WO2011159061A2 - 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법 - Google Patents

복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법 Download PDF

Info

Publication number
WO2011159061A2
WO2011159061A2 PCT/KR2011/004219 KR2011004219W WO2011159061A2 WO 2011159061 A2 WO2011159061 A2 WO 2011159061A2 KR 2011004219 W KR2011004219 W KR 2011004219W WO 2011159061 A2 WO2011159061 A2 WO 2011159061A2
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
sensor
value
measurement sensor
deviation value
Prior art date
Application number
PCT/KR2011/004219
Other languages
English (en)
French (fr)
Other versions
WO2011159061A3 (ko
Inventor
양재구
양지석
오상기
Original Assignee
플로우테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 플로우테크 주식회사 filed Critical 플로우테크 주식회사
Priority to US13/640,646 priority Critical patent/US8991417B2/en
Priority to CN201180019614.9A priority patent/CN102869925B/zh
Priority to ES11795927.0T priority patent/ES2618927T3/es
Priority to EP11795927.0A priority patent/EP2584279B1/en
Publication of WO2011159061A2 publication Critical patent/WO2011159061A2/ko
Publication of WO2011159061A3 publication Critical patent/WO2011159061A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1008Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system expansion tanks
    • F24D3/1033Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system expansion tanks with compressed gas cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • F16L55/045Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
    • F16L55/05Buffers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1036Having differential pressure measurement facilities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • G05D16/204Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means the plurality of throttling means being arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3124Plural units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3127With gas maintenance or application

