WO2011158612A1 - 低温ポリシリコン膜の形成装置及び方法 - Google Patents

低温ポリシリコン膜の形成装置及び方法 Download PDF

Info

Publication number
WO2011158612A1
WO2011158612A1 PCT/JP2011/061772 JP2011061772W WO2011158612A1 WO 2011158612 A1 WO2011158612 A1 WO 2011158612A1 JP 2011061772 W JP2011061772 W JP 2011061772W WO 2011158612 A1 WO2011158612 A1 WO 2011158612A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
laser light
microlens
mask
amorphous silicon
Prior art date
Application number
PCT/JP2011/061772
Other languages
English (en)
French (fr)
Inventor
邦幸 濱野
梶山 康一
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2011158612A1 publication Critical patent/WO2011158612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a low-temperature polysilicon film that crystallizes a-Si into polycrystalline silicon (hereinafter referred to as polysilicon) by irradiating an amorphous silicon film (hereinafter referred to as a-Si film) with laser light and annealing.
  • polysilicon polycrystalline silicon
  • a-Si film amorphous silicon film
  • a gate electrode is formed of a metal layer such as Cr or Al on an insulating substrate, and then, for example, a SiN film is formed as a gate insulating film on the substrate including the gate electrode.
  • a hydrogenated amorphous silicon (hereinafter referred to as “a-Si: H”) film is formed on the entire surface, and this a-Si: H film is patterned into an island shape in a predetermined region on the gate electrode.
  • a-Si: H hydrogenated amorphous silicon
  • this amorphous silicon transistor uses an a-Si: H film for the channel region, there is a drawback that the charge mobility in the channel region is small. Therefore, an amorphous silicon transistor can be used as a pixel transistor in a pixel portion of a liquid crystal display device, for example.
  • an amorphous silicon transistor can be used as a pixel transistor in a pixel portion of a liquid crystal display device, for example.
  • the charge mobility in the channel region is high. It is too small and difficult to use.
  • a polycrystalline silicon film is formed directly on a substrate, it is formed by LPCVD (Low Pressure Chemical Vapor Deposition), which is a high temperature process of about 1500 ° C.
  • LPCVD Low Pressure Chemical Vapor Deposition
  • a polycrystalline silicon film cannot be formed directly on a glass substrate (softening point is 400 to 500 ° C.).
  • the channel region on the glass substrate can be formed of a polysilicon film that has high charge mobility and can speed up the transistor operation (Patent Document 1).
  • the conventional low-temperature polysilicon film forming method described above is based on melting and solidification of the amorphous silicon film by laser annealing while scanning the entire amorphous silicon film formed on the glass substrate of the liquid crystal display device. Since the transistor is polycrystallized, a region for forming a transistor that does not require high speed, such as a pixel transistor in a display portion, is also polycrystallized, and thus processing is wasted.
  • the cause of the local variation in the characteristics of the a-Si film is that the crystal grain size of the crystallized Si varies locally, and the electric conductivity in the polysilicon film depends on the density or state of the grain boundary.
  • the electrical conductivity of the entire polysilicon film changes. Even if only the peripheral circuit portion of the liquid crystal display device is polycrystallized, the rate at which crystal grain boundaries appear locally differs in the direction in which the drive current of the peripheral circuit flows in relation to the crystal grain growth direction. . For this reason, the easy conductivity of the current varies depending on the location where the transistor is formed, the speed of the transistor varies, and the design of the transistor in the peripheral circuit becomes difficult.
  • An object of the present invention is to provide an apparatus and a method for forming a low-temperature polysilicon film that can obtain a low-temperature polysilicon film aligned in a certain direction.
  • An apparatus for forming a low-temperature polysilicon film according to the present invention includes a plurality of microlenses arranged one-dimensionally or two-dimensionally, a generation source of laser light, and a laser beam from the generation source to the microlens.
  • the light-shielding region and the transmission region that transmits the laser light are provided so as to extend in one direction and to be adjacent to each other in a direction perpendicular to the one direction.
  • this low temperature polysilicon film forming apparatus for example, a plurality of the light shielding regions and the transmission regions are provided for each mask, and the light shielding regions and the transmission regions are alternately arranged.
  • one or a plurality of transistors are formed in each polysilicon film formed by annealing an amorphous silicon film with laser light that has passed through each microlens.
  • a first low-temperature polysilicon film forming method uses any one of the above-described low-temperature polysilicon film forming apparatuses, and first, laser light is converted into an amorphous silicon film by the microlens through the mask.
  • a second step of polycrystallizing the remaining amorphous silicon film using the polysilicon film as a crystal nucleus by irradiating the film is
  • the first step and the second step can be configured such that the laser light emission conditions by the laser light source are the same.
  • a second low-temperature polysilicon film forming method uses any one of the above-described low-temperature polysilicon film forming apparatuses, and irradiates the amorphous silicon film with laser light through the mask through the microlens.
  • the irradiation condition of the laser beam is sufficient to melt and polycrystallize the portion of the amorphous silicon film corresponding to the light-shielding region.
  • a temperature difference exists between a portion corresponding to the light shielding region and a portion corresponding to the transmission region.
  • each transistor group including one or a plurality of transistors in the peripheral circuit is associated with a microlens, By determining the one direction of the mask in accordance with the transistor group, the crystallization direction (main growth direction of crystal grains) of the amorphous silicon film of the transistor group is adjusted.
  • each microlens is provided with a mask, and each of the masks has a light shielding region and a transmission region extending in one direction and adjacent to each other in a direction perpendicular to the one direction. It is provided as follows. For this reason, when laser light is irradiated to the amorphous silicon film by the microlens using this mask, the portion of the amorphous silicon film corresponding to the light shielding region (hereinafter referred to as the first portion) is not irradiated with laser light.
