WO2011160265A1 - 一种氟磷灰石的制备方法和应用 - Google Patents

一种氟磷灰石的制备方法和应用 Download PDF

Info

Publication number
WO2011160265A1
WO2011160265A1 PCT/CN2010/001336 CN2010001336W WO2011160265A1 WO 2011160265 A1 WO2011160265 A1 WO 2011160265A1 CN 2010001336 W CN2010001336 W CN 2010001336W WO 2011160265 A1 WO2011160265 A1 WO 2011160265A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetracalcium phosphate
enamel
phosphoric acid
mixed
phosphate
Prior art date
Application number
PCT/CN2010/001336
Other languages
English (en)
French (fr)
Inventor
魏世成
魏杰
刘晓晨
王成洁
张翼飞
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010205839A external-priority patent/CN101843560A/zh
Priority claimed from CN201010213917A external-priority patent/CN101856310A/zh
Application filed by 北京大学 filed Critical 北京大学
Priority to US13/256,617 priority Critical patent/US9090471B2/en
Publication of WO2011160265A1 publication Critical patent/WO2011160265A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/864Phosphate cements

Definitions

  • the present invention relates to the field of biomaterials for dental restoration, and in particular to the preparation of a fluoroapatite material for repairing enamel defects.
  • BACKGROUND OF THE INVENTION Rickets (caries) is a progressive lesion of hard tissues of teeth caused by a combination of various factors in the oral cavity, and is a major common disease of the oral cavity, characterized by high incidence and wide distribution.
  • the World Health Organization has classified it with cancer and cardiovascular disease as the three major human diseases. According to the national oral epidemiological survey data, the prevalence of dental caries in our country is 50%, and the rate of caries in deciduous teeth is 80%.
  • Microorganisms in the oral cavity form plaque on the surface of the enamel, which causes destruction of the enamel and damage to the dentin through acid production, repeated erosion of the enamel, and demineralization. Clinically, it is divided into three stages: shallow, medium and deep. Shallow, smashed is limited to enamel, no obvious cavities.
  • rickets treatment The purpose of rickets treatment is to stop the pathological process, prevent it from continuing to develop and restore the inherent shape and function of the teeth.
  • clinicians still use traumatic removal of smashed tooth tissue (including enamel or essence) and fill it with oral prosthetic materials (such as resin, metal or ceramic materials) (see below). Figure) These methods do not restore the original structure of the dental tissue, and there are potential problems with secondary caries and damage to the biomechanical properties of the tooth.
  • Fluorite apatite has the same crystal structure as hydroxyapatite, except that F- replaces the OH position. It is known that the electronegativity of fluorine is 4, which is the most electronegative chemical element. Therefore, the bonding strength of F- and Ca in fluoroapatite is much greater than the bonding strength of OH- and Ca in hydroxyapatite. This is one of the main reasons for the stability of fluoroapatite. Due to the change in composition, the performance of the corresponding materials has also changed. Biomaterials scientists at home and abroad attach great importance to this and have conducted in-depth research.
  • F is smaller than OH groups, it makes fluorine apatite more than hydroxyapatite.
  • the crystal structure is more compact, so the corresponding fluoroapatite has a lower lattice constant than hydroxyapatite. Due to the tight structure, the solubility of fluoroapatite is small. This property is of great interest in clinical applications, and fluoroapatite can be used as a bone and tooth replacement material.
  • the object of the present invention is to provide a enamel defect repairing material which can be generated in situ (destroying the enamel defect), thereby repairing the enamel defect, especially the repair of the large enamel defect (deep enamel). .
  • the present invention provides a method for preparing fluoroapatite, characterized in that tetracalcium phosphate and calcium hydrogen phosphate, sodium fluoride are mixed and added to water, or tetracalcium phosphate and ammonium fluoride are mixed, and then an aqueous phosphoric acid solution is added,
  • the two groups of materials were prepared by blending to form a cement-like substance, and solidified for 1-3 days in an environment of 35 to 38 ° C and 100% humidity.
  • the tetracalcium phosphate having a particle diameter of 1 to 20 ⁇ and the calcium hydrogen phosphate having a particle diameter of 1 to 20 ⁇ m are uniformly mixed by a star ball mill, mixed with sodium fluoride, and then water is added. Filling the formed cement-like substance into the enamel defect enamel cavity, in the human body After curing for 1 to 3 days under physiological conditions, fluoroapatite is formed to repair enamel defects caused by sputum.
  • the present invention fills the enamel defect cavity (deep squat) or the tooth surface with a cement-like substance formed by an aqueous solution of tetracalcium phosphate (Ca4(P0 4 ) 2 0), phosphoric acid (H 3 P0 4 ), and ammonium fluoride.
  • the enamel hole is cured for 1 to 3 days under physiological conditions of the human body to form fluoroapatite, thereby repairing the enamel defect.
  • the invention reconciles the material of tetracalcium phosphate with calcium hydrogen phosphate to form a cement-like substance as a repairing material for the enamel defect of the enamel, and fills it into the defect of the enamel defect, and the solidified body forms a close combination with the original enamel, that is, generates
  • the fluoroapatite forms a tight bond with the enamel-deficient surface (through a certain interfacial chemical reaction).
  • the repair material can form a direct bond with the natural enamel.
  • the powder of the material is mixed with water to form a cement-like substance (which can be arbitrarily shaped), and the hydrated reaction of the material finally produces fluoroapatite, so that the structure-controlled fluoroapatite can be directly synthesized on the surface of the enamel defect (
