WO2012033278A9 - 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법 - Google Patents

레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법 Download PDF

Info

Publication number
WO2012033278A9
WO2012033278A9 PCT/KR2011/004220 KR2011004220W WO2012033278A9 WO 2012033278 A9 WO2012033278 A9 WO 2012033278A9 KR 2011004220 W KR2011004220 W KR 2011004220W WO 2012033278 A9 WO2012033278 A9 WO 2012033278A9
Authority
WO
WIPO (PCT)
Prior art keywords
level
pressure tank
water
transmitter
switch
Prior art date
Application number
PCT/KR2011/004220
Other languages
English (en)
French (fr)
Other versions
WO2012033278A1 (ko
Inventor
양재구
양지석
Original Assignee
플로우테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 플로우테크 주식회사 filed Critical 플로우테크 주식회사
Priority to CN201180042735.5A priority Critical patent/CN103080862B/zh
Priority to EP11823711.4A priority patent/EP2615515A4/en
Priority to US13/821,193 priority patent/US20130160862A1/en
Publication of WO2012033278A1 publication Critical patent/WO2012033278A1/ko
Publication of WO2012033278A9 publication Critical patent/WO2012033278A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid

Definitions

  • the present invention relates to a method for controlling the pressure level of a pressure tank, and more particularly, to detect an abnormality of a level transmitter for measuring a water level in a pressure tank used for a piping system, such as an expansion tank or a water shock prevention tank.
  • the present invention relates to a method for precisely and reliably controlling the water level.
  • Each tank is provided with a pressure tank (in the former case, a water shock prevention tank, and in the latter case, an expansion tank).
  • a pressure tank in the former case, a water shock prevention tank, and in the latter case, an expansion tank.
  • accurate and reliable maintenance of the proper level means maintaining an energy source for the stabilization of expansion or water shock pressure waves, and a change in the level of the pressure tank means a change in the reference pressure throughout the piping system.
  • a change in the level of the pressure tank means a change in the reference pressure throughout the piping system.
  • the water level of the real-time pressure tank 100 is sensed by the level transmitter LT in the water shock prevention device of the open piping system in which the level maintenance of the pressure tank is the target.
  • the control unit 400 opens the filling valve S1 to fill gas into the pressure tank 100 from the gas supply device 200 to lower and adjust the water level to an appropriate level.
  • Open (S2) to exhaust the gas from the pressure tank 100 to the outside to raise the water level.
  • the same method according to the expansion and contraction of the piping water in the expansion tank system of the circulation piping system transient piping system having a hot water tank or open circulation tank
  • In-tank level control is performed.
  • (b) and (c) of FIG. 1 differ only in the connection position of the pressure tank, and the rest of the system configuration is the same, so the level control method will be the same.
  • a level transmitter in order to control the level of the pressure tank, a level transmitter must be provided in the pressure tank.
  • an error or malfunction occurs in the level transmitter.
  • Unnecessary filling or exhausting operations are carried out to change the operating pressure of the system, which results in a breakdown of the water hammer or expansion control device as well as a change in pressure throughout the piping system, resulting in a water shock prevention device and an expansion control device.
  • level transmitters are therefore installed in the piping systems requiring high reliability, such as district heating and cooling piping systems, liquid transfer systems, and plants, for precise and reliable water level control of pressure tanks.
  • a method for dealing with malfunctions, failures or errors in the system has been proposed.
  • the level transmitter has a disadvantage in that failure occurs frequently, the price is high, and the reliability of the measured water level value is low, and the use of a plurality of level transmitters requires a lot of equipment and maintenance costs.
  • the present invention has been made to solve the problems in the pressure tank level control method in the conventional piping system as described above, it is determined whether there is an abnormality of the level transmitter, and if it is determined that the abnormality is the level value measured by the level transmitter It is an object of the present invention to provide a method of controlling the level of a pressure tank that excludes and allows the level control to correspond to actual system conditions.
  • the pressure tank provided for water shock prevention control or expansion control in the piping system;
  • a level transmitter for measuring the water level of the pressure tank;
  • a first level switch installed at a low level alarm line of the pressure tank;
  • a second level switch disposed between the low water level warning line and the lower limit line of an appropriate water level;
  • a third level switch disposed between the high level alarm line of the pressure tank and an upper limit of an appropriate water level range;
  • a fourth level switch installed at the high level alarm line;
  • a pressure tank level control method of a piping system having a gas supply device for supplying gas to the pressure tank the method comprising: receiving a level measurement value of a pressure tank from the level transmitter; Receiving and confirming an on / off signal of each level switch; Comparing the level measurement value of the level transmitter with the on / off signal of the level switch to determine whether there is an abnormality of the level transmitter, and determining whether the level of the actual pressure tank is rising or falling; And filling or exhausting the gas into the pressure tank based on a result
  • the measured water level value of the level transmitter is within the proper water level range of the pressure tank and the third level switch and the fourth level switch are in the on state, it is determined that the actual water level of the pressure tank has risen beyond the proper water level range. Fill the gas into the pressure tank to lower the water level.
  • the filling of the gas in the pressure tank is preferably performed until the second level switch is turned on, or is performed for a predetermined time to adjust the level of the pressure tank to an appropriate level range.
  • the level when the first level switch and the second level switch are in the on state The transmitter determines that it is normal and maintains the pressure tank level in its current state. If at least one of the first level switch and the second level switch is in the off state, the transmitter is judged to be above the level transmitter and the actual level of the pressure tank is below the proper level range. The gas is exhausted to the outside of the pressure tank in order to increase the water level as judged to have descended.
  • the exhaust of the gas from the pressure tank is preferably performed until the third level switch is turned on, or is performed for a predetermined time in order to adjust the level of the pressure tank to the appropriate level range.
  • a level transmitter and a plurality of level switches are provided in parallel to determine whether there is an abnormality of the level transmitter in accordance with the signal of the level switch, and when it is determined that the error is abnormal, the level switch is excluded from the measurement level value.
  • FIG. 1 is a configuration diagram of a piping system having a conventional pressure tank
  • FIG. 2 is a block diagram of a piping system including a pressure tank having one level transmitter and a plurality of level switches according to a preferred embodiment of the present invention
  • FIG. 3 is a diagram schematically illustrating a level sensing range and an output method of a level transmitter and a level switch
  • FIG. 5 is a view illustrating a level transmitter abnormality according to a level transmitter level measurement value and a level switch on / off signal when a level transmitter measurement value is within an appropriate level range, and a method for controlling a specific level of a pressure tank based on the level transmitter. This is the diagram shown.
  • control unit LT level transmitter
  • LS1 First level switch
  • LS2 Second level switch
  • LS3 Third Level Switch
  • LS4 Fourth Level Switch
  • FIG. 2 shows an example of a piping system including a pressure tank 100 according to a preferred embodiment of the present invention.