  • the amount of irradiation is small and the applied energy is small, and the portion of the amorphous silicon film corresponding to the transmission region (hereinafter referred to as the second portion) is irradiated with laser light and the applied energy is large.
  • the mask is used to irradiate the laser beam, and the second part of the amorphous silicon film is heated and melted. Thereafter, it is crystallized by solidification, and the second portion of the amorphous silicon film is turned into polysilicon.
  • the entire amorphous silicon film is heated by irradiation with laser light without using the mask.
  • the polysilicon portion (second portion) formed in the first step has a high melting point, it does not melt in the second step and remains in the amorphous state in the first step (first portion). ) Melts and solidifies and crystallizes.
  • this first portion is crystallized, solidification proceeds with the already crystallized second portion as a nucleus, so that the crystal grains are perpendicular to the direction in which the second portion extends (the direction in which the transmission region of the mask extends). That is, the second portion grows from the second portion toward the other second portion facing the first portion. Therefore, crystal grains grow from the two opposing second parts, and the first part solidifies and crystallizes. As a result, a low-temperature polysilicon film in which the main growth direction of crystal grains is aligned in a direction perpendicular to one direction is obtained.
  • the condition of laser beam irradiation is sufficient for the amorphous silicon film portion (first portion) corresponding to the light shielding region to be melted and polycrystallized. It is a thing.
  • the portion (second portion) of the amorphous silicon film corresponding to the transmission region is irradiated with laser light that has passed through the transmission region, so that the first portion is heated with energy larger than that of the first portion. Higher than the temperature.
  • the above-described method of the present invention can be used for forming a channel region of a transistor in a peripheral circuit of a liquid crystal display device.
  • the direction in which the driving current determined by the structure of the transistor flows can be matched with the main growth direction of the crystal grains. Since the growth direction of the crystal grains is aligned with the direction in which the current flows, the number of crystal grain boundaries where the drive current intersects is small. Thereby, the resistance in the direction in which the drive current flows can be reduced, and the current consumption can be reduced and the speed can be increased.
  • a third method for forming a low-temperature polysilicon film according to the present invention includes a plurality of one-dimensionally or two-dimensionally arranged microlenses, a laser light source, and a laser beam from the source.
  • a light guide unit that guides the laser light to the amorphous silicon film by the microlens and a plurality of masks arranged for each microlens, and each mask transmits the laser light
  • a low-temperature polysilicon film forming apparatus is used in which a linear transmission region extending in one direction that transmits the laser light is provided in a light-shielding region that shields light, and the mask is the micro In the projection area on the amorphous silicon film projected by the lens, the linear laser beam transmitted through the transmission area scans the projection area in a direction perpendicular to the one direction.
  • the laser light is irradiated.
  • the melting linear region moves in a direction perpendicular to this line.
  • the melted region by laser light irradiation is cooled and solidified by the separation of the laser light, and becomes polycrystallized, and the heat flow of heat and cooling of the crystal grains is in a direction perpendicular to the one direction.
  • the growth direction of crystal grains is the direction perpendicular to the one direction, that is, the scanning direction of the laser beam.
  • the crystal growth direction of the polysilicon film becomes a uniform direction in a minute region corresponding to each microlens.
  • the laser light irradiation system including the microlens and the mask of the low temperature polysilicon forming apparatus and the substrate on which the amorphous silicon film is formed are relatively moved.
  • the laser beam can be scanned in the projection area.
  • a transmission area extending in one direction and a light shielding area are provided adjacent to each other in a direction perpendicular to the one direction. Since the prepared mask is used, when the crystal grains are grown by melting and solidification by irradiating the amorphous silicon with the laser beam, a polysilicon film in which the growth directions of the crystal grains are aligned is obtained.
  • the crystal grain growth direction can be arbitrarily adjusted by simply setting the mask arrangement position so that the one direction faces a predetermined direction. Therefore, according to the present invention, the growth direction of crystal grains can be easily adjusted to the direction of current at the position, the design of the transistor becomes easy, and the power consumption of the transistor and the driving speed can be increased. Become.
  • FIG. 1 is a schematic perspective view showing a low-temperature polysilicon film forming apparatus according to a first embodiment of the present invention.
  • it is a typical expansion perspective view which shows the one micro lens and a corresponding mask.
  • It is a figure which shows the laser irradiation apparatus which uses a micro lens.
  • It is a schematic diagram which shows operation
  • It is a figure which shows the modification of a laser irradiation apparatus.
  • (A), (b) is a schematic diagram which shows the relationship between a crystal grain growth direction and the direction through which an electric current flows.
  • FIG. 1 is a schematic perspective view showing an apparatus for forming a low-temperature polysilicon film according to an embodiment of the present invention
  • FIG. 2 is a schematic enlarged perspective view showing one microlens and a corresponding mask
  • FIG. It is a figure which shows the laser irradiation apparatus using a micro lens.
  • the laser irradiation apparatus shown in FIG. 3 is annealed by irradiating only the channel region formation scheduled region with laser light, for example. This is an apparatus for polycrystallizing and forming a polysilicon film.
  • the laser light emitted from the light source 1 is shaped into a parallel beam by the lens group 2 and irradiated to the irradiated object 6 through the microlens array including a large number of microlenses 5.
  • the laser light source 1 is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 353 nm at a repetition period of, for example, 50 Hz.
  • a large number of microlenses 5 are arranged on the lower surface of the transparent substrate 4a, and the laser light is condensed on a thin film transistor formation scheduled area set on a thin film transistor substrate as an irradiated body 6.
  • the transparent substrate 4a is arranged in parallel to the irradiated body 6, and the microlenses 5 are arranged at a predetermined pitch corresponding to the transistor formation scheduled area.