  • the cement material can be arbitrarily shaped according to the shape of the enamel defect and form a tight bond with the enamel defect surface to repair the enamel defect caused by the deep enamel.
  • the fluoroapatite prepared by the invention has a stoichiometric apatite structure, has high chemical stability under human physiological fluid conditions (low solubility), and under acidic conditions (when bacteria exist) The fluoride ion is slowly released, thus having an anti-caries effect.
  • fluoroapatite Through the controlled synthesis of fluoroapatite, it is expected to achieve direct regeneration of fluoroapatite on the surface of human enamel defects, which will be a new hard tissue repair program that will revolutionize oral health care and regenerative medicine. Sexual meaning. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is an XD diagram of a synthesis of fluoroapatite by a mixed scheme of tetracalcium phosphate, calcium hydrogen phosphate, sodium fluoride and water provided by the present invention
  • FIG. 2 is a tetracalcium phosphate, calcium hydrogen phosphate and fluorine provided by the present invention.
  • FIG. 3 is an EDS diagram of the synthesis of fluoroapatite by the mixed scheme of tetracalcium phosphate, calcium hydrogen phosphate, sodium fluoride and water provided by the present invention;
  • the invention provides a SEM photograph of the synthesis of fluoroapatite by the combination of tetracalcium phosphate, calcium hydrogen phosphate, sodium fluoride and ice, wherein (a) is a low magnification photo x50K ; (b) is a high magnification photo xlOOK;
  • Figure 5 is a photograph of a dental enamel defect (squat) repaired by a combination of tetracalcium phosphate, hydrogen phosphate, sodium fluoride and water according to the present invention, wherein (a) is a photograph before unrepairing; (b) is filled with Photo of the repair material;
  • FIG. 6 is a SEM photograph of a fluoroapatite synthesized by a mixed solution of tetracalcium phosphate, ammonium fluoride and an aqueous phosphoric acid solution for repairing a damaged enamel defect, wherein the arrow is an interface of fluoroapatite and enamel;
  • FIG. 7 is an XRD pattern of the synthesis of fluoroapatite by the mixed scheme of tetracalcium phosphate, ammonium fluoride and phosphoric acid provided by the present invention
  • FIG. 8 is a mixed scheme of tetracalcium phosphate, ammonium fluoride and phosphoric acid provided by the present invention for synthesizing fluorine phosphorus IR spectrum of limestone
  • FIG. 8 is a mixed scheme of tetracalcium phosphate, ammonium fluoride and phosphoric acid provided by the present invention for synthesizing fluorine phosphorus IR spectrum of limestone
  • 9 is an EDS diagram of the synthesis of fluoroapatite by the mixed scheme of tetracalcium phosphate, ammonium fluoride and phosphoric acid solution provided by the present invention
  • 10 is a SEM photograph of a synthetic fluoroapatite synthesized by a mixed solution of tetracalcium phosphate, ammonium fluoride and an aqueous solution of sulphuric acid provided by the present invention, wherein ( a ) is a low-magnification photograph, ⁇ ; (b) is a high-magnification photograph ⁇ 30, 000;
  • Figure 11 is a photograph of a enamel defect (squat) repaired by a mixed solution of tetracalcium phosphate, ammonium fluoride and an aqueous solution of rock acid provided by the present invention, wherein (a) is a photograph before unrepaired; (b) is filled with a repair material.
  • Fig. 12 is a SEM photograph of a fluoroapatite synthesized by a mixed solution of tetracalcium phosphate, ammonium fluoride and phosphoric acid in the present invention for repairing enamel defects, and the arrow is the interface between fluoroapatite and enamel.
  • the amount of tetracalcium phosphate and calcium hydrogen phosphate is an equimolar ratio.
  • the molar ratio of tetracalcium phosphate to sodium fluoride is 1:1.
  • the ratio of tetracalcium phosphate + calcium hydrogen phosphate + sodium fluoride mixed powder to water is 1 ⁇ 4 (g/mL).
  • the vibration peak of the P-0-H bond of the apatite appeared at 877.7 cm 1 .
  • the EDS spectrum shows that the synthesized products include calcium, phosphorus and fluorine.
  • the quantitative atomic molar ratio is calculated as follows: the molar ratio of calcium to phosphorus is 1.67, and the molar ratio of calcium to fluorine is 2. This also indicates that the product formed is fluoroapatite.
  • fluoroapatite It forms a tight bond with the enamel and has no obvious gaps at the interface. This also indicates that the repair material, fluoroapatite and enamel, have similar compositions, making them easy to bond together.
  • the synthesized fluoroapatite is a needle-like crystal which is tightly bonded together. The material was taken apart from the center of the material to observe the interface of the material with the enamel defect surface, as shown in FIG.
  • the invention also provides a mixing scheme of an aqueous solution of tetracalcium phosphate, ammonium fluoride and rock acid, which needs to satisfy:
  • the molar ratio of tetracalcium phosphate to phosphoric acid is 5:2.
  • the ratio of the molar ratio of tetracalcium phosphate to ammonium fluoride is 1:1.
  • the percentage concentration of the phosphoric acid solution is 20 to 70%.
  • the synthesized product was fluoroapatite. It can be seen from the IR spectrum that the absorption peak at 100 4 3 ⁇ at 1070 cm 4 and 950 cm" 1 . The two absorption peaks at 1432 and 1750.8 cm -1 and from 2800 cm -1 to 3472 cm -1 The absorption peak between the two is the hydroxyl absorption peak of water.
  • the vibration peak of the P-0-H bond of apatite appears at 877.7 cm 1 — EDS pattern shows: the synthesized products include calcium, phosphorus and fluorine, quantitative The atomic molar ratio is calculated as follows: the molar ratio of calcium to phosphorus is 1.67, and the molar ratio of calcium to fluorine is 2, which also indicates that the product formed is fluoroapatite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Dental Preparations (AREA)
  • Cosmetics (AREA)