  • the piping system according to the present invention includes a pressure tank 100 in which one level transmitter LT and four level switches LS1, LS2, LS3, and LS4 are installed.
  • NWL NORD WATER LEVEL
  • NH NORD HIGH
  • NL NVMAL LOW
  • the level transmitter LT is installed to measure the entire water level of the pressure tank 100
  • the level switch is a first level switch LS1 installed in the low level alarm line LA
  • the low level alarm The second level switch LS2 installed between the line LA and the lower limit level NL of the proper water level, the high level alarm line HA (HI ALARM) of the pressure tank, and the upper limit line NH of the appropriate level range. It consists of the 3rd level switch LS3 and the 4th level switch LS4 provided in the high water level warning line HA.
  • FIG. 3 schematically shows a level transmitter and a level sensing range and an output method of each level switch.
  • the level transmitter LT is a kind of analog sensor that can be measured over the entire water level (0% to 100%), and the measured value is output as a current value of 4 mA to 20 mA.
  • Each level switch is a kind of digital sensor, and is configured to close a contact by a float or the like when the water level is reached, and outputs an ON / OFF signal.
  • the level transmitter (LT) is a sensor for measuring the water level by a float method or a conductivity measurement method, while real-time precision level measurement is possible, but has a disadvantage of relatively high failure rate and high price.
  • the level switch is a contact type that can only know whether a certain level has been reached, so it is impossible to measure the real time level, but there are advantages of relatively low failure rate and low cost. Therefore, the present invention uses only one level transmitter LT having a relatively high failure rate and high cost, and uses a plurality of level switches having a low failure rate and low cost to compensate for the shortcomings of the level transmitter LT, and actively utilizes the advantages of the level switch. It is intended to enable reliable level control at low cost.
  • Figure 4 is a flow chart of the pressure tank 100 level control method according to the present invention
  • Figure 5 is a specific level control method of the pressure tank 100 according to the output signal of the level transmitter (LT) and each level switch. This is shown.
  • the control unit 400 receives a pressure tank 100 level measurement signal between 4 mA and 20 mA from the level transmitter LT, and the water level is measured.
  • the value is converted into a value (hereinafter, referred to as a 'water level measurement value') and displayed on the outside using a display unit provided separately. Then, check the on / off signal of the level switch installed for each level.
  • the controller 400 compares the level measurement value of the level transmitter LT with the on / off signal of the level switch, and determines whether there is an abnormality of the level transmitter LT, and raises or lowers the actual level of the pressure tank 100. After determining whether to descend, the gas filling and exhausting in the pressure tank 100 is controlled based on the determination result and the level switch signal. A detailed determination method and a gas filling and exhaust control method will be described below with reference to FIGS. 3 and 5.
  • the water level of the pressure tank 100 is the proper level range lower limit line (NL) and the appropriate level range upper limit line (NH).
  • the third level switch LS3 and the fourth level switch LS4 should be in an off state.
  • the switch LS4 is in the on state, the first level switch LS1 and the second level switch LS2 are naturally in the on state. In this case, it is obvious that an error has occurred in the level transmitter LT. ) Is determined as an abnormality of the level transmitter LT.
  • the controller 400 of the pressure tank 100 It is determined that the actual water level rises above the proper water level range, and the gas is filled from the gas supply device 200 into the pressure tank 100 by opening the filling valve S1 to lower the water level. Filling of the gas should be performed until the water level in the pressure tank 100 is in the appropriate level range. However, when an abnormality occurs in the level transmitter LT, an accurate level cannot be measured, and the filling is performed until the second level switch LS2 closest to the lower limit of the appropriate level range is turned on, or the filling valve for a predetermined time.
  • the predetermined time is based on the capacity of the pressure tank 100, the height between the fourth level switch (LS4) and the upper limit of the appropriate water level range, the gas filling amount according to the time, the degree of change in the water level according to the gas filling amount, etc. It may be predetermined through experimentation to adjust the water level to the appropriate level range.
  • the level measurement value of the level transmitter LT appears to be within the proper level range of the pressure tank 100, and when both the third level switch LS3 and the fourth level switch LS4 are off, the first level is measured.
  • the abnormality of the level transmitter LT is determined depending on whether the level switch LS1 and the second level switch LS2 are turned on or off.
  • the third level switch LS3 and the fourth level switch LS4 are in an off state, and both the first level switch LS1 and the second level switch LS2 are on.
  • the level transmitter LT is determined to be normal and the pressure tank level is to be maintained.
  • the level switch LS3 and the fourth level switch LS4 are in the off state, but at least one of the first level switch LS1 and the second level switch LS2 appears to be in the off state, the level is lower. It is determined that the transmitter LT is abnormal.
  • the controller 400 determines that the actual water level of the pressure tank 100 is lowered below the proper level range, in order to increase the water level to open the exhaust valve (S2) to exhaust the gas to the outside of the pressure tank (100).
  • the evacuation of the gas should be performed until the water level in the pressure tank 100 is in the proper level range.
  • an abnormality occurs in the level transmitter LT, an accurate water level cannot be measured. Therefore, the air level is exhausted until the third level switch LS3 closest to the upper limit of the proper water level level is turned on, or the pressure tank 100 is exhausted.
  • the predetermined time is the capacity of the pressure tank 100, the height between the first level switch (LS1) and the second level switch (LS2) and the lower limit of the appropriate water level range, the gas displacement according to time, the water level fluctuation according to the gas displacement
  • the level of the pressure tank 100 may be predetermined through experiments to adjust the level of the pressure tank 100 to an appropriate level range based on the degree.
  • the level measurement value appears to be within the proper level range above the level transmitter LT.
  • the case where the level measurement value of the level transmitter LT is out of an appropriate level range is excluded.
  • the level of the pressure tank 100 is basically controlled based on the level measurement value of the level transmitter LT, but the level of the level transmitter LT
  • the level of the level transmitter LT By comparing the level measurement value with the on / off signal of each level switch, it is possible to determine whether there is an abnormality of the level transmitter LT, and when it is determined that the level transmitter LT is abnormal, based on the on / off signal of the level switch,
  • the level of the pressure tank 100 rises when the second level switch LS2 is turned on or filled for a predetermined time
  • the level of the pressure tank 100 when the third level switch LS3 is turned on The water level can be controlled by exhausting up to or by a preset time.
  • the filling and exhaust of the gas in the pressure tank are performed by opening the filling valve and the exhaust valve, respectively.
  • the filling valve and the exhaust valve are not provided separately, and the compressor operation of the gas supply device is performed.
  • the filling of the gas is performed only by the bar, and the pressure tank level control method according to the present invention described above may be applicable to a small-scale piping system without a separate valve.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