Definitions

  • the present invention relates to a control method of a pressure holding device for an air conditioning and heating system. More specifically, the pressure holding device having a plurality of sensors measuring the same physical quantity detects an abnormality of the sensor and optimally maintains the pressure holding device.
  • the present invention relates to a method for controlling driving.
  • a heat source facility such as a cogeneration plant
  • a heat source facility concentrated in residential, commercial, and public customers within a city or a certain area generates heat required for cooling, hot water supply, and air conditioning.
  • Etc. is a method of supplying heat produced economically from a concentrated heat source facility through a pipe network. This supply of district heating and heating is carried out as follows. First, the district heating and heating medium produced in the heat source facility is supplied to the heat exchanger chamber of the customer through a well-maintained pipe network.
  • the heat medium supplied to the heat exchanger chamber transfers heat to the internal circulation heat medium of the customer through a separate customer heat exchanger, and is then recovered to the heat source facility.
  • the consumer circulating water which receives heat from the heat exchanger chamber, is supplied to each floor of each household and building.
  • As the heat medium for district heating and heating water is mainly used. Due to the characteristics of district heating and heating, water is generally heated to a high temperature (over 100) and circulated through a pipe.
  • the pipe water in the circulation system repeats expansion and contraction by the change of temperature, and when the pipe water expands rapidly, there is a risk that the pipe pressure rises rapidly and the pipe ruptures.
  • a normal air-conditioning system when the pipe is expanded, the pipe is temporarily accommodated to lower the pipe pressure. It is common to provide an expansion tank as a pressure holding device for maintaining a constant pipe pressure by returning water.
  • the cooling and heating system is a heating and cooling system that is performed as the heating medium (pipe water) heated from the heat source facility (1) is supplied and recovered to the customer's cooling and heating equipment (load; 10a) or neighboring heat exchanger through the circulation piping system (10).
  • the expansion tank 130 which temporarily receives the expanded heat medium branched from one side of the circulation pipe system 10, and at the same time, when the heat medium contracts, the expansion tank 130 to return it to the circulation pipe system (10);
  • An expansion pipe 20 branched from the circulation pipe 10 and connected to the expansion tank 130; It is connected to one side of the expansion tank 130 includes a nitrogen supply unit 200 for injecting nitrogen into the expansion tank (130).
  • the expansion tank 130 is composed of a pressure vessel consisting of a diaphragm or non-diaphragm sealed hollow tank, tank pressure measuring sensor (PT2) and tank level measurement for detecting the pressure in the tank and the level of the expansion water
  • the sensor LT is provided.
  • the expansion tank 130 is nitrogen filled in the nitrogen gas filling valve (S1) and expansion tank 130 for controlling and controlling the filling of the nitrogen gas supplied from the nitrogen supply unit 200 into the expansion tank 130.
  • a nitrogen gas exhaust valve S2 for controlling and controlling the exhaust of the gas is provided.
  • the nitrogen supply unit 200 is a portion for supplying nitrogen gas to the expansion tank 130, a compressor (not shown) for compressing and supplying air at a constant pressure, and extracts only nitrogen from the air supplied from the compressor to expand It includes a nitrogen generator (not shown) to supply to the tank 130.
  • the expansion tank 130 is initially supplied with nitrogen gas from the nitrogen supply unit 200, is filled with the expansion tank 130 at a high pressure and the water level is maintained at the lowest water level LWL (LOW WATER LEVEL).
  • LWL lowest water level
  • the heat medium expands, the heat medium flows into the expansion tank 130 from the circulating piping system 10 through the expansion pipe 20, and the level of the expansion tank 130 rises to the highest water level HWL (HIGH WATER LEVEL).
  • HWL HWL
  • the rising pressure inside the expansion tank due to the inflow of water is sensed by the tank pressure measuring sensor PT2 and discharges nitrogen gas in accordance with the opening of the nitrogen gas exhaust valve S2 controlled by the control unit 400. Will be placed in.
  • the expansion tank 130 is connected to the expansion tank 130 based on the physical quantity (pressure, water level) detected by the pipe pressure measuring sensor PT1, the tank pressure measuring sensor PT2, and the tank water level measuring sensor LT. As nitrogen is charged or exhausted to control the pressure of the expansion tank 130, the pipe pressure of the circulation piping system 10 is kept constant.
  • the expansion tank 130 should be designed with a capacity that can accommodate both the amount of expansion water when the pipe water in the circulation system 10 is expanded, the expansion tank 130 is circulated because there is a limit to the capacity that can be manufactured When the piping system 10 has a large capacity, it is difficult to cover the expansion water with a single expansion tank 130, so that a plurality of expansion tanks are used.
  • another expansion pipe is branched from the existing expansion pipe 20, and another expansion tank is installed at the end thereof in parallel with the existing expansion tank 130, and each expansion tank is configured.
  • the tank pressure sensor and the tank water level sensor are respectively provided.
  • the filling or exhausting of each expansion tank is individually controlled based on the values measured from the tank pressure measuring sensor and the tank level measuring sensor provided in each expansion tank,
  • the method of simultaneously controlling nitrogen filling or exhaust of each expansion tank has been adopted as a single arithmetic average of the values measured from each sensor.
  • each expansion tank is controlled simultaneously with a simple above-mentioned average of each sensor measurement value, when the error of a specific sensor exceeds a permissible range of the plurality of sensors or if an abnormality occurs in the sensor temporarily, Due to the difference between the control reference values, control according to the state of the system cannot be performed.
  • an appropriate pressure of the expansion tank is 9.0 kg / m 2 ⁇ G and the pressure measurement value of the expansion tank with a steady state sensor is 10.0 kg / m 2 ⁇ G, and the pressure measurement value of the expansion tank with another sensor is If it is detected as 0 kg / m2 ⁇ G due to sensor error, the actual pressure value is 10.0 kg / m2 ⁇ G, so the nitrogen in the expansion tank should be exhausted to adjust the pressure to 9.0kg / m2 ⁇ G. As a result, the control reference value becomes 5 kg / m 2 ⁇ G, resulting in the control to fill the nitrogen in the expansion tank.
  • the present invention has been made to solve the problems in the conventional control method of the pressure holding device having a plurality of sensors as described above, by detecting the abnormality of a specific sensor and the value measured by the sensor to control the reference value It is an object of the present invention to provide a control method of a pressure holding device capable of controlling the pressure corresponding to the actual system state by excluding it in the determination.
  • the first expansion tank and the second expansion tank which are installed in each branch from the circulation piping system and connected in parallel with each other, interconnected by a pressure equalizing pipe;
  • a first measurement sensor and a second measurement sensor which are separately provided in the first expansion tank and the second expansion tank to measure internal pressure of each expansion tank;
  • a third measuring sensor for detecting a pipe pressure in a circulation piping system;
  • a nitrogen supply unit for supplying nitrogen gas to each of the expansion tanks;
  • a nitrogen gas filling valve for filling nitrogen gas into each expansion tank from the nitrogen supply unit; CLAIMS 1.
  • a control method of a pressure holding system for a heating and cooling system comprising: a nitrogen gas exhaust valve for exhausting nitrogen gas from each expansion tank, the method comprising: measuring an internal pressure of a first expansion tank with the first measurement sensor; Measuring an internal pressure of a second expansion tank with the second measurement sensor; Measuring piping pressure of a circulation piping system using the third measuring sensor; Calculating an absolute value of the difference between the internal pressure of each expansion tank and the pipe pressure measurement value of the circulation piping measured by each of the measurement sensors to calculate a measurement deviation value between each measurement sensor; Comparing the calculated measurement deviation value between each measurement sensor with a preset setting deviation value; Determining an abnormality of each measuring sensor according to a result of comparing the measured deviation value and the set deviation value; Outputting the measured value of the remaining measuring sensor or the average value thereof, excluding the measured value of the measuring sensor and the measured value of the third measuring sensor, which are determined to be abnormal, as an internal pressure control reference value of each expansion tank; And comparing the output control reference value with a
  • the set deviation value is defined as the maximum value of the allowable deviation when each measuring sensor is in a steady state.
  • the measurement deviation values between the respective measurement sensors are all less than or equal to the set deviation value, it is determined that all the measurement sensors are normal and output the average value of the first measurement sensor and the second measurement sensor as the control reference value;
  • the measurement deviation value between the first measurement sensor and the second measurement sensor and the measurement deviation value between the second measurement sensor and the third measurement sensor are respectively greater than the set deviation value, and the measurement deviation value between the third measurement sensor and the first measurement sensor is If less than the set deviation value, determine that the second measurement sensor is equal to or greater and output the measurement value of the first measurement sensor as the control reference value;
  • the measurement deviation value between the first measurement sensor and the second measurement sensor is equal to or less than the setting deviation value, and the measurement deviation value between the second measurement sensor and the third measurement sensor and the measurement deviation value between the third measurement sensor and the first measurement sensor are respectively set.
  • the third measured sensor is abnormal and output the average value of the measured values of the first measured sensor and the second measured sensor as the control reference value;
  • the measurement deviation value between the first measurement sensor and the second measurement sensor and the measurement deviation value between the third measurement sensor and the first measurement sensor are respectively greater than the setting deviation value, and the measurement deviation value between the second measurement sensor and the third measurement sensor is set.
  • the present invention the first expansion tank, the second expansion tank and the third expansion tank which are installed in each branch from the circulation piping system and connected in parallel to each other, interconnected by a pressure equalizing pipe; A first measurement sensor, a second measurement sensor, and a third measurement sensor which are separately provided in each of the expansion tanks to measure the pressure inside each of the expansion tanks; A nitrogen supply unit for supplying nitrogen gas to each of the expansion tanks; A nitrogen gas filling valve for filling nitrogen gas into each expansion tank from the nitrogen supply unit; CLAIMS 1.
  • a control method of a pressure holding system for a heating and cooling system comprising: a nitrogen gas exhaust valve for exhausting nitrogen gas from each expansion tank, the method comprising: measuring an internal pressure of each expansion tank with each measurement sensor; Calculating the absolute value of the difference between the internal pressure measurement values of the expansion tanks measured by the respective measurement sensors and calculating a measurement deviation value between each measurement sensor; Comparing the calculated measurement deviation value between each measurement sensor with a preset setting deviation value; Determining an abnormality of each measuring sensor according to a result of comparing the measured deviation value and the set deviation value; Outputting the average value of the measured values of the remaining measuring sensors as the internal pressure control reference value of each expansion tank, excluding the measured values of the measuring sensors determined to be abnormal; And comparing the output control reference value with a predetermined expansion tank target reference value to determine whether the pipe water is expanded or contracted, and filling or exhausting nitrogen gas in each expansion tank according to the determination result.
  • the set deviation value is defined as the maximum value of the allowable deviation when each measuring sensor is in a steady state.
  • the measurement deviation value between each measurement sensor is less than or equal to the set deviation value, it is determined that all the measurement sensors are normal and output the average value of the first measurement sensor, the second measurement sensor and the third measurement sensor as the control reference value. and; The measurement deviation value between the first measurement sensor and the second measurement sensor and the measurement deviation value between the second measurement sensor and the third measurement sensor are respectively greater than the set deviation value, and the measurement deviation value between the third measurement sensor and the first measurement sensor is If less than the set deviation value, determine that the value is equal to or greater than the second measurement sensor and output the average value of the first measurement sensor and the third measurement sensor as the control reference value; The measurement deviation value between the first measurement sensor and the second measurement sensor is equal to or less than the setting deviation value, and the measurement deviation value between the second measurement sensor and the third measurement sensor and the measurement deviation value between the third measurement sensor and the first measurement sensor are respectively set.