Description

一种氟磷灰石的制备方法和应用 技术领域 本发明属于牙科修复用的生物材料领域, 具体涉及一种用于龋坏牙釉质缺损修复的氟磷 灰石材料的制备。 背景技术 龋病(龋齿)是一种由口腔中多种因素复合作用所导致的牙齿硬组织进行性病损, 是口 腔主要的常见病, 其特点是发病率高, 分布广。 世界卫生组织已将其与癌肿和心血管疾病并 列为人类三大重点防治疾病。 据全国口腔流行病学调査资料报告, 我国居民龋病患病率为 50 %,乳牙患龋率 80%。据调査统计,我国的龋齿总数高达 20亿颗以上,而这些龋齿中的 90%以 上都没有接受治疗。 美国近期调査资料估计, 将近 80% 的儿童和 90%的成人都曾受到龋病 的困扰。 随着经济发展, 生活条件的不断改善, 现代人的饮食结构亦发生了很大改变, 摄入 食物精细粘软且含糖量过高,致使龋病容易发生。龋病已成为流行性最广的细菌感染性疾病, 严重威胁着人们的口腔健康。 牙体组织缺损影响口腔的咀嚼, 语言等功能, 发生于前牙时还 严重影响美观。
口腔内微生物 (如变形链球菌)在牙釉质表面形成牙菌斑, 通过产酸、 对牙釉质反复酸 蚀、 脱矿等过程, 导致牙釉质破坏, 进而破坏牙本质。 临床上常根据龋坏程度分为浅、 中、 深龋三个阶段。 浅龋, 龋坏仅局限于釉质, 无明显龋洞。 中龋: 龋坏已达牙本质浅层, 有明 显龋洞。 深龋: 龋坏已达牙本质深层, 表现为大而深的龋洞, 或入口小而深层有较为广泛的 破坏。 龋病会造成牙釉质 /本质不可逆的破坏, 导致牙体功能丧失, 也会引起牙髓及根尖周组 织疾病。龋病治疗的目的在于终止病变过程,阻止其继续发展并恢复牙齿的固有形态和功能。 对于已发生的龋坏, 目前临床医师仍然还使用创伤性的磨除龋坏的牙体组织(包括釉质或和 本质), 并用口腔修复材料 (如树脂, 金属或陶瓷材料)充填修复 (见下图), 这些方法不能恢 复牙组织的原始结构, 且存在可能发生继发龋坏及损害牙体生物力学性能的潜在问题。
在牙釉质层面阻断龋病的发生以及在牙釉质龋坏的早期给予非创伤性的治疗, 可以阻止 龋病发展而导致的更大破坏。 由于牙齿结构特殊, 虽有再矿化能力, 但对实质性缺损无自身 修复能力。 因此, 对已形成实质性缺损的牙齿, 充填术是目前应用最广泛且成效较好的方法, 根据牙齿缺损的范围 /体积采用充填术、嵌体或人造冠修复治疗,可以恢复牙体的形态和功能。 对已发生的龋坏, 即使是很微小的龋坏, 目前临床医师仍然使用创伤性的磨除龋坏的牙体组 织(包括釉质或和本质), 制备合适形状的窝洞, 用生物惰性的口腔修复材料如树脂, 或用牙 科金属如银汞合金或陶瓷材料充填修复。 这种修复手段短期尚可起到恢复牙体组织外形和功 能的良好效果, 但是由于材料的收缩、 老化, 远期常有继发龋发生, 或者充填体断裂脱落。 然而, 对早期尚不宜备洞的釉质龋, 或一些无法取得抗力或固位的龋损, 不宜用上述材料进 行充填。
Heneh等人首先在牙齿中发现了氟磷灰石的存在。氟磷灰石与羟基磷灰石具有相同的晶 体结构, 只是 F-取代了 OH位置。 已知氟的电负性为 4, 是电负性最大的化学元素, 因此, 氟磷灰石中 F-与 Ca的键合强度远大于羟基磷灰石中 OH-与 Ca的键合强度,这是氟磷灰石稳 定的主要原因之一。 由于组成上变化, 使相应材料的性能也有所改变, 国内外生物材料科学 家对此非常重视, 并开展了较为深入的研究, 由于 F比 OH基团小, 使得氟磯灰石比羟基磷 灰石晶体结构更加紧密, 因此相应的氟磷灰石晶格常数要比羟基磷灰石小。 由于结构较紧密, 使氟磷灰石的溶解性较小。 这一特性在临床应用中是十分有意义的, 氟磷灰石可作为骨和牙 齿替代材料。 把氟磷灰石用作非降解性的承重荷结构硬组织替代材料, 特别是当氟磷灰石作 为齿科材料使用时, 微量氟离子的释放可以刺激骨的生长, 又可以抵抗体液、 唾液对材料的 侵蚀, 从而缩短骨愈合的时间, 显示出氟磷灰石生物材料的优越性。 发明内容 本发明的目的在于提供一种龋坏牙釉质缺损修复材料, 可以在原位生成 (龋坏釉质缺损 处), 从而修复龋坏釉质缺损, 特别是牙釉质大缺损 (深龋) 的修复。