본 발명은 압력탱크의 수위 제어 방법에 관한 것으로, 레벨트랜스미터의 이상 유무를 검출하여 압력탱크의 수위를 정밀하고 신뢰성 있게 제어하기 위한 방법에 관한 것이다. 본 발명은 압력탱크와; 레벨트랜스미터와; 상기 압력탱크의 저수위 경보선에 설치되는 제1레벨스위치와; 저수위 경보선과 적정 수위 범위 하한선 사이에 설치되는 제2레벨스위치와; 압력탱크의 고수위 경보선과 적정 수위 범위 상한선 사이에 설치되는 제3레벨스위치와; 고수위 경보선에 설치되는 제4레벨스위치와; 압력탱크에 기체를 공급하기 위한 기체공급장치를 구비하는 배관 시스템의 압력탱크 수위 제어 방법으로서, 레벨트랜스미터로부터 압력탱크의 수위측정값을 수신하는 단계와; 각 레벨스위치의 온오프 신호를 수신하여 확인하는 단계와; 레벨트랜스미터의 수위측정값과 레벨스위치의 온오프 신호를 비교하여 레벨트랜스미터의 이상 유무를 판정하고, 실제 압력탱크의 수위 상승 또는 하강 여부를 판정하는 단계와; 압력탱크의 수위 상승 또는 하강 여부 판정 결과 및 레벨스위치의 온오프 신호에 근거하여, 압력탱크에 기체를 충진 또는 배기하는 단계를 포함한다.

