump, a multi-jet pump, a pulse jet pump, and the like.
  • the term "heater” means any means capable of heating a gas, such as an internal combustion heater, an external combustion heater, an electric heater, etc., for the purpose of increasing the temperature of the gas in the return passage to increase the jet power.
  • the so-called cooler refers to any device that can cool the gas, such as a radiator, a hybrid desuperheater (a device that reduces the temperature of the gas with a cold fluid), etc., for the purpose of compressing the gas to be compressed.
  • a radiator a hybrid desuperheater (a device that reduces the temperature of the gas with a cold fluid), etc., for the purpose of compressing the gas to be compressed.
  • the gas in the compression process and the gas that has been compressed are cooled.
  • the setting of the return passage is equivalent to substantially increasing the number of stages of the compression pressurization system, and the pressure at the gas outlet of the compression pressurization system can be greatly increased, on the return passage.
  • the scheme of the cooler is equivalent to the interstage cooling in the multi-stage compressor. This cooling scheme will greatly improve the cooling efficiency and reduce the power consumption of the compression process.
  • FIG. 40 is a relationship diagram between the temperature T and the pressure P of the gas working medium, and the curve indicated by 0-AH is a gas working adiabatic relationship curve passing through the zero point of the state parameter of 298 K and 0.1 MPa;
  • the curve shown by EBD is the adiabatic relationship curve passing through point B.
  • the pressures at point A and point B are the same;
  • the curve shown by FG is passed through 2800K and 10MPa (that is, the current internal combustion engine is about to start work).
  • the adiabatic relationship curve of the working point of the gas working fluid is passed through 2800K and 10MPa (that is, the current internal combustion engine is about to start work).
  • the cadaver C7 ⁇ i in Fig. 40 is the gas working fluid adiabatic index
  • P is the gas working fluid pressure
  • is the gas working fluid temperature
  • C is a constant.
  • the so-called adiabatic relationship includes the following three cases: 1.
  • the state parameter of the gaseous working fluid ie, the temperature and pressure of the working medium
  • the state parameter of the gaseous working fluid is on the adiabatic relationship curve of the working fluid, that is, the state parameter of the gaseous working fluid.
  • the point is on the curve shown by 0-AH in Figure 40; 2.
  • the state parameter of the gas working fluid ie the temperature of the working medium and The pressure point is on the left side of the working fluid adiabatic relationship curve, that is, the state parameter point of the gas working medium is on the left side of the curve shown by 0-AH in FIG. 40; 3.
  • the state parameter of the gas working medium ie, the temperature of the working medium
  • pressure point to the right of the working fluid adiabatic relationship curve, that is, the state parameter point of the gas working fluid is on the right side of the curve shown by 0-AH in Fig. 40, but the temperature of the gaseous working fluid is not higher than the gas working
  • the pressure is calculated according to the adiabatic relationship.
  • the temperature is calculated by adding the sum of 1000K, adding 950K, adding 900K, adding 850K, adding 800K, adding 750K, adding 700K, adding 650K, and adding 600K, and 550K, plus 500K, plus 450K, plus 400K, plus 350K, plus 300K, add 250K, add 200K and add 190K and add 180K, 180K, 160K, 160K, 140K, 130K, 120K, 1 10K, 100K, 90K, Add 80K sum, force 70K sum, add 60K sum, add 50K sum, add 40K sum, add 30K and or not add plus 20K That is, as shown in FIG.
  • the actual state point of the gas working medium is point B
  • point A is the point on the same adiabatic relationship curve as the point B
  • the temperature difference between point A and point B should be less than 1000 ⁇ , 900 ⁇ . , 850 ⁇ , 800 ⁇ , 750 ⁇ , 700 ⁇ , 650 ⁇ , 600 ⁇ , 550 ⁇ , 500 ⁇ , 450 ⁇ , 400 ⁇ , 350 ⁇ , 300 ⁇ , 250 ⁇ , 200 ⁇ , 190 ⁇ , 180 ⁇ , 170 ⁇ , 160 ⁇ , 150 ⁇ , 140 ⁇ , 130 ⁇ , 120 ⁇ , 1 10 ⁇ , 100 ⁇ , 90 ⁇ , 80 ⁇ , 70 ⁇ , 60 ⁇ , 50 ⁇ , 40 ⁇ , 30 ⁇ or less than 20.
  • the so-called adiabatic relationship may be any one of the above three cases, that is, the state parameter of the gas working medium to be started (ie, the temperature and pressure of the gas working medium) is as shown in FIG. 40.
  • the adiabatic process curve shown through the defect is in the left region of the EBD.
  • the so-called gas working medium which is about to start work refers to a gas working material which is about to expand and work.
  • an engine system i.e., a thermodynamic system
  • the state parameters of the gaseous working medium i.e., the temperature and pressure of the gaseous working medium
  • the temperature, pressure and flow rate of the compressed gas outputted by the compressed air recirculation compression system are adjusted, thereby adjusting the temperature, pressure and flow rate of the original working medium entering the combustion chamber, and adjusting the introduction into the combustion chamber.
  • the amount of fuel is adjusted, and the amount of the gaseous working fluid derived from the combustion chamber is adjusted, and the temperature of the gaseous working fluid to be started to work is adjusted to 2000 ⁇ or less, and the pressure of the gaseous working fluid to be started to work is adjusted to 15 MPa or more.
  • the original working fluid refers to a working fluid that flows into the combustion chamber.
  • the so-called jet engine compressor refers to a compressor in a jet engine having a compressor such as a turbojet engine or a turbofan engine.
  • the so-called return passage means a gas flow passage (including a chamber) for the purpose of returning part or all of the gas that has passed through the compression pressurization system to the gas inlet of the compression pressurization system.
  • the gas injection velocity of the gas outlet of the return passage may be made larger than the gas outlet of the return passage by reducing the flow resistance of the return passage and/or adjusting the shape and size of the gas outlet of the return passage.
  • the gas flow velocity in the inlet of the compression boosting system may be made larger than the gas outlet of the return passage by reducing the flow resistance of the return passage and/or adjusting the shape and size of the gas outlet of the return passage.
  • the ratio of the flow rate of the refluxed gas in the return channel to the gas flow rate of the gas outlet of the compressed pressurization system is greater than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more than 95%.
  • the so-called A with B as a general direction means that the flow direction of A is substantially the same as the flow direction of B, and the flow velocity between the two is less than 90 degrees.
  • the so-called working mechanism refers to a working mechanism of a piston working mechanism, a power turbine or a nozzle for obtaining a propulsive force, and the function thereof is to expand the working fluid from the combustion chamber. .
  • the purpose of providing a control valve on the return passage is to adjust the flow rate of the gas in the return passage to control the pressure of the compression booster system.
  • the so-called ramjet intake port of the present invention refers to an intake passage in a ramjet engine that converts high velocity gas into high pressure gas.
  • the setting of the return channel utilizes the function of positive feedback to improve the compression of the gas;
  • the so-called positive feedback means that the pressure at the gas outlet of the compressed pressurization system is larger, the reflux
  • the greater the flow rate in the intake port of the compression boosting system the greater the flow rate in the intake port of the compression boosting system, the greater the gas flow rate at the gas inlet of the compression boosting system,
  • the gas pressure at the gas outlet of the compression pressurization system is greater than 0.4 MPa, 0.6 MPa, 0.8 MPa, 1 MPa, 1.2 MPa, 1.4 MPa > 1.6 MPa, 1 ⁇ 8MPa, 2MPa, 2.2MPa 2.4MPa, 2 ⁇ 6MPa, 2 ⁇ 8MPa, 3MPa, 3 ⁇ 2MPa, 3.4MPa, 3.6MPa, 3.8MPa, 4MPa, 4.2MPa, 4.4MPa, 4.6MPa, 4.8MPa, 5MPa, 5.2 MPa, 5.4MPa, 5.6MPa, 5.8MPa, 6MPa, 6.2MPa, 6, 4MPa, 6.6MPa, 6.8MPa, 7MPa, 7.2MPa, 7.4MPa, 7.6MPa, 7.8MPa, 8MPa, 8.2MPa, 8.4MPa, 8.6 MPa, 8.8MPa, 9MPa, 9.2MPa, 9.4MPa, 9.