本发明提供一种氟磷灰石的制备方法, 其特征在于, 将磷酸四钙和磷酸氢钙、氟化钠混 合加入水, 或将磷酸四钙和氟化铵混合, 然后加入磷酸水溶液, 上述两组材料通过调和形成 水泥状物质, 在 35〜38°C, 100%湿度环境下, 固化 1-3天。
氟磷灰石水化反应的方程式:
磷酸四钙 + 磷酸氢钙 +氟化钠 - - 氟磯灰石
2C (P04)20 + 2CaHP04 + 2NaF— Cai0(PO4)6F2 磯酸四钙 + 磷酸 +氟化铵 -- --氟磷灰石
5Ca4(P0 )20 + 2H3P04 + 4NH4F— ~2Ca10(PO4)6F2
将粒径为 1〜20 μη的磷酸四钙和粒径为 1〜20 μιη磷酸氢钙,通过星形球磨机均匀混合, 再和氟化钠混合, 然后加入水。 将形成的水泥状物质填充到龋坏牙釉质缺损龋洞内, 在人体 生理环境条件下固化 1〜3天后, 生成氟磷灰石, 从而修复龋坏导致的牙釉质缺损。 或, 本发明用磷酸四钙(Ca4(P04)20), 磷酸(H3P04)水溶液和氟化铵形成的水泥状物 质填充到牙釉质缺损龋洞内 (深龋)或牙齿表面釉质小洞, 在人体生理环境条件下固化 1〜3 天后, 生成氟磷灰石, 从而修复釉质缺损。
本发明将磷酸四钙与磷酸氢钙等材料调和, 形成水泥状物质作为龋坏牙釉质缺损修复材 料, 将其填入龋坏釉质缺损处, 其固化体与原釉质形成紧密的结合, 即生成的氟磷灰石和牙 釉质缺损表面形成紧密的结合(通过一定的界面化学反应)。
本发明的优点是:
由于制备的氟磷灰石与牙釉质具有类似的化学组成成分, 因此, 修复材料能够和天然牙 釉质形成直接的结合。 材料的粉末和水混合形成水泥状物质 (可任意塑形) , 通过材料的水 化反应, 最终生成氟磷灰石, 这样就可在牙釉质缺损表面直接合成结构可控的氟磷灰石 (水 泥类材料, 可根据牙釉质缺损的形状任意塑形, 并与釉质缺损表面形成紧密的结合), 修复深 龋导致的牙釉质缺损。 另外, 本发明制备的氟磷灰石具有化学计量的磷灰石结构, 在人生理 体液条件下具有很高的化学稳定性(溶解性很低) , 而在酸性条件下 (细菌存在的时候) 缓 慢释放氟离子, 因而具有防龋的效能。 通过对氟磷灰石的可控合成, 可望实现氟磷灰石在人 牙釉质缺损表面的直接再生, 这将是一种全新的硬组织修复方案, 将对口腔保健及再生医学 治疗具有革命性意义。 附图说明 图 1为本发明提供的磷酸四钙,磷酸氢钙、氟化钠和水混合方案合成氟磷灰石的 X D图; 图 2为本发明提供的磷酸四钙,磷酸氢钙、氟化钠和水混合方案合成氟磷灰石的 IR图谱; 图 3为本发明提供的磷酸四钙,磷酸氢钙、氟化钠和水混合方案合成氟磷灰石的 EDS图; 图 4为本发明提供的磷酸四钙,磷酸氢钙、氟化钠和氷混合方案合成氟磷灰石的 SEM照 片, 其中 (a)为低倍数照片 x50K; (b)为高倍数照片 xlOOK;
图 5 为本发明提供的磷酸四钙, 磷酸氢麪、 氟化钠和水混合方案修复牙牙釉质缺损 (深 龋) 的照片, 其中 (a)为未修复前的照片; (b)为填充有修复材料的照片;
图 6为本发明提供的磷酸四钙、 氟化铵和磷酸水溶液混合方案合成的氟磷灰石修复龋坏 牙釉质缺损的 SEM照片, 箭头为氟磷灰石和牙釉质的界面;