  • the irradiated body 6 of this embodiment is, for example, an a-Si film uniformly formed on a glass substrate of a liquid crystal display device.
  • the low-temperature polysilicon film forming apparatus of this embodiment is an a-Si film.
  • a polysilicon channel region is formed by irradiating a region where a transistor channel region is to be formed in the peripheral circuit of the film with laser light.
  • the microlens 5 is provided on the lower surface of the transparent substrate 4a with the focal position downward, and a light shielding member 8 is provided on the upper surface of the transparent substrate 4a corresponding to each microlens 5.
  • the light shielding member 8 has an opening for irradiating the laser beam only to the channel formation scheduled region.
  • the opening of the light shielding member 8 is disposed above each microlens 5.
  • a channel region of silicon is defined.
  • a transparent substrate 4c is arranged above the transparent substrate 4a in parallel with the transparent substrate 4a, and a mask 3 to be described later is formed at a position corresponding to each microlens 5 on the lower surface of the transparent substrate 4c. Has been.
  • a gate electrode made of a metal film such as Al is patterned on a glass substrate by sputtering.
  • a gate insulating film made of a SiN film is formed on the entire surface by low-temperature plasma CVD at 250 to 300 ° C. using silane, NH 3 and H 2 gases as source gases.
  • an a-Si: H film is formed on the gate insulating film by, eg, plasma CVD.
  • This a-Si: H film is formed by using a mixed gas of silane and H 2 gas as a source gas.
  • one microlens 5 is arranged in each channel region, and only this channel formation planned region is irradiated with laser light and annealed. Then, this channel formation scheduled region is polycrystallized to form a polysilicon channel region.
  • 3A and 1 only show a state in which the microlenses 5 are arranged one-dimensionally, this is for simplification of illustration, and in fact, FIG. ), The microlenses 5 are two-dimensionally arranged. However, the microlenses 5 may be arranged one-dimensionally in accordance with the arrangement of regions to be polycrystallized.
  • one mask 3 is provided above each microlens 5 for each microlens 5.
  • the mask 3 is provided so that a plurality of laser light shielding regions 31 having a rectangular shape as a whole extend in one direction.
  • the linear light shielding regions 31 are arranged at an appropriate length interval, and a laser light transmission region 32 is formed between the light shielding regions 31.
  • the light shielding region 31 and the transmission region 32 both extend in one direction, and the light shielding region 31 and the transmission region 32 are adjacent to each other in a direction perpendicular to the one direction.
  • At least one light shielding region 31 is provided for each mask 3.
  • the width of the light shielding region 31 and the width of the transmission region 32 can be arbitrarily determined in order to control the crystal growth direction described later.
  • an irradiation region of the laser light is formed in the a-Si: H film corresponding to the channel region formation scheduled region 7. Is done.
  • the irradiation pattern of the laser light in the planned area 7 corresponds to the pattern of the transmission area 32 of the mask 3.
  • the transparent substrate 4a on which the microlens 5 and the light shielding member 8 are formed and the transparent substrate 4c on which the mask 3 is formed have a transparent substrate 4b disposed between them as shown in FIG.
  • the substrates 4a, 4b, and 4c may be integrated by bonding to each other.
  • the liquid crystal display device 10 forms pixel transistors in a matrix in the display unit 11, outputs a signal to the gate of each pixel transistor, and outputs a drain signal to each pixel transistor.
  • the drive unit 13 is provided in the peripheral part of the display unit 11 and forms a peripheral circuit. By scanning the drain signal and the gate signal, each pixel transistor operates to control light transmission and light shielding from the backlight.
  • an amorphous silicon film formed on a glass substrate of a liquid crystal display device is scanned with a linear light source of laser light in one direction to melt and solidify the amorphous silicon film to be polycrystallized.
  • the crystal grain growth direction is the same in any position on the glass substrate, and the crystal grains are in this crystal growth direction. It has a flat shape. Accordingly, in a region where the drive unit 13 is formed of, for example, the drain signal of the peripheral circuit, the signal current i 1 is, as shown in FIG. 7 (a), results Tsuryu the crystal growth direction, the current i 1 passes through the crystal The number of grain boundaries is small, current conductivity is high, and resistance is low.
  • the signal current i2 flows in a direction perpendicular to the crystal growth direction as shown in FIG. Has a large number of crystal grain boundaries, low electrical conductivity, and high resistance.
  • the growth direction of crystal grains can be locally controlled, and the growth direction of crystal grains can be adjusted to the direction in which current flows at any position on the glass substrate. it can.
  • First, an operation for controlling the growth direction of crystal grains according to the present embodiment will be described.
  • the object 6 is irradiated with laser light using the mask 3.
  • the parallel beam of laser light passes through the mask 3, is collected by each microlens 5, and is irradiated to the channel formation scheduled region 7 in the a-Si: H film of the irradiated body 6.
  • the laser light is shielded in the light shielding region 31 of the mask 3, and only the portion that has passed through the transmission region 32 is irradiated to the planned region 7, and the laser light irradiation region has a lattice pattern similar to the mask 3. It is formed.
  • this planned region 7 only the portion irradiated with the laser light is melted and solidified to be crystallized, and this portion is transformed into polysilicon.
  • This polysilicon portion is a portion where the transmission region 32 of the mask 3 is reduced and projected by the microlens 5, and the laser beam is irradiated only to the reduced and projected portion. Therefore, as shown in FIG.
  • the polysilicon portion 3 a is linear corresponding to the transmissive region 32.
  • the mask 3 is removed, and then the irradiated body 6 is irradiated with laser light, whereby the entire planned area 7 is irradiated with the laser light for each channel area formation planned area 7. .
  • the polycrystallized portion in the first step does not remelt.