  • components, units or systems such as spark plugs, fuel injectors, control valves and the like are provided where necessary in accordance with the well-known techniques in the field of gas compression, the engine field and the field of jet propulsion.
  • the invention has simple structure, low manufacturing cost and high reliability.
  • Embodiment 1 is a schematic structural view of Embodiment 1 and Embodiment 8 of the present invention.
  • Figure 2 is a schematic structural view of Embodiment 2 of the present invention.
  • FIGS. 6 and 7 are schematic structural views of Embodiment 4 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 5 of the present invention.
  • Embodiment 6 of the present invention are schematic structural views of Embodiment 6 of the present invention.
  • FIG. 11 and 12 are schematic structural views of Embodiment 7 of the present invention.
  • Figure 18 is a schematic structural view of Embodiment 10 of the present invention.
  • Figure 19 is a schematic structural view of Embodiment 11 of the present invention.
  • Figure 22 is a schematic structural view of Embodiment 13 of the present invention.
  • Figure 36 is a schematic structural view of Embodiment 15 of the present invention.
  • Figure 37 is a schematic structural view of Embodiment 16 of the present invention.
  • Figure 38 is a schematic structural view of Embodiment 17 of the present invention.
  • Figure 39 is a schematic structural view of Embodiment 18 of the present invention.
  • Figure 40 is a graph showing the relationship between the temperature T of the gaseous working fluid and the pressure P.
  • the compressed air recirculation compression system shown in FIG. 1 includes a return passage 1, a compression boost system 2, a compression boost system intake port 201, and a compression boost system gas outlet 202, and the compression boost system
  • An intake passage 201 is in communication with the compression boosting system 2
  • the compression compression system 2 is in communication with the compressed boost system gas outlet 202
  • the compressed pressurized system gas outlet 202 is subjected to the reflux
  • the passage 1 is in communication with the compression booster system intake port 201, and the gas injection direction of the gas outlet of the return passage 1 is the compressed pressurization system intake port 201 at the gas outlet of the return passage 1 Gas flow inside
  • the gas injection velocity of the gas outlet of the return passage 1 is greater than the gas flow velocity in the inlet 201 of the compression boosting system at the gas outlet of the return passage 1, the return passage 1
  • the ratio of the gas flow rate of the internal reflux to the gas flow rate of the gas outlet 202 of the compression pressurization system is greater than 5%, 10%, 15%, 20%, 25%,
  • the compressed air recirculation compression system shown in FIG. 2 differs from the first embodiment in that: a recirculating gas nozzle 101 is disposed in the intake passage 201 of the compression boosting system, and a gas outlet of the return passage 1 is The return gas nozzle 101 is in communication, and a return gas outlet port 102 is disposed on the compressed pressurization system gas outlet 202, and the compressed pressurization system gas outlet 202 sequentially passes through the return gas outlet port 102 and the return channel. 1 and the return gas nozzle 101 is in communication with the compression boosting system intake port 201.
  • the compressed air recirculation compression system shown in FIGS. 3, 4 and 5 is different from the first embodiment in that: the compressed air recirculation compression system further comprises a two-in-one-out deep-connecting tee 600, the return passage
  • the gas outlet of 1 is in communication with a gas inlet of the two inlet and outlet deep-connecting tee 600, and the compressed pressurized system inlet port 201 passes through the two inlets and ones of the deep-injection tee 600
  • the gas inlet is further in communication with the compression pressurization system 2 via a gas outlet of the two inlet and outlet deep insertion tee 600, the compressed pressurization system gas outlet 202 being in communication with the gas inlet of the return passage 1 .
  • the compressed air recirculation compression system shown in FIG. 6 and FIG. 7 differs from the first embodiment in that: the compressed air recirculation compression system further includes a jet pump 3, and the compressed boosting system intake port 201 is sequentially passed through. a jet pump low pressure gas inlet 304 of the jet pump 3, a jet pump gas outlet 302 of the jet pump 3 in communication with the compression boosting system 2, communicating the jet pump low pressure gas inlet 304 and the jet pump gas
  • the jet pump passage 306 of the outlet 302 constitutes a part of the compression booster system intake port 201, and the gas outlet of the return passage 1 is set as the jet pump power gas injection port 301 of the jet pump 3.
  • the compressed air recirculation compression system shown in Fig. 8 differs from the embodiment 1 in that: A jet pump 3 is disposed in the intake port 201 of the boosting system, and a gas flow direction of the jet pump gas outlet 302 of the jet pump 3 is the compressed pressurization system intake port 201 where the jet pump gas outlet 302 is located.
  • the gas flow direction inside is the overall direction, and the gas outlet of the return passage 1 is set as the jet pump power gas injection port 301 of the jet pump 3.
  • the compressed air recirculation compression system shown in Figs. 9 and 10 differs from the first embodiment in that the return passage 1 is provided in the casing wall 22 of the compression pressurization system 2.
  • the compression booster system gas outlet 202 of Fig. 10 is in communication with the combustion chamber 2007 of the gas turbine or with the combustion chamber 2007 of the jet engine.
  • the compressed air recirculation compression system shown in FIGS. 11 and 12 differs from the first embodiment in that: the compression and supercharging system 2 is set as an axial flow compressor/diameter compressor 222, and the return passage 1 is provided in the rotating shaft 23 of the axial compressor/diameter compressor 222.
  • the compressed booster system gas outlet 202 of Fig. 12 is in communication with the combustion chamber 2007 of the gas turbine or with the combustion chamber 2007 of the jet engine.
  • the compressed air recirculation compression system shown in Figures 2, 13 and 14 differs from the embodiment 5 in that a compressed gas outlet 221 is provided on the compressed pressurization system gas outlet 202 (Fig. 2).
  • the combustion chamber 2007 is in communication with the work mechanism 2010 (as shown in Figures 13 and 14), and the gas to be started to work is adjusted.
  • the temperature of the working medium is below 2000K
  • the pressure of the working fluid which is about to start work is adjusted to 15 MPa or more, so that the temperature and pressure of the working fluid which is about to start work are in accordance with the adiabatic relationship.
  • the combustion chamber 2007 shown in FIG. 13 is disposed in the working mechanism 2010, and the combustion chamber 2007 is set as a batch type combustion chamber; the combustion chamber 2007 in FIG. 14 is connected to the two working mechanisms 2010.
  • the combustion chamber 2007 is set as a continuous combustion chamber.
  • the compressed air recirculation compression system shown in Figures 15, 16 and Figure differs from the embodiment 4 in that a finished compressed gas outlet 221 is provided on the jet pump gas outlet 302 (as shown in Figure 15). ,with/ Or the jet pump gas outlet 302 is in communication with a combustion chamber 2007 that is in communication with the work mechanism 2010 (as shown in Figures 16 and 17).
  • the combustion chamber 2007 shown in FIG. 16 is disposed in the working mechanism 2010, and the combustion chamber 2007 is set as a batch type combustion chamber; the combustion chamber 2007 in FIG. 17 is connected to the two working mechanisms 2010.
  • the combustion chamber 2007 is set as a continuous combustion chamber.
  • the compressed air recirculation compression system shown in FIG. 18 differs from the first embodiment in that: the compression supercharging system 2 is set as the internal combustion engine turbocharged compressor 20, or the compression supercharging system 2 is set to The gas turbine compressor, or the compression booster system 2, is set as a jet engine compressor.
  • the compressed air recirculation compression system shown in FIG. 19 is different from the first embodiment in that: the compression supercharging system 2 is set as a ramjet intake port 21, and the compression boosting system intake port 201 is provided.
  • the compressed booster system gas outlet 202 is set to the high static pressure zone 212 of the ramjet intake 21 .