  • the third measured sensor determines that the third measured sensor is abnormal and output the average value of the measured values of the first measured sensor and the second measured sensor as the control reference value;
  • the measurement deviation value between the first measurement sensor and the second measurement sensor and the measurement deviation value between the third measurement sensor and the first measurement sensor are respectively greater than the setting deviation value, and the measurement deviation value between the second measurement sensor and the third measurement sensor is set.
  • the present invention by detecting the abnormality of a specific sensor by using the measured values of two or more measuring sensors, by excluding the measured value of the sensor determined to have an abnormality when determining the control reference value precision corresponding to the actual system state It has an excellent effect that enables reliable and reliable pressure control.
  • FIG. 1 is a configuration diagram of a pressure maintaining system of a conventional air conditioning system
  • FIG. 2 is a configuration diagram of a pressure maintaining system of a heating and cooling system according to a first embodiment of the present invention
  • FIG. 3 is a control flowchart of the pressure holding device according to the first embodiment of the present invention.
  • Figure 4 is a table summarized the specific control method of the pressure maintaining equipment according to the first embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a pressure maintaining system according to a second embodiment of the present invention.
  • heat source facility 10 circulation piping system
  • FIG. 2 is an example of a system of pressure holding equipment having a plurality of sensors according to the first embodiment of the present invention
  • a system configuration diagram of the pressure holding equipment is provided with two different expansion tanks each having a separate sensor 3
  • FIG. 4 shows a specific control method of the pressure holding device according to the state of each sensor.
  • the first expansion tank 130 and the second expansion tank 130 are connected to each other in a circulating piping system 10 in parallel, so as to maintain an internal pressure equally. Interconnected to 150.
  • a tank pressure measuring sensor and a tank level measuring sensor are separately provided in each expansion tank, and a circulation pressure measuring sensor is provided in the circulation piping system 10.
  • the tank pressure measuring sensor of the first expansion tank 130 may be the first measuring sensor P1
  • the tank pressure measuring sensor of the second expansion tank 130 may be the second measuring sensor ( P2)
  • the pipe pressure measuring sensor of the circulation piping 10 will be referred to as a third measuring sensor (P3).
  • the optimum pressure value (hereinafter, referred to as a “target reference value”) targeted by the first expansion tank 130 and the second expansion tank 130 is 9.0 kg / m 2 ⁇ G, and is equalized by the mutual equalization pipe 150.
  • the internal pressure remains the same because it is connected.
  • the piping pressure of the circulation piping system 10 is theoretically the same as the pressure value of the first expansion tank 130 and the second expansion tank 130, but is actually about 0.2 kg / m 2 ⁇ G due to water head difference. appear.
  • the physical quantity (in this case, the pressure) on which the pressure holding device is controlled is measured by the first measuring sensor P1 and the second measuring sensor P2.
  • an abnormality occurs in itself (hereinafter, both cases will be collectively referred to as an 'error' of a sensor)
  • the present invention employs a pipe pressure measuring sensor having a pressure similar to that of each expansion tank, that is, a third measuring sensor P3, as a reference sensor in order to determine which of two sensors is abnormal.
  • the pressure of the expansion tank is controlled by calculating the value as close as possible to the actual pressure of the system by comparing with the first and second measuring sensors.
  • the controller 400 includes a first expansion measured from the first measurement sensor P1 and the second measurement sensor P2.
  • the internal pressure measurement values of the tank 130 and the second expansion tank 130 and the pipe pressure measurement values of the circulation piping system 10 measured by the third measurement sensor P3 are received and stored.
  • the controller 400 calculates an absolute value (hereinafter, referred to as a 'measurement deviation value') of the difference between the measured values of the respective measurement sensors, and compares the calculated measurement deviation value with a preset setting deviation value. .
  • the set deviation value is defined as the maximum value of the allowable deviation when all the measuring sensors are in a normal state, which can be empirically arbitrarily set according to the target reference value of the expansion tank.
  • the target reference value of the expansion tank is 9.0 kg / m 2 ⁇ G
  • the target reference value is preferably about 1 kg / m 2 ⁇ G, which is about 10%
  • the target reference value is 100 kg / m 2 ⁇ G, 5 kg / m 2 ⁇ G. It is preferable to set as above.
  • the controller 400 determines whether there is an abnormality of each measuring sensor, and excludes the measured values of the measuring sensor and the third measuring sensor P3 that are determined to have abnormalities. Then, a control reference value (a reference value for controlling nitrogen gas filling or exhausting by determining expansion or contraction of the piping water) is determined and output. Then, it is determined whether the pipe water is expanded or contracted by comparing the control reference value with the target reference value, and according to the determination result, nitrogen gas filling valves S1 and S1 'or nitrogen gas exhaust valves S2 and S2 provided in each expansion tank. The pressure inside each expansion tank is simultaneously controlled by opening and closing ') to fill or exhaust nitrogen gas.
  • a control reference value a reference value for controlling nitrogen gas filling or exhausting by determining expansion or contraction of the piping water
  • the target reference value of the expansion tank is set to 9.0 kg / m 2 ⁇ G
  • the set deviation value is 1 kg / m 2 ⁇ G, and the unit is omitted for convenience.
  • the comparison result between the measurement deviation value and the setting deviation value of each measurement sensor may be divided into five cases.
  • A is the measurement deviation value (
  • B is the measurement of the second measurement sensor P2 and the third measurement sensor P3.
  • , C is defined as the measurement deviation value
  • the control unit 400 determines that all the measurement sensors are normal.
  • the pressure of each expansion tank is controlled by the average of the measured values of the first measuring sensor P1 and the second measuring sensor P2 (the measured values of the third measuring sensor P3 are measured by the first measuring sensor P1 and It is excluded because it is larger due to water head difference than the measured value of the second measuring sensor P2).
  • the measured value of the first measuring sensor P1 is 8.7
  • the measured value of the second measuring sensor P2 is 8.6
  • the measured value of the third measuring sensor P3 is 8.9
  • A, B, and C are all less than or equal to the set deviation value 1, it is determined that all three measuring sensors are normal, and the measured values of the first measuring sensor P1 and 8.7 are excluded except for those measured by the third measuring sensor P3.
  • 8.65 which is the average value of the measured value 8.6 of the second measuring sensor P2, is output as a control reference value, and nitrogen gas is filled in each expansion tank because it is smaller than the target reference value 9.0 of the expansion tank.
  • the controller 400 determines that the second measurement sensor P2 is equal to or greater than the measurement value of the second measurement sensor P2.
  • the value and the measured value of the third measuring sensor P3 are discarded, and the pressure of each expansion tank is controlled only by the measured value of the first measuring sensor P1. That is, when the measured value of the first measuring sensor P1 is larger than the target reference value of the expansion tank, the nitrogen gas exhaust valves S2 and S2 'are opened to exhaust the nitrogen gas, thereby adjusting the pressure corresponding to the target reference value.
  • the pressure is adjusted to the target reference value by opening the nitrogen gas filling valves S1 and S1 'to fill the nitrogen gas.
  • the measured value of the first measuring sensor P1 is 8.7
  • the measured value of the second measuring sensor P2 is 10.0
  • the measured value of the third measuring sensor P3 is 8.9
  • a and B are larger than the set deviation value 1 and C is equal to or less than the set deviation value 1, it is determined to be equal to or greater than the second measurement sensor P2, and the measured value of the second measurement sensor P2 and the third measurement sensor P3. Except for the measured value of, the output value of 8.7, which is the measured value of the first measuring sensor P1, is output as a control reference value, and nitrogen gas is filled in each expansion tank because it is smaller than the target reference value of 9.0 of the expansion tank.
  • the controller 400 determines that the third measurement sensor P3 is equal to or greater than that of the third measurement sensor P3.
  • the measured value is discarded, and the pressure of each expansion tank is controlled by the average value of the measured values of the first measurement sensor P1 and the second measurement sensor P2. That is, when the average value of the measured values of the first measurement sensor P1 and the second measurement sensor P2 is larger than the target reference value of the expansion tank, the nitrogen gas exhaust valves S2 and S2 'are opened to exhaust the nitrogen gas to target the pressure.
  • the pressure is adjusted to the target reference value by filling.
  • the measured value of the first measuring sensor P1 is 8.9
  • the measured value of the second measuring sensor P2 is 8.7
  • the measured value of the third measuring sensor P3 is 7.5
  • the first measurement sensor is judged to be the third measurement sensor P3 or more, except for the measured value of the third measurement sensor P3.
  • the control unit 400 determines that the first measurement sensor P1 is equal to or greater than the measurement value of the first measurement sensor P1.
  • the value and the measured value of the third measuring sensor P3 are discarded, and the pressure of each expansion tank is controlled only by the measured value of the second measuring sensor P2. That is, when the measured value of the second measuring sensor P2 is larger than the target reference value of the expansion tank, the nitrogen gas exhaust valves S2 and S2 'are opened to exhaust the nitrogen gas, thereby adjusting the pressure corresponding to the target reference value.
  • the measured value of the first measuring sensor P1 is 10.8, the measured value of the second measuring sensor P2 is 9.5, and the measured value of the third measuring sensor P3 is 9.3,
  • a and C are larger than the set deviation value 1 and B is equal to or less than the set deviation value 1, it is determined to be equal to or greater than the first measurement sensor P1, and the measured value of the first measurement sensor P1 and the third measurement sensor P3 are determined. Except for the measured value of, 9.5, which is the measured value of the second measuring sensor P2, is output as the control reference value, and the nitrogen gas in each of the expansion tanks is exhausted because it is larger than the target reference value of 9.0 of the expansion tank.
  • A, B, and C are all greater than 1 (e.g. when the measured values of each measuring sensor are 6, 8, 10), it is determined that two or more measuring sensors are abnormal to generate an alarm and stop the system. After that, it is desirable to check or temporarily control the average or median value of the three measuring sensors.
  • the third expansion tank 130 is further installed in parallel with the first expansion tank 130 and the second expansion tank 130. Between the second expansion tank 130 and the third expansion tank 130 may be connected by a pressure equalizing tube (150).
  • the third expansion tank 130 is also provided with a separate tank pressure measuring sensor and a tank level measuring sensor. In this case, the tank pressure measuring sensor provided in the third expansion tank 130 may be used as the third measuring sensor P3 without using the pipe pressure measuring sensor used as the reference sensor in the first embodiment.
  • the pressure of each expansion tank is set to the average value of the respective measurement sensors P1, P2, and P3. If it is determined that there is an abnormality in one of the measuring sensors, the pressure of each expansion tank is controlled by the average value of the other two measuring sensors except the abnormally determined measuring sensor, and there is an abnormality in two or more measuring sensors. If detected, it is advisable to raise an alarm, stop and check the system, or temporarily control the average or median value of the three sensors.
  • the third measuring sensor P3 is used only as a reference sensor because there is a deviation in the measured value due to the head difference with the first measuring sensor P1 and the second measuring sensor P1.
  • the third measuring sensor P3 is a tank pressure measuring sensor provided in the third expansion tank 130, and theoretically, the second measuring sensor P2 and the first measuring sensor P1. Since it has the same measured value as the measured value of), it is a measurement sensor, not a reference sensor, and is reflected when determining the control reference value. Nitrogen filling and exhaust control of the expansion tank by the determined control reference value is the same as in the first embodiment, and a detailed description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Pipeline Systems (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