  • the portion corresponding to the light-shielding region 31 of the mask 3 in the a-Si: H film remains amorphous. This amorphous portion is melted and solidified by laser irradiation in the second step. To polycrystallize.
  • the polycrystallized portion in the second step is a portion where the light shielding region 31 in the a-Si: H film is projected in a reduced scale. Therefore, the polysilicon portion 3b polycrystallized in the second step Corresponds to the line.
  • the portion 3a is polycrystallized to become a polysilicon portion, and then the portion 3b is polycrystallized with a delay.
  • the amorphous silicon film of the portion 3b is crystallized using the polysilicon film as a nucleus.
  • the portion 3b crystal grains grow from the portion 3a toward the other portion 3a facing the portion 3b, and the growth of the crystal grains proceeds to an intermediate portion between the two portions 3a. To do. Therefore, after the end of the second step, as shown in FIG.
  • a polysilicon film is obtained in which the growth direction (flat direction) of the crystal grains 9 is aligned in a certain direction in the channel formation scheduled region 7. For this reason, in other channel formation scheduled regions 7, by changing the extending direction of the light shielding region 31 and the transmission region 32 of the mask 3, a polysilicon film having a crystal grain growth direction different from that in FIG. 4 can be obtained. it can. That is, as shown in FIG. 1, the channel formation is performed by appropriately setting the extending directions of the light shielding regions 31 and the transmission regions 32 of the large number of masks 3 provided for each microlens 5 according to the location.
  • the crystal grain growth direction (flattening direction) can be arbitrarily adjusted for each planned region 7. Therefore, unlike the case shown in FIG.
  • the growth direction of the crystal grains 9 can be matched with the direction in which the current flows.
  • the speed can be increased and the transistor characteristics can be made uniform.
  • one transistor may be formed or a plurality of transistors in which current flows in the same direction may be formed in a channel formation region that is annealed by being irradiated with laser light through each microlens. You can also. That is, one or a plurality of transistors can be formed on one low-temperature polysilicon island formed by one microlens.
  • the laser light transmitted through the transmission region 32 of the mask 3 is not irradiated with a width that is strictly reduced at the reduction projection ratio in the channel formation scheduled region 7.
  • a strictly polycrystalline region is not formed by the irradiation width of the laser beam that is transmitted through the transmission region 32 and applied to the planned region 7.
  • the amorphous silicon film there is heat conduction from the part irradiated with laser light to the part not irradiated, non-uniformity of energy density in the part irradiated with laser light, and errors in the reduction projection system also exist. To do.
  • the laser light emission conditions that is, the conditions for heating the a-Si: H film can be the same in the first step and the second step.
  • This light emission condition is that the amorphous silicon film can be melted and solidified by irradiation with laser light.
  • the portion 3a since the portion 3a serves as a nucleus at the time of polycrystallization in the portion 3b, in order to make the region where the crystal grains are aligned as wide as possible, the portion 3a is usually a portion. It is assumed that the width is narrower than 3b.
  • the interval between the portions 3a is such that the size of the thin film transistor is about 10 tens ⁇ m to several tens ⁇ m in one side length, so that the size of the crystal grains in the channel polysilicon region is 1 ⁇ m or less.
  • the interval between the transmission regions 32 of the mask 3 is such that the length of the flat crystal grains is about 1 ⁇ m or less in the region projected on the irradiated body 6 in a reduced scale.
  • the shape of the mask 3 is not limited to a rectangular shape as shown in FIG. 2, and may be various shapes such as a circle.
  • the direction in which the light shielding region 31 and the transmission region 32 extend is not limited to being parallel to the sides of the rectangular mask 4 and may be inclined. The direction in which the light shielding region 31 and the transmission region 32 extend may be changed for each mask 3.
  • the mask other than the light shielding region that defines the channel region is not used in the second step.
  • the mask is used in the second step, and the light shielding is performed in the first step.
  • the portion that was the region was used as the transmission region, and the portion that was the transmission region was used as the light-shielding region, and only the portion that remained amorphous in the first step in the a-Si: H film was irradiated with laser light and annealed. It is good to do.
  • the width of the transmission region in the second step is made larger than the width of the light shielding region in the first step, so that the laser light irradiation region in the second step is larger than the laser light irradiation region in the first step.
  • a mask 14 shown in FIG. 8 is used.
  • the mask 14 has basically the same configuration as the mask 3 of the first embodiment, but the mask 14 of the present embodiment has a light-shielding region 141 having a narrow width and a transmissive region 142 having a wide width. The width relationship between the regions is opposite to that of the mask 3.
  • the laser light irradiation conditions are sufficient to melt and polycrystallize the amorphous silicon film portion 14b corresponding to the light shielding region 141.
  • the portion 14 a of the channel formation scheduled region 7 corresponding to the light shielding region 141 is narrow like the width of the light shielding region 141, and the portion 14 b of the channel formation scheduled region 7 corresponding to the transmission region 142 is the width of the transmission region 142. It is as wide as The portion 14a is basically not irradiated with laser light, and the portion 14b is irradiated with laser light. As a result, a temperature difference occurs between the portion 14 a corresponding to the light shielding region 141 and the portion 14 b corresponding to the transmission region 142 in the amorphous silicon film.
  • heat is transmitted from the center of the portion 14b that has been irradiated with the laser light toward the portion 14a that is not irradiated with the two laser beams facing each other across the portion 14b.
  • the portion 14a is melted and solidified by this transfer heat and solidifies to be polycrystallized.
  • this portion 14a has the lowest temperature, it is first solidified from the portion 14a to be polycrystallized. Move sequentially toward. In this case, solidification proceeds under a temperature gradient in which the portion 14a is the lowest and the center of the portion 14b is the highest. Therefore, as shown in FIG. 9, after solidification and polycrystallization, the crystal grains become flattened from the portion 14a toward the center of the portion 14b, and the growth of crystal grains is the same as in the first embodiment.