  • a compressed air recirculation compression system as shown in Figs. 20 and 21 differs from the embodiment 1 in that a return passage heating chamber 2000 (shown in Fig. 20) is provided on the return passage 1, and/or in the A control valve 500 (shown in Figure 21) is provided on the return passage 1.
  • the compressed air recirculation compression system shown in FIG. 22 differs from the first embodiment in that: on the return flow passage 1, on the compression pressurization system 2, in the compression booster system intake On the channel 201, a cooler 8 is provided on the compressed pressurization system gas outlet 202.
  • it may also be on the return channel 1 and/or on the compression boosting system 2, and/or on the compressed boosting system inlet 201, and/or in the A cooler 8 is disposed at the compressed pressurization system gas outlet 202.
  • the compressed air recirculation compression system includes a return passage 1, a compression boost system 2, and a pressure a pressurization system intake port 201 and a compression booster system gas outlet 202, the compression boost system intake port 201 and the compression
  • the supercharging system 2 is in communication
  • the compression boosting system 2 is in communication with the compressed boosting system gas outlet 202
  • the compression boosting system 2 is configured as a multi-stage compressor 30, and the multi-stage compressor 30
  • the gas outlet of a certain stage compressor is communicated with the gas inlet of the compressor of the present stage and/or the gas inlet of a certain upper stage compressor through the return passage 1, and the gas injection direction of the gas outlet of the return passage 1 is
  • the gas flow direction around the gas outlet of the return passage 1 at the gas outlet of the return passage 1 is a general direction, and the gas injection speed of the gas outlet of the return passage 1 is greater than that at the gas outlet of the return passage 1
  • the gas outlet of the last stage compressor of the multistage compressor 30 of FIG. 23 is in communication with the gas inlet of the first stage compressor via the return passage 1; the multistage compressor 30 of FIG.
  • the gas outlet of the intermediate stage compressor is in communication with the gas inlet of the first stage compressor via the return passage 1; the gas outlet of each stage of the multistage compressor 30 of Fig. 25 passes through the return passage 1 Connected to the gas inlet of the compressor of the present stage; the gas outlet of a certain intermediate stage compressor of the multistage compressor 30 of Fig.
  • a jet pump 3 is disposed in the inlet 201 of the compression boosting system, and a gas outlet of a final stage compressor of the multistage compressor 30 passes through the return passage 1 and a jet pump of the jet pump 3
  • the power gas injection port 301 is connected;
  • 32, 33, 34 and 35 are the compressor recirculation compression system constructed by a plurality of said compression pressurization systems 2 and a plurality of said jet pumps 3 connected in series by different connection means. Different connection methods of the return channel 1.
  • the compressed air recirculation compression system shown in FIG. 36 is different from that of FIG. 15 in that: the compression supercharging system 2 is set as the turbocharged compressor 20 of the internal combustion engine, and is disposed on the exhaust passage of the working mechanism 2010.
  • the exhaust power turbine 2009 outputs the power to the turbocharger compressor 20 of the internal combustion engine.
  • FIG. 37 a compressed air recirculation compression system as shown in FIG. 37, which differs from Embodiment 4 in that: a ram tube 21 is provided between the jet pump gas outlet 302 of the jet pump 3 and the compression pressurization system 2, Said The gas ejected from the jet pump gas outlet 302 is further compressed in the press tube 21.
  • a ram tube 21 is provided between the jet pump gas outlet 302 of the jet pump 3 and the compression pressurization system 2, Said The gas ejected from the jet pump gas outlet 302 is further compressed in the press tube 21.