Description

레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법
본 발명은 압력탱크의 수위 제어 방법에 관한 것으로, 보다 상세하게는, 팽창탱크 또는 수충격 방지 탱크와 같이 배관 시스템에 사용되는 압력탱크에서 수위를 측정하는 레벨트랜스미터의 이상 유무를 검출하여 압력탱크의 수위를 정밀하고 신뢰성 있게 제어하기 위한 방법에 관한 것이다.
냉난방을 위한 순환배관 시스템 또는 유체이송 배관 시스템에서는 펌프의 급정지나 밸브 급폐쇄의 경우 유량과 압력이 급격히 변화함으로써 발생되는 수충격을 방지하거나, 순환 배관계의 배관수 팽창으로 인한 배관계의 파손을 방지하기 위해 각각 압력탱크(전자의 경우 수충격 방지탱크라 하고, 후자의 경우 팽창탱크라 칭함)를 구비한다. 이러한 압력탱크의 수위는 배관계에서 팽창 또는 수충격이 발생하였을때, 수면위의 기체 체적의 압축성유체 특성상 그 충격파를 흡수하거나 배관계로 액체를 유입시켜 배관의 저압을 방지시키는 압축성유체인 기체의 부피를 결정하는 것이므로, 적정수위의 정밀하고 신뢰성 있는 유지는 곧 팽창 또는 수충격 압력파의 안정화를 위한 에너지원을 유지하는 것이며, 압력탱크의 수위 변동은 배관시스템 전체의 기준압력 변동을 의미하고, 이는 압력이 상승할 때에는 배관계의 장비나 배관을 파손시킬 수 있으며, 압력이 하강하여 액체의 포화증기압 이하로 낮아지면 수주분리 후 재결합시 충격파로 장비나 배관을 파손시킬 수 있어 배관 시스템을 안정적으로 유지시키기 위해 적정수위 범위로 항시 유지되도록 제어되어야 한다. 이러한 압력탱크의 수위 제어는 압력탱크 내 공기 또는 질소와 같은 기체의 충진 또는 배기에 의해 수행된다.
즉, 도 1 의 (a)에 도시된 바와 같이, 압력탱크의 적정범위의 레벨유지가 목표인 개방 배관계의 수충격 방지장치에서 레벨트랜스미터(LT)에 의해 실시간 압력탱크(100)의 수위를 감지하여, 수위 상승시 제어부(400)는 충진밸브(S1)를 개방하여 기체공급장치(200)로부터 압력탱크(100) 내부에 기체를 충진함으로써 수위를 적정 수위로 낮추어 조정하고, 수위 하락시에는 배기밸브(S2)를 개방하여 압력탱크(100)로부터 기체를 외부로 배기시켜 수위를 상승시킨다. 그리고, 도 1 의 (b) 및 (c)에 도시된 바와 같이, 순환배관계(개방단 수조를 갖는 일과성배관계 또는 축열조를 갖는 순환배관계)의 팽창탱크 시스템에서도 배관수의 팽창 및 수축에 따라 동일한 방법으로 탱크내 레벨 제어가 수행된다. 참고로 도 1 의 (b) 및 (c)는 압력탱크의 연결 위치만 상이할 뿐 나머지 시스템 구성은 동일하므로 레벨 제어 방법 또한 동일하다 할 것이다.
이와 같이, 압력탱크의 수위 제어를 위해서는 압력탱크에 레벨트랜스미터가 구비되어야 하는데, 종래의 시스템에서는 압력탱크 1개 당 단지 1개의 레벨트랜스미터를 구비함으로써 상기 레벨트랜스미터의 오차가 발생하거나 오작동이 수행되는 경우 필요 이상의 충진 또는 배기 작동이 수행되어 시스템의 운전압력을 변화시키고, 이로 인하여 수충격 방지 장치 또는 팽창 제어 장치의 고장뿐만 아니라 배관 시스템 전체의 압력 변화를 가져와, 결과적으로 수충격 방지 장치 및 팽창 제어 장치의 목적인 고저압력서지(수충격)의 방지 및 온도변화에 의한 팽창제어의 불능을 야기하는 문제점이 존재하였다.
이러한 문제점을 해결하기 위해, 따라서, 지역냉난방 배관 시스템, 액체이송 시스템, 플랜트 등 고신뢰성이 요구되는 배관 시스템에서는 압력탱크의 정밀하고 신뢰성 있는 수위 제어를 위해 복수개의 레벨트랜스미터를 설치하여, 일부 레벨트랜스미터의 오작동이나 고장 또는 오차에 대응하는 방법이 제시되었다.
그러나, 상기 레벨트랜스미터는 고장 발생이 빈번하고, 가격도 고가이어서, 측정된 수위값의 신뢰도가 떨어지며, 복수개의 레벨트랜스미터를 사용하는 경우 설비 및 유지비가 많이 드는 단점이 존재한다.
본 발명은 상기한 바와 같은 종래 배관 시스템에서 압력탱크의 수위 제어 방법상 문제점을 해결하기 위해 창안된 것으로, 레벨트랜스미터의 이상 유무를 판정하고, 이상인 것으로 판정되는 경우 레벨트랜스미터에 의해 측정된 수위값을 배제하고 실제 시스템 상태에 상응하는 수위 제어가 가능토록 하는 압력탱크의 수위 제어 방법을 제공하는 것을 목적으로 한다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 배관 시스템에서 수충격 방지 제어 또는 팽창 제어를 위해 구비되는 압력탱크와; 상기 압력탱크의 수위를 측정하는 레벨트랜스미터와; 상기 압력탱크의 저수위 경보선에 설치되는 제1레벨스위치와; 상기 저수위 경보선과 적정 수위 범위 하한선 사이에 설치되는 제2레벨스위치와; 상기 압력탱크의 고수위 경보선과 적정 수위 범위 상한선 사이에 설치되는 제3레벨스위치와; 고수위 경보선에 설치되는 제4레벨스위치와; 상기 압력탱크에 기체를 공급하기 위한 기체공급장치를 구비하는 배관 시스템의 압력탱크 수위 제어 방법으로서, 상기 레벨트랜스미터로부터 압력탱크의 수위측정값을 수신하는 단계와; 상기 각 레벨스위치의 온오프 신호를 수신하여 확인하는 단계와; 상기 레벨트랜스미터의 수위측정값과 레벨스위치의 온오프 신호를 비교하여 레벨트랜스미터의 이상 유무를 판정하고, 실제 압력탱크의 수위 상승 또는 하강 여부를 판정하는 단계와; 상기 압력탱크의 수위 상승 또는 하강 여부 판정 결과 및 레벨스위치의 온오프 신호에 근거하여, 압력탱크에 기체를 충진 또는 배기하는 단계를 포함한다.
여기서, 상기 레벨트랜스미터의 측정수위값이 압력탱크의 적정 수위 범위 내이고, 제3레벨스위치 및 제4레벨스위치가 온 상태인 경우, 압력탱크의 실제 수위가 적정 수위 범위를 초과하여 상승한 것으로 판정하고, 수위를 낮추기 위하여 압력탱크 내부로 기체를 충진한다.
그리고, 상기 압력탱크 내 기체의 충진은 제2레벨스위치가 온 상태가 될 때까지 수행되거나, 압력탱크의 수위를 적정 수위 범위로 맞추기 위해 미리 정해진 시간 동안 수행되는 것이 바람직하다.