본 발명은 냉난방 시스템용 압력유지설비의 제어 방법에 관한 것으로, 보다 상세하게는, 동일한 물리량을 측정하는 복수개의 센서를 구비하는 압력유지설비에서 센서의 이상 유무를 검출하여 압력유지설비를 최적의 조건으로 운전 제어하기 위한 방법에 관한 것이다. 본 발명에 따르면, 2개 이상의 복수 센서의 측정값을 이용하여 특정 센서의 이상 유무를 검출하고, 이상이 발생된 것으로 판정된 센서의 측정값을 제어기준값 결정시 배제함으로써 실제 시스템 상태에 상응하는 압력 제어가 가능하다.

Description

복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법
본 발명은 냉난방 시스템용 압력유지설비의 제어 방법에 관한 것으로, 보다 상세하게는, 동일한 물리량을 측정하는 복수개의 센서를 구비하는 압력유지설비에서 센서의 이상 유무를 검출하여 압력유지설비를 최적의 조건으로 운전 제어하기 위한 방법에 관한 것이다.
최근, 냉난방 시스템으로서, 소각장, 복합열병합발전에 의한 지역 냉난방이 활성화되고 있다. 지역냉난방은 일개의 도시 또는 일정한 지역 내의 주거용, 상업용, 공공용 수용가에 집중된 열원시설(예컨대, 열병합발전소)에서 그들이 필요로하는 냉난방, 급탕 및 냉방에 필요한 열을 개별의 열생산시설(유류, 가스보일러 등)을 갖추지 않고 집중화된 열원시설로부터 경제적으로 생산된 열을 배관망을 통하여 공급하는 방식이다. 이러한 지역냉난방 열의 공급은 다음과 같이 이루어진다. 먼저 열원시설에서 만들어진 지역냉난방 열매체를 보온이 양호한 배관망을 통해 수용가 열교환기실까지 공급한다. 열교환기실에 공급된 열매체는 별도의 수용가용 열교환기를 통하여 수용가의 내부 순환 열매체에 열을 전달한뒤, 다시 열원시설로 회수된다. 열교환기실에서 열을 전달받은 수용가 순환수는 각 세대 및 빌딩의 각층에 공급된다. 이러한, 지역냉난방을 위한 열매체로는 주로 물이 사용되는데, 지역냉난방의 특성상 물을 대체로 중고온(100 이상)으로 가열하여 배관을 통하여 순환시키게 된다.
이러한 냉난방 시스템에서는 순환배관계 내의 배관수가 온도의 변화에 의하여 팽창 및 수축을 반복하게 되고, 배관수가 급격히 팽창되는 경우 배관 압력이 급격하게 상승하게 되어 배관이 파열되는 등의 위험이 존재하게 된다. 이러한 배관수의 팽창에 따른 배관 파손의 위험을 방지하기 위하여, 통상의 냉난방 시스템에서는 배관수가 팽창되는 경우 팽창수를 일시 수용하여 배관압력을 낮추어주고, 배관수가 수축되는 경우 일시 수용된 팽창수를 배관으로 환수시킴으로써 배관 압력을 일정하게 유지시키기 위한 압력유지설비로서 팽창탱크가 구비되는 것이 일반적이다.
도 1 에는 종래의 냉난방 시스템 구성도가 도시된다. 상기 냉난방 시스템은, 열원시설(1)로부터 가열된 열매체(배관수)가 순환배관계(10)를 통하여 수용가의 냉난방기기(부하; 10a) 또는 이웃하는 열교환기로 공급 및 회수됨에 따라 수행되는 냉난방 시스템에 있어서, 상기 순환배관계(10)의 일측으로부터 분기되어 팽창된 열매체를 일시 수용함과 동시에 열매체의 수축시 이를 재차 순환배관계(10)로 환수시키는 팽창탱크(130)와; 상기 순환배관계(10)로부터 분기되어 팽창탱크(130)에 연결되는 팽창관(20)과; 상기 팽창탱크(130)의 일측에 연결되어 팽창탱크(130) 내에 질소를 주입하는 질소공급부(200)를 포함한다.
여기서, 상기 팽창탱크(130)는 격막식 또는 비격막식 밀폐형 중공 탱크로 구성되는 압력용기로 구성되며, 탱크 내 압력과 팽창수의 수위를 감지하기 위한 탱크압력측정센서(PT2)와 탱크수위측정센서(LT)를 구비한다. 그리고, 상기 팽창탱크(130)에는 질소공급부(200)로부터 팽창탱크(130) 내부로 공급되는 질소가스의 충진을 제어 단속하기 위한 질소가스충진밸브(S1)와 팽창탱크(130) 내에 충진된 질소가스의 배기를 제어 단속하기 위한 질소가스배기밸브(S2)가 구비된다.
상기 질소공급부(200)는 팽창탱크(130)에 질소가스를 공급하는 부분으로, 공기를 일정한 압력으로 압축하여 공급하는 압축기(미도시)와, 상기 압축기로부터 공급받은 공기로부터 질소만을 추출하여 상기 팽창탱크(130)에 공급하는 질소발생기(미도시)를 포함한다.
이러한 냉난방 시스템의 운전 방법에 대하여 설명하면 다음과 같다. 팽창탱크(130)는 초기에 질소공급부(200)로부터 질소가스를 공급받아, 팽창탱크(130) 초압으로 충전되어 있고 수위는 최저 수위 LWL(LOW WATER LEVEL)로 유지된다. 열매체가 팽창하면 순환배관계(10)로부터 팽창관(20)을 통하여 열매체가 팽창탱크(130) 내부로 유입되고, 팽창탱크(130)의 수위는 최고 수위 HWL(HIGH WATER LEVEL)까지 상승하며, 팽창수의 유입으로 인한 팽창탱크 내부의 상승압력은 탱크압력측정센서(PT2)에서 감지되어 제어부(400)에 의해 제어되는 질소가스배기밸브(S2)의 개방에 따라 질소가스를 배출하여 적정 운전압력범위에 놓이게 된다.
팽창수가 다시 순환배관계(10)로 환수되거나, 시간이 경과함에 따라, 질소가스가 미약하게나마 열매체에 용해되어 팽창탱크(130)의 압력이 운전압력 이하로 낮아지게 되면 이를 탱크압력측정센서(PT2)가 감지하여 제어부(400)의 제어에 따라 질소가스충진밸브(S1)가 개방되어 질소공급부(200)로부터 질소가스가 팽창탱크(130) 내로 유입됨에 따라 팽창탱크(130) 내의 압력을 미리 설정된 적정 운전압력범위 이내로 유지시켜 준다.
이와 같이 종래의 팽창 제어 장치에서는 배관압력측정센서(PT1), 탱크압력측정센서(PT2), 탱크수위측정센서(LT)에 의해 감지된 물리량(압력, 수위)에 근거하여 팽창탱크(130)에 질소를 충진 또는 배기시켜 팽창탱크(130)의 압력을 제어함에 따라, 순환배관계(10)의 배관압력을 일정하게 유지시킨다.
이러한 팽창탱크(130)는 순환배관계(10)의 배관수가 팽창하는 경우 그 팽창수의 양을 모두 수용할 수 있는 용량으로 설계되어야 하는데, 팽창탱크(130)는 제작 가능한 용량에 한계가 있기 때문에 순환배관계(10)가 대용량인 경우 단일 팽창탱크(130)로는 팽창수를 커버하기가 어려워 복수개의 팽창탱크를 사용하게 된다.
복수개의 팽창탱크가 설치된 시스템에서는, 기존 팽창관(20)으로부터 또 다른 팽창관을 분기 연결하고, 그 말단에 또 다른 팽창탱크를 기존 팽창탱크(130)와 병렬로 설치하여 구성되며, 각 팽창탱크에는 탱크압력측정센서와 탱크수위측정센서가 각각 구비된다.
이와 같이, 복수개의 팽창탱크가 구비된 압력유지설비에서는 각 팽창탱크에 구비된 탱크압력측정센서와 탱크수위측정센서로부터 각각 측정된 값에 근거하여 각 팽창탱크의 충진 또는 배기를 개별적으로 제어하거나, 각 센서로부터 측정된 값을 산술 평균한 단일 값으로 각 팽창탱크의 질소 충진 또는 배기를 동시 제어하는 방법을 채택하여 왔다.
그러나, 각 팽창탱크를 개별 제어하는 경우, 각 센서들 간 오차가 크면 동일한 시스템 조건 하에서 서로 상이한 제어가 수행될 문제점이 있다. 예컨대, 배관수의 팽창으로 인하여 팽창탱크 내 질소의 배기가 수행되어야 하는 경우임에도 불구하고, 특정 팽창탱크의 센서 오차가 크거나 센서 자체에 이상이 발생하는 경우 질소의 충진이 수행되어 다른 팽창탱크의 제어 상태 및 전체 시스템의 압력 상태와는 반대로 제어가 수행될 수 있다.
한편, 각 센서 측정값의 단순한 상술 평균으로 각 팽창탱크를 동시에 제어하게 되면, 복수개의 센서 중 특정 센서의 오차가 허용 범위를 초과하거나 일시적으로 센서에 이상이 발생하는 경우, 실제 시스템의 배관압력과 제어기준값 사이의 차이로 인하여 시스템의 상태에 맞는 제어가 수행될 수 없다. 예컨대, 팽창탱크의 적정 압력이 9.0kg/㎡·G 이고 정상 상태인 센서를 구비한 팽창탱크의 압력 측정값이 10.0 kg/㎡·G이며, 또 다른 센서를 구비한 팽창탱크의 압력 측정값이 센서 이상으로 인하여 0 kg/㎡·G로 감지되는 경우, 실제 압력값이 10.0 kg/㎡·G이므로 팽창탱크 내 질소를 배기시켜 압력을 9.0kg/㎡·G로 맞추어 주어야 하는데, 단순 산술 평균에 의해 제어기준값은 5 kg/㎡·G가 되어 팽창탱크 내 질소를 충진하도록 제어하는 결과를 초래한다.
이와 같이, 특정 센서의 오차 또는 작동 이상으로 인하여 실제 시스템 상태에 상응하는 압력 제어가 이루어지지 못한다면, 압력유지설비 자체의 고장 뿐만 아니라 냉난방 시스템 전체에 주는 파급효과가 매우 크게 된다. 즉, 팽창탱크의 압력이 낮아지면 관내 플러싱이 발생하여 대형 사고나 난방 공급 불량으로 귀결될 수 있고, 압력이 높아지면 배관계 장비에 과압이 작용하여 배관 및 장비의 파손을 가져올 우려가 있다.
따라서, 본 발명은 상술한 바와 같은 종래 복수개의 센서를 구비하는 압력유지설비의 제어 방법상 문제점을 해결하기 위해 창안된 것으로, 특정 센서의 이상 유무를 검출하여 해당 센서에 의해 측정된 값을 제어기준값 결정시 배제함으로써 실제 시스템 상태에 상응하는 압력 제어가 가능한 압력유지설비의 제어 방법을 제공하는 것을 목적으로 한다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 순환배관계로부터 각각 분기 설치되어 서로 병렬 연결되고, 균압관으로 상호 연결되는 제1팽창탱크 및 제2팽창탱크와; 상기 제1팽창탱크 및 제2팽창탱크에 각각 별도 구비되어 각 팽창탱크 내부 압력을 측정하는 제1측정센서 및 제2측정센서와; 순환배관계의 배관압력을 감지하는 제3측정센서와; 상기 각 팽창탱크에 질소가스를 공급하기 위한 질소공급부와; 상기 질소공급부로부터 각 팽창탱크에 질소가스를 충진하기 위한 질소가스충진밸브와; 각 팽창탱크로부터 질소가스를 배기시키기 위한 질소가스배기밸브를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법으로서, 상기 제1측정센서로 제1팽창탱크의 내부 압력을 측정하는 단계와; 상기 제2측정센서로 제2팽창탱크의 내부 압력을 측정하는 단계와; 상기 제3측정센서로 순환배관계의 배관압력을 측정하는 단계와; 상기 각 측정센서에 의해 측정된 각 팽창탱크의 내부 압력 및 순환배관계의 배관압력 측정값 사이의 차이값의 절대치를 계산하여 각 측정센서간 측정편차값을 산출하는 단계와; 산출된 각 측정센서간 측정편차값을 미리 설정된 설정편차값과 비교하는 단계와; 상기 측정편차값과 설정편차값의 비교 결과에 따라 각 측정센서의 이상 유무를 판정하는 단계와; 이상이 있는 것으로 판정된 측정센서의 측정값 및 제3측정센서의 측정값을 배제한 나머지 측정센서의 측정값 또는 그것들의 평균값을 각 팽창탱크의 내부 압력 제어기준값으로 출력하는 단계와; 출력된 제어기준값을 미리 설정된 팽창탱크 목표기준값과 비교하여 배관수의 팽창 또는 수축 여부를 판정하고, 판정 결과에 따라 각 팽창탱크에 질소가스를 충진 또는 배기하는 단계를 포함한다.