  • the compressed air recirculation compression system shown in Fig. 38 differs from the fourth embodiment in that: a recirculating high pressure gas injection port 33 is provided outside the jet pump power gas injection port 301, and a jet pump of the jet pump 3 is provided.
  • the gas outlet 302 is provided with a high-pressure gas return port 113, and the reflux high-pressure gas injection port 33 communicates with the high-pressure gas return port 1 10 via a high-pressure gas return passage 11 at which the jet pump power gas injection port 301 is at the reflux The high pressure gas injection port 33 is injected.
  • the jet pump power gas injection port 301 may also be sprayed outside the return high pressure gas injection port 33, and a control valve 500 may be disposed on the high pressure gas return passage 110.
  • the compressed air recirculation compression system shown in Fig. 39 differs from the embodiment 13 in that a cooler 8 is provided only on the return passage 1, and the compression pressurization system is set as a piston type compressor 201 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

压气回流压縮系统
技术领域
本发明涉及气体压縮、 发动机及喷气推进领域, 尤其涉及一种气体压縮系 统。
背景技术
无论是在气体压縮领域、 发动机领域或在喷气推进领域, 气体压縮是一个 十分重要的过程。 实现这一过程的机构一般说来有两类, 一类是叶轮式压縮方 式, 另一类是活塞式压縮方式。 然而在这些过程中, 不仅结构复杂, 而且气体 压縮的效率较低。 如何简化结构, 提高压縮系统的压比, 提高气体压縮效率是 提高气体压縮领域、 发动机领域以及喷气推进领域的节能、 环保的重要问题。 为此, 需要发明一种新的技术方案, 以解决这类问题。
发明内容
为提高气体压縮系统的压比, 本发明的技术方案如下:
一种压气回流压縮系统, 包括回流通道、 压縮增压系统、 压縮增压系统进 气道和压縮增压系统气体出口,所述压縮增压系统进气道与所述压縮增压系统 连通, 所述压縮增压系统与所述压縮增压系统气体出口连通, 所述压縮增压系 统气体出口经所述回流通道与所述压縮增压系统进气道连通,所述回流通道的 气体出口的气体喷射方向以所述回流通道的气体出口处的所述压縮増压系统 进气道内的气体流动方向为总体指向,所述回流通道的气体出口的气体喷射速 度大于所述回流通道的气体出口处的所述压縮增压系统进气道内的气体流动 速度,所述回流通道内回流的气体流量与所述压縮增压系统气体出口的气体流 量的比值大于 5%, 以提高所述压縮增压系统的气体入口的气体总压,从而提高 所述压縮增压系统气体出口处的气体压力。
所述压气回流压縮系统还包括射流泵,所述压縮增压系统进气道依次经所 述射流泵的射流泵低压气体入口、所述射流泵的射流泵气体出口与所述压縮增 压系统连通, 连通所述射流泵低压气体入口和所述射流泵气体出口的射流泵通 道构成所述压縮增压系统迸气道的一部分,所述回流通道的气体出口设为所述 射流泵的射流泵动力气体喷射口。
在所述压縮增压系统进气道内设射流泵,所述射流泵的射流泵气体出口的 气体流动方向以所述射流泵气体出口所在处的所述压縮增压系统进气道内的 气体流动方向为总体指向,所述回流通道的气体出口设为所述射流泵的射流泵 动力气体喷射口。
所述回流通道设在所述压縮增压系统的壳体壁内。
所述压縮增压系统设为轴流式压气机 /径流式压气机, 所述回流通道设在 所述轴流式压气机 /径流式压气机的转动轴内。
在所述压縮增压系统气体出口上设成品压縮气体导出口, 和 /或所述压縮 增压系统气体出口与燃烧室连通, 所述燃烧室与作功机构连通。
在所述射流泵气体出口上设成品压縮气体导出口, 和 /或所述射流泵气体 出口与燃烧室连通, 所述燃烧室与作功机构连通。
所述压縮增压系统设为内燃机涡轮增压压气机,或所述压縮增压系统设为 燃气轮机压气机, 或所述压縮增压系统设为喷气发动机压气机, 或所述压縮增 压系统设为活塞式压气机。
所述压縮增压系统设为冲压发动机进气道,所述压縮增压系统进气道设为 所述冲压发动机进气道的低静压区,所述压縮增压系统气体出口设为所述冲压 发动机进气道的高静压区。
在所述回流通道上设回流通道加热室,和 /或在所述回流通道上设控制阀。 在所述回流通道上, 和 /或在所述压縮增压系统上, 和 /或在所述压縮增压 系统进气道上, 和 /或在所述压縮增压系统气体出口上设冷却器。
一种提高所述压气回流压縮系统效率和环保性的方法,调整即将开始作功 的气体工质的温度到 2000K 以下, 调整即将开始作功的气体工质的压力到 15 Pa以上, 使即将开始作功的气体工质的温度和压力符合类绝热关系。
一种压气回流压縮系统, 包括回流通道、压縮增压系统、 压縮增压系统进 气道和压縮增压系统气体出口,所述压縮增压系统进气道与所述压縮增压系统 连通, 所述压縮增压系统与所述压縮增压系统气体出口连通, 所述压縮增压系 统设为多级压气机,所述多级压气机中的某一级压气机的气体出口经所述回流 通道与本级压气机的气体入口和 /或某一上级压气机的气体入口连通, 所述回 流通道的气体出口的气体喷射方向以所述回流通道的气体出口处的所述回流 通道的气体出口外围的气体流动方向为总体指向,所述回流通道的气体出口的 气体喷射速度大于所述回流通道的气体出口处的所述回流通道的气体出口外 围的气体流动速度。
在所述压縮增压系统进气道内设回流气体喷嘴,所述回流通道的气体出口 与所述回流气体喷嘴连通, 在所述压縮增压系统气体出口上设回流气体导出 口, 所述压縮增压系统气体出口依次经所述回流气体导出口、 所述回流通道和 所述回流气体喷嘴与所述压縮增压系统进气道连通。
所述压气回流压縮系统还包括两入一出深插三通管,所述回流通道的气体 出口与所述两入一出深插三通管的一个气体入口连通,所述压縮增压系统进气 道经所述两入一出深插三通管的另一个气体入口再经所述两入一出深插三通 管的气体出口与所述压縮增压系统连通,所述压縮增压系统气体出口与所述回 流通道的气体入口连通。
本发明的目的是为了提高气体压縮系统的压比。
本发明中,所述回流通道内回流的气体流量与所述压縮增压系统气体出口 的气体流量的比值大于 5%、 10%、 15%、 20%、 25%、 30%、 35%、 40%、 45%、 50%、 55%、 60%、 65%、 70%、 75%、 80%、 85%、 90%或大于 95%, 以提高所述压縮增压 系统的气体入口的气体总压,从而提高所述压縮增压系统气体出口处的气体压 力。
本发明中,所述压縮增压系统气体出口内的压縮气体部分或全部回流到所 述压縮增压系统进气道, 所述压縮增压系统可内含动力源, 或外部动力源对其 输入动力。
本发明中,所谓的成品压縮气体是指所述压气回流压縮系统对外输出的压 縮气体; 所谓压縮增压系统是指一切可以对气体进行压縮增压的系统, 例如叶 轮式压气机、 航空发动机压气机、 燃气轮机压气机、 冲压发动机压气机(冲压 发动机进气道) 等。
本发明中, 所述两入一出深插三通管是指由三根管相互连通构成的, 其中 两根管为流体流入管, 一根管为流体流出管的, 两根流体流入管中至少一根插 入流体流出管内的三通管。
本发明中, 所谓压縮增压系统是指一切可以对气体进行压縮增压的系统, 不包括液体泵。
本发明中,所述压气回流压縮系统可以单独使用,也可以并联或串联使用, 以满足对成品压縮气体的要求。
本发明中, 所谓的环保性是衡量发动机(即所述燃烧室和所述作功机构构 成发动机)污染排放的指标, 环保性高发动机排放污染少, 环保性低发动机排 放污染多。
本发明中, 所谓多级压气机中的上级压气机是指与参照级相比, 处于气体 流动的上游, 即处于气体压力较低的区域内的压气机。
本发明中, 所谓动力气体是指压縮其他气体的气体, 它的压力高于射流泵 的低压气体(比如大气)入口处的压力。
本发明中, 所谓的射流泵是指通过动力流体引射非动力流体, 两流体相互 作用从一个出口排出的装置, 所谓的射流泵可以是气体射流泵(即喷射泵), 也可以是液体射流泵; 所谓的射流泵可以是传统射流泵, 也可以是非传统射流 泵。