图 7为本发明提供的磷酸四钙、 氟化铵和磷酸水溶液混合方案合成氟磷灰石的 XRD图; 图 8为本发明提供的磷酸四钙、 氟化铵和磷酸水溶液混合方案合成氟磷灰石的 IR图谱; 图 9为本发明提供的磷酸四钙、 氟化铵和磷酸水溶液混合方案合成氟磷灰石的 EDS图; 图 10为本发明提供的磷酸四钙、 氟化铵和磯酸水溶液混合方案合成氟磷灰石的 SEM照 片, 其中 (a)为低倍数照片 χΙΟ,ΟΟΟ; (b) 为高倍数照片 χ30,000;
图 11为本发明提供的磷酸四钙、 氟化铵和磯酸水溶液混合方案修复牙釉质缺损 (深龋) 的照片, 其中 (a)为未修复前的照片; (b)为填充有修复材料的照片;
图 12为本发明提供的磷酸四钙、氟化铵和磷酸水溶液混合方案合成的氟磷灰石修复龋坏 牙釉质缺损的 SEM照片, 箭头为氟磷灰石和牙釉质的界面。
具体实施方式 下面结合附图, 通过实施例对本发明作进一步描述。
本发明提供的磷酸四钙, 磷酸氢钙、 氟化钠和水混合的方案满足如下条件:
1、 磷酸四钙和磷酸氢钙的用量是等摩尔配比。
2、 磷酸四钙和氟化钠的摩尔比为 1 : 1。
3、 磷酸四钙 +磷酸氢钙 +氟化钠混合粉末与水的比例为 1〜4 (g/mL)。
以下提供磷酸四钙, 磷酸氢钙、 氟化钠和水混合的具体实施例- 实例 1
将 2.66克磷酸四钙和 1.36克磷酸氢钙粉末均匀混合,再在混合粉末中加入 0.4克氟化钠, 在调和盘中均匀混合, 三种物质的混合粉末加入 4mL水, 用钥匙调和成水泥浆体, 进一步调 和成胶状物质, 将其放在 37°C, 100%湿度环境中 3天, 得到的材料为氟磷灰石, 用 XRD, IR和 EDS表征其化学结构与成分, 其结果如图 1一图 3所示。 从 XRD图谱可以看出: 制备 的产物在 2Θ=26 °, 2Θ=32 °, 2Θ=34 °, 2Θ=40 °, 2Θ=47 °, 2Θ=50 °附近都有其特征峰。 结果表 明: 合成的产物为氟磷灰石。 从 IR图谱可以看出: 在 1070 cm"1和 950 cm"1处为 Ρ04 3·的吸收 峰。 在 1432和 1750.8 cnf1处的两个吸收峰以及从 2800 cm 至 !j 3472 cnT1之间的吸收峰均为 水的羟基吸收峰。 磷灰石的 P-0-H键的振动峰在 877.7 cm1—处出现。 EDS图谱显示: 合成的 产物包括钙、 磷和氟元素, 定量原子摩尔比计算结果为: 钙磷原子摩尔比为 1.67, 钙氟原子 摩尔比 2, 这也说明生成的产物为氟磷灰石。
实例 2
将 1.33克磷酸四钙和 0.68克磷酸氢钙粉末均匀混合,再在混合粉末中加入 0.2克氟化钠, 在调和盘中均匀混合, 三种物质的混合粉末加入 2mL水,用钥匙调和成水泥浆体,进一步调 和成胶状物质, 将其填入龋坏牙釉质缺损处, 将牙放在 37°C, 100%湿度环境中 3天, 得到 实验样品。 用 SEM表征材料表面的微观结构, 如图 4所示。 从该 SEM照片可见, 氟磷灰石 和牙釉质形成了紧密的结合, 界面上无明显的缝隙, 这也可以表明: 修复材料氟磷灰石和牙 釉质具有相似的成分, 使它们很容易结合在一起。 合成的氟磷灰石为针棒状晶体, 紧密地结 合在一起。 将材料连同牙从材料中心剖开, 观察材料与牙釉质缺损表面结合的界面情况, 如 图 6所示。
实例 3
将 26.6克磷酸四钙和 13.6克磷酸氢钙粉末用星形球磨机均勾混合,将 4克氟化钠加入水 中, 形成其溶液, 将磷酸四钙和磷酸氢钙混合粉末加入 40mL水, 用钥匙调和成水泥浆体, 进一步调和成胶状物质, 将其填入龋坏牙釉质缺损处, 将牙放在 35〜38°C, 100%湿度环境 中 3天, 得到实验样品。