여기서, 상기 설정편차값은 각 측정센서들이 모두 정상 상태일 경우 허용가능한 편차의 최대값으로 정의된다.
그리고, 각 측정센서들 사이의 측정편차값이 모두 설정편차값 이하인 경우, 모든 측정센서가 정상인 것으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값과, 제2측정센서와 제3측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제3측정센서와 제1측정센서간 측정편차값이 설정편차값 이하인 경우, 제2측정센서 이상으로 판정하여 제1측정센서의 측정값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값이 설정편차값 이하이고, 제2측정센서와 제3측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정측정값 보다 큰 경우, 제3측정센서 이상으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제2측정센서와 제3측정센서간 측정편차값이 설정편차값 이하인 경우, 제1측정센서 이상으로 판정하여, 제2측정센서의 측정값을 제어기준값으로 출력한다.
또한, 각 측정센서들 사이의 측정편차값이 모두 설정편차값 보다 큰 경우, 2개 이상의 센서가 이상인 것으로 판정한다.
한편, 본 발명은, 순환배관계로부터 각각 분기 설치되어 서로 병렬 연결되고, 균압관으로 상호 연결되는 제1팽창탱크, 제2팽창탱크 및 제3팽창탱크와; 상기 각 팽창탱크에 각각 별도 구비되어 각 팽창탱크 내부 압력을 측정하는 제1측정센서, 제2측정센서 및 제3측정센서와; 상기 각 팽창탱크에 질소가스를 공급하기 위한 질소공급부와; 상기 질소공급부로부터 각 팽창탱크에 질소가스를 충진하기 위한 질소가스충진밸브와; 각 팽창탱크로부터 질소가스를 배기시키기 위한 질소가스배기밸브를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법으로서, 상기 각 측정센서로 각 팽창탱크의 내부 압력을 측정하는 단계와; 상기 각 측정센서에 의해 측정된 각 팽창탱크의 내부 압력 측정값 사이의 차이값의 절대치를 계산하여 각 측정센서간 측정편차값을 산출하는 단계와; 산출된 각 측정센서간 측정편차값을 미리 설정된 설정편차값과 비교하는 단계와; 상기 측정편차값과 설정편차값의 비교 결과에 따라 각 측정센서의 이상 유무를 판정하는 단계와; 이상이 있는 것으로 판정된 측정센서의 측정값을 배제한 나머지 측정센서의 측정값의 평균값을 각 팽창탱크의 내부 압력 제어기준값으로 출력하는 단계와; 출력된 제어기준값을 미리 설정된 팽창탱크 목표기준값과 비교하여 배관수의 팽창 또는 수축 여부를 판정하고, 판정 결과에 따라 각 팽창탱크에 질소가스를 충진 또는 배기하는 단계를 포함한다.
여기서, 상기 설정편차값은 각 측정센서들이 모두 정상 상태일 경우 허용가능한 편차의 최대값으로 정의된다.
그리고, 각 측정센서들 사이의 측정편차값이 모두 설정편차값 이하인 경우, 모든 측정센서가 정상인 것으로 판정하여 제1측정센서, 제2측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값과, 제2측정센서와 제3측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제3측정센서와 제1측정센서간 측정편차값이 설정편차값 이하인 경우, 제2측정센서 이상으로 판정하여 제1측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값이 설정편차값 이하이고, 제2측정센서와 제3측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정측정값 보다 큰 경우, 제3측정센서 이상으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고; 제1측정센서와 제2측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제2측정센서와 제3측정센서간 측정편차값이 설정편차값 이하인 경우, 제1측정센서 이상으로 판정하여, 제2측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력한다.
또한, 각 측정센서들 사이의 측정편차값이 모두 설정편차값 보다 큰 경우, 2개 이상의 센서가 이상인 것으로 판정한다.
본 발명에 따르면, 2개 이상의 측정센서의 측정값을 이용하여 특정 센서의 이상 유무를 검출하고, 이상이 발생된 것으로 판정된 센서의 측정값을 제어기준값 결정시 배제함으로써 실제 시스템 상태에 상응하는 정밀하고 신뢰성있는 압력 제어가 가능한 탁월한 효과를 갖는다.
도 1 은 종래 냉난방 시스템의 압력유지설비 시스템 구성도,
도 2 는 본 발명의 제 1 실시예에 따른 냉난방 시스템의 압력유지설비 시스템 구성도,
도 3 은 본 발명의 제 1 실시예에 따른 압력유지설비의 제어 순서도,
도 4 는 본 발명의 제 1 실시예에 따른 압력유지설비의 구체적인 제어 방법이 정리된 도표,
도 5 는 본 발명의 제 2 실시예에 따른 압력유지설비 시스템 구성도이다.
[부호의 설명]
1 : 열원시설 10 : 순환배관계
130 : 팽창탱크 150 : 균압관
400 : 제어부
이하, 본 발명에 따른 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법을 바람직한 실시예와 첨부된 도면을 참조로 상세히 설명하기로 한다.
도 2 에는 본 발명의 제 1 실시예에 따른 복수개의 센서를 구비하는 압력유지설비의 시스템의 예로서, 각각 별도의 센서를 구비하는 서로 다른 2개의 팽창탱크가 설치된 압력유지설비의 시스템 구성도가 도시되고, 도 3 에는 이러한 압력유지설비의 제어 방법 순서도가 도시되며, 도 4 에는 각 센서들의 상태에 따른 압력유지설비의 구체적인 제어 방법이 도시된다.
도 2 에 도시된 바와 같이, 본 발명에서는 제1팽창탱크(130)와 제2팽창탱크(130)가 순환배관계(10)에 서로 병렬로 연결되고, 내부 압력을 동일하게 유지시킬 수 있도록 균압관(150)으로 상호 연결된다. 그리고, 각 팽창탱크에는 탱크압력측정센서와 탱크수위측정센서가 별도로 구비되며, 순환배관계(10)에는 배관압력측정센서가 구비된다. 이하에서는, 도 2 에 도시된 바와 같이, 제1팽창탱크(130)의 탱크압력측정센서를 제1측정센서(P1), 제2팽창탱크(130)의 탱크압력측정센서를 제2측정센서(P2), 순환배관계(10)의 배관압력측정센서를 제3측정센서(P3)라 칭하기로 한다.
상기 제1팽창탱크(130)와 제2팽창탱크(130)가 목표로 하는 최적 압력값(이하, '목표기준값'이라 칭함)은 9.0 kg/㎡·G 이고, 상호 균압관(150)에 의해 연결되어 있기 때문에 이론상 내부 압력이 동일하게 유지된다. 그리고, 순환배관계(10)의 배관압력은 이론상으로는 제1팽창탱크(130)와 제2팽창탱크(130)의 압력값과 동일하나, 실제로는 수두차로 인하여 통상 약 0.2 kg/㎡·G 정도 높게 나타난다.
압력유지설비 제어의 근거가 되는 물리량(여기서는 압력)은 제1측정센서(P1)와 제2측정센서(P2)에 의해 측정되는데, 만일 2개의 센서 중 특정 센서의 오차가 허용 범위를 초과하거나 센서 자체에 이상이 발생하는 경우(이하. 상기 두 가지 경우를 모두 총칭하여 센서의 '이상'이라 표현하기로 한다), 어떤 센서에 이상이 있는지 판정하는 것은 매우 어렵다. 이에, 본 발명은 2개의 센서 중 어느 센서에 이상이 발생하였는지를 판별하기 위하여, 각 팽창탱크의 압력과 비슷한 압력을 갖는 배관압력측정센서, 즉, 제3측정센서(P3)를 참조센서로 채용하여 제1측정센서 및 제2측정센서와 비교함으로써 시스템의 실제 압력에 최대한 근접한 값을 산출하여 팽창탱크의 압력을 제어한다. 이하에서는, 도 3 과 도 4 를 참조로 센서의 이상 유무 판단 및 압력유지설비의 제어 방법을 보다 구체적으로 설명하기로 한다.
도 3 에 도시된 바와 같이, 복수개의 센서를 구비하는 압력유지설비의 제어를 위해, 먼저, 제어부(400)는 제1측정센서(P1), 제2측정센서(P2)로부터 측정된 제1팽창탱크(130) 및 제2팽창탱크(130)의 내부 압력 측정값과, 제3측정센서(P3)로부터 측정된 순환배관계(10)의 배관압력 측정값을 전달받아 저장한다. 그 다음, 제어부(400)는 저장된 각 측정센서의 측정값 사이의 차이값의 절대치(이하, '측정편차값'이라 칭함)을 산출하고, 산출된 측정편차값을 미리 설정된 설정편차값과 비교한다.
여기서, 상기 설정편차값은 각 측정센서들이 모두 정상 상태일 경우 허용가능한 편차의 최대값으로 정의되며, 이 값은 팽창탱크의 목표기준값에 따라 경험적으로 임의 설정 가능하다. 예컨대, 팽창탱크의 목표기준값이 9.0 kg/㎡·G인 경우 10% 정도인 1 kg/㎡·G 정도인 것이 바람직하며, 목표기준값이 100 kg/㎡·G인 경우에는 5 kg/㎡·G 이상으로 설정하는 것이 바람직하다.
측정편차값과 설정편차값의 비교 결과에 따라 제어부(400)는 각 측정센서의 이상 유무를 판정하고, 판정결과 이상이 발생한 것으로 판정된 측정센서와 제3측정센서(P3)의 측정값을 배제하고 제어기준값(배관수의 팽창 또는 수축을 판정하여 질소가스 충진 또는 배기를 제어하기 위한 기준값)을 결정 출력한다. 그리고, 제어기준값과 목표기준값을 비교하여 배관수의 팽창 또는 수축 여부를 판정하고, 판정 결과에 따라 각 팽창탱크에 구비된 질소가스충진밸브(S1,S1') 또는 질소가스배기밸브(S2,S2')를 개폐하여 질소가스를 충진 또는 배기시킴으로써 각 팽창탱크 내부의 압력을 동시 제어한다.