本发明中, 所谓的传统射流泵是指由两个套装设置的管构成的, 向内管提 供高压动力气体, 内管高压动力气体在外管内喷射, 在内管高压动力气体喷射 和外管的共同作用下使内外管之间的其他气体(从外管进入的气体)沿内管高 压动力气体的喷射方向产生运动的装置; 所谓射流泵的外管可以有縮扩区, 外 管可以设为文丘里管, 内管喷嘴可以设为拉瓦尔喷管, 所谓的縮扩区是指外管 内截面面积发生变化的区域; 所述射流泵至少有三个接口或称通道, 即射流泵 动力气体喷射口、 射流泵低压气体入口和射流泵气体出口。
本发明中,所谓的非传统射流泵是指由两个或两个以上相互套装设置或相 互并列设置的管构成的, 其中至少一个管与动力气体源连通, 并且动力气体源 中的动力气体的流动能够引起其他管中的气体产生定向流动的装置;所谓射流 泵的管可以有縮扩区, 可以设为文丘里管, 管的喷嘴可以设为拉瓦尔喷管, 所 谓的縮扩区是指管内截面面积发生变化的区域; 所述射流泵至少有三个接口或 称通道, 即射流泵动力气体喷射口、 射流泵低压气体入口和射流泵气体出口; 所述射流泵可以包括多个射流泵动力气体喷射口,在包括多个射流泵动力气体 喷射口的结构中,所述射流泵动力气体喷射口可以布置在所述射流泵低压气体 入口的管道中心区, 也可以布置在所述射流泵低压气体入口的管道壁附近, 所 述射流泵动力气体喷射口也可以是环绕所述射流泵低压气体入口管道壁的环 形喷射口。
本发明中, 所述射流泵包括多级射流泵, 多股射流泵和脉冲射流泵等。 本发明中, 所谓的加热器是指一切能够对气体加热的装置, 例如内燃加热 器、 外燃加热器和电加热器等, 其目的是使所述回流通道内的气体升温提高射 流动力。
本发明中, 所谓的冷却器是指一切可以对气体进行降温的装置, 例如散热 器、 混合式降温器(与冷流体混合降低气体温度的装置)等, 其目的是对即将 被压縮的气体、 在压縮过程中的气体和已经被压縮的气体进行降温。
本发明中,所述回流通道的设置相当于将所述压縮增压系统的级数大幅度 提高, 可以大幅度提高所述压縮增压系统气体出口处的压力, 在所述回流通道 上设冷却器的方案相当于多级压气机中的级间冷却,这一冷却方案将大幅度提 高冷却效率, 降低压縮过程的耗功。
本发明中,图 40是气体工质的温度 T和压力 P的关系图, 0-A-H所示曲线 是通过状态参数为 298K和 0. 1 MPa的 0点的气体工质绝热关系曲线; B点为气 体工质的实际状态点, E-B-D所示曲线是通过 B点的绝热关系曲线, A点和 B 点的压力相同; F-G所示曲线是通过 2800K和 10MPa (即目前内燃机中即将开 始作功的气体工质的状态点) 的工质绝热关系曲线。
本发明中, 图 40中的尸 = C7^i中的 是气体工质绝热指数, P是气体工质 的压力, Γ是气体工质的温度, C是常数。
本发明中, 所谓的类绝热关系包括下列三种情况: 1 .气体工质的状态参数 (即工质的温度和压力)点在所述工质绝热关系曲线上, 即气体工质的状态参 数点在图 40中 0-A-H所示曲线上; 2.气体工质的状态参数 (即工质的温度和 压力)点在所述工质绝热关系曲线左侧, 即气体工质的状态参数点在图 40中 0-A-H所示曲线的左侧; 3.气体工质的状态参数(即工质的温度和压力) 点在 所述工质绝热关系曲线右侧, 即气体工质的状态参数点在图 40中 0-A-H所示 曲线的右侧,但是气体工质的温度不高于由此气体工质的压力按绝热关系计算 所得温度加 1000K的和、 加 950K的和、 加 900K的和、 加 850K的和、 加 800K 的和、 加 750K的和、 加 700K的和、 加 650K的和、 加 600K的和、 加 550K的 和、 加 500K的和、 加 450K的和、 加 400K的和、 加 350K的和、 加 300K的和、 加 250K的和、 加 200K的和、 加 190K的和、 加 180K的和、 加 170K的和、 加 160K的和、加 150K的和、加 140K的和、加 130K的和、加 120K的和、加 1 10K 的和、 加 100K的和、 加 90K的和、 加 80K的和、 力卩 70K的和、 加 60K的和、 加 50K的和、 加 40K的和、 加 30K的和或不高于加 20K的和, 即如图 40所示, 所述气体工质的实际状态点为 B点, A点是压力与 B点相同的绝热关系曲线上 的点, A点和 B点之间的温差应小于 1000Κ、 900Κ、 850Κ、 800Κ、 750Κ、 700Κ、 650Κ、 600Κ、 550Κ、 500Κ、 450Κ、 400Κ、 350Κ、 300Κ、 250Κ、 200Κ、 190Κ、 180Κ、 170Κ、 160Κ、 150Κ、 140Κ、 130Κ、 120Κ、 1 10Κ、 100Κ、 90Κ、 80Κ、 70Κ、 60Κ、 50Κ、 40Κ、 30Κ或小于 20Κ。
本发明中,所谓类绝热关系可以是上述三种情况中的任何一种,也就是指: 即将开始作功的气体工质的状态参数(即气体工质的温度和压力)点在如图 40 所示的通过 Β点的绝热过程曲线 E-B-D的左侧区域内。
本发明中, 所谓的即将开始作功的气体工质是指即将膨胀作功的气体工 质。
本发明中, 将即将开始作功的气体工质的状态参数(即气体工质的温度和 压力)符合类绝热关系的发动机系统(即热动力系统)定义为低熵发动机。
本发明中, 调整所述压气回流压縮系统所输出的压縮气体的温度、压力和 流量, 从而调整进入所述燃烧室内的原工质的温度、 压力和流量, 调整向所 述燃烧室导入燃料的量, 调整所述燃烧室导出气体工质的量, 进而调整即将开 始作功的气体工质的温度到 2000Κ以下,调整即将开始作功的气体工质的压力 到 15MPa以上。 本发明中, 所谓原工质是指流入所述燃烧室的工质。
本发明中, 所谓的喷气发动机压气机是指涡轮喷气发动机、涡扇发动机等 具有压縮机的喷气发动机中的压气机。
本发明中, 所谓的回流通道是指气体流通通道 (含腔体), 其目的是将已 经通过所述压縮增压系统的气体部分或全部回流到所述压縮增压系统的气体 入口。
本发明中, 可以通过降低所述回流通道的流动阻力和 /或调整所述回流通 道的气体出口的形状和尺寸,使所述回流通道的气体出口的气体喷射速度大于 所述回流通道的气体出口处的所述压縮增压系统进气道内的气体流动速度。
本发明中,所述回流通道内回流的气体流量与所述压縮增压系统气体出口 的气体流量的比值大于 5%、 10%、 15%、 20%、 25%、 30%、 35%、 40%、 45%、 50%、 55%、 60%、 65%、 70%、 75%、 80%、 85%、 90%或大于 95%。
本发明中,所谓的 A以 B为总体指向是指 A的流动方向与 B的流动方向基 本一致, 而且两者之间的流速夹角小于 90度。
本发明中, 所谓的作功机构是指活塞作功机构、 动力透平或以获得推进力 为目的的喷管等作功机构, 其作用是将由所述燃烧室来的工质进行膨胀作功。
本发明中,在所述回流通道上设控制阀的目的是为了调整所述回流通道内 的气体流量, 以控制所述压縮增压系统的压力。
本发明所谓的冲压发动机进气道是指冲压发动机中的将高速气体转换成 高压气体的进气通道。
本发明中, 所述回流通道的设置利用了正反馈的作用, 提高了对气体的压 縮作用; 所谓正反馈作用是指所述压縮增压系统气体出口处的压力越大, 所述 回流通道出口处的压力也就越大, 所述回流通道出口处的压力越大, 所述回流 通道出口处的喷射速度也就越大, 所述回流通道出口处的喷射速度越大, 所述 压縮增压系统进气道内的流速也就越大,所述压縮增压系统进气道内的流速越 大, 所述压縮增压系统的气体入口处的气体流速也就越大, 所述压縮增压系统 的气体入口处的气体流速越大,所述压縮增压系统的成品压縮气体导出口处的 压力也就越大。 本发明所公开的压气回流压縮系统中,所述压縮增压系统气体出口处的气 体压力大于 0.4MPa、 0.6MPa、 0.8MPa、 1MPa、 1· 2MPa、 1.4MPa> 1· 6MPa、 1· 8MPa、 2MPa、 2.2MPa 2.4MPa、 2· 6MPa、 2· 8MPa、 3MPa、 3· 2MPa、 3.4MPa、 3.6MPa、 3.8MPa、 4MPa、 4· 2MPa、 4.4MPa、 4.6MPa、 4.8MPa、 5MPa、 5.2MPa、 5.4MPa、 5.6MPa、 5.8MPa、 6MPa、 6.2MPa、 6, 4MPa、 6.6MPa、 6.8MPa、 7MPa、 7· 2MPa、 7.4MPa、 7.6MPa、 7.8MPa、 8MPa、 8.2MPa、 8.4MPa、 8.6MPa、 8.8MPa、 9MPa、 9.2MPa、 9.4MPa、 9.6MPa、 9.8MPa、 10MPa、 10.2MPa、 10.4MPa、 10.6MPa、 10.8MPa、 11MPa、 11.2MPa、 11.4MPa、 11.6MPa、 11.8MPa、 12MPa、 11MPa、 11.2MPa、 11.4MPa、 11.6MPa、 11.8MPa、 12MPa、 11MPa、 11.2MPa、 11.4MPa、 11.6MPa、 11.8MPa、 12MPa、 11MPa、 11 · 2MPa、 11 · 4MPa、 11.6MPa、 11 · 8MPa、 12MPa、 12· 2MPa、 12.4MPa、 12.6MPa、 12.8MPa、 13MPa、 13.2MPa、 13.4MPa、 13.6MPa、 13.8MPa、 14MPa、 14.2MPa 14.4MPa 14.6MPa、 14.8MPa、 15MPa、 17MPa、 19MPa、 21MPa、 23MPa 或大于 25MPa。
本发明中,应根据气体压縮领域、发动机领域和喷气推进领域的公知技术, 在必要的地方设部件、 单元或系统, 例如火花塞、 喷油器、 控制阀等。
本发明的有益效果如下:
1、 本发明结构简单、 制造成本低、 可靠性高。
2、 本发明作为发动机的压縮增压系统或单独作为压縮系统使用时, 大幅 度提高了系统的气体压縮效率。