한편, 상기 레벨트랜스미터의 측정수위값이 압력탱크의 적정 수위 범위 내이고, 제3레벨스위치 및 제4레벨스위치가 오프 상태인 경우, 제1레벨스위치와 제2레벨스위치가 모두 온 상태에 있으면 레벨트랜스미터는 정상인 것으로 판정하여 압력탱크 수위를 현 상태로 유지시키고, 제1레벨스위치와 제2레벨스위치 중 적어도 하나가 오프 상태에 있으면 레벨트랜스미터의 이상으로 판정하고 압력탱크의 실제 수위가 적정 수위 범위 미만으로 하강한 것으로 판단하여 수위를 높이기 위하여 압력탱크 외부로 기체를 배기시킨다.
그리고, 상기 압력탱크로부터 기체의 배기는 제3레벨스위치가 온 될 때까지 수행되거나, 압력탱크의 수위를 적정 수위 범위로 맞추기 위해 미리 정해진 시간 동안 수행되는 것이 바람직하다.
본 발명에 따르면, 레벨트랜스미터와, 복수개의 레벨스위치를 병렬로 설치하여, 레벨스위치의 신호에 따라 레벨트랜스미터의 이상 유무를 판정하여, 이상인 것으로 판정되는 경우 레벨트랜스미터의 측정 수위값을 배제하고 레벨스위치의 신호를 근거로 수위를 제어함으로써, 실제 시스템 상태에 상응하는 정밀하고 신뢰성 있는 압력탱크의 수위 제어가 가능할 뿐만 아니라, 레벨트랜스미터의 고장 등으로부터 기인하는 배관 시스템의 압력 통제 불능과, 그로 인한 배관 폭발 등의 안전사고를 미연에 방지할 수 있는 장점을 갖는다.
도 1 은 종래 압력탱크를 구비하는 배관 시스템의 구성도,
도 2 는 본 발명의 바람직한 실시예에 따라 1개의 레벨트랜스미터와 복수개의 레벨스위치가 구비된 압력탱크를 포함하는 배관 시스템의 구성도,
도 3 은 레벨트랜스미터와 레벨스위치의 수위 감지 범위 및 출력 방법이 개략적으로 도시된 도표,
도 4 는 본 발명에 따른 압력탱크 수위 제어 방법의 순서도,
도 5 는 레벨트랜스미터의 수위측정값이 적정 수위 범위 내에 있는 경우, 레벨트랜스미터의 수위측정값과 레벨스위치의 온오프 신호에 따른 레벨트랜스미터의 이상 유무 판정 및 이를 근거로한 압력탱크의 구체적인 수위 제어 방법이 도시된 도표이다.
[부호의 설명]
100 : 압력탱크 200 : 기체공급장치
400 : 제어부 LT : 레벨트랜스미터
LS1 : 제1레벨스위치 LS2 : 제2레벨스위치
LS3 : 제3레벨스위치 LS4 : 제4레벨스위치
이하, 본 발명에 따른 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법을 바람직한 실시예와 첨부된 도면을 참조로 상세히 설명하기로 한다.
도 2 에는 본 발명의 바람직한 실시예에 따른 압력탱크(100)를 포함하는 배관 시스템의 예가 도시된다. 도 2 에 도시된 바와 같이, 본 발명에 따른 배관 시스템은 하나의 레벨트랜스미터(LT)와 4개의 레벨스위치(LS1,LS2,LS3,LS4)가 설치된 압력탱크(100)를 포함한다.
앞서 언급한 바와 같이, 배관 시스템의 압력탱크(100) 수위는 배관 시스템의 안정을 위해 항시 적정 수위 범위로 유지되어야 하는 바, 도 2에서 NWL(NORMAL WATER LEVEL)은 압력탱크(100)의 중간 수위로서 통상적인 적정 수위선이며, NH(NORMAL HIGH) 및 NL(NORMAL LOW)은 적정 범위의 상한 수위선 및 하한 수위선을 각각 나타낸다.
상기 레벨트랜스미터(LT)는 압력탱크(100)의 전체 수위에 걸쳐 측정이 가능하도록 설치되며, 레벨스위치는 저수위 경보선(LA;LOW ALARM)에 설치되는 제1레벨스위치(LS1), 상기 저수위 경보선(LA)과 적정 수위 범위 하한선(NL) 사이에 설치되는 제2레벨스위치(LS2), 압력탱크의 고수위 경보선(HA;HIGH ALARM))과 적정 수위 범위 상한선(NH) 사이에 설치되는 제3레벨스위치(LS3) 및 고수위 경보선(HA)에 설치되는 제4레벨스위치(LS4)로 구성된다.
한편, 도 3 에는 레벨트랜스미터와 각 레벨스위치의 수위 감지 범위 및 출력 방법이 개략적으로 도시된다. 도시된 바와 같이, 상기 레벨트랜스미터(LT)는 일종의 아날로그 센서로서 전체 수위(0% ~ 100%)에 걸쳐 측정이 가능하며, 측정값은 4mA ~ 20mA의 전류값으로 출력된다. 그리고, 각 레벨스위치는 일종의 디지털 센서로서, 해당 수위에 도달시 부유구 등에 의해 접점이 닫히도록 구성되어 온오프(ON/OFF) 신호를 출력한다.
상기 레벨트랜스미터(LT)는 플로트 방식 또는 전도도 측정 방식으로 수위를 측정하는 센서로서 실시간 정밀한 수위 측정이 가능한 반면 비교적 고장율이 높고 고가인 단점이 존재한다. 이에 반하여, 레벨스위치는 접점 방식으로서 특정 수위의 도달 여부만을 알 수 있어 실시간 수위 측정이 불가능하나 비교적 고장율이 낮고 저가인 장점이 존재한다. 따라서, 본 발명은 비교적 고장율이 높고 고가인 레벨트랜스미터(LT)를 1개만 사용하고, 고장율이 낮고 저가인 레벨스위치를 다수개 사용하여 레벨트랜스미터(LT)의 단점을 보완하고 레벨스위치의 장점을 적극 활용함으로써 저렴한 비용으로 신뢰성 높은 수위 제어를 가능토록 하고자 하는 것이다.
한편, 도 4 에는 본 발명에 따른 압력탱크(100) 수위 제어 방법의 순서도가 도시되고, 도 5 에는 레벨트랜스미터(LT) 및 각 레벨스위치의 출력 신호에 따른 압력탱크(100)의 구체적인 수위 제어 방법이 도시된다.
도 4 에 도시된 바와 같이, 압력탱크(100)의 수위 제어를 위해, 먼저, 제어부(400)는 레벨트랜스미터(LT)로부터 4mA ~ 20mA 사이의 압력탱크(100) 수위 측정 신호를 수신하고 이를 수위값(이하, '수위측정값'이라 칭함)으로 변환하여 별도 구비된 디스플레이수단을 이용하여 외부에 표시한다. 그리고, 각 수위별로 설치된 레벨스위치의 온오프 신호를 확인한다.
그 다음, 상기 제어부(400)는 레벨트랜스미터(LT)의 수위측정값과 레벨스위치의 온오프 신호를 비교하여 레벨트랜스미터(LT)의 이상 유무를 판정하고, 실제 압력탱크(100)의 수위 상승 또는 하강 여부를 판정한 후, 판정 결과와 레벨스위치 신호에 근거하여 압력탱크(100) 내 기체 충진 및 배기를 제어한다. 구체적인 판정 방법과 기체 충진 및 배기 제어 방법은 이하에서 도 3 및 도 5 를 참조로 설명한다.