  • a polysilicon film having a uniform direction can be obtained.
  • the crystal grain growth direction is made constant in each channel formation scheduled region 7 corresponding to each mask.
  • a polysilicon film having crystal grains flattened in a certain direction can be obtained.
  • the masks 3 and 14 and the microlens 5 are provided for each transistor, and the directions of the light-shielding region and the transmission region in the mask are set appropriately for each mask.
  • the growth direction of the crystal grains can be arbitrarily set. Therefore, in the peripheral circuit of the liquid crystal display device, the crystal grain growth direction can be aligned with the direction in which the channel current flows in the channel region of each transistor, and the resistance and speed of all the transistors in the peripheral circuit can be reduced. In addition, the transistor characteristics can be made uniform.
  • each transistor and each microlens and mask do not correspond to 1: 1, but one or a plurality of transistors can correspond to one set of microlens and mask. That is, the direction in which the driving currents of the plurality of transistors flow can be matched with the direction in which the polysilicon crystal grains extend determined by a set of microlenses and masks.
  • the growth direction of crystal grains is aligned with the direction in which the drive current flows in the peripheral circuit, the number of crystal grain boundaries where the drive current intersects can be reduced, thereby reducing the resistance in the direction in which the drive current flows. It can be made small, and low current consumption and high speed can be achieved.
  • the crystal growth direction is controlled for each channel region by individually setting the direction in which the light-shielding region and transmissive region of the mask corresponding to each microlens extends in accordance with the position irradiated by each microlens.
  • the growth direction of the crystal grains can be surely matched with the direction in which the channel current of each channel region flows.
  • the mask 3 corresponding to each microlens 5 is entirely a light shielding region 31 for laser light, and extends in one direction in the light shielding region 31.
  • One linear light-transmitting region 32 is formed.
  • one linear laser beam irradiation region is formed in the projection region of the amorphous silicon film, that is, the mask 3 corresponding to each microlens 5 in the irradiation object 6.
  • the linear irradiation region 3c is scanned in a direction perpendicular to the one direction in which the line extends.
  • a laser beam irradiation system including a microlens 5 and a mask 3 of a laser irradiation apparatus is fixed, and a substrate (irradiated body 6) on which an amorphous silicon film is formed is oriented in a direction perpendicular to the one direction.
  • the substrate may be fixed and the laser light irradiation system may be moved in a direction perpendicular to the one direction.
  • the amorphous silicon film is melted in the laser light irradiation region 3c, and then, when the irradiation region 3c moves by scanning and moves in the direction of the arrow in the figure, the heat source leaves, so it is once melted.