本发明还提供了磷酸四钙、 氟化铵和磯酸水溶液混合方案, 其需要满足:
1、 磷酸四钙和磷酸的摩尔配比为 5 : 2。
2、 磷酸四钙和氟化铵摩尔比的比例为 1 : 1。
3、 磷酸溶液的百分比浓度为 20〜70%。
以下为磷酸四钙、 氟化铵和磷酸水溶液混合方案的具体实施例- 实例 4
将 1.33克磷酸四钙和 0.16克氟化铵均匀混合, 再在混合物中加入 0.196克磷酸和 4mL 水, 用钥匙在调和盘中均匀混合, 调和成水泥浆体, 将其放在 37°C, 100%湿度环境中 3天, 得到的材料用 XRD, I 和 EDS表征其化学结构与成分,其结果如图 7—图 9所示。从 XRD 图谱可以看出: 制备的产物在 2Θ=26 °, 2Θ=32 °, 2Θ=34 °, 2Θ=40 °, 2Θ=47 °, 2Θ=50 °附近都 有其特征峰。结果表明:合成的产物为氟磷灰石。从 IR图谱可以看出:在 1070 cm4和 950 cm"1 处为 Ρ04 3·的吸收峰。 在 1432和 1750.8 cm—1处的两个吸收峰以及从 2800 cm—1 到 3472 cm—1 之间的吸收峰均为水的羟基吸收峰。 磷灰石的 P-0-H键的振动峰在 877.7 cm1—处出现。 EDS 图谱显示: 合成的产物包括钙、 磷和氟元素, 定量原子摩尔比计算结果为: 钙磷原子摩尔比 为 1.67, 钙氟原子摩尔比 2, 这也说明生成的产物为氟磷灰石。 实例 5
将 2.66克磷酸四钙和 0.16克氟化铵均匀混合, 再在混合物中加入 0.196克磷酸和 4mL 水, 用钥匙在调和盘中均匀混合, 调和成水泥桨体, 将其填入龋坏牙釉质缺损处, 将牙放在 37°C, 100%湿度环境中 3天, 得到实验样品。 用 SEM表征材料表面的微观结构, 如图 10 所示。从该 SEM照片可见, 氟磷灰石和牙釉质形成了紧密的结合, 界面上无明显的缝隙, 这 也可以表明: 修复材料氟磷灰石和牙釉质具有相似的成分, 使它们很容易结合在一起。 合成 的氟磷灰石为针棒状晶体, 紧密地结合在一起。 将材料连同牙从材料中心剖开, 观察材料与 牙釉质缺损表面结合的界面情况, 如图 12所示。 实例 6
将 13.3克磷酸四钙和 1.6克氟化铵均匀混合, 再在混合物中加入 1.96克磷酸和 6mL水, 用钥匙在调和盘中均匀混合, 用钥匙调和成水泥浆体, 将其填入龋坏牙釉质缺损处, 将牙放 在 35〜38°C, 100%湿度环境中 3天, 得到氟磷灰石。 实例 7
将 2.66克磷酸四钙和 0.196克磷酸和 4mL水均匀混合, 用钥匙调和成水泥浆体, 将其放 在 37°C, 100%湿度环境中 3天, 得到固化体, 将其磨成粉末, 加入 0.16克氟化铵均匀混合, 再加入 4mL 7j均匀混合。 用钥匙调和成水泥浆体, 将其放在 35〜38°C, 100%湿度环境中 3 天, 得到氟磯灰石。 实例 8
将 1.33克磷酸四钙和 0.098克磷酸和 2mL水均勾混合, 用钥匙调和成水泥浆体, 将其放 在 37°C, 100%湿度环境中 3天, 得到固化体, 将其磨成粉末, 加入 0.08克氟化铵均匀混合, 再加入 2mL水均匀混合。 用钥匙调和成水泥浆体, 将其填入龋坏牙釉质缺损处, 将牙放在 35〜38°C , 100%湿度环境中 3天, 得到氟磷灰石。 本发明实施例的目的在于帮助进一步理解本发明, 但是本领域的技术人员可以理解: 在 不脱离本发明及所附的权利要求的精神和范围内, 各种替换和修改都是可能的。 因此, 本发 明不应局限于实施例所公开的内容, 本发明要求保护的范围以权利要求书界定的范围为准。