먼저, 레벨트랜스미터(LT)의 수위측정값이 압력탱크(100)의 적정 수위 범위 이내인 것으로 나타난 경우, 압력탱크(100)의 수위는 적정 수위 범위 하한선(NL)과 적정 수위 범위 상한선(NH) 사이이므로, 이론상 제3레벨스위치(LS3)와 제4레벨스위치(LS4)는 오프 상태에 있어야 한다. 그런데, 이와 같이 레벨트랜스미터(LT)의 수위측정값이 압력탱크(100)의 적정 수위 범위 이내인 것으로 나타났음에도 불구하고, 도 5 에 도시된 바와 같이, 제3레벨스위치(LS3)와 제4레벨스위치(LS4)가 모두 온 상태인 경우, 제1레벨스위치(LS1) 및 제2레벨스위치(LS2)는 당연히 온 상태에 있으며, 이 경우 레벨트랜스미터(LT)에 오류가 발생한 것이 명백하므로 제어부(400)는 레벨트랜스미터(LT)의 이상으로 판정한다.
이와 같이, 레벨트랜스미터(LT)의 수위측정값은 적정 수위 범위 이내이나 제3레벨스위치(LS3) 및 제4레벨스위치(LS4)가 온 상태인 경우, 제어부(400)는 압력탱크(100)의 실제 수위가 적정 수위 범위를 초과하여 상승한 것으로 판단하고, 수위를 낮추기 위하여 충진밸브(S1)를 개방하여 기체공급장치(200)로부터 압력탱크(100) 내부로 기체를 충진한다. 기체의 충진은 압력탱크(100)의 수위가 적정 수위 범위에 속할 때 까지 수행되어야 한다. 그런데, 레벨트랜스미터(LT)에 이상이 발생한 경우 정확한 수위를 측정할 수 없으므로, 적정 수위 범위 하한선에 가장 근접한 제2레벨스위치(LS2)가 온 상태가 될 때까지 충진하거나, 미리 정해진 시간 동안 충진밸브를 개방하여 기체를 충진하는 것이 바람직하다. 여기서, 미리 정해진 시간은 압력탱크(100)의 용량, 제4레벨스위치(LS4)와 적정 수위 범위 상한선 사이의 높이, 시간에 따른 기체 충진량, 기체 충진량에 따른 수위 변동 정도 등을 기초로 압력탱크의 수위를 적정 수위 범위로 맞추기 위해 실험을 통해 미리 결정될 수 있다.
한편, 레벨트랜스미터(LT)의 수위측정값이 압력탱크(100)의 적정 수위 범위 이내인 것으로 나타나고, 제3레벨스위치(LS3)와 제4레벨스위치(LS4)가 모두 오프 상태인 경우에는 제1레벨스위치(LS1) 및 제2레벨스위치(LS2)의 온오프 여부에 따라 레벨트랜스미터(LT)의 이상 유무를 결정한다.
구체적으로, 도 5 에 도시된 바와 같이, 제3레벨스위치(LS3)와 제4레벨스위치(LS4)가 오프 상태에 있으며, 제1레벨스위치(LS1)와 제2레벨스위치(LS2)가 모두 온 상태에 있는 경우, 레벨트랜스미터(LT)는 정상인 것으로 판정하고 압력탱크 수위는 현 상태를 유지하도록 한다.
반면, 제3레벨스위치(LS3)와 제4레벨스위치(LS4)가 오프 상태에 있으나, 제1레벨스위치(LS1)와 제2레벨스위치(LS2) 중 적어도 하나가 오프 상태인 것으로 나타나는 경우에는 레벨트랜스미터(LT)의 이상으로 판정한다.
이와 같이, 제3레벨스위치(LS3) 및 제4레벨스위치(LS4)가 오프 상태이고, 제1레벨스위치(LS1)와 제2레벨스위치(LS2) 중 적어도 하나가 오프 상태인 경우 제어부(400)는 압력탱크(100)의 실제 수위가 적정 수위 범위 미만으로 하강한 것으로 판단하고, 수위를 높이기 위하여 배기밸브(S2)를 개방하여 압력탱크(100) 외부로 기체를 배기시킨다. 기체의 배기는 압력탱크(100)의 수위가 적정 수위 범위에 속할 때 까지 수행되어야 한다. 그런데, 레벨트랜스미터(LT)에 이상이 발생한 경우 정확한 수위를 측정할 수 없으므로, 적정 수위 범위 상한선에 가장 근접한 제3레벨스위치(LS3)가 온 상태가 될 때까지 배기하거나, 압력탱크(100)의 수위를 적정 수위 범위로 맞추기 위해 미리 정해진 시간 동안 배기밸브(S2)를 개방하여 기체를 충진하는 것이 바람직하다. 여기서, 미리 정해진 시간은 압력탱크(100)의 용량, 제1레벨스위치(LS1) 및 제2레벨스위치(LS2)와 적정 수위 범위 하한선 사이의 높이, 시간에 따른 기체 배기량, 기체 배기량에 따른 수위 변동 정도 등을 기초로 압력탱크(100)의 수위를 적정 수위 범위로 맞추기 위해 실험을 통해 미리 결정될 수 있다.
한편, 본 발명은 압력탱크(100)의 수위가 실제로 적정 수위 범위 미만으로 하강하거나 그것을 초과하여 상승하고 있음에도 불구하고 레벨트랜스미터(LT)의 이상으로 수위측정값이 적정 수위 범위 내인 것으로 나타나 현 상태를 그대로 유지함으로써 배관 시스템의 압력 변화에 대응하지 못하여 발생하는 위험을 대처하기 위한 목적으로서, 레벨트랜스미터(LT)의 수위측정값이 적정 수위 범위를 벗어나는 경우는 논외로 한다.
다만, 레벨트랜스미터(LT)의 수위측정값이 적정 수위 범위를 벗어나는 경우에는 기본적으로 레벨트랜스미터(LT)의 수위측정값에 근거하여 압력탱크(100)의 수위를 제어하되, 레벨트랜스미터(LT)의 수위측정값과 각 레벨스위치의 온오프 신호를 비교하여 레벨트랜스미터(LT)의 이상 유무를 판정할 수 있으며, 레벨트랜스미터(LT)의 이상인 것으로 판정되는 경우에는 레벨스위치의 온오프 신호에 근거하여, 압력탱크(100)의 수위 상승시 제2레벨스위치(LS2)가 온 될 때까지 충진하거나 미리 설정된 시간 만큼 충진하고, 압력탱크(100)의 수위 하강시 제3레벨스위치(LS3)가 온 될 때까지 배기하거나 미리 설정된 시간 만큼 배기하여 수위를 제어할 수 있다.
위에서는 압력탱크 내 기체의 충진 및 배기가 각각 충진밸브와 배기밸브의 개방에 의해 수행되는 것으로 설명하였으나, 대체로 규모가 작은 시스템의 경우 충진밸브 및 배기밸브가 별도로 구비되지 않고 기체공급장치의 컴프레서 작동에 의해서만 기체의 충진이 수행되는 바, 상술한 본 발명에 따른 압력탱크 수위 제어 방법은 이와 같이 별도의 밸브를 구비하지 않는 소규모 배관 시스템에도 그대로 적용 가능하다 할 것이다.
지금까지, 본 발명의 실시예를 기준으로 상세히 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 실시예와 실질적 균등범위까지 포함된다 할 것이다.