  • the part is rapidly cooled and solidifies and crystallizes.
  • crystal grains 9 grown in a direction perpendicular to the one direction are formed behind the linear irradiation region 3c of the laser beam that is moved by scanning.
  • the growth direction of crystal grains is made uniform in a certain direction in a minute region (for example, a region where one transistor is to be formed) corresponding to each microlens in the irradiated body 6.
  • the present invention is not limited to one microlens corresponding to the channel region of one transistor formation region, but a laser so that one microlens corresponds to a plurality of transistor formation regions. You may irradiate light.
  • the present invention is useful for manufacturing a semiconductor device having stable transistor characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 結晶粒の成長方向を多結晶化すべき位置に応じて任意に調整することができ、その位置において、結晶粒の成長方向が一定の方向に揃った低温ポリシリコン膜を得る。 マスク3には、一方向に延びるレーザ光の遮光領域31と透過領域32とが、前記一方向に垂直の方向に隣接するように設けられている。このマスク3を介してマイクロレンズ5によりレーザ光をチャネル領域形成予定領域7に照射する。透過領域32を透過したレーザ光が、a-Si:H膜に照射されてこの部分をアニールして多結晶化する。次に、マスク3を取り外して、予定領域7の全体にレーザ光を照射すると、既に多結晶化している領域は融点が上昇していて溶融せず、アモルファスのままの領域が溶融凝固して多結晶化する。

Description

低温ポリシリコン膜の形成装置及び方法
 本発明は、アモルファスシリコン膜(以下、a-Si膜という)にレーザ光を照射してアニールすることにより、a-Siを多結晶シリコン(以下、ポリシリコンという)に結晶化させる低温ポリシリコン膜の形成装置及び方法に関する。
 逆スタガ構造の薄膜トランジスタとしては、絶縁性基板上にCr又はAl等の金属層によりゲート電極を形成し、次いで、このゲート電極を含む基板上にゲート絶縁膜として例えばSiN膜を形成し、その後、全面に水素化アモルファスシリコン(以下、a-Si:Hと記載する)膜を形成し、このa-Si:H膜をゲート電極上の所定領域にアイランド状にパターニングし、更に、金属層によりソース・ドレイン電極を形成したアモルファスシリコントランジスタがある。
 しかしながら、このアモルファスシリコントランジスタは、a-Si:H膜をチャネル領域に使用しているので、チャネル領域における電荷の移動度が小さいという難点がある。このため、アモルファスシリコントランジスタは、例えば、液晶表示装置の画素部の画素トランジスタとしては使用可能であるが、高速の書き換えが要求される周辺駆動回路の駆動トランジスタとしては、チャネル領域の電荷移動度が小さすぎて、使用することが困難である。
 一方、多結晶シリコン膜を直接基板上に形成しようとすると、LPCVD(減圧化学気相成長)法により形成することになるが、これは1500℃程度の高温プロセスになるため、液晶表示装置のようなガラス基板(軟化点が400~500℃)上に多結晶シリコン膜を直接形成することはできない。
 そこで、一旦、チャネル領域にa-Si:H膜を形成し、その後、このa-Si:H膜にYAGエキシマレーザ等のレーザ光を照射してレーザアニールすることにより、極短時間での溶融凝固の相転移により、a-Si:H膜をポリシリコン膜に結晶化させる低温ポリシリコンプロセスが採用されるようになっている。これにより、ガラス基板上のチャネル領域を電荷移動度が高くトランジスタ動作の高速化が可能なポリシリコン膜により形成することが可能になる(特許文献1)。
特開平5-63196号公報
 しかしながら、上述の従来の低温ポリシリコン膜の形成方法は、液晶表示装置のガラス基板上に形成したアモルファスシリコン膜の全体にレーザ光を走査させながら、レーザアニールすることによりアモルファスシリコン膜の溶融凝固により多結晶化しているので、表示部の画素トランジスタのように、高速化が必要ではないトランジスタを形成する領域も、多結晶化しているため、処理に無駄がある。
 また、レーザアニールにより形成されたポリシリコン膜の特性が局部的に変動するという問題点があり、これが実用化への障害となっている。このような低温ポリシリコン膜の特性の局部的変動は、液晶表示装置の画面の表示むらを生じさせる。
 a-Si膜の特性が局部的に変動する要因としては、結晶化したSiの結晶粒の大きさが局部的に変動し、ポリシリコン膜内の電気伝導度が結晶粒界の密度又は状態により変動し、ポリシリコン膜全体の電気伝導度が変動してしまうことにある。仮に、液晶表示装置の周辺回路の部分のみ多結晶化したとしても、結晶粒の成長方向との関係で、周辺回路の駆動電流が流れる方向について、結晶粒界が出現する割合が局所的に異なる。このため、電流の易導度が、そのトランジスタが形成される場所により異なってしまい、トランジスタの速度が異なることになり、周辺回路のトランジスタの設計が困難となる。
 本発明はかかる問題点に鑑みてなされたものであって、結晶粒の成長方向を多結晶化すべき位置に応じて任意に調整することができ、また、その位置において、結晶粒の成長方向が一定の方向に揃った低温ポリシリコン膜を得ることができる低温ポリシリコン膜の形成装置及び方法を提供することを目的とする。
 本発明に係る低温ポリシリコン膜の形成装置は、1次元又は2次元的に配置された複数個のマイクロレンズと、レーザ光の発生源と、この発生源からのレーザ光を前記マイクロレンズに導き前記マイクロレンズにより前記レーザ光をアモルファスシリコン膜に集光させる導光部と、各マイクロレンズ毎に配置された複数個のマスクと、を有し、前記各マスクには、前記レーザ光を遮光する遮光領域と前記レーザ光を透過する透過領域とがいずれも一方向に延びるように且つ前記一方向に垂直の方向に隣接するように設けられていることを特徴とする。