附图说明
图 1是本发明实施例 1和实施例 8的结构示意图;
图 2是本发明实施例 2的结构示意图;
图 3、 4和图 5是本发明实施例 3的结构示意图;
图 6和图 7是本发明实施例 4的结构示意图;
图 8是本发明实施例 5的结构示意图;
图 9和图 10是本发明实施例 6的结构示意图;
图 11和图 12是本发明实施例 7的结构示意图;
图 13和 14是本发明实施例 8的结构示意图; 图 15、 16和图 17是本发明实施例 9的结构示意图;
图 18是本发明实施例 10的结构示意图;
图 19是本发明实施例 11的结构示意图;
图 20和图 21是本发明实施例 12的结构示意图;
图 22是本发明实施例 13的结构示意图;
图 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34和图 35是本发明 实施例 14的结构示意图;
图 36是本发明实施例 15的结构示意图;
图 37是本发明实施例 16的结构示意图;
图 38是本发明实施例 17的结构示意图;
图 39是本发明实施例 18的结构示意图;
图 40是气体工质的温度 T和压力 P的关系图。
图中:
1回流通道、 2压縮增压系统、 3射流泵、 8冷却器、 22壳体壁、
20内燃机涡轮增压压气机、 21冲压发动机进气道、 23转动轴、
30多级压气机、 201压縮增压系统进气道、 202压縮增压系统气体出口、 301射流泵动力气体喷射口、 302射流泵气体出口、 306射流泵通道、
304射流泵低压气体入口、 222轴流式压气机 /径流式压气机、 500控制阔、 221成品压縮气体导出口、 2007燃烧室、 2010作功机构、 21 1低静压区、 212高静压区、 2000回流通道加热室、 2011活塞式压气机
具体实施方式
实施例 1
如图 1所示的压气回流压縮系统, 包括回流通道 1、 压縮增压系统 2、 压 縮增压系统进气道 201和压縮增压系统气体出口 202, 所述压縮增压系统进气 道 201与所述压縮增压系统 2连通,所述压縮増压系统 2与所述压縮增压系统 气体出口 202连通,所述压縮增压系统气体出口 202经所述回流通道 1与所述 压縮增压系统进气道 201连通,所述回流通道 1的气体出口的气体喷射方向以 所述回流通道 1的气体出口处的所述压縮增压系统进气道 201内的气体流动方 向为总体指向,所述回流通道 1的气体出口的气体喷射速度大于所述回流通道 1的气体出口处的所述压縮增压系统进气道 201 内的气体流动速度, 所述回流 通道 1内回流的气体流量与所述压縮增压系统气体出口 202的气体流量的比值 大于 5%、 10%、 15%、 20%、 25%、 30%、 35%、 40%、 45%、 50%、 55%、 60%、 65%、 70%、 75%、 80%、 85%、 90%或大于 95%, 以提高所述压縮増压系统 2的气体入口 的气体总压, 从而提高所述压縮增压系统气体出口 202处的气体压力。
实施例 2
如图 2所示的压气回流压縮系统, 其与实施例 1的区别在于: 在所述压縮 增压系统进气道 201 内设回流气体喷嘴 101, 所述回流通道 1的气体出口与所 述回流气体喷嘴 101连通,在所述压縮增压系统气体出口 202上设回流气体导 出口 102, 所述压縮增压系统气体出口 202依次经所述回流气体导出口 102、 所述回流通道 1和所述回流气体喷嘴 101与所述压縮增压系统进气道 201连通。
实施例 3
如图 3、 4和图 5所示的压气回流压縮系统, 其与实施例 1 的区别在于: 所述压气回流压縮系统还包括两入一出深插三通管 600, 所述回流通道 1的气 体出口与所述两入一出深插三通管 600的一个气体入口连通,所述压縮增压系 统进气道 201经所述两入一出深插三通管 600的另一个气体入口再经所述两入 一出深插三通管 600的气体出口与所述压縮增压系统 2连通,所述压縮增压系 统气体出口 202与所述回流通道 1的气体入口连通。
实施例 4
如图 6和图 7所示的压气回流压縮系统, 其与实施例 1的区别在于: 所述 压气回流压縮系统还包括射流泵 3, 所述压縮增压系统进气道 201依次经所述 射流泵 3的射流泵低压气体入口 304、 所述射流泵 3的射流泵气体出口 302与 所述压縮增压系统 2连通,连通所述射流泵低压气体入口 304和所述射流泵气 体出口 302的射流泵通道 306构成所述压縮增压系统进气道 201的一部分,所 述回流通道 1的气体出口设为所述射流泵 3的射流泵动力气体喷射口 301。
实施例 5
如图 8所示的压气回流压縮系统, 其与实施例 1的区别在于: 在所述压縮 增压系统进气道 201内设射流泵 3, 所述射流泵 3的射流泵气体出口 302的气 体流动方向以所述射流泵气体出口 302所在处的所述压縮增压系统进气道 201 内的气体流动方向为总体指向, 所述回流通道 1的气体出口设为所述射流泵 3 的射流泵动力气体喷射口 301。
实施例 6
如图 9和图 10所示的压气回流压縮系统, 其与实施例 1的区别在于: 所 述回流通道 1设在所述压縮增压系统 2的壳体壁 22内。其中, 图 10中所述压 縮增压系统气体出口 202与燃气轮机的燃烧室 2007连通或与喷气发动机的燃 烧室 2007连通。
实施例 7
如图 11和图 12所示的压气回流压縮系统, 其与实施例 1的区别在于: 所 述压縮增压系统 2设为轴流式压气机 /径流式压气机 222,所述回流通道 1设在 所述轴流式压气机 /径流式压气机 222的转动轴 23内。 其中, 图 12所述压縮 增压系统气体出口 202与燃气轮机的燃烧室 2007连通或与喷气发动机的燃烧 室 2007连通。
实施例 8
如图 2、 13和图 14所示的压气回流压縮系统, 其与实施例 5的区别在于: 在所述压縮增压系统气体出口 202上设成品压縮气体导出口 221 (如图 2所示), 或所述压縮增压系统气体出口 202与燃烧室 2007连通,所述燃烧室 2007与作 功机构 2010连通(如图 13和图 14所示), 调整即将开始作功的气体工质的温 度到 2000K以下, 调整即将开始作功的气体工质的压力到 15MPa以上, 使即将 开始作功的气体工质的温度和压力符合类绝热关系。 其中, 图 13中所述燃烧 室 2007设在所述作功机构 2010内, 所述燃烧室 2007设为间歇式燃烧室; 图 14中所述燃烧室 2007与两个所述作功机构 2010连通, 所述燃烧室 2007设为 连续燃烧室。
实施例 9
如图 15、 16和图 Π所示的压气回流压縮系统,其与实施例 4的区别在于: 在所述射流泵气体出口 302上设成品压縮气体导出口 221 (如图 15所示),和 / 或所述射流泵气体出口 302与燃烧室 2007连通,所述燃烧室 2007与作功机构 2010连通(如图 16和图 17所示)。 其中, 图 16中所述燃烧室 2007设在所述 作功机构 2010内, 所述燃烧室 2007设为间歇式燃烧室; 图 17中所述燃烧室 2007与两个所述作功机构 2010连通, 所述燃烧室 2007设为连续燃烧室。
实施例 10
如图 18所示的压气回流压縮系统, 其与实施例 1 的区别在于: 所述压縮 增压系统 2设为内燃机涡轮增压压气机 20,或所述压縮增压系统 2设为燃气轮 机压气机, 或所述压縮增压系统 2设为喷气发动机压气机。
实施例 1 1
如图 19所示的压气回流压縮系统, 其与实施例 1的区别在于: 所述压縮 增压系统 2设为冲压发动机进气道 21,所述压縮增压系统进气道 201设为所述 冲压发动机进气道 21的低静压区 211,所述压縮增压系统气体出口 202设为所 述冲压发动机进气道 21的高静压区 212。
实施例 12
如图 20和 21所示的压气回流压縮系统, 其与实施例 1的区别在于: 在所 述回流通道 1上设回流通道加热室 2000 (如图 20所示), 和 /或在所述回流通 道 1上设控制阀 500 (如图 21所示)。
实施例 13
如图 22所示的压气回流压縮系统, 其与实施例 1的区别在于: 在所述回 流通道 1上, 在所述压縮增压系统 2上, 在所述压縮增压系统进气道 201上, 和在所述压縮增压系统气体出口 202上设冷却器 8。
具体实施时, 还可以在所述回流通道 1 上, 和 /或在所述压縮增压系统 2 上, 和 /或在所述压縮增压系统进气道 201上, 和 /或在所述压縮增压系统气体 出口 202处设冷却器 8。
实施例 14
如图 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34和图 35所示的 压气回流压縮系统, 包括回流通道 1、 压縮增压系统 2、 压縮增压系统进气道 201和压縮增压系统气体出口 202, 所述压縮增压系统进气道 201与所述压縮 增压系统 2连通,所述压縮增压系统 2与所述压縮增压系统气体出口 202连通, 所述压縮增压系统 2设为多级压气机 30, 所述多级压气机 30中的某一级压气 机的气体出口经所述回流通道 1 与本级压气机的气体入口和 /或某一上级压气 机的气体入口连通,所述回流通道 1的气体出口的气体喷射方向以所述回流通 道 1的气体出口处的所述回流通道 1的气体出口外围的气体流动方向为总体指 向,所述回流通道 1的气体出口的气体喷射速度大于所述回流通道 1的气体出 口处的所述回流通道 1 的气体出口外围的气体流动速度。 其中, 图 23中所述 多级压气机 30的最后一级压气机的气体出口经所述回流通道 1 与最开始一级 压气机的气体入口连通; 图 24中所述多级压气机 30的中间级压气机的气体出 口经所述回流通道 1 与最开始一级压气机的气体入口连通; 图 25中所述多级 压气机 30的每一级压气机的气体出口经所述回流通道 1 与本级压气机的气体 入口连通; 图 26中所述多级压气机 30的某一中间级压气机的气体出口经所述 回流通道 1 与另一中间级压气机的气体入口连通; 图 27中在所述压縮增压系 统进气道 201内设射流泵 3,所述多级压气机 30的最后一级压气机的气体出口 经所述回流通道 1与所述射流泵 3的射流泵动力气体喷射口 301连通;