Claims (7)

  1. 배관 시스템에서 수충격 방지 제어 또는 팽창 제어를 위해 구비되는 압력탱크와; 상기 압력탱크의 수위를 측정하는 레벨트랜스미터와; 상기 압력탱크의 저수위 경보선에 설치되는 제1레벨스위치와; 상기 저수위 경보선과 적정 수위 범위 하한선 사이에 설치되는 제2레벨스위치와; 상기 압력탱크의 고수위 경보선과 적정 수위 범위 상한선 사이에 설치되는 제3레벨스위치와; 고수위 경보선에 설치되는 제4레벨스위치와; 상기 압력탱크에 기체를 공급하기 위한 기체공급장치를 포함하는 배관 시스템의 압력탱크 수위 제어 방법으로서,
    상기 레벨트랜스미터로부터 압력탱크의 수위측정값을 수신하는 단계와;
    상기 각 레벨스위치의 온오프 신호를 수신하여 확인하는 단계와;
    상기 레벨트랜스미터의 수위측정값과 레벨스위치의 온오프 신호를 비교하여 레벨트랜스미터의 이상 유무를 판정하고, 실제 압력탱크의 수위 상승 또는 하강 여부를 판정하는 단계와;
    상기 압력탱크의 수위 상승 또는 하강 여부 판정 결과 및 레벨스위치의 온오프 신호에 근거하여, 압력탱크에 기체를 충진 또는 배기하는 단계를 포함하는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  2. 제 1 항에 있어서,
    상기 레벨트랜스미터의 측정수위값이 압력탱크의 적정 수위 범위 내이고, 제3레벨스위치 및 제4레벨스위치가 온 상태인 경우, 압력탱크의 실제 수위가 적정 수위 범위를 초과하여 상승한 것으로 판정하고, 수위를 낮추기 위하여 압력탱크 내부로 기체를 충진하는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  3. 제 2 항에 있어서,
    상기 압력탱크 내 기체의 충진은 제2레벨스위치가 온 상태가 될 때까지 수행되는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  4. 제 2 항에 있어서,
    상기 압력탱크 내 기체의 충진은 압력탱크의 수위를 적정 수위 범위로 맞추기 위해 미리 정해진 시간 동안 수행되는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  5. 제 1 항에 있어서,
    상기 레벨트랜스미터의 측정수위값이 압력탱크의 적정 수위 범위 내이고, 제3레벨스위치 및 제4레벨스위치가 오프 상태인 경우,
    제1레벨스위치와 제2레벨스위치가 모두 온 상태에 있으면 레벨트랜스미터는 정상인 것으로 판정하여 압력탱크 수위를 현 상태로 유지시키고,
    제1레벨스위치와 제2레벨스위치 중 적어도 하나가 오프 상태에 있으면 레벨트랜스미터의 이상으로 판정하고 압력탱크의 실제 수위가 적정 수위 범위 미만으로 하강한 것으로 판단하여 수위를 높이기 위하여 압력탱크 외부로 기체를 배기시키는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  6. 제 5 항에 있어서,
    상기 압력탱크로부터 기체의 배기는 제3레벨스위치가 온 될 때까지 수행되는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
  7. 제 5 항에 있어서,
    상기 압력탱크로부터 기체의 배기는 압력탱크의 수위를 적정 수위 범위로 맞추기 위해 미리 정해진 시간 동안 수행되는 것을 특징으로 하는 배관 시스템의 압력탱크 수위 제어 방법.
PCT/KR2011/004220 2010-09-09 2011-06-09 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법 WO2012033278A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180042735.5A CN103080862B (zh) 2010-09-09 2011-06-09 利用液面传感器与液面开关的配管系统的压力箱水位控制方法
EP11823711.4A EP2615515A4 (en) 2010-09-09 2011-06-09 Pressure-tank water-level control method in a piping system using a level transmitter and a level switch
US13/821,193 US20130160862A1 (en) 2010-09-09 2011-06-09 Pressure-tank water-level control method in a piping system using a level transmitter and a level switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0088217 2010-09-09
KR1020100088217A KR101069126B1 (ko) 2010-09-09 2010-09-09 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법

Publications (2)

Publication Number Publication Date
WO2012033278A1 WO2012033278A1 (ko) 2012-03-15
WO2012033278A9 true WO2012033278A9 (ko) 2012-04-05

Family

ID=44958113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004220 WO2012033278A1 (ko) 2010-09-09 2011-06-09 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법

Country Status (5)