 この低温ポリシリコン膜の形成装置において、例えば、前記遮光領域及び前記透過領域は各マスクについて複数個設けられており、これらの遮光領域及び透過領域は、交互に配置されている。また、例えば、前記マイクロレンズを通過したレーザ光によりアモルファスシリコン膜をアニールして形成された各ポリシリコン膜には、1又は複数個のトランジスタが形成されるものである。
 本発明に係る第1の低温ポリシリコン膜の形成方法は、上述のいずれかの低温ポリシリコン膜の形成装置を使用し、先ず、前記マスクを介して前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射することにより前記透過領域を透過したレーザ光を前記アモルファスシリコン膜に照射してポリシリコン領域を形成する第1の工程と、次いで、前記マスクを使用しないで前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射することにより前記ポリシリコン膜を結晶の核として残部のアモルファスシリコン膜を多結晶化する第2の工程とを有することを特徴とする。
 この第1の低温ポリシリコン膜の形成方法において、例えば、前記第1の工程と前記第2の工程とは、前記レーザ光源によるレーザ光の発光条件は同一であるように構成することができる。
 本発明に係る第2の低温ポリシリコン膜の形成方法は、上述のいずれかの低温ポリシリコン膜の形成装置を使用し、前記マスクを介して、前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射する工程を有し、前記レーザ光の照射条件は、前記遮光領域に対応するアモルファスシリコン膜の部分が溶融して多結晶化するに十分なものであり、多結晶化に際し、前記アモルファスシリコン膜における前記遮光領域に対応する部分と前記透過領域に対応する部分とで温度差が存在するものであることを特徴とする。
 これらの低温ポリシリコン膜の形成方法は、液晶表示装置の周辺回路における低温ポリシリコン膜の形成方法に適用できる。この場合の本発明方法は、上述のいずれかの低温ポリシリコン膜の形成装置を使用し、例えば、前記周辺回路の1又は複数個のトランジスタからなるトランジスタ群毎に、夫々マイクロレンズを対応させ、前記マスクの前記一方向をそのトランジスタ群に合わせて決めることにより、そのトランジスタ群のアモルファスシリコン膜の結晶化方向(結晶粒の主たる成長方向)を調整することを特徴とする。
 本発明によれば、各マイクロレンズに夫々マスクが設けられており、この各マスクには、遮光領域と透過領域とがいずれも一方向に延びるように且つ前記一方向に垂直の方向に隣接するように設けられている。このため、このマスクを使用して前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射すると、前記遮光領域に対応するアモルファスシリコン膜の部分(以下、第1部分)は、レーザ光が照射されないか、又は照射量が少なくて、与えられたエネルギが小さく、前記透過領域に対応するアモルファスシリコン膜の部分(以下、第2部分)は、レーザ光が照射されて、与えられたエネルギが大きい。
 そして、本発明の第1の低温ポリシリコン膜の形成方法においては、第1の工程で、前記マスクを使用してレーザ光が照射されて、アモルファスシリコン膜の第2部分が加熱されて溶融した後凝固することにより結晶化し、このアモルファスシリコン膜の第2部分がポリシリコン化される。次いで、第2の工程で、前記マスクを使用せずにレーザ光が照射されて、アモルファスシリコン膜の全体が加熱される。しかし、第1の工程で形成されたポリシリコンの部分(第2部分)は、融点が高いので、第2の工程では溶融せず、第1の工程でアモルファスのまま残存した部分(第1部分)が溶融凝固して、結晶化する。この第1部分が結晶化する際、既に結晶化している第2部分を核として凝固が進行するので、結晶粒は、第2部分が延びる方向(マスクの透過領域が延びる方向)に垂直の方向、即ち、第2部分から第1部分を挟んで対向する他の第2部分に向けて成長する。よって、相対する2個の第2部分から結晶粒が成長して第1部分が凝固し、結晶化する。これにより、結晶粒の主たる成長方向が一方向に垂直の方向に揃った低温ポリシリコン膜が得られる。
 本発明の第2の低温ポリシリコン膜の形成方法においては、レーザ光を照射する条件が、前記遮光領域に対応するアモルファスシリコン膜の部分(第1部分)が溶融して多結晶化するに十分なものである。このとき、前記透過領域に対応するアモルファスシリコン膜の部分(第2部分)は、この透過領域を透過したレーザ光が照射されるので、前記第1部分よりも大きなエネルギで加熱され、第1部分よりも温度が高い。これにより、アモルファスシリコン膜の多結晶化に際し、前記アモルファスシリコン膜における前記遮光領域に対応する第1部分と前記透過領域に対応する第2部分とで温度差が存在する。よって、第1部分から凝固が開始され、第1部分から、第2部分を挟んで対向する他の第1部分に向けて、凝固が進行する。これにより、第1部分が延びる前記一方向に垂直の方向に結晶粒が延び、前記一方向に垂直の方向に結晶粒が揃った低温ポリシリコン膜が得られる。
 上記本発明方法を、液晶表示装置の周辺回路のトランジスタのチャネル領域の形成に使用することができる。この場合に、前記一方向を、トランジスタ群毎に適切な方向に決めることにより、そのトランジスタの構造から決まる駆動電流が流れる方向を結晶粒の主たる成長方向に合わせることができ、周辺回路の駆動電流が流れる方向に結晶粒の成長方向が揃うため、駆動電流が交差する結晶粒界の数が少ない。これにより、駆動電流が流れる方向の抵抗を小さくすることができ、低消費電流化及び高速化が可能である。また、各マイクロレンズに対応するマスクの遮光領域及び透過領域が延びる一方向を、各マイクロレンズが照射する位置に応じて設定することにより、各マイクロレンズに対応するレーザ光の照射領域毎に、適切な結晶粒の成長方向を設定することができる。
 本発明に係る第3の低温ポリシリコン膜の形成方法は、1次元又は2次元的に配置された複数個のマイクロレンズと、レーザ光の発生源と、この発生源からのレーザ光を前記マイクロレンズに導き前記マイクロレンズにより前記レーザ光をアモルファスシリコン膜に集光させる導光部と、各マイクロレンズ毎に配置された複数個のマスクと、を有し、前記各マスクは、前記レーザ光を遮光する遮光領域の中に、前記レーザ光を透過する一方向に延びる線状の1個の透過領域が設けられているものである低温ポリシリコン膜の形成装置を使用し、前記マスクが前記マイクロレンズにより投影されるアモルファスシリコン膜上の投影領域において、前記透過領域を透過した線状のレーザ光が前記投影領域を前記一方向に垂直の方向に走査することを特徴とする。
 このように、マスクを透過したレーザ光のアモルファスシリコン膜上の線状の照射領域を、マスクが投影されるアモルファスシリコン膜上の投影領域内で走査することにより、レーザ光が照射されることにより溶融する線状の領域がこの線に垂直の方向に移動する。そうすると、レーザ光の照射により溶融した領域がレーザ光が離れていくことにより冷却されて凝固し、多結晶化すると共に、この結晶粒は加熱冷却の熱の流れが前記一方向に垂直の方向のもとで形成されるので、結晶粒の成長方向は前記一方向に垂直の方向、即ち、前記レーザ光の走査方向になる。これにより、本発明においても、ポリシリコン膜の結晶成長方向が、各マイクロレンズに対応する微小領域において、一定の均一な方向になる。