도 4 에는 측정편차값과 설정편차값의 비교 결과에 따른 센서의 이상 유무 판정 결과 및 제어기준값 결정 방법을 정리 도시하였다. 도 4 에서는, 팽창탱크의 목표기준값을 9.0 kg/㎡·G, 설정편차값은 1 kg/㎡·G로 설정하였고, 편의상 단위는 생략하였다.
도 4 에 도시된 바와 같이, 각 측정센서들의 측정편차값과 설정편차값의 비교 결과는 5가지 경우의 수로 나누어 볼 수 있다. 여기서, A 는 제1측정센서(P1)과 제2측정센서(P2)의 측정편차값(|P1-P2|), B 는 제2측정센서(P2)와 제3측정센서(P3)의 측정편차값(|P2-P3|), C 는 제3측정센서(P3)와 제1측정센서(P1)의 측정편차값 (|P3-P1|)으로 정의된다.
먼저, 측정편차값 A, B, C 가 모두 설정편차값 1 이하인 경우에는 각 측정센서들의 편차가 정상 상태의 허용가능한 편차 범위 이내인 것을 의미하므로, 제어부(400)는 모든 측정센서가 정상인 것으로 판정하고, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값으로 각 팽창탱크의 압력을 제어한다(제3측정센서(P3)의 측정값은 제1측정센서(P1) 및 제2측정센서(P2)의 측정값 보다 수두차로 인해 크므로 배제한다). 즉, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값이 팽창탱크의 목표기준값 보다 크면 질소가스배기밸브(S2,S2')를 개방하여 질소가스를 배기시킴으로써 압력을 목표기준값에 상응하게 조절하고, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값이 팽창탱크의 목표기준값 보다 작으면 질소가스충진밸브(S1,S1')를 개방하여 질소가스를 충진시킴으로써 압력을 목표기준값에 상응하게 조절한다.
예컨대, 제1측정센서(P1)의 측정값이 8.7, 제2측정센서(P2)의 측정값이 8.6, 그리고 제3측정센서(P3)의 측정값이 8.9인 경우,
A = |P1-P2| = |8.7-8.6| = 0.1 1,
B = |P2-P3| = |8.6-8.9| = 0.3 1,
C = |P3-P1| = |8.9-8.7| = 0.2 1 로서,
A, B, C 모두 설정편차값 1 이하이므로, 세 개의 측정센서가 모두 정상인 것으로 판정하여, 제3측정센서(P3)의 측정값을 제외하고, 제1측정센서(P1)의 측정값 8.7과 제2측정센서(P2)의 측정값 8.6의 평균값인 8.65를 제어기준값으로 출력하고, 팽창탱크의 목표기준값인 9.0 보다 작으므로 각 팽창탱크 내에 질소가스를 충진한다.
두 번째로, 측정편차값 A 와 B 가 설정편차값 1 보다 크고, C 만 1 이하인 경우, 제어부(400)는 제2측정센서(P2) 이상으로 판정하여, 제2측정센서(P2)의 측정값과 제3측정센서(P3)의 측정값을 버리고 제1측정센서(P1)의 측정값만으로 각 팽창탱크의 압력을 제어한다. 즉, 제1측정센서(P1)의 측정값이 팽창탱크의 목표기준값 보다 크면 질소가스배기밸브(S2,S2')를 개방하여 질소가스를 배기시킴으로써 압력을 목표기준값에 상응하게 조절하고, 제1측정센서(P1)의 측정값이 팽창탱크의 목표기준값 보다 작으면 질소가스충진밸브(S1,S1')를 개방하여 질소가스를 충진시킴으로써 압력을 목표기준값에 상응하게 조절한다.
예컨대, 제1측정센서(P1)의 측정값이 8.7, 제2측정센서(P2)의 측정값이 10.0, 그리고 제3측정센서(P3)의 측정값이 8.9인 경우,
A = |P1-P2| = |8.7-10.0| = 1.3 > 1,
B = |P2-P3| = |10.0-8.9| = 1.1 > 1,
C = |P3-P1| = |8.9-8.7| = 0.2 1 로서,
A, B 가 설정편차값 1 보다 크고, C 는 설정편차값 1 이하이므로, 제2측정센서(P2) 이상으로 판정하여, 제2측정센서(P2)의 측정값과 제3측정센서(P3)의 측정값을 제외하고, 제1측정센서(P1)의 측정값인 8.7을 제어기준값으로 출력하고, 팽창탱크의 목표기준값인 9.0 보다 작으므로 각 팽창탱크 내에 질소가스를 충진한다.
세 번째로, 측정편차값 A 는 설정편차값 1 이하이고, B 및 C 는 1 보다 큰 경우, 제어부(400)는 제3측정센서(P3) 이상으로 판정하여, 제3측정센서(P3)의 측정값을 버리고, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값으로 각 팽창탱크의 압력을 제어한다. 즉, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값이 팽창탱크의 목표기준값 보다 크면 질소가스배기밸브(S2,S2')를 개방하여 질소가스를 배기시킴으로써 압력을 목표기준값에 상응하게 조절하고, 제1측정센서(P1)와 제2측정센서(P2) 측정값의 평균값이 팽창탱크의 목표기준값 보다 작으면 질소가스충진밸브(S1,S1')를 개방하여 질소가스를 충진시킴으로써 압력을 목표기준값에 상응하게 조절한다.
예컨대, 제1측정센서(P1)의 측정값이 8.9, 제2측정센서(P2)의 측정값이 8.7, 그리고 제3측정센서(P3)의 측정값이 7.5인 경우,
A = |P1-P2| = |8.9-8.7| = 0.2 1,
B = |P2-P3| = |8.7-7.5| = 1.2 > 1,
C = |P3-P1| = |7.5-8.9| = 1.4 > 1 로서,
B, C 가 설정편차값 1 보다 크고, C 는 설정편차값 1 이하이므로, 제3측정센서(P3) 이상으로 판정하여, 제3측정센서(P3)의 측정값을 제외하고, 제1측정센서(P1)의 측정값인 8.9와 제2측정센서(P2)의 측정값인 8.7의 평균값인 8.8을 제어기준값으로 출력하고, 팽창탱크의 목표기준값인 9.0 보다 작으므로 각 팽창탱크 내에 질소가스를 충진한다.
네 번째로, 측정편차값 C 와 A 가 설정편차값 1 보다 크고, B 만 1 이하인 경우, 제어부(400)는 제1측정센서(P1) 이상으로 판정하여, 제1측정센서(P1)의 측정값과 제3측정센서(P3)의 측정값을 버리고, 제2측정센서(P2)의 측정값만으로 각 팽창탱크의 압력을 제어한다. 즉, 제2측정센서(P2)의 측정값이 팽창탱크의 목표기준값 보다 크면 질소가스배기밸브(S2,S2')를 개방하여 질소가스를 배기시킴으로써 압력을 목표기준값에 상응하게 조절하고, 제2측정센서(P2)의 측정값이 팽창탱크의 목표기준값 보다 작으면 질소가스충진밸브(S1,S1')를 개방하여 질소가스를 충진시킴으로써 압력을 목표기준값에 상응하게 조절한다.
예컨대, 제1측정센서(P1)의 측정값이 10.8, 제2측정센서(P2)의 측정값이 9.5, 그리고 제3측정센서(P3)의 측정값이 9.3인 경우,
A = |P1-P2| = |10.8-9.5| = 1.3 > 1,
B = |P2-P3| = |9.5-9.7| = 0.2 1,
C = |P3-P1| = |9.7-10.8| = 1.1 > 1 로서,
A, C 가 설정편차값 1 보다 크고, B 는 설정편차값 1 이하이므로, 제1측정센서(P1) 이상으로 판정하여, 제1측정센서(P1)의 측정값과 제3측정센서(P3)의 측정값을 제외하고, 제2측정센서(P2)의 측정값인 9.5를 제어기준값으로 출력하고, 팽창탱크의 목표기준값인 9.0 보다 크므로 각 팽창탱크 내의 질소가스를 배기시킨다.
마지막으로, A, B, C 가 모두 1 보다 큰 경우(예컨대, 각 측정센서들의 측정값이 6, 8, 10 인 경우)에는 2개 이상의 측정센서가 이상인 것으로 판정하여 알람을 발생시키고 시스템을 정지한 후 점검하거나, 임시적으로 3개 측정센서의 평균값 또는 중간값으로 제어하는 것이 바람직하다.
한편, 본 발명의 제 2 실시예에 따르면, 도 5 에 도시된 바와 같이, 제1팽창탱크(130)와 제2팽창탱크(130)에 병렬로 제3팽창탱크(130)를 더 설치하고, 제2팽창탱크(130)와 제3팽창탱크(130) 사이는 균압관(150)으로 연결할 수 있다. 상기 제3팽창탱크(130)에도 역시 별도의 탱크압력측정센서와 탱크수위측정센서가 구비된다. 이 경우, 제3측정센서(P3)로서 제 1 실시예에서 참조센서로서 사용된 배관압력측정센서를 사용하지 않고, 상기 제3팽창탱크(130)에 구비된 탱크압력측정센서를 사용할 수 있다. 이 경우에는, 측정편차값과 설정편차값의 비교 결과로부터 센서의 이상 유무를 파악한 후, 모든 센서가 정상인 것으로 판정되는 경우에는 각 측정센서(P1,P2,P3)의 평균값으로 각 팽창탱크 압력을 제어하고, 어느 하나의 측정센서에 이상이 있는 것으로 판정되는 경우에는 이상 판정된 측정센서를 제외한 나머지 두 개의 측정센서의 평균값으로 각 팽창탱크 압력을 제어하고, 2개 이상의 측정센서에 이상이 있는 것으로 감지되는 경우에는 알람을 발생시키고 시스템을 정지한 후 점검하거나, 임시적으로 3개 센서의 평균값 또는 중간값으로 제어하는 것이 바람직하다.
즉, 제 1 실시예에서는 제3측정센서(P3)가 제1측정센서(P1) 및 제2측정센서(P1)와 수두차로 인하여 측정값에 편차가 존재하기 때문에 참조센서로만 사용을 할 뿐 실제 제어기준값 결정시에는 배제하였지만, 제 2 실시예에서는 제3측정센서(P3)가 제3팽창탱크(130)에 구비된 탱크압력측정센서로서 이론상 제2측정센서(P2) 및 제1측정센서(P1)의 측정값과 동일한 측정값을 갖기 때문에 참조센서가 아닌 실측센서로서 제어기준값 결정시 반영하는 것이다. 결정된 제어기준값에 의한 팽창탱크의 질소 충진 및 배기 제어는 제 1 실시예와 동일하므로 상세한 설명은 생략한다.
이와 같은 방법으로, 복수개의 센서를 구비하는 압력유지설비에서 특정 센서의 이상 유무를 판정하여 이상이 발생한 센서의 측정값을 제어기준값에서 결정시 배제함으로써 정밀하고 신뢰성 있는 압력유지설비의 제어가 가능하게 된다.
지금까지, 본 발명의 실시예를 기준으로 상세히 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 실시예와 실질적 균등범위까지 포함된다 할 것이다.