Claims

权 利 要 求 书
1、 一种氟磷灰石的制备方法, 其特征在于, 将磷酸四钙和磷酸氢钙、 氟化钠混合加入 水, 或将磷酸四钙和氟化铵混合, 然后加入磷酸水溶液, 上述两组材料通过调和形成水泥状 物质, 在 35〜38Ό, 100%湿度环境下, 固化 1-3天。
2、 如权利要求 1所述的方法, 其特征在于, 上述磷酸四钙、 磷酸氢钙和氟化钠的用量 是等摩尔配比, 加入水后直接调和形成水泥状物质。
3、如权利要求 2所述的方法,其特征在于,将粒径为 1〜20 μηι的磷酸四钙和粒径为 1〜 20 μιη磷酸氢钙, 通过星形球磨机均匀混合后, 再和氟化钠混合, 然后加入水。
4、 如权利要求 3所述的方法, 其特征在于, 磷酸四钙、 磷酸氢钙和氟化钠混合粉末与 水的比例为 1〜4 (g/mL
5、 如权利要求 1所述的方法, 其特征在于, 将磷酸四钙和氟化铵混合, 然后加入磷酸 水溶液, 其中,磷酸四钙和磷酸的摩尔配比为 5: 2,磷酸四钙和氟化钹的用量是等摩尔配比, 调和形成水泥状物质。
6、 如权利要求 5所述的方法, 其特征在于, 磷酸溶液的百分比浓度为 20〜70%。
7、 如权利要求 1所述的方法, 其特征在于, 用磷酸四钙和磷酸水溶液, 通过水化反应 形成固化体, 随后将该固化体磨成粉末, 将上述粉末和氟化铵、 水调和成水泥状物质。
8、 如权利要求 7所述的方法, 其特征在于, 磷酸水溶液的浓度是 20〜70%, 每毫升磷 酸水溶液中加入 1〜4克磷酸四钙。
9、 如权利要求 8所述的方法, 其特征在于, 磷酸四钙和氟化铵摩尔比为 1 : 1 。
10、 权利要求 1-9所述方法制备的氟碟灰石在龋坏牙釉质缺损修复医用材料中的应用。
PCT/CN2010/001336 2010-06-22 2010-09-02 一种氟磷灰石的制备方法和应用 WO2011160265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/256,617 US9090471B2 (en) 2010-06-22 2010-09-02 Method for producing fluorapatite and its application

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010205839A CN101843560A (zh) 2010-06-22 2010-06-22 修复牙釉质的组合物及用该组合物制备氟磷灰石的方法
CN201010205839.0 2010-06-22
CN201010213917.1 2010-06-30
CN201010213917A CN101856310A (zh) 2010-06-30 2010-06-30 一种治疗龋齿的组合物及用该组合物制备氟磷灰石的方法