 この低温ポリシリコン膜の形成方法において、例えば、前記低温ポリシリコン形成装置の前記マイクロレンズ及び前記マスクを含むレーザ光の照射系と前記アモルファスシリコン膜が形成された基板とを、相対的に移動させることにより、前記レーザ光を前記投影領域で走査することができる。
 本発明によれば、マイクロレンズを使用して微小領域を結晶化する際に、各マイクロレンズについて、一方向に延びる透過領域と遮光領域とが前記一方向に垂直の方向に隣接するように設けられたマスクを使用するから、アモルファスシリコンに対するレーザ光の照射による溶融凝固により結晶粒が成長するときに、結晶粒の成長方向が揃ったポリシリコン膜が得られる。そして、この結晶粒の成長方向は、マスクの配置位置を前記一方向が所定の方向を向くように設定するだけで、任意に調整することができる。よって、本発明により、結晶粒の成長方向を、その位置における電流の方向に容易に合わせることができ、トランジスタの設計が容易になるとともに、トランジスタの低消費電力化及び駆動の高速化が可能となる。
本発明の第1実施形態に係る低温ポリシリコン膜の形成装置を示す模式的斜視図である。 この実施形態において、その1個のマイクロレンズ及び対応するマスクを示す模式的拡大斜視図である。 マイクロレンズを使用したレーザ照射装置を示す図である。 本実施形態の動作を示す模式図である。 レーザ照射装置の変形例を示す図である。 液晶表示装置の表示部及び周辺回路部を示す模式的平面図である。 (a)、(b)は結晶粒成長方向と電流が流れる方向との関係を示す模式図である。 本発明の第2実施形態に係る低温ポリシリコン膜の形成装置において使用するマスクを示す模式的拡大斜視図である。 本実施形態の動作を示す模式図である。 本発明の第3実施形態に係る低温ポリシリコン膜の形成方法に使用するマイクロレンズによるレーザ照射装置を示す図である。 この実施形態において、その1個のマイクロレンズ及び対応するマスクを示す模式的拡大斜視図である。 本実施形態の動作を示す模式図である。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係る低温ポリシリコン膜の形成装置を示す模式的斜視図、図2は、その1個のマイクロレンズ及び対応するマスクを示す模式的拡大斜視図、図3は、マイクロレンズを使用したレーザ照射装置を示す図である。図3に示すレーザ照射装置は、逆スタガ構造の薄膜トランジスタのような半導体装置の製造工程において、例えば、そのチャネル領域形成予定領域のみにレーザ光を照射してアニールし、このチャネル領域形成予定領域を多結晶化して、ポリシリコン膜を形成するための装置である。このマイクロレンズを使用したレーザアニール装置は、光源1から出射されたレーザ光を、レンズ群2により平行ビームに整形し、多数のマイクロレンズ5からなるマイクロレンズアレイを介して被照射体6に照射する。レーザ光源1は、例えば、波長が308nm又は353nmのレーザ光を例えば50Hzの繰り返し周期で放射するエキシマレーザである。マイクロレンズアレイは、透明基板4aの下面に多数のマイクロレンズ5が配置されたものであり、レーザ光を被照射体6としての薄膜トランジスタ基板に設定された薄膜トランジスタ形成予定領域に集光させるものである。透明基板4aは被照射体6に平行に配置され、マイクロレンズ5は、トランジスタ形成予定領域に対応して所定のピッチで配置されている。本実施形態の被照射体6は、例えば、液晶表示装置のガラス基板上に一様に形成されたa-Si膜であり、本実施形態の低温ポリシリコン膜の形成装置は、このa-Si膜の周辺回路におけるトランジスタのチャネル領域形成予定領域にレーザ光を照射して、ポリシリコンチャネル領域を形成する。
 マイクロレンズ5は、透明基板4aの下面にその焦点位置を下方にして設けられており、透明基板4aの上面には、各マイクロレンズ5に対応して遮光部材8が設けられている。遮光部材8はチャネル形成予定領域のみにレーザ光を照射するための開口部を有するものであり、この遮光部材8の開口部は各マイクロレンズ5の上方に配置され、この遮光部材8により、ポリシリコンからなるチャネル領域が画定される。そして、透明基板4aの上方には、透明基板4cが透明基板4aに平行に配置されており、この透明基板4cの下面には、各マイクロレンズ5に対応する位置に、後述するマスク3が形成されている。
 例えば、液晶表示装置の周辺回路として、画素の駆動トランジスタを形成する場合、ガラス基板上にAl等の金属膜からなるゲート電極を、スパッタによりパターン形成する。そして、シラン、NH及びHガスを原料ガスとし、250~300℃の低温プラズマCVD法により、全面にSiN膜からなるゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法によりa-Si:H膜を形成する。このa-Si:H膜はシランとHガスを混合したガスを原料ガスとして成膜する。このa-Si:H膜のゲート電極上の領域をチャネル形成予定領域として、各チャネル領域に1個のマイクロレンズ5を配置して、このチャネル形成予定領域のみにレーザ光を照射してアニールし、このチャネル形成予定領域を多結晶化してポリシリコンチャネル領域を形成する。なお、図3(a)及び図1には、マイクロレンズ5が1次元に配列されている状態しか示されていないが、これは、図示の簡略化のためであり、実際は、図3(b)に平面図を示すように、マイクロレンズ5は2次元的に配列されている。但し、このマイクロレンズ5は多結晶化すべき領域の配置に合わせて1次元的に配列してもよい。
 而して、本実施形態においては、図1及び図2並びに図3(a)に示すように、各マイクロレンズ5の上方に、各マイクロレンズ5毎に1個のマスク3が設けられている。このマスク3は、例えば、全体で矩形をなし、線状をなす複数個のレーザ光の遮光領域31が一方向に延びるようにして設けられている。この線状の遮光領域31は適長間隔をおいて配置されており、その遮光領域31間はレーザ光の透過領域32となっている。よって、遮光領域31と透過領域32とがいずれも一方向に延びており、この一方向に垂直の方向に、遮光領域31と透過領域32とが隣接している。なお、遮光領域31は各マスク3について少なくとも1個設けられる。また、遮光領域31の幅及び透過領域32の幅は、後述する結晶成長方向を制御するために任意に決めることができる。このマスク3を介してレーザ光をマイクロレンズ5により被照射体6に照射することにより、a-Si:H膜には、そのチャネル領域形成予定領域7に対応してレーザ光の照射領域が形成される。この予定領域7におけるレーザ光の照射パターンは、マスク3の透過領域32のパターンに対応するものである。
 なお、マイクロレンズ5と遮光部材8が形成された透明基板4aと、マスク3が形成された透明基板4cとは、図5に示すように、両者の間に透明基板4bを配置して、透明基板4a,4b、4cを相互に接着することにより、一体化してもよい。
 次に、上述のごとく構成された形成装置を使用した低温ポリシリコン膜の形成方法について説明する。図6に示すように、液晶表示装置10は、表示部11にマトリクス状に画素トランジスタを形成し、各画素トランジスタのゲートに信