图 28、 29、 30和图 31所示为由多个所述压縮增压系统 2相互串联构成的 所述压气回流压縮系统中所述回流通道 1的不同连接方式;
图 32、 33、 34和图 35是由多个所述压縮增压系统 2和多个所述串联连接 的所述射流泵 3通过不同连接方式构成的所述压气回流压縮系统中所述回流通 道 1的不同连接方式。
实施例 15
如图 36所示的压气回流压縮系统, 其与图 15的区别在于: 所述压縮增压 系统 2设为内燃机涡轮增压压气机 20, 在所述作功机构 2010的排气道上设排 气动力涡轮 2009, 所述排气动力涡轮 2009对所述内燃机涡轮增压压气机 20 输出动力。
实施例 16
如图 37所示的压气回流压縮系统, 其与实施例 4的区别在于: 在所述射 流泵 3的射流泵气体出口 302与所述压縮增压系统 2之间设冲压管 21 ,自所述 射流泵气体出口 302喷出的气体在所述冲压管 21中进一步被压縮。 实施例 17
如图 38所示的压气回流压縮系统, 其与实施例 4的区别在于: 在所述射 流泵动力气体喷射口 301外套装设置回流高压气体喷射口 33,在所述射流泵 3 的射流泵气体出口 302上设高压气体回流口 110,所述回流高压气体喷射口 33 经高压气体回流通道 1 1与所述高压气体回流口 1 10连通, 所述射流泵动力气 体喷射口 301在所述回流高压气体喷射口 33内喷射。
具体实施时,所述射流泵动力气体喷射口 301还可以在所述回流高压气体 喷射口 33外喷射, 还可以在所述高压气体回流通道 110上设控制阀 500。
实施例 18
如图 39所示的压气回流压縮系统, 其与实施例 13的区别在于: 只在所述 回流通道 1上设冷却器 8, 所述压縮增压系统设为活塞式压气机 201 1。
显然, 本发明不限于以上实施例, 根据本领域的公知技术和本发明所公开 的技术方案, 可以推导出或联想出许多变型方案, 所有这些变型方案, 也应认 为是本发明的保护范围。

Claims

权 利 要 求
1、 一种压气回流压縮系统, 包括回流通道 (1 )、 压縮增压系统 (2)、 压 縮增压系统进气道 (201 ) 和压縮增压系统气体出口 (202), 其特征在于: 所 述压縮增压系统进气道 (201 ) 与所述压縮增压系统(2)连通, 所述压縮增压 系统(2) 与所述压縮增压系统气体出口 (202) 连通, 所述压縮増压系统气体 出口 (202) 经所述回流通道 (1 ) 与所述压縮增压系统进气道 (201 ) 连通, 所述回流通道(1 ) 的气体出口的气体喷射方向以所述回流通道(1 ) 的气体出 口处的所述压縮增压系统进气道 (201 ) 内的气体流动方向为总体指向, 所述 回流通道(1 ) 的气体出口的气体喷射速度大于所述回流通道(1 ) 的气体出口 处的所述压縮增压系统进气道 (201 ) 内的气体流动速度, 所述回流通道 (1 ) 内回流的气体流量与所述压縮增压系统气体出口 (202) 的气体流量的比值大 于 5%, 以提高所述压縮增压系统 (2) 的气体入口的气体总压, 从而提高所述 压縮增压系统气体出口 (202) 处的气体压力。
2、 如权利要求 1 所述压气回流压縮系统, 其特征在于: 所述压气回流压 縮系统还包括射流泵 (3), 所述压縮增压系统进气道 (201 ) 依次经所述射流 泵(3)的射流泵低压气体入口(304)、所述射流泵(3)的射流泵气体出口(302) 与所述压縮增压系统(2)连通, 连通所述射流泵低压气体入口 (304)和所述 射流泵气体出口( 302 )的射流泵通道 ( 306 )构成所述压縮增压系统进气道 (201 ) 的一部分, 所述回流通道(1 ) 的气体出口设为所述射流泵(3) 的射流泵动力 气体喷射口 (301 )。
3、 如权利要求 1 所述压气回流压縮系统, 其特征在于: 在所述压縮增压 系统进气道(201 )内设射流泵(3),所述射流泵(3)的射流泵气体出口(302) 的气体流动方向以所述射流泵气体出口 (302) 所在处的所述压縮增压系统进 气道(201 ) 内的气体流动方向为总体指向, 所述回流通道(1 ) 的气体出口设 为所述射流泵 (3) 的射流泵动力气体喷射口 (301 )。
4、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 所述回流 通道 (1 ) 设在所述压縮增压系统 (2) 的壳体壁 (22) 内。
5、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 所述压縮 增压系统 (2) 设为轴流式压气机 /径流式压气机 (222), 所述回流通道 (1 ) 设在所述轴流式压气机 /径流式压气机(222) 的转动轴 (23) 内。
6、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 在所述压 縮增压系统气体出口 (202)上设成品压縮气体导出口 (221 ), 和 /或所述压縮 增压系统气体出口 (202) 与燃烧室 (2007 ) 连通, 所述燃烧室 (2007 ) 与作 功机构 (2010)连通。
7、 如权利要求 2所述压气回流压縮系统, 其特征在于: 在所述射流泵气 体出口(302)上设成品压縮气体导出口(221 ),和 /或所述射流泵气体出口(302) 与燃烧室 (2007) 连通, 所述燃烧室(2007 ) 与作功机构 (2010) 连通。
8、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 所述压縮 增压系统 (2 )设为内燃机涡轮增压压气机 (20), 或所述压縮增压系统 (2) 设为燃气轮机压气机, 或所述压縮增压系统(2) 设为喷气发动机压气机, 或 所述压縮增压系统(2)设为活塞式压气机(2011 )。
9、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 所述压縮 增压系统(2)设为冲压发动机进气道(21 ), 所述压縮增压系统进气道(201 ) 设为所述冲压发动机进气道(21 )的低静压区(211 ), 所述压縮增压系统气体 出口 (202)设为所述冲压发动机进气道(21 ) 的高静压区 (212)。
10、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 在所述 回流通道(1 )上设回流通道加热室(2000), 和 /或在所述回流通道(1 )上设 控制阀 (500)。
11、 如权利要求 1、 2或 3所述压气回流压縮系统, 其特征在于: 在所述 回流通道(1 )上, 和 /或在所述压縮增压系统(2)上, 和 /或在所述压縮增压 系统进气道(201 )上, 和 /或在所述压縮增压系统气体出口 (202 )上设冷却 器(8)。
12、一种提高权利要求 6或 7所述压气回流压縮系统效率和环保性的方法, 其特征在于: 调整即将开始作功的气体工质的温度到 2000K以下, 调整即将开 始作功的气体工质的压力到 15MPa以上,使即将开始作功的气体工质的温度和 压力符合类绝热关系。
13、 一种压气回流压縮系统, 包括回流通道(1 )、 压縮增压系统(2)、 压 縮增压系统进气道 (201 ) 和压縮增压系统气体出口 (202), 其特征在于: 所 述压縮增压系统进气道(201) 与所述压縮增压系统(2)连通, 所述压縮增压 系统(2) 与所述压縮增压系统气体出口 (202)连通, 所述压縮增压系统(2) 设为多级压气机 (30), 所述多级压气机 (30) 中的某一级压气机的气体出口 经所述回流通道(1)与本级压气机的气体入口和 /或某一上级压气机的气体入 口连通, 所述回流通道 (1) 的气体出口的气体喷射方向以所述回流通道 (1) 的气体出口处的所述回流通道 (1) 的气体出口外围的气体流动方向为总体指 向, 所述回流通道(1) 的气体出口的气体喷射速度大于所述回流通道(1) 的 气体出口处的所述回流通道(1) 的气体出口外围的气体流动速度。
PCT/CN2011/001033 2010-06-21 2011-06-21 压气回流压缩系统 WO2011160439A1 (zh)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN201010203987 2010-06-21
CN201010203987.9 2010-06-21
CN201010287671.2 2010-09-20
CN201010287671 2010-09-20
CN201010521438.6 2010-10-27
CN201010521438 2010-10-27
CN201110063243 2011-03-16
CN201110063243.6 2011-03-16
CN201110067507.5 2011-03-21
CN201110067507 2011-03-21
CN201110073722.6 2011-03-25
CN201110073722 2011-03-25
CN201110075225 2011-03-28
CN201110075225.X 2011-03-28
CN201110081726.9 2011-04-01
CN201110081726 2011-04-01