Country Link
US (1) US20130160862A1 (ko)
EP (1) EP2615515A4 (ko)
KR (1) KR101069126B1 (ko)
CN (1) CN103080862B (ko)
WO (1) WO2012033278A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527968B1 (es) * 2013-08-02 2016-02-26 Eulen, S.A. Equipo de trasvase de lodos, de ciclo continuo de trabajo.
KR101948002B1 (ko) * 2014-04-11 2019-02-15 코웨이 주식회사 물저장탱크 및 이의 만수위 조정방법
CN104149757A (zh) * 2014-08-13 2014-11-19 吕渊 一种轮毂温度监测和控制装置
WO2016126113A2 (ko) * 2015-02-04 2016-08-11 플로우테크 주식회사 압력탱크 충진·배기 시스템의 이상 감지 제어 방법
KR101876261B1 (ko) * 2015-02-04 2018-07-09 플로우테크 주식회사 압력탱크 충진·배기 시스템의 이상 감지 제어 방법
KR101672438B1 (ko) * 2015-07-10 2016-11-03 삼성중공업 주식회사 레벨 트랜스미터 검사장치
CN106128048A (zh) * 2016-07-04 2016-11-16 国网山东省电力公司博兴县供电公司 一种水位探测控制报警器
KR101934765B1 (ko) * 2017-09-12 2019-01-03 양지석 압력탱크 안전 제어 시스템
KR102498854B1 (ko) 2017-09-21 2023-02-10 플로우테크 주식회사 이젝터 효과를 이용한 자원 절감형 수배관 시스템
CN109649425B (zh) * 2018-12-14 2020-08-28 青岛亚通达铁路设备有限公司 一种污物容量探测方法、卫生系统及轨道车辆
KR102667195B1 (ko) 2019-03-20 2024-05-20 플로우테크 주식회사 고압 공기 공급 장치 및 이를 이용한 압력탱크 고압 기체 충진 기능을 구비하는 수배관 시스템
KR102532952B1 (ko) 2020-11-26 2023-05-16 플로우테크 주식회사 듀얼 탱크를 이용한 수충격 방지 시스템
KR102532956B1 (ko) 2020-11-26 2023-05-16 플로우테크 주식회사 압력탱크 이상 감지 및 슬램 방지 기능을 구비하는 듀얼 탱크 수배관 시스템
KR102618796B1 (ko) 2021-10-29 2023-12-28 플로우테크 주식회사 수배관 시스템의 공기압축기 유량 산출 및 표시 방법
KR102434113B1 (ko) 2022-05-26 2022-08-22 고등기술연구원연구조합 입자부착에 의한 측정오류 해결장치를 구비한 플로트식 레벨트랜스미터
CN117168585B (zh) * 2023-11-03 2024-02-13 福建福清核电有限公司 一种辅助给水箱液位开关在线校验装置及方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2243188A (en) * 1940-07-05 1941-05-27 Watson Stillman Co Liquid level control
US2336205A (en) * 1940-12-20 1943-12-07 Standard Oil Dev Co Refining of mineral oils
US2621240A (en) * 1949-12-30 1952-12-09 Koppers Co Inc Liquid level control and indicator device
US2959055A (en) * 1957-07-09 1960-11-08 Jersey Prod Res Co Fluid meter
US2949126A (en) * 1958-08-01 1960-08-16 Phillips Petroleum Co Liquid level control
US4865073A (en) * 1987-09-14 1989-09-12 Vilter Manufacturing Corporation Liquid level control for refrigeration system
GB9306417D0 (en) * 1993-03-27 1993-05-19 Schlumberger Ind Ltd Fluid level sensing systems
US5878793A (en) * 1993-04-28 1999-03-09 Siegele; Stephen H. Refillable ampule and method re same
DE4405238C2 (de) * 1994-02-18 1998-07-09 Endress Hauser Gmbh Co Anordnung zur Messung des Füllstands in einem Behälter
KR19980077434A (ko) * 1997-04-18 1998-11-16 노병식 흡습제를 이용한 축농축식 공조방법
US5901740A (en) * 1997-10-31 1999-05-11 Sanchelima; Juan Andres Continuous extended holding tank with variable resident time
JP3414249B2 (ja) * 1998-03-19 2003-06-09 株式会社日立製作所 吸収冷凍機
KR100365817B1 (ko) * 1998-05-30 2003-04-08 삼성중공업 주식회사 순환식 캐비테이션 채널의 미세 압력 조절장치
KR20000034561A (ko) * 1998-11-30 2000-06-26 전주범 보일러의 물 보충 시스템의 고장 감지 방법 및 그 장치
US6938635B2 (en) * 2002-07-26 2005-09-06 Exxonmobil Research And Engineering Company Level switch with verification capability
US7100631B2 (en) * 2002-11-06 2006-09-05 Atomic Energy Council-Institute Of Nuclear Energy Research Multifunction passive and continuous fluid feeding system
CN2655094Y (zh) * 2003-11-02 2004-11-10 马守军 热水空调机
JP2005140728A (ja) * 2003-11-10 2005-06-02 Heisei Takara Shokai:Kk 水位レベル制御用センサ
US7194894B2 (en) * 2004-11-04 2007-03-27 General Electric Company Advanced HIT skid data collection
KR100742398B1 (ko) * 2006-02-17 2007-07-24 양철수 수충격 방지시스템의 수충격 인식방법 및 제어방법
KR100868908B1 (ko) * 2007-11-06 2008-11-14 양재구 수충격 방지 시스템
KR100933656B1 (ko) * 2009-02-24 2009-12-23 플로우테크 주식회사 동력 절감 및 고신뢰성 수충격 방지 시스템 및 그 운전 방법

Also Published As

Publication number Publication date
KR101069126B1 (ko) 2011-09-30
WO2012033278A1 (ko) 2012-03-15
EP2615515A4 (en) 2017-07-05
CN103080862A (zh) 2013-05-01
US20130160862A1 (en) 2013-06-27
EP2615515A1 (en) 2013-07-17
CN103080862B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2012033278A1 (ko) 레벨트랜스미터와 레벨스위치를 이용한 배관 시스템의 압력탱크 수위 제어 방법
WO2011111942A2 (ko) 복수개의 센서를 구비하여 정밀하고 신뢰성 있는 압력탱크의 수위제어 방법
RU2607312C2 (ru) Способ контроля плавающей крыши резервуара
US8633825B2 (en) Expansion tank with a predictive sensor
KR101894260B1 (ko) 교정장치
US6082182A (en) Apparatus for measuring the flow rate due to a leak in a pressurized pipe system
US20060225493A1 (en) Measurement pickup
KR102133537B1 (ko) 압력탱크 충진·배기 시스템의 이상 감지 제어 방법
WO2016126113A2 (ko) 압력탱크 충진·배기 시스템의 이상 감지 제어 방법
KR101077059B1 (ko) 블래더 파손 감지 기능을 갖는 격막식 압력탱크를 이용한 배관 시스템
WO2023273250A1 (zh) 换热水箱液位测量系统及方法、核电厂pcs系统
KR101949050B1 (ko) 가스 차단용 수봉 시스템 및 방법
KR100686941B1 (ko) 엘엔지 저장탱크의 통합제어 안전관리 시스템
EP0145379A2 (en) Tank level measuring system
CN219640946U (zh) 一种活塞倾斜检测仪
CN113314322B (zh) 一种油位校验装置及方法
CN207966674U (zh) 一种采用智能传感器测量油位的新型电力变压器储油柜
CN108168646B (zh) 加热器液位密度修正数据分析系统
CN218725111U (zh) 一种气体传感器通气检测装置
CN112525442B (zh) 换流阀阀塔漏水检测装置、系统及方法
CN109654594A (zh) 智能管道补偿器故障报警装置
CN113488212B (zh) 非能动余热排出系统运行状态的确定方法、装置和系统
CN220397282U (zh) 一种液化石油气储罐泄漏紧急处置装置
CN219978081U (zh) 一种透水混凝土透水系数监测装置
CN211696354U (zh) 一种垂直位移监测领域用防泄漏连通装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042735.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011823711

Country of ref document: EP