Claims (8)

  1. 순환배관계로부터 각각 분기 설치되어 서로 병렬 연결되고, 균압관으로 상호 연결되는 제1팽창탱크 및 제2팽창탱크와; 상기 제1팽창탱크 및 제2팽창탱크에 각각 별도 구비되어 각 팽창탱크 내부 압력을 측정하는 제1측정센서 및 제2측정센서와; 순환배관계의 배관압력을 감지하는 제3측정센서와; 상기 각 팽창탱크에 질소가스를 공급하기 위한 질소공급부와; 상기 질소공급부로부터 각 팽창탱크에 질소가스를 충진하기 위한 질소가스충진밸브와; 각 팽창탱크로부터 질소가스를 배기시키기 위한 질소가스배기밸브를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법으로서,
    상기 제1측정센서로 제1팽창탱크의 내부 압력을 측정하는 단계와;
    상기 제2측정센서로 제2팽창탱크의 내부 압력을 측정하는 단계와;
    상기 제3측정센서로 순환배관계의 배관압력을 측정하는 단계와;
    상기 각 측정센서에 의해 측정된 각 팽창탱크의 내부 압력 및 순환배관계의 배관압력 측정값 사이의 차이값의 절대치를 계산하여 각 측정센서간 측정편차값을 산출하는 단계와;
    산출된 각 측정센서간 측정편차값을 미리 설정된 설정편차값과 비교하는 단계와;
    상기 측정편차값과 설정편차값의 비교 결과에 따라 각 측정센서의 이상 유무를 판정하는 단계와;
    이상이 있는 것으로 판정된 측정센서의 측정값 및 제3측정센서의 측정값을 배제한 나머지 측정센서의 측정값 또는 그것들의 평균값을 각 팽창탱크의 내부 압력 제어기준값으로 출력하는 단계와;
    출력된 제어기준값을 미리 설정된 팽창탱크 목표기준값과 비교하여 배관수의 팽창 또는 수축 여부를 판정하고, 판정 결과에 따라 각 팽창탱크에 질소가스를 충진 또는 배기하는 단계를 포함하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  2. 제 1 항에 있어서,
    상기 설정편차값은 각 측정센서들이 모두 정상 상태일 경우 허용가능한 편차의 최대값으로 정의되는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    각 측정센서들 사이의 측정편차값이 모두 설정편차값 이하인 경우, 모든 측정센서가 정상인 것으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값과, 제2측정센서와 제3측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제3측정센서와 제1측정센서간 측정편차값이 설정편차값 이하인 경우, 제2측정센서 이상으로 판정하여 제1측정센서의 측정값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값이 설정편차값 이하이고, 제2측정센서와 제3측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정측정값 보다 큰 경우, 제3측정센서 이상으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제2측정센서와 제3측정센서간 측정편차값이 설정편차값 이하인 경우, 제1측정센서 이상으로 판정하여, 제2측정센서의 측정값을 제어기준값으로 출력하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  4. 제 3 항에 있어서,
    각 측정센서들 사이의 측정편차값이 모두 설정편차값 보다 큰 경우, 2개 이상의 센서가 이상인 것으로 판정하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  5. 순환배관계로부터 각각 분기 설치되어 서로 병렬 연결되고, 균압관으로 상호 연결되는 제1팽창탱크, 제2팽창탱크 및 제3팽창탱크와; 상기 각 팽창탱크에 각각 별도 구비되어 각 팽창탱크 내부 압력을 측정하는 제1측정센서, 제2측정센서 및 제3측정센서와; 상기 각 팽창탱크에 질소가스를 공급하기 위한 질소공급부와; 상기 질소공급부로부터 각 팽창탱크에 질소가스를 충진하기 위한 질소가스충진밸브와; 각 팽창탱크로부터 질소가스를 배기시키기 위한 질소가스배기밸브를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법으로서,
    상기 각 측정센서로 각 팽창탱크의 내부 압력을 측정하는 단계와;
    상기 각 측정센서에 의해 측정된 각 팽창탱크의 내부 압력 측정값 사이의 차이값의 절대치를 계산하여 각 측정센서간 측정편차값을 산출하는 단계와;
    산출된 각 측정센서간 측정편차값을 미리 설정된 설정편차값과 비교하는 단계와;
    상기 측정편차값과 설정편차값의 비교 결과에 따라 각 측정센서의 이상 유무를 판정하는 단계와;
    이상이 있는 것으로 판정된 측정센서의 측정값을 배제한 나머지 측정센서의 측정값의 평균값을 각 팽창탱크의 내부 압력 제어기준값으로 출력하는 단계와;
    출력된 제어기준값을 미리 설정된 팽창탱크 목표기준값과 비교하여 배관수의 팽창 또는 수축 여부를 판정하고, 판정 결과에 따라 각 팽창탱크에 질소가스를 충진 또는 배기하는 단계를 포함하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  6. 제 5 항에 있어서,
    상기 설정편차값은 각 측정센서들이 모두 정상 상태일 경우 허용가능한 편차의 최대값으로 정의되는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  7. 제 5 항 또는 제 6 항에 있어서,
    각 측정센서들 사이의 측정편차값이 모두 설정편차값 이하인 경우, 모든 측정센서가 정상인 것으로 판정하여 제1측정센서, 제2측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값과, 제2측정센서와 제3측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제3측정센서와 제1측정센서간 측정편차값이 설정편차값 이하인 경우, 제2측정센서 이상으로 판정하여 제1측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값이 설정편차값 이하이고, 제2측정센서와 제3측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정측정값 보다 큰 경우, 제3측정센서 이상으로 판정하여 제1측정센서와 제2측정센서 측정값의 평균값을 제어기준값으로 출력하고;
    제1측정센서와 제2측정센서간 측정편차값과 제3측정센서와 제1측정센서간 측정편차값이 각각 설정편차값 보다 크고, 제2측정센서와 제3측정센서간 측정편차값이 설정편차값 이하인 경우, 제1측정센서 이상으로 판정하여, 제2측정센서 및 제3측정센서 측정값의 평균값을 제어기준값으로 출력하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
  8. 제 7 항에 있어서,
    각 측정센서들 사이의 측정편차값이 모두 설정편차값 보다 큰 경우, 2개 이상의 센서가 이상인 것으로 판정하는 것을 특징으로 하는 냉난방 시스템용 압력유지설비의 제어 방법.
PCT/KR2011/004219 2010-06-17 2011-06-09 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법 WO2011159061A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/640,646 US8991417B2 (en) 2010-06-17 2011-06-09 Method for controlling pressure keeping facility for cooling and heating system provided with plurality of sensors
CN201180019614.9A CN102869925B (zh) 2010-06-17 2011-06-09 具备多个传感器的冷暖空调系统用压力维持设备的控制方法
ES11795927.0T ES2618927T3 (es) 2010-06-17 2011-06-09 Procedimiento de control de instalación para el mantenimiento de la presión para un sistema de refrigeración y de calefacción provisto de pluralidad de sensores
EP11795927.0A EP2584279B1 (en) 2010-06-17 2011-06-09 Method for controlling pressure keeping facility for cooling and heating system provided with plurality of sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100057649A KR101098821B1 (ko) 2010-06-17 2010-06-17 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법
KR10-2010-0057649 2010-06-17