CN201110128984.8 2011-05-18
CN201110128984 2011-05-18
CN201110165722 2011-06-20
CN201110165722.9 2011-06-20

Publications (1)

Publication Number Publication Date
WO2011160439A1 true WO2011160439A1 (zh) 2011-12-29

Family

ID=45370857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001033 WO2011160439A1 (zh) 2010-06-21 2011-06-21 压气回流压缩系统

Country Status (2)

Country Link
CN (1) CN102588111A (zh)
WO (1) WO2011160439A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438496A (zh) * 2015-08-11 2017-02-22 熵零股份有限公司 冷却压缩系统及其发动机
CN106499647A (zh) * 2015-09-07 2017-03-15 熵零股份有限公司 一种增益方法及其装置、系统
CN105089705B (zh) * 2015-09-11 2018-03-06 山东科灵节能装备股份有限公司 静涡盘及涡旋膨胀机及发电机组
US10914246B2 (en) * 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines
CN109268317A (zh) * 2018-11-20 2019-01-25 李桂江 一种射流式空气增压器
EP3659541B1 (en) * 2018-11-27 2021-07-28 Sirona Dental Systems GmbH Reverse-flow brake for rotors in dental preparation instruments
CN114320661B (zh) * 2021-12-21 2023-01-31 哈尔滨工业大学 基于爆震燃烧激励的回流引射增压系统及其增压方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160602B (de) * 1959-06-09 1964-01-02 Continental Gummi Werke Ag Kuehl- oder heizbare Walze
DE2123737A1 (de) * 1971-05-13 1972-11-16 Arthur Pfeiffer, Vakuumtechnik GmbH, 6330 Wetzlar Einrichtung zum Kühlen einer Wälzkolbenpumpe
CN86208229U (zh) * 1986-10-24 1987-12-05 唐山市机械研究所 助推可调回转式压缩机
US4859158A (en) * 1987-11-16 1989-08-22 Weinbrecht John F High ratio recirculating gas compressor
US6312240B1 (en) * 1999-05-28 2001-11-06 John F. Weinbrecht Reflux gas compressor
CN101655015A (zh) * 2009-09-08 2010-02-24 奇瑞汽车股份有限公司 用于控制机械增压发动机中机械增压器旁通的控制系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479817A (en) * 1967-07-06 1969-11-25 Kinetics Corp Low entropy engine
DE2730789A1 (de) * 1977-07-07 1979-01-18 Linde Ag Verfahren zur regelung der pumpgrenzmenge eines leistungsgesteuerten turboverdichters
US4339917A (en) * 1979-06-13 1982-07-20 The Garrett Corporation Fuel delivery system and method
US20020134891A1 (en) * 2001-02-09 2002-09-26 Guillot Stephen A. Ejector pump flow control
US7076952B1 (en) * 2005-01-02 2006-07-18 Jan Vetrovec Supercharged internal combustion engine
US7685819B2 (en) * 2006-03-27 2010-03-30 Aqwest Llc Turbocharged internal combustion engine system
CN101319641A (zh) * 2008-02-22 2008-12-10 张韩生 转轮喷气式发动机
CN101639071A (zh) * 2009-08-21 2010-02-03 珠海格力电器股份有限公司 一种变排量回转压缩机
CN202132112U (zh) * 2010-06-21 2012-02-01 靳北彪 压气回流压缩系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160602B (de) * 1959-06-09 1964-01-02 Continental Gummi Werke Ag Kuehl- oder heizbare Walze
DE2123737A1 (de) * 1971-05-13 1972-11-16 Arthur Pfeiffer, Vakuumtechnik GmbH, 6330 Wetzlar Einrichtung zum Kühlen einer Wälzkolbenpumpe
CN86208229U (zh) * 1986-10-24 1987-12-05 唐山市机械研究所 助推可调回转式压缩机
US4859158A (en) * 1987-11-16 1989-08-22 Weinbrecht John F High ratio recirculating gas compressor
US6312240B1 (en) * 1999-05-28 2001-11-06 John F. Weinbrecht Reflux gas compressor
CN101655015A (zh) * 2009-09-08 2010-02-24 奇瑞汽车股份有限公司 用于控制机械增压发动机中机械增压器旁通的控制系统

Also Published As

Publication number Publication date
CN102588111A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2011160439A1 (zh) 压气回流压缩系统
CN102364071B (zh) 涡轮气缸低熵发动机
CN105492752B (zh) 直接废气再循环系统
US20150267650A1 (en) Venturi egr pump
CN202811059U (zh) 高压涡轮活塞复合热动力系统
CN104018934A (zh) 用于发动机的增压系统
CN108612583A (zh) 发动机系统
WO2013110231A1 (zh) 一种涡轮配气热气机
CN102852633A (zh) 不等承压能力活塞式热动力系统
US11268435B2 (en) Structural arrangement in a low-temperature turbocompressor for an internal combustion engine
CN203769932U (zh) 用于多级涡轮增压机的涡轮系统以及内燃发动机系统
WO2011160441A1 (zh) 热冲压发动机
CN202611856U (zh) 高压气源压缩系统
US6672062B2 (en) Multi-stage supercharger arrangement with cross flow
CN202132112U (zh) 压气回流压缩系统
CN202273762U (zh) 涡轮增压气体压缩系统
CN109339938A (zh) 三状态两级相继增压系统及其控制方法
JP2012197716A (ja) 排気損失回収装置
CN202273752U (zh) 涡轮气缸低熵发动机
RU187543U1 (ru) Система воздухоснабжения танкового дизеля с эжекционным охлаждением наддувочного воздуха
CN102817699A (zh) 叶轮活塞复合高爆压发动机
CN110100084B (zh) 设计涡轮机的方法
CN102383935B (zh) 涡轮增压气体压缩系统
WO2011160432A1 (zh) 高效射流泵
CN202132101U (zh) 动力流体气体工质压缩系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797470

Country of ref document: EP

Kind code of ref document: A1