Publications (1)

Publication Number Publication Date
WO2011160265A1 true WO2011160265A1 (zh) 2011-12-29

Family

ID=45370812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001336 WO2011160265A1 (zh) 2010-06-22 2010-09-02 一种氟磷灰石的制备方法和应用

Country Status (2)

Country Link
US (1) US9090471B2 (zh)
WO (1) WO2011160265A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2716942B2 (es) * 2018-06-22 2021-03-29 Univ Cardenal Herrera Ceu Composicion y procedimiento para la obtencion y aplicacion de un compuesto bioactivo que contiene fluoruro y el producto obtenido.
CN112158820B (zh) * 2020-09-06 2023-05-05 桂林理工大学 一种氟磷灰石固溶体制备方法及其应用
EP4284317A1 (en) * 2021-01-28 2023-12-06 Nano Dentica Ab A method for producing fluorapatite crystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855118A (en) * 1987-04-15 1989-08-08 Nichia Kagaku Kogyo K.K. Method of producing fluorapatite
US4959104A (en) * 1985-10-11 1990-09-25 Mitsui Toatsu Chemicals, Inc. Self-hardenable material
JPH0585710A (ja) * 1991-09-27 1993-04-06 Olympus Optical Co Ltd フツ素アパタイトの製造方法
CN1475436A (zh) * 2002-08-12 2004-02-18 文国琴 氟磷灰石制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959104A (en) * 1985-10-11 1990-09-25 Mitsui Toatsu Chemicals, Inc. Self-hardenable material
US4855118A (en) * 1987-04-15 1989-08-08 Nichia Kagaku Kogyo K.K. Method of producing fluorapatite
JPH0585710A (ja) * 1991-09-27 1993-04-06 Olympus Optical Co Ltd フツ素アパタイトの製造方法
CN1475436A (zh) * 2002-08-12 2004-02-18 文国琴 氟磷灰石制作方法

Also Published As

Publication number Publication date
US9090471B2 (en) 2015-07-28
US20120128566A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
EP2626058B1 (en) Dentinal tubule sealant and method for producing the same
WO2010113800A1 (ja) 象牙質石灰化剤及びその製造方法
JPH08510713A (ja) リン酸カルシウム・ヒドロキシアパタイト前駆物質および同物質の製法および使用法
EP2902006B1 (en) Curable composition for dentistry, and method for producing same
JP5162146B2 (ja) 生物活性作用を有するヒドロキシアパタイト形成歯科材料
JP5543777B2 (ja) 新規リン−カルシウム−ストロンチウム化合物及び歯内セメントにおけるそれらの使用
WO2011160265A1 (zh) 一种氟磷灰石的制备方法和应用
CN101843560A (zh) 修复牙釉质的组合物及用该组合物制备氟磷灰石的方法
CN101856310A (zh) 一种治疗龋齿的组合物及用该组合物制备氟磷灰石的方法
US20040250729A1 (en) Fast-setting carbonated hydroxyapatite compositions and uses
JP6490050B2 (ja) 二相性自発硬化型リン酸カルシウムの形状を賦形するための作業時間の制御方法
JPH0248479A (ja) 硬化性組成物の硬化方法
Radwan et al. Evaluation of calcium aluminate/calcium phosphate based bio-cements as root-end filling material
Imamura et al. Self-sealing ability of OCP-mediated cement as a deciduous root canal filling materia
Maryoosh et al. Shear bond strength of fluorinated grapheme nanoparticles modified dental adhesives
CN107982069A (zh) 一种牙根管填充材料及其制备方法
JPS6171060A (ja) 骨、歯牙充填用のα―リン酸三カルシウム含有組成物
Aquino et al. Preparation and characterization of cement-based hydroxyapatite and galactomannan extracted from Adenanthera pavonina L. seeds
JPH0588623B2 (zh)
Gul et al. Bioceramics in endodontics: literature review of Biodentine and Mineral Trioxide Aggregate with case reports
WO2015019600A1 (ja) 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
JP6083742B2 (ja) 象牙細管封鎖材キット
RU2097015C1 (ru) Состав для пломбирования зубов и цементирования зубных протезов
Rashid et al. Evaluation of push out bond strength of two calcium silicate based cements with bone cement in retrograde cavities prepared by ultrasonic retro tips
JPH07114804B2 (ja) 医療用硬化性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13256617

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853409

Country of ref document: EP

Kind code of ref document: A1