Publications (2)

Publication Number Publication Date
WO2011159061A2 true WO2011159061A2 (ko) 2011-12-22
WO2011159061A3 WO2011159061A3 (ko) 2012-02-09

Family

ID=45348717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004219 WO2011159061A2 (ko) 2010-06-17 2011-06-09 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법

Country Status (6)

Country Link
US (1) US8991417B2 (ko)
EP (1) EP2584279B1 (ko)
KR (1) KR101098821B1 (ko)
CN (1) CN102869925B (ko)
ES (1) ES2618927T3 (ko)
WO (1) WO2011159061A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201645B4 (de) * 2012-02-03 2016-07-21 Air-Sep Vertriebs- Und Service Ag Ausdehnungs- und entgasungsvorrichtung zum anschluss an ein kreislaufsystem, insbesondere das kreislaufsystem einer gebäudeheizung
KR101284606B1 (ko) 2013-04-29 2013-07-10 지창환 인버터 부스터 펌프 시스템
GB2517725C (en) * 2013-08-29 2019-12-04 Utility Io Group Ltd Heater suitable for heating a flow of natural gas
US10429096B2 (en) * 2016-03-24 2019-10-01 Laird Technologies, Inc. Combined heater and accumulator assemblies
CN108361914A (zh) * 2018-01-22 2018-08-03 青岛海尔空调器有限总公司 空调器的控制方法、控制系统及空调器
CN109028511A (zh) * 2018-07-03 2018-12-18 佛山市影腾科技有限公司 一种带有空气质量检测传感器的空调系统
KR102212653B1 (ko) * 2018-07-31 2021-02-04 엘지전자 주식회사 공기조화기 및 그 제어방법
CN109557965A (zh) * 2018-12-27 2019-04-02 江苏万帮德和新能源科技股份有限公司 一种充电桩内环境检测控制系统
KR102532952B1 (ko) * 2020-11-26 2023-05-16 플로우테크 주식회사 듀얼 탱크를 이용한 수충격 방지 시스템
KR102532956B1 (ko) * 2020-11-26 2023-05-16 플로우테크 주식회사 압력탱크 이상 감지 및 슬램 방지 기능을 구비하는 듀얼 탱크 수배관 시스템
CN112748221A (zh) * 2020-12-30 2021-05-04 南京汽车集团有限公司 一种轻卡氢燃料电池车检测整车氢泄漏方法
IT202100013886A1 (it) * 2021-05-27 2022-11-27 Tecnoimpianti S R L Dispositivo per il controllo e la manutenzione di un impianto solare termico a circuito chiuso e relativo metodo di utilizzo
CN113654207A (zh) * 2021-07-29 2021-11-16 青岛海尔空调器有限总公司 用于传感器的控制方法、控制装置和服务器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359561A (en) * 1887-03-15 Heating apparatus for buildings
US516668A (en) * 1894-03-20 Bunging apparatus
US401940A (en) * 1889-04-23 Half to h
US1540744A (en) * 1923-04-21 1925-06-09 Auto Laundry System Company Apparatus for washing automobiles
US2085274A (en) * 1935-12-28 1937-06-29 Harry R Rutt Beverage dispensing system
US2917113A (en) * 1958-03-17 1959-12-15 Earl R Ortman Air unloader for submergible pumps
DE2212654C3 (de) * 1972-03-16 1978-04-27 Werner 2301 Schoenkirchen Hahne Druckhaltevorrichtung mit einem ein Inertgaspolster enthaltenden Ausdehnungsgefäß
JPS6010302A (ja) * 1983-06-30 1985-01-19 Oki Electric Ind Co Ltd 制御装置のフエイルセ−フ処理装置
US5487646A (en) * 1989-11-30 1996-01-30 Ebara Corporation Vacuum pump control apparatus for an evacuating type waste water collecting system
JPH1130400A (ja) * 1997-07-09 1999-02-02 Nippon Kuatsu Syst Kk 蓄圧装置
US6615861B2 (en) * 2001-04-20 2003-09-09 Chart Inc. Liquid cylinder manifold system
CN1407297A (zh) * 2001-09-01 2003-04-02 王德禄 太阳能中高温集热吸收式空调系统
US7243500B2 (en) 2004-06-02 2007-07-17 Advanced Thermal Sciences Corp. Heat exchanger and temperature control unit
US7194894B2 (en) * 2004-11-04 2007-03-27 General Electric Company Advanced HIT skid data collection
KR100760984B1 (ko) 2007-04-20 2007-09-21 플로우테크 주식회사 냉난방 순환배관계의 수충격 방지 시스템
JP4288625B2 (ja) * 2007-09-19 2009-07-01 トヨタ自動車株式会社 燃料電池システムおよび反応ガスの供給量制御方法
KR100845472B1 (ko) 2008-02-13 2008-07-10 플로우테크 주식회사 질소가스 충진형 팽창 가압 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2584279A4 *

Also Published As

Publication number Publication date
KR20110137621A (ko) 2011-12-23
EP2584279A2 (en) 2013-04-24
US20130025696A1 (en) 2013-01-31
EP2584279A4 (en) 2014-09-03
EP2584279B1 (en) 2016-12-21
CN102869925A (zh) 2013-01-09
ES2618927T3 (es) 2017-06-22
KR101098821B1 (ko) 2011-12-26
CN102869925B (zh) 2015-04-15
WO2011159061A3 (ko) 2012-02-09
US8991417B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
WO2011159061A2 (ko) 복수개의 센서를 구비하는 냉난방 시스템용 압력유지설비의 제어 방법
WO2010058880A1 (en) Test apparatus and method for safety valve
US4220010A (en) Loss of refrigerant and/or high discharge temperature protection for heat pumps
WO2013055134A2 (ko) 난방시스템 제어방법
WO2012033278A9 (ko) 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법
ES2462005T3 (es) Procedimiento para el control de la hermeticidad de válvulas de seguridad
EP3607251A1 (en) Air conditioning system and control method thereof
WO2019146999A1 (ko) 배터리 셀 스웰링 탐지 시스템 및 방법
WO2021154034A1 (ko) 차온 제어 장치에 의한 태양열 과열 및 동파 방지 시스템
CN108731127B (zh) 一种多管式多联机室外机及其管路检测方法和检测装置
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
WO2013180377A1 (ko) 직렬식 난방 및 급탕시스템
WO2023153675A1 (ko) 인공지능 학습에 의한 능동제어 고장진단 가동상태 모니터링이 가능한 스마트밸브 시스템
WO2016126113A2 (ko) 압력탱크 충진·배기 시스템의 이상 감지 제어 방법
WO2019143038A1 (ko) 난방 및 급탕공급장치
KR102148137B1 (ko) 세대 급수온도 센서의 고장을 검출할 수 있는 열량 측정 시스템 및 이의 제어 방법
JP2014153003A (ja) 熱交換システム
KR101142098B1 (ko) 집단 에너지 시설의 부분 구역 가압 장치
WO2018088860A2 (ko) 전기 보일러의 순환이상 제어장치 및 그 제어방법
KR102213658B1 (ko) 배관 상태 제어시스템, 이를 이용하는 배관맵 시스템 및 누수 검출 시스템
WO2021225213A1 (ko) 공기조화기 시스템 및 그 제어방법
KR101284606B1 (ko) 인버터 부스터 펌프 시스템
WO2016208868A1 (ko) 지역 및 중앙 난방에 적용되는 난방 및 온수 공급 장치 및 그 제어 방법
WO2014142387A1 (ko) 연료전지 시스템의 제어장치 및 제어방법
KR100201217B1 (ko) 2중 열교환 시스템을 채용한 유압펌프 성능 시험기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019614.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795927

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13640646

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011795927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011795927

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE