WO2011158786A1 - 有機el素子用駆動装置および有機el照明装置 - Google Patents

有機el素子用駆動装置および有機el照明装置 Download PDF

Info

Publication number
WO2011158786A1
WO2011158786A1 PCT/JP2011/063495 JP2011063495W WO2011158786A1 WO 2011158786 A1 WO2011158786 A1 WO 2011158786A1 JP 2011063495 W JP2011063495 W JP 2011063495W WO 2011158786 A1 WO2011158786 A1 WO 2011158786A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
current
current detection
voltage
control unit
Prior art date
Application number
PCT/JP2011/063495
Other languages
English (en)
French (fr)
Inventor
司 八木
石田 耕一
池津 勇一
宮脇 浩二
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011548482A priority Critical patent/JP4973814B2/ja
Priority to EP11795692.0A priority patent/EP2584871A4/en
Priority to US13/703,088 priority patent/US9497805B2/en
Publication of WO2011158786A1 publication Critical patent/WO2011158786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an organic EL element driving device and an organic EL lighting device for driving an organic EL element.
  • organic EL Electro Luminescence
  • organic EL Electro Luminescence
  • the organic EL provides a new lighting design, showcase, and showroom that are not available in the past, and enables new effects in stores and the like.
  • organic EL has been developed because it has an environmentally friendly feature of being mercury-free.
  • FIG. 6 is a schematic view showing a cross-sectional structure of a general organic EL element 100.
  • the organic EL element 100 includes an ITO 101, an organic EL layer 102, and an aluminum layer 103 that are stacked on a base material 104.
  • the organic EL element 100 has a structure in which a DC voltage is applied between the aluminum layer 103 and the ITO 101.
  • an organic EL material is obtained by passing an electric current through a very thin thin film made of a transparent conductive film (anode), an organic EL material, and a metal electrode (cathode) on a substrate. Among them, electron-hole recombination is caused, thereby generating light.
  • FIG. 7 is a graph showing an example of a current-voltage characteristic that is a relationship between voltage and current density of the organic EL element 100 at each temperature.
  • FIG. 8 is a graph showing an example of the relationship between the current density and the luminance for each temperature of the organic EL element 100.
  • the current-voltage characteristic of the organic EL element 100 is similar to the current-voltage characteristic of the diode. Almost no current flows when the voltage is low, but the current abruptly changes at a certain threshold voltage. Shows the characteristic of flowing. Further, as can be seen from FIG. 7, when the current density is measured by changing the temperature from room temperature 26.0 degrees to 81.0 degrees, the threshold voltage shifts in the decreasing direction as the temperature increases, and the voltage is constant. When the temperature changes, the current increases rapidly. However, as shown in FIG. 8, the current density and the luminance are in a substantially linear relationship, and also exhibit a relatively stable behavior with respect to temperature.
  • the organic EL element 100 exhibiting such behavior is driven by voltage control, it is necessary to control the voltage value with very high accuracy, and it is also necessary to perform compensation for temperature with high accuracy. Further, when driven by voltage control, the electro-optic conversion efficiency is greatly affected by the variation in threshold voltage due to the manufacture of the organic EL element 100. Therefore, when the organic EL element 100 is driven, more stable luminance can be obtained with respect to temperature fluctuation or the like by driving with current control.
  • FIG. 9 is a block diagram of a general current driving device that drives the organic EL element 100.
  • the organic EL element 100 to be driven, the power source 202, and the current control unit 203 are connected in series.
  • the current control unit 203 includes a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 205, a current control circuit 204, and a current detection resistor 201.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the current control unit 203 measures the voltage Vs across the current detection resistor 201 having a resistance value Rs in order to flow a constant current Ioled through the organic EL element 100 using the current control circuit 204.
  • the current flowing in the is changed.
  • Vref Vref / Rs
  • the voltage Vo supplied from the power source 202 to the organic EL element 100 is the sum of the voltage drop Voled in the organic EL element 100, the voltage drop Vmos in the MOSFET 205, and the voltage drop Vs in the current detection resistor 201.
  • the voltage Vo has a margin in consideration of a margin for adjusting the luminance of the organic EL element 100, variations in the manufacturing stage of the organic EL element 100, temperature characteristics, changes with time, and the like. It is necessary to set it to a sufficiently large value.
  • the voltage set to a sufficiently large value with such a margin is consumed by being heated by the MOSFET 205 and / or the current detection resistor 201. That is, the electric power based on this extra voltage is wasted without contributing to light emission.
  • the dimming range requires about two digits, so that the current range also requires two digits. Therefore, the voltage detected by the current detection resistor 201 also varies by two digits during dimming. Then, since power consumption is proportional to the square of the voltage, if the voltage fluctuates by two digits, the power fluctuates by four digits, and there is a lot of wasted power especially in the low luminance region.
  • Patent Document 1 discloses a power supply circuit in which a plurality of light emitting elements (light emitting diodes) are connected in series to a plurality of constant current sources so that the lowest voltage among the voltage drops of the constant current sources is constant. Disclosed is a technique for performing switching control. According to this technique, since the voltage drop of the constant current source is controlled to a constant value, even if the current flowing through the light emitting diode becomes large, there is no increase in loss in voltage detection in resistance detection.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2008-134288 (Patent Document 2) is an LED driver that supplies power to an LED, and is connected in series to the LED, and a constant current circuit unit that adjusts a current flowing through the LED to a predetermined value.
  • An LED driver including a voltage adjustment unit that is connected in series to the constant current circuit unit and adjusts a voltage by a switching regulator is disclosed. According to this LED driver, since the voltage is adjusted by a switching regulator, it is said that it is possible to suppress wasteful power consumption associated with the step-down process as much as possible.
  • the present invention provides a drive device for organic EL elements and an organic EL lighting device that can achieve further power saving as compared with the prior art.
  • an organic EL element driving apparatus capable of driving an organic EL element with a constant current and changing a constant current value according to luminance control.
  • the drive device for organic EL elements includes a power source connected in series with the organic EL elements, and a current control unit connected in series with the organic EL elements.
  • the current control unit includes a current detection circuit having a resistance for detecting the value of the current flowing through the organic EL element.
  • the current control unit sets the current to be passed through the organic EL element to a predetermined value according to the luminance control, and controls the current flowing through the organic EL element to be a predetermined value according to the output of the current detection circuit.
  • the value of the resistance of the current detection circuit is changed according to the brightness control.
  • An organic EL lighting device includes an organic EL element and an organic EL element driving device capable of driving the organic EL element with a constant current and changing a constant current value according to luminance control.
  • the drive device for organic EL elements includes a power source connected in series with the organic EL elements, and a current control unit connected in series with the organic EL elements.
  • the current control unit includes a current detection circuit having a resistance for detecting the value of the current flowing through the organic EL element.
  • the current control unit sets the current to be passed through the organic EL element to a predetermined value according to the luminance control, and controls the current flowing through the organic EL element to be a predetermined value according to the output of the current detection circuit.
  • the value of the resistance of the current detection circuit is changed according to the brightness control.
  • an organic EL element driving device and an organic EL lighting device that can achieve further power saving as compared with the conventional technology.
  • FIG. 1 is a diagram showing a configuration of an organic EL lighting device M1 according to the first embodiment.
  • a portion surrounded by a one-dot chain line is an organic EL element driving device 20.
  • the organic EL lighting device M1 includes an organic EL element 2, a power source 3 and a current control unit 4 connected in series with the organic EL element 2, and a voltage control unit 6.
  • the organic EL element driving device 20 includes a portion obtained by removing the organic EL element 2 from the organic EL lighting device M1, that is, a power source 3, a current control unit 4, and a voltage control unit 6.
  • the organic EL element driving device 20 drives the organic EL element 2 with a constant current.
  • the power source 3 is a variable voltage source that can vary the output voltage by a voltage control signal S4 from the voltage control unit 6. That is, the power source 3 is a variable voltage source that can change the voltage applied to the organic EL element 2.
  • the voltage control unit 6 has a function of detecting the voltage between the drain D and the source S of the MOSFET 8 of the current control unit 4 and controlling the output voltage of the power supply 3. That is, the voltage control unit 6 changes the voltage applied by the power source 3 according to the brightness control.
  • the organic EL element 2 has the same configuration as that described in FIG. Although shown as one diode in FIG. 1, a plurality of organic EL elements connected in series may be used.
  • the organic EL element 2 is connected in series between the voltage output terminal of the power source 3 and the current control unit 4.
  • the current control unit 4 includes a current control circuit 5, a differential amplifier 7, a MOSFET 8, and a current detection circuit 9, and has a function of controlling a current flowing through the organic EL element 2 to a predetermined constant value as will be described later. Have.
  • the current detection circuit 9 has a resistor for detecting the value of the current flowing through the organic EL element 2, and detects the value of the current based on a voltage drop generated in the resistor.
  • the current detection circuit 9 includes a plurality of current detection resistors R that guide current flowing through the organic EL element 2 in parallel. A voltage drop occurring in a selected one of the plurality of current detection resistors R is detected, and a current value flowing through the current detection resistor R can be detected from the resistance value and voltage drop of the current detection resistor R.
  • the current control circuit 5 controls the MOSFET 8 through the differential amplifier 7 based on the value of the current flowing through the organic EL element 2 detected using the current detection circuit 9 to control the current flowing through the organic EL element 2. That is, the MOSFET 8 is disposed between the organic EL element 2 and the current detection circuit 9 and controls the current flowing through the organic EL element 2.
  • the brightness of the organic EL element 2 is instructed by a brightness control signal S0 which is an external signal.
  • the luminance control signal S0 is input to the current control circuit 5.
  • the external is, for example, a PC (Personal Computer), and the luminance control signal S0 is an analog output from a DA (Digital to Analog) terminal provided in the PC. Any device that outputs a signal for controlling luminance is not limited to a PC.
  • the current control circuit 5 determines a current detection resistor R having an optimum resistance value based on the luminance control signal S0, and outputs a resistance switching signal S3 to the current detection circuit 9. Based on the resistance switching signal S3, the current detection circuit 9 selects the current detection resistor R determined by the current control circuit 5, and guides the current from the organic EL element 2 to the selected current detection resistor R. .
  • the current detection circuit 9 when controlling the current value flowing through the organic EL element 2, the current detection circuit 9 detects the current value by detecting a voltage drop generated in the current detection resistor R.
  • a limit voltage value that can be detected, that is, a detection limit.
  • the value of the current flowing through the organic EL element 2 changes greatly.
  • the power consumption of the current detection circuit 9 is a wasteful power consumption that does not contribute to the luminance of the organic EL element 2, and therefore it is desirable that the power detection circuit 9 be as small as possible.
  • the voltage drop in the current detection resistor R through which the current of the organic EL element 2 flows is larger than the detection limit voltage value, the voltage drop voltage in the current detection resistor R can be sufficiently detected.
  • the resistance value of the current detection resistor R is preferably smaller.
  • the current detection resistor R having a larger resistance value is selected, and the current flowing through the organic EL element 2 is changed to the current detection resistor R.
  • the current flowing through the organic EL element 2 is large, a current detection resistor R having a smaller resistance value is selected and the current flowing through the organic EL element 2 is guided to the current detection resistor R. It is assumed that the power consumed in the current detection resistor R is reduced while securing a voltage drop larger than the detection limit voltage value.
  • the current control circuit 5 When adjusting the luminance of the organic EL element 2, the current control circuit 5 considers all the operations of the organic EL element 2, the MOSFET 8, and the current detection circuit 9 to which a voltage is applied by the power source 3. The current flowing through the organic EL element 2 is determined.
  • FIG. 2 is a graph showing current-voltage characteristics of the gate voltage Vgs and the drain D-source S current Ids using the drain D-source S voltage Vds of the MOSFET 8 as a parameter.
  • K represents a constant for each MOSFET. In order to minimize the power consumption in the MOSFET 8, it is necessary to reduce each of Vds and Ids. Since Ids is equal to Ioled, in the case of the MOSFET 8 having the current-voltage characteristics shown in FIG.
  • a drain-source current Ids Ioled that allows the organic EL element 2 to have a desired luminance can be flowed.
  • Vds is set to 0.1 V, but an optimal value may be set according to the transistor to be used.
  • the voltage Vo supplied from the power source 3 to the organic EL element 2 is the voltage drop Voled in the organic EL element 2, the voltage drop Vmos in the MOSFET 8, and the current detection resistor. The whole is controlled in consideration of how it is distributed to each of the voltage drops Vs in R.
  • the current control circuit 5 determines the current value of the organic EL element 2 according to the luminance control signal S0, which is a voltage value, and determines the voltage drop Vs in the current detection resistor R at that time as the organic EL element. 2 is determined by the product of the current value of 2 and the resistance value of the current detection resistor R, and the voltage drop Vs is output as a luminance control signal S1 that is a voltage value.
  • the differential amplifier 7 compares the luminance control signal S1 with the current detection signal S2 that is a voltage drop across the current detection resistor R, and the MOSFET 8 is configured so that the voltages of the luminance control signal S1 and the current detection signal S2 are the same.
  • the gate voltage Vgs is controlled. In this manner, the voltage flowing across the organic EL element 2 is set to a predetermined value by making the voltage across the current detection resistor R the same as S1.
  • the luminance control signal S1 is determined in advance based on the luminance-current characteristics of the organic EL element 2 and the value of the current detection resistor R, and is stored in a storage unit (not shown).
  • the current control unit 4 controls the luminance control. What is necessary is just to take out from this memory
  • the differential amplifier 7 raises the gate voltage Vgs of the MOSFET 8 when the voltage of the current detection signal S2 is lower than the luminance control signal S1, and lowers the voltage when the current detection signal S2 is high.
  • the gate voltage Vgs is matched with the detection signal S2.
  • the voltage control unit 6 detects the voltage between the drain D and the source S of the MOSFET 8, and the voltage between the drain D and the source S is a value (for example, 0.
  • the voltage control signal S4 is output to the power supply 3 so that the voltage becomes 1V or 1V).
  • a specific configuration of the voltage control unit 6 a known configuration as disclosed in the above-described Japanese Patent Application Laid-Open Nos. 2005-033853 and 2008-134288 can be used.
  • the value of the constant current can be changed according to the luminance control by the luminance control signal S0.
  • the current control unit 4 sets the current to be passed through the organic EL element 2 to a predetermined value according to the brightness control by the brightness control signal S0, and the current flowing through the organic EL element 2 according to the output of the current detection circuit 9 Is controlled to be a predetermined value. Furthermore, the resistance value of the current detection circuit 9 is changed according to the luminance control by the luminance control signal S0.
  • the current control circuit 5 has, for example, a memory built-in microcontroller, and stores a table for selecting the current detection resistor R according to the value of the input luminance control signal S0.
  • Table 1 is an example of such a table.
  • FIG. 3 is a circuit diagram showing a configuration of the current detection circuit 9.
  • the current detection circuit 9 includes a plurality of resistors arranged in parallel and a switching element for controlling which of the plurality of resistors a current flows through.
  • the current detection circuit 9 includes MOSFETs 31 provided in series between two current detection resistors R1 and R2 arranged in parallel, and the organic EL element 2 and the current detection resistors R1 and R2.
  • MOSFETs 31 and 32 select one of current detection resistors R1 and R2.
  • the resistance selection circuit 33 changes the gate voltage of the MOSFETs 31 and 32 according to the resistance switching signal S3 from the current control circuit 5, and performs control so that the current flows through one of the current detection resistors R1 and R2. Do.
  • the current Ioled from the organic EL element 2 flows as the drain D-source S current of the MOSFET 31 or 32.
  • the resistance selection circuit 33 is a circuit that performs output selection (switching) by changing the gate voltages of the MOSFETs 31 and 32, and a known output selection circuit can be employed.
  • the current detection circuit 9 of the present embodiment two current detection resistors are switched and used. However, if three or more current detection resistors are switched and used, higher power saving performance is achieved. Can be planned. In the above configuration, either one of the two current detection resistors R1 and R2 is selected. However, as a method for changing the resistance value, both the current detection resistors R1 and R2 are selected. It is also possible to use the combined resistance.
  • the current detection resistance is fixed to 1 ⁇ when the resistance is not changed, and the detection voltage is from 10 mV. It will vary up to 1V. In this case, about 1 W of power is consumed by the current detection resistor at the maximum. This is a very large value while the organic EL element 2 consumes about 3.5 W.
  • FIG. 4 is a diagram illustrating a configuration of an organic EL lighting device M2 according to the second embodiment.
  • a portion surrounded by a one-dot chain line is an organic EL element driving device 40.
  • the organic EL lighting device M2 of the second embodiment is different from the first embodiment in that it includes two current control circuits 11 and 12 controlled by the current control unit 10.
  • the current control circuit 11 includes a differential amplifier 41, a MOSFET 43, and a current detection resistor R1
  • the current control circuit 12 includes a differential amplifier 42, a MOSFET 44, and a current detection resistor R2.
  • the number of current control circuits is two in this embodiment, three or more current control circuits may be provided in order to achieve higher power saving performance.
  • the current detection resistors R1 and R2 are switched by the resistance selection circuit 33.
  • the differential amplifier, the MOSFET, and the current detection resistor are switched as a unit. To do.
  • the resistance selection circuit 33 is omitted, and instead, one of the differential amplifiers 41 and 42 is selected by the current control unit 10, whereby a current detection resistor R 1 through which the current from the organic EL element 2 flows. And one of R2. That is, the current control unit 10 that has received the luminance control signal S0 determines an optimum current detection resistor from the luminance control signal S0, and outputs a voltage to the current control circuit having the optimum current detection resistor. Since the current flows from the organic EL element 2 to the selected current control circuit and no voltage is output to the current control circuit that is not selected, no current flows from the organic EL element 2.
  • the voltage control unit 6 controls the power supply 3 by adopting a voltage having a smaller potential difference.
  • the second embodiment selects the current detection resistor by selecting the current control circuit. Since the operation after the resistor is selected is the same as that of the first embodiment, the description will not be repeated.
  • the current detection resistor itself constitutes a current detection circuit.
  • the current control unit 10 includes a plurality of current control circuits 11 and 12 connected in parallel, and each of the plurality of current control circuits 11 and 12 is a MOSFET 43 for controlling the current flowing through the organic EL element 2. And 44, and current detection resistors R1 and R2 arranged in series with MOSFETs 43 and 44, respectively.
  • the resistance values of the current detection resistors R1 and R2 of the plurality of circuits are configured to be different from each other, and it is controlled which of the plurality of current control circuits 11 and 12 is supplied with current.
  • current detection circuit 9 # includes current detection resistors R1 and R2 connected in series, and MOSFETs 31 and 32 connected in parallel to these current detection resistors R1 and R2, respectively.
  • current detection circuit 9 # the gate voltage of MOSFET 31 and / or 32 is changed, and one of current detection resistors R1 and R2 is selectively bypassed so that current flows only through the other resistor. be able to.
  • switching between selecting one of the two current detection resistors R1 and R2 and selecting both the current detection resistors R1 and R2 is performed. May be.
  • variable resistor that changes the resistance value of the current detection resistor as necessary.
  • the circuit constants such as the current detection resistor are made variable according to the current value. It is possible to provide a drive device for an organic EL element that can achieve further power saving while maintaining it.
  • 2,100 organic EL elements 3,202 power supply, 4,10,203 current control unit, 5,11,12,204 current control circuit, 6 voltage control unit, 7,41,42 differential amplifier, 8,31, 43, 44, 205 MOSFET, 9, 9 # current detection circuit, 20, 40 drive device for organic EL element, 33 resistance selection circuit, 101 ITO, 102 organic EL layer, 103 aluminum layer, 104 substrate, 201, R, R2 resistance for current detection, M1, M2 organic EL lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 有機EL素子(2)を定電流で駆動するとともに、輝度制御に応じて定電流の値を変更可能な有機EL素子用駆動装置(20,40)が提供される。有機EL素子用駆動装置は、有機EL素子と直列に接続された電源(3)と、有機EL素子と直列に接続された電流制御部(4,10)とを含む。電流制御部は、有機EL素子に流れる電流の値を検出するための抵抗を有する電流検出回路(9)を含む。電流制御部は、有機EL素子に流すべき電流を輝度制御に応じた所定値に設定するとともに、電流検出回路の出力に応じて有機EL素子に流れる電流が所定値となるように制御する。電流検出回路の抵抗の値は、輝度制御に応じて変更される。

Description

有機EL素子用駆動装置および有機EL照明装置
 本発明は、有機EL素子を駆動するための有機EL素子用駆動装置、および有機EL照明装置に関する。
 近年、照明の省エネルギー性に優れた電球型蛍光灯や、電球型LED(Light Emitting Diode)照明の開発が加速している。それらと同様に省エネルギー性に優れた有機EL(Electro Luminescence)照明は、面発光光源であるとともに、薄い、軽い、曲がるといった優れた特徴を持つ。このような特徴により、有機ELは、従来にはない新しい照明デザイン、ショーケース、ショールームを提供するとともに、店舗などでの新しい演出を可能にする。また、有機ELは、水銀レス、という対環境性に優れた特徴を持つことから、開発が進められている。
 図6は、一般的な有機EL素子100の断面構造を示す概略図である。
 図6に示すように、有機EL素子100は、基材104の上に積層配置された、ITO101と、有機EL層102と、アルミ層103とを含む。有機EL素子100では、アルミ層103とITO101との間に直流電圧が印加される構造となっている。
 有機EL素子の発光原理としては、基板の上に透明導電膜(アノード)、有機EL材料、および金属電極(カソード)の、極めて薄い薄膜を積層させたものに電流を流すことにより、有機EL材料中で電子-正孔の再結合を起こさせ、これにより光を発生させる、というものである。
 図7は、有機EL素子100の温度毎の電圧と電流密度との関係である電流-電圧特性の一例を示すグラフである。図8は、有機EL素子100の温度毎の電流密度と輝度との関係の一例を示すグラフである。
 図7に示すように、有機EL素子100の電流-電圧特性は、ダイオードの電流-電圧特性に似ており、電圧が低い時はほとんど電流が流れないが、ある閾値電圧を境に急激に電流が流れる特性を示す。さらに図7からわかるように、室温26.0度から81.0度まで温度を変化させて電流密度を測定すると、温度が高くなるにつれ、閾値電圧が低下方向にシフトし、電圧一定の場合、温度が変わると急激に電流が増加する。しかし、図8に示すように、電流密度と輝度とは、ほぼリニアな関係にある上に、温度に対しても比較的安定な挙動を示す。
 このような挙動を示す有機EL素子100を、電圧制御で駆動すると仮定すると、非常に高精度に電圧値をコントロールする必要がある上に、温度に対する補償も同じく高精度に行う必要がある。また、電圧制御で駆動するとなると、電光変換効率が、有機EL素子100の製造による閾値電圧のばらつきの影響を大きく受けることになる。したがって、有機EL素子100を駆動する場合は、電流制御で駆動する方が、温度変動等に対してより安定な輝度を得られる。
 図9は、有機EL素子100を駆動する一般的な電流駆動装置のブロック図である。駆動対象である有機EL素子100と、電源202と、電流制御部203とが直列に接続される。電流制御部203は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)205と、電流制御回路204と、電流検出用抵抗201とを含む。
 電流制御部203は、電流制御回路204を用いて有機EL素子100に一定の電流Ioledを流すために、抵抗値Rsを有する電流検出用抵抗201の両端の電圧Vsを測定する。電流制御部203は、測定された電圧Vsと基準電圧Vrefとを比較して、電圧Vs=基準電圧Vrefとなるように、電流制御回路からの信号によりMOSFET205のゲート電圧をコントロールすることで、MOSFET205に流れる電流を変化させる。有機EL素子100に流れる電流Ioledは、Vref=Vsの場合には次式で求められる。
  Ioled=Vref/Rs
 この式からわかるように、電流Ioledを変えたい時は、Vrefの値を変えればよい。
 電源202から有機EL素子100へ供給される電圧Voは、有機EL素子100での電圧降下Voledと、MOSFET205での電圧降下Vmosと、電流検出用抵抗201での電圧降下Vsとの合計となる。しかし、実際には、有機EL素子100の輝度の調整、有機EL素子100の製造段階でのばらつき、温度特性、経時変化など、に対応するためのマージンを考慮して、電圧Voに余裕を持たせて十分大きい値に設定する必要がある。
 しかしながら、この余裕を持たせて十分に大きい値に設定した電圧分は、MOSFET205および/または電流検出用抵抗201で熱になることで消費される。すなわち、この余分な電圧に基づく電力は、発光に寄与することなく、無駄に消費されることになる。
 特に、有機EL素子100の輝度の調整、すなわち調光を必要とする場合、その調光範囲は2桁程度必要となるので、電流の範囲も2桁必要となる。したがって、調光に際して、電流検出用抵抗201で検出する電圧も2桁変動することになる。すると、消費電力は電圧の2乗に比例するため、電圧が2桁変動すると、電力は4桁変動することになり、特に低輝度領域での電力の無駄が多い。
 特許文献1は、複数の発光素子(発光ダイオード)群が複数の定電流源にそれぞれ直列接続された駆動装置において、定電流源の降下電圧のうちの最も低い電圧が一定となるように電源回路のスイッチング制御を行う技術を開示する。この技術によれば、定電流源の降下電圧が一定値に制御されるから、発光ダイオードに流れる電流が大きくなった場合でも抵抗検出での電圧検出における損失の増加はないとされている。
 また、特開2008-134288号公報(特許文献2)は、LEDに電力を供給するLEDドライバであって、LEDに直列に接続され、自己に流れる電流を所定値に調整する定電流回路部と、該定電流回路部に直列に接続され、スイッチングレギュレータにより電圧を調整する電圧調整部と、を備えたLEDドライバを開示する。このLEDドライバによれば、スイッチングレギュレータにより電圧を調整するから、降圧処理に伴う無駄な電力の消費を極力抑えることが可能であるとされている。
特開2005-033853号公報 特開2008-134288号公報
 しかしながら、特許文献1および2に記載の技術においては、上述した電流制御部における抵抗等の回路定数が可変でなく一定の値に設定されていると考えられるので、低輝度領域に対応できる電流検出用抵抗を用いた場合には、高輝度領域において電流制御部で無駄な電力が消費される。
 したがって、本発明は、従来の技術に比べてさらに省電力化を達成することが可能な有機EL素子用駆動装置および有機EL照明装置を提供する。
 本発明のある局面に従えば、有機EL素子を定電流で駆動するとともに、輝度制御に応じて定電流の値を変更可能な有機EL素子用駆動装置を提供する。有機EL素子用駆動装置は、有機EL素子と直列に接続された電源と、有機EL素子と直列に接続された電流制御部とを含む。電流制御部は、有機EL素子に流れる電流の値を検出するための抵抗を有する電流検出回路を含む。電流制御部は、有機EL素子に流すべき電流を輝度制御に応じた所定値に設定するとともに、電流検出回路の出力に応じて有機EL素子に流れる電流が所定値となるように制御する。電流検出回路の抵抗の値は、輝度制御に応じて変更される。
 本発明の別の局面に従う有機EL照明装置は、有機EL素子と、有機EL素子を定電流で駆動するとともに、輝度制御に応じて定電流の値を変更可能な有機EL素子用駆動装置とを含む。有機EL素子用駆動装置は、有機EL素子と直列に接続された電源と、有機EL素子と直列に接続された電流制御部とを含む。電流制御部は、有機EL素子に流れる電流の値を検出するための抵抗を有する電流検出回路を含む。電流制御部は、有機EL素子に流すべき電流を輝度制御に応じた所定値に設定するとともに、電流検出回路の出力に応じて有機EL素子に流れる電流が所定値となるように制御する。電流検出回路の抵抗の値は、輝度制御に応じて変更される。
 本発明によれば、従来の技術に比べてさらに省電力化を達成することが可能な有機EL素子用駆動装置および有機EL照明装置を提供できる。
第1の実施形態に係る有機EL照明装置の構成を示す図である。 MOSFETのドレイン-ソース間電圧Vdsをパラメータとしたゲート電圧Vgsとドレイン-ソース間電流Idsとの電流-電圧特性を示すグラフである。 電流検出回路の構成を示す回路図である。 第2の実施形態に係る有機EL照明装置の構成を示す図である。 電流検出回路の別の構成を示す回路図である。 一般的な有機EL素子の断面構造を示す概要図である。 有機EL素子の温度毎の電圧と電流密度との関係である電流-電圧特性の一例を示すグラフである。 有機EL素子の温度毎の電流密度と輝度との関係の一例を示すグラフである。 有機EL素子を駆動する一般的な電流駆動装置のブロック図である。
 [第1の実施形態]
 以下に本発明の第1の実施形態を図面により説明する。但し、本発明は、以下に説明する実施形態に限られるものではない。
 図1は、第1の実施形態に係る有機EL照明装置M1の構成を示す図である。同図において、一点鎖線に囲まれた部分が有機EL素子用駆動装置20である。
 有機EL照明装置M1は、有機EL素子2と、有機EL素子2と直列に接続された電源3および電流制御部4と、電圧制御部6とを含む。有機EL素子用駆動装置20は、有機EL照明装置M1から有機EL素子2を除いた部分、すなわち、電源3と、電流制御部4と、電圧制御部6とで構成される。有機EL素子用駆動装置20は、有機EL素子2を定電流で駆動する。
 電源3は、出力電圧を電圧制御部6からの電圧制御信号S4により可変することができる可変電圧源である。すなわち、電源3は、有機EL素子2への印加電圧を変更可能な可変電圧源である。電圧制御部6は、電流制御部4のMOSFET8のドレインD-ソースS間の電圧を検出し、電源3の出力電圧を制御する機能を有する。すなわち、電圧制御部6は、電源3による印加電圧を輝度制御に応じて変更する。
 有機EL素子2は、図6で説明した構成と同様の構成である。図1では、1つのダイオードとして示しているが、複数の有機EL素子を直列に接続したものであってもよい。有機EL素子2は、電源3の電圧出力端子と、電流制御部4との間に直列に接続される。
 電流制御部4は、電流制御回路5と、差動アンプ7と、MOSFET8と、電流検出回路9とを含み、有機EL素子2に流れる電流を後述のように所定の一定値に制御する機能を有する。
 電流検出回路9は、有機EL素子2に流れる電流の値を検出するための抵抗を有しており、この抵抗に生じる電圧降下に基づいて電流の値を検出する。具体的には、電流検出回路9は、有機EL素子2に流れる電流を導く複数の電流検出用抵抗Rを並列に有している。これら複数の電流検出用抵抗Rのうち選択された1つに生じる電圧降下が検出され、電流検出用抵抗Rの抵抗値と電圧降下とから電流検出用抵抗Rに流れる電流値を検出できる。
 電流制御回路5は、電流検出回路9を用いて検出した有機EL素子2に流れる電流値に基づいて、差動アンプ7を介してMOSFET8を制御し、有機EL素子2に流れる電流を制御する。すなわち、MOSFET8は、有機EL素子2と電流検出回路9との間に配置され、有機EL素子2に流れる電流を制御する。
 有機EL素子2の輝度は、外部からの信号である輝度制御信号S0により指示される。この輝度制御信号S0は、電流制御回路5に入力される。なお、外部とは、例えばPC(Personal Computer)であり、輝度制御信号S0は、PCに備え付けたDA(Digital to Analog)端子からのアナログ出力である。輝度を制御する信号を出力する機器であればPCに限られない。
 電流制御回路5は、この輝度制御信号S0に基づいて、最適な抵抗値を有する電流検出用抵抗Rを決定し、抵抗切替信号S3を電流検出回路9に出力する。この抵抗切替信号S3に基づいて、電流検出回路9は、電流制御回路5で決定された電流検出用抵抗Rを選択し、選択された電流検出用抵抗Rに有機EL素子2からの電流を導く。
 本実施形態においては、有機EL素子2に流れる電流値を制御するにあたって、電流検出回路9が、電流検出用抵抗Rに生じる電圧降下を検出することで電流値を検出する。電流検出用抵抗Rでの電圧降下の検出を行う場合、検出できる限界の電圧値、すなわち検出限界が存在する。
 一方、本実施形態においては、有機EL素子2の輝度の調整(調光)を行う結果、有機EL素子2に流れる電流値が大きく変化することになる。特に、有機EL素子2に流れる電流値を大きくした場合、電流検出回路9の消費電力は、有機EL素子2の輝度に貢献しない無駄な消費電力であるため、できるだけ小さい方が望ましい。
 したがって、検出限界の電圧値に比べて、有機EL素子2の電流が流れる電流検出用抵抗Rにおける電圧降下が大きい場合には、電流検出用抵抗Rにおける電圧降下の電圧の検出を充分行えるので、電流検出用抵抗Rの抵抗値は、より小さい方が望ましい。
 そこで、本実施形態では、有機EL素子2に流れる電流値が小さい場合には、より大きな抵抗値を有する電流検出用抵抗Rを選択して、有機EL素子2を流れる電流を電流検出用抵抗Rに導き、有機EL素子2に流れる電流が大きい場合には、より小さな抵抗値を有する電流検出用抵抗Rを選択して、有機EL素子2を流れる電流を電流検出用抵抗Rに導くことで、検出限界の電圧値よりも大きい電圧降下を確保しつつ、電流検出用抵抗Rにおいて消費される電力を小さくするものとする。
 有機EL素子2の輝度の調整を行う際には、電流制御回路5が、電源3によって電圧を印加される、有機EL素子2、MOSFET8、および電流検出回路9の全ての動作を考慮して、有機EL素子2に流れる電流を決定する。
 有機EL素子2に流れる電流は、MOSFET8を制御することで決められる。図2は、MOSFET8のドレインD-ソースS間電圧Vdsをパラメータとしたゲート電圧VgsとドレインD-ソースS間電流Idsとの電流-電圧特性を示すグラフである。
 MOSFET8には、ゲート電圧Vgsに閾値電圧Vthという電圧があり、Vds<Vgs-Vthのときを線形領域、Vds>=Vgs-Vthのときを飽和領域という。Idsは、各領域に応じて下記式で変化する。
 Vds<Vgs-Vth:線形領域   Ids=K×((Vgs-Vth)×Vds-1/2×Vds
 Vds>=Vgs-Vth:飽和領域  Ids=1/2×K×(Vgs-Vth)×(1+Vds)
 ここで、Kは、MOSFET毎の定数を表す。MOSFET8における消費電力を最小化するには、VdsおよびIdsの各々を小さくする必要があるが、Idsは、Ioledと等しいので、図2に示す電流-電圧特性を有するMOSFET8の場合には、Vdsを必要最小限の値、例えば、0.1Vに設定し、Vgsを制御することで、有機EL素子2が所望の輝度になるようなドレイン-ソース間電流Ids=Ioledを流すことができる。なお、本実施形態では、Vdsを0.1Vとしたが、使用するトランジスタに応じて最適な値を設定すればよい。
 MOSFET8のVgsを上記のように決定した値にするには、電源3から有機EL素子2へ供給される電圧Voが、有機EL素子2における電圧降下Voled、MOSFET8における電圧降下Vmos、電流検出用抵抗Rにおける電圧降下Vsの各々に、どう配分されるかを考慮して全体が制御される。
 具体的には、電流制御回路5は、電圧値である輝度制御信号S0に応じた有機EL素子2の電流値を決定し、そのときの電流検出用抵抗Rにおける電圧降下Vsを、有機EL素子2の電流値と電流検出用抵抗Rの抵抗値との積で決定し、その電圧降下Vsを電圧値である輝度制御信号S1として出力する。
 差動アンプ7は、輝度制御信号S1と、電流検出用抵抗Rにおける降下電圧である電流検出信号S2とを比較し、輝度制御信号S1と電流検出信号S2との電圧が同じになるようMOSFET8のゲート電圧Vgsを制御する。このようにして、電流検出用抵抗Rの両端の電圧をS1と同じにすることにより、有機EL素子2に流れる電流を所定の値とする。この輝度制御信号S1は、予め有機EL素子2の輝度-電流特性と、電流検出用抵抗Rの値とを基に決定し、図示しない記憶部に記憶させておき、電流制御部4が輝度制御信号S0に基づいて該記憶部から取り出せばよい。
 差動アンプ7は、輝度制御信号S1に対して電流検出信号S2の電圧が低いときは、MOSFET8のゲート電圧Vgsを上昇させ、逆に高いときは、下降させることで、輝度制御信号S1と電流検出信号S2とが一致するゲート電圧Vgsに調整する。また、これと並行し、電圧制御部6は、MOSFET8のドレインD-ソースS間電圧を検出し、このドレインD-ソースS間電圧が予めMOSFET8の特性に応じて定められた値(例えば0.1Vや1V)となるように電源3に対して電圧制御信号S4を出力する。この電圧制御部6の具体的な構成としては、前述した特開2005-033853号公報や特開2008-134288号公報に開示されたような公知の構成を用いることができる。
 すなわち、有機EL素子用駆動装置20では、輝度制御信号S0による輝度制御に応じて定電流の値を変更可能になっている。そして、電流制御部4は、有機EL素子2に流すべき電流を輝度制御信号S0による輝度制御に応じた所定値に設定するとともに、電流検出回路9の出力に応じて有機EL素子2に流れる電流が所定値となるように制御する。さらに、電流検出回路9の抵抗の値は、輝度制御信号S0による輝度制御に応じて変更される。
 以上のように制御することにより、電流検出用抵抗における電流検出の精度を維持しつつ、電流制御部4で消費される電力を最小にすることが可能となる。
 次に、電流制御回路5および電流検出回路9について詳細に説明する。電流制御回路5は、例えば、メモリ内蔵マイクロコントローラを有しており、入力された輝度制御信号S0の値に応じて電流検出用抵抗Rを選択するためのテーブルを記憶している。表1は、かかるテーブルの一例である。
Figure JPOXMLDOC01-appb-T000001
 図3は、電流検出回路9の構成を示す回路図である。電流検出回路9は、並列に配置された複数の抵抗と、当該複数の抵抗のいずれに電流を流すかを制御するためのスイッチング素子とを含む。具体的には、電流検出回路9は、並列に並べられた2つの電流検出用抵抗R1およびR2と、有機EL素子2と電流検出用抵抗R1およびR2との間にそれぞれ直列に設けられたMOSFET31および32とを含む。MOSFET31および32は、電流検出用抵抗R1およびR2のうちの1つを選択する。抵抗選択回路33は、電流制御回路5からの抵抗切替信号S3に応じて、MOSFET31および32のゲート電圧を変更し、電流検出用抵抗R1およびR2のうちの1つに電流が流れるように制御を行う。有機EL素子2からの電流Ioledは、MOSFET31または32のドレインD-ソースS間電流として流れる。抵抗選択回路33は、MOSFET31および32のゲート電圧を変更し、出力選択(スイッチング)を行う回路であり、公知の出力選択回路を採用することができる。
 なお、本実施形態の電流検出回路9としては、2つの電流検出用抵抗を切り替えて用いるものとしたが、3つ以上の電流検出用抵抗を切り替えて用いるものとすればより高い省電力性を図ることができる。また、前述の構成では、2つの電流検出用抵抗R1およびR2のいずれか一方を選択するようにしたが、抵抗値を変更するための方法としては、電流検出用抵抗R1およびR2の両方を選択してその合成抵抗を用いるようにすることも可能である。
 本実施形態において、例えば、電流値を変化させる範囲を10~1000mA、電流検出信号S2の最小精度を10mVとすると、電流検出用抵抗を変更しない場合には1Ω固定となり、検出電圧は、10mVから1Vまで変動することになる。この場合、最大時に電流検出用抵抗で約1Wもの電力を消費することとなる。これは、有機EL素子2が約3.5W消費するのに対し非常に大きい値となる。一方、本実施形態では、電流値を変化させる範囲が10~100と100~1000とで、R1=1ΩとR2=0.1Ωとに切り替え、電流検出信号S2を10~100mVで使用することで、最大でも消費電力は0.1Wとなり、低い消費電力が達成できる。
 [第2の実施形態]
 以下に第2の実施形態について説明する。第2の実施形態の説明にあたっては、特に第1の実施形態と相違する部分についての説明を行う。
 図4は、第2の実施形態に係る有機EL照明装置M2の構成を示す図である。同図において、一点鎖線に囲まれた部分が有機EL素子用駆動装置40である。
 第2の実施形態の有機EL照明装置M2は、電流制御部10によって制御される2つの電流制御回路11および12を有する点で、第1の実施形態とは異なっている。
 電流制御回路11は、差動アンプ41と、MOSFET43と、電流検出用抵抗R1とを有し、電流制御回路12は、差動アンプ42と、MOSFET44と、電流検出用抵抗R2とを有する。電流制御回路の数は、本実施形態では2つであるが、より高い省電力性をねらう場合は、3つ以上設けてもよい。
 第1の実施形態においては、電流検出用抵抗R1およびR2を、抵抗選択回路33で切り替えたが、第2の実施形態においては、差動アンプ、MOSFETおよび電流検出用抵抗を一体として切り替えるものとする。この場合、抵抗選択回路33を省略し、その代わりに電流制御部10で差動アンプ41および42のうちの1つを選択することで、有機EL素子2からの電流が流れる電流検出用抵抗R1およびR2のうちの1つを選択する。すなわち、輝度制御信号S0を受けた電流制御部10は、この輝度制御信号S0から最適な電流検出用抵抗を決め、最適な電流検出用抵抗を有する電流制御回路の方へ電圧を出力する。選択された電流制御回路には有機EL素子2から電流が流れ、選択されない電流制御回路には電圧が出力されないので、有機EL素子2から電流は流れないことになる。
 また、電圧制御部6は、その電位差が小さい方の電圧を採用することで、電源3を制御するものとする。
 このようにして、第2の実施形態は、電流制御回路を選択することで、電流検出用抵抗を選択するものである。抵抗が選択された後の動作は第1の実施形態と同様であるので、説明は繰り返さない。なお、この第2の実施形態においては、電流検出用抵抗自体が電流検出回路を構成している。
 このように、電流制御部10は、並列接続された複数の電流制御回路11および12を含み、複数の電流制御回路11および12の各々は、有機EL素子2に流れる電流を制御するためのMOSFET43および44と、MOSFET43および44とそれぞれ直列に配置された電流検出用抵抗R1およびR2とを含む。ここで、複数の回路の電流検出用抵抗R1およびR2の抵抗値は互いに異なるように構成されており、複数の電流制御回路11および12のうちいずれに電流を流すかが制御される。
 [その他の実施形態]
 電流検出回路については、図3に示した回路の他、図5に示すような、直列に配置された複数の抵抗と、当該複数の抵抗のいずれに電流を流すかを制御するための、複数の抵抗とそれぞれ並列に設けられた複数のスイッチング素子とを含む構成を採用することもできる。具体的には、電流検出回路9#は、直列に接続された電流検出用抵抗R1およびR2と、これらの電流検出用抵抗R1およびR2にそれぞれ並列に接続されたMOSFET31および32とを含む。電流検出回路9#では、MOSFET31および/または32のゲート電圧を変更し、電流検出用抵抗R1およびR2のうちの一方を選択的にバイパスすることにより、他方の抵抗のみに電流が流れるようにすることができる。また、抵抗値を変更するための方法としては、2つの電流検出用抵抗R1およびR2のいずれか一方を選択することと、電流検出用抵抗R1およびR2の両方を選択することとを切り替えるようにしてもよい。
 図3および図5に示した電気検出回路は、必要に応じて電流検出用抵抗の抵抗値を変化させる可変抵抗を構成する。
 [利点]
 以上のように、上述した実施形態によれば、有機EL素子に流れる電流を制御する際に、電流検出用抵抗等の回路定数を電流の値に応じて可変とするため、電流検出の制度を維持しつつ、さらに省電力化を達成する有機EL素子用駆動装置を提供できる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 2,100 有機EL素子、3,202 電源、4,10,203 電流制御部、5,11,12,204 電流制御回路、6 電圧制御部、7,41,42 差動アンプ、8,31,43,44,205 MOSFET、9,9# 電流検出回路、20,40 有機EL素子用駆動装置、33 抵抗選択回路、101 ITO、102 有機EL層、103 アルミ層、104 基材、201,R,R2 電流検出用抵抗、M1,M2 有機EL照明装置。

Claims (7)

  1.  有機EL素子(2)を定電流で駆動するとともに、輝度制御に応じて定電流の値を変更可能な有機EL素子用駆動装置(20,40)であって、
     前記有機EL素子と直列に接続された電源(3)と、
     前記有機EL素子と直列に接続された電流制御部(4,10)とを備え、
     前記電流制御部は、前記有機EL素子に流れる電流の値を検出するための抵抗を有する電流検出回路(9)を含み、
     前記電流制御部は、前記有機EL素子に流すべき電流を前記輝度制御に応じた所定値に設定するとともに、前記電流検出回路の出力に応じて前記有機EL素子に流れる電流が前記所定値となるように制御し、
     前記電流検出回路の抵抗の値は、前記輝度制御に応じて変更される、有機EL素子用駆動装置。
  2.  前記電源は、印加電圧を変更可能な可変電圧源であり、
     前記電圧源による印加電圧を前記輝度制御に応じて変更するための電圧制御部をさらに備える、請求項1に記載の有機EL素子用駆動装置。
  3.  前記電流制御部は、前記有機EL素子と前記電流検出回路との間に配置された、前記有機EL素子に流れる電流を制御するためのMOSFETを含む、請求項1に記載の有機EL素子用駆動装置。
  4.  前記電流検出回路は、並列に配置された複数の抵抗と、当該複数の抵抗のいずれに電流を流すかを制御するためのスイッチング素子とを含む、請求項1~3のいずれか1項に記載の有機EL素子用駆動装置。
  5.  前記電流検出回路は、直列に配置された複数の抵抗と、当該複数の抵抗のいずれに電流を流すかを制御するための、前記複数の抵抗とそれぞれ並列に設けられた複数のスイッチング素子とを含む、請求項1~3のいずれか1項に記載の有機EL素子用駆動装置。
  6.  前記電流制御部は、並列接続された複数の電流制御回路を含み、
     前記複数の電流制御回路の各々は、前記有機EL素子に流れる電流を制御するためのMOSFETと、当該MOSFETと直列に配置された抵抗とを含み、
     前記複数の電流制御回路の抵抗の抵抗値は互いに異なるように構成されており、
     前記複数の電流制御回路のうちいずれに電流を流すかが制御される、請求項1または2に記載の有機EL素子用駆動装置。
  7.  有機EL照明装置(M1,M2)であって、
     有機EL素子(2)と、
     前記有機EL素子を定電流で駆動するとともに、輝度制御に応じて定電流の値を変更可能な有機EL素子用駆動装置(20,40)とを備え、
     前記有機EL素子用駆動装置は、
      前記有機EL素子と直列に接続された電源(3)と、
      前記有機EL素子と直列に接続された電流制御部(4,10)とを含み、
     前記電流制御部は、前記有機EL素子に流れる電流の値を検出するための抵抗を有する電流検出回路(9)を含み、
     前記電流制御部は、前記有機EL素子に流すべき電流を前記輝度制御に応じた所定値に設定するとともに、前記電流検出回路の出力に応じて前記有機EL素子に流れる電流が前記所定値となるように制御し、
     前記電流検出回路の抵抗の値は、前記輝度制御に応じて変更される、有機EL照明装置。
PCT/JP2011/063495 2010-06-18 2011-06-13 有機el素子用駆動装置および有機el照明装置 WO2011158786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011548482A JP4973814B2 (ja) 2010-06-18 2011-06-13 有機el素子用駆動装置および有機el照明装置
EP11795692.0A EP2584871A4 (en) 2010-06-18 2011-06-13 Drive device for organic el element, and organic el illumination device
US13/703,088 US9497805B2 (en) 2010-06-18 2011-06-13 Organic EL element driving device and organic EL lighting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010139127 2010-06-18
JP2010-139127 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158786A1 true WO2011158786A1 (ja) 2011-12-22

Family

ID=45348185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063495 WO2011158786A1 (ja) 2010-06-18 2011-06-13 有機el素子用駆動装置および有機el照明装置

Country Status (4)

Country Link
US (1) US9497805B2 (ja)
EP (1) EP2584871A4 (ja)
JP (1) JP4973814B2 (ja)
WO (1) WO2011158786A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088386A (ja) * 2013-10-31 2015-05-07 ミネベア株式会社 Led駆動装置及び照明器具
WO2015178336A1 (ja) * 2014-05-21 2015-11-26 コニカミノルタ株式会社 照明装置
JP2016139740A (ja) * 2015-01-28 2016-08-04 新日本無線株式会社 Led駆動回路
JP2021086763A (ja) * 2019-11-28 2021-06-03 株式会社共進電機製作所 点灯装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320888B (zh) * 2014-11-07 2017-01-11 广西大学 一种定时声控灯
US10542593B1 (en) * 2019-01-18 2020-01-21 Infineon Technologies Ag Power offloading for linear current source
JP7265419B2 (ja) * 2019-06-05 2023-04-26 ローム株式会社 発光素子駆動装置
JP7208186B2 (ja) * 2020-03-06 2023-01-18 矢崎総業株式会社 スイッチモジュール
KR102253416B1 (ko) * 2020-06-10 2021-05-18 주식회사 동운아나텍 전류 구동회로
US11849514B1 (en) 2022-06-10 2023-12-19 Infineon Technologies Ag Current regulator circuits with self-adaptive power offloading

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033853A (ja) 2003-07-07 2005-02-03 Rohm Co Ltd 負荷駆動装置及び携帯機器
JP2005078828A (ja) * 2003-08-28 2005-03-24 Konica Minolta Holdings Inc 照明装置および照明装置の駆動方法
JP2006121774A (ja) * 2004-10-19 2006-05-11 Denso Corp モータ制御回路
JP2006303002A (ja) * 2005-04-18 2006-11-02 Toshiba Corp 情報処理装置および輝度調整方法
JP2007280559A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP2008134288A (ja) 2006-11-27 2008-06-12 Sharp Corp Ledドライバ
JP2009026544A (ja) * 2007-07-18 2009-02-05 Showa Denko Kk Led用調光装置及びled照明装置
JP2009261213A (ja) * 2008-03-24 2009-11-05 Toshiba Lighting & Technology Corp 電源装置及び照明器具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004008840T2 (de) 2003-07-07 2008-06-19 Rohm Co., Ltd., Kyoto Lasttreibervorrichtung und tragbare Vorrichtung, die solche Lasttreibervorrichtung verwendet
JP4246029B2 (ja) 2003-10-07 2009-04-02 財団法人21あおもり産業総合支援センター Led駆動回路並びにその省電力化方法
JP3904579B2 (ja) * 2004-12-03 2007-04-11 ローム株式会社 電源装置およびそれを用いた発光装置、電子機器
US20100109537A1 (en) * 2006-10-25 2010-05-06 Panasonic Electric Works Co., Ltd. Led lighting circuit and illuminating apparatus using the same
TWI362639B (en) * 2007-01-31 2012-04-21 Richtek Technology Corp Backlight control circuit with flexible configuration
US8508464B2 (en) * 2007-01-31 2013-08-13 Richtek Technology Corporation Backlight control circuit capable of distinguishing under current condition
JP5024789B2 (ja) * 2007-07-06 2012-09-12 Nltテクノロジー株式会社 発光制御回路、発光制御方法、面照明装置及び該面照明装置を備えた液晶表示装置
US20100283773A1 (en) * 2009-05-08 2010-11-11 Yong-Hun Kim Driving integrated circuit and image display device including the same
TWI415518B (zh) * 2009-06-02 2013-11-11 Richtek Technology Corp 發光元件驅動電路、發光元件陣列控制器及其控制方法
TW201044915A (en) * 2009-06-03 2010-12-16 Richtek Technology Corp AC power line controlled light emitting device dimming circuit and method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033853A (ja) 2003-07-07 2005-02-03 Rohm Co Ltd 負荷駆動装置及び携帯機器
JP2005078828A (ja) * 2003-08-28 2005-03-24 Konica Minolta Holdings Inc 照明装置および照明装置の駆動方法
JP2006121774A (ja) * 2004-10-19 2006-05-11 Denso Corp モータ制御回路
JP2006303002A (ja) * 2005-04-18 2006-11-02 Toshiba Corp 情報処理装置および輝度調整方法
JP2007280559A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP2008134288A (ja) 2006-11-27 2008-06-12 Sharp Corp Ledドライバ
JP2009026544A (ja) * 2007-07-18 2009-02-05 Showa Denko Kk Led用調光装置及びled照明装置
JP2009261213A (ja) * 2008-03-24 2009-11-05 Toshiba Lighting & Technology Corp 電源装置及び照明器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2584871A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088386A (ja) * 2013-10-31 2015-05-07 ミネベア株式会社 Led駆動装置及び照明器具
WO2015178336A1 (ja) * 2014-05-21 2015-11-26 コニカミノルタ株式会社 照明装置
JP2016139740A (ja) * 2015-01-28 2016-08-04 新日本無線株式会社 Led駆動回路
JP2021086763A (ja) * 2019-11-28 2021-06-03 株式会社共進電機製作所 点灯装置
JP7398091B2 (ja) 2019-11-28 2023-12-14 株式会社共進電機製作所 点灯装置

Also Published As

Publication number Publication date
EP2584871A1 (en) 2013-04-24
US20130088174A1 (en) 2013-04-11
JP4973814B2 (ja) 2012-07-11
US9497805B2 (en) 2016-11-15
JPWO2011158786A1 (ja) 2013-08-19
EP2584871A4 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP4973814B2 (ja) 有機el素子用駆動装置および有機el照明装置
TWI522011B (zh) 適應性切換模式發光二極體驅動器
TWI334742B (en) Light emitting diode driver and display using the same
US8368312B2 (en) Circuit and method of driving light emitting diodes, and light emitting diode system having the same
JP5666268B2 (ja) 半導体集積回路およびその動作方法
TWI477190B (zh) 發光二極體驅動裝置
JP4983735B2 (ja) 電源制御用半導体集積回路
TWI649008B (zh) 發光二極體的驅動電路及使用該驅動電路之發光裝置及電子機器
JP4822387B2 (ja) 有機elパネルの駆動装置
JP2009004788A (ja) 発光ダイオード駆動回路
US8319443B2 (en) Two-terminal current controller and related LED lighting device
JP5004700B2 (ja) 発光素子駆動装置
US20120126712A1 (en) Light emitting diode driving circuit, and display device having the same
JP2007042758A (ja) Led駆動装置
JP2009124125A (ja) 発光素子の駆動装置
JP2005033853A (ja) 負荷駆動装置及び携帯機器
KR20130050828A (ko) 백라이트부 및 이를 포함하는 표시 장치
JP2010056314A (ja) 発光ダイオードの駆動回路、それを用いた発光装置および照明装置
US20180027624A1 (en) Control circuit and method of led lighting apparatus
TWI354961B (ja)
CN114501699B (zh) 一种调光电路、调光器及led照明设备
US8674609B2 (en) Two-terminal current controller and related LED lighting device
WO2014087874A1 (ja) 照明装置
KR102305838B1 (ko) 발광 소자 구동 장치
Durrani et al. An efficient digitally controlled for RGB LED driver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011548482

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13703088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011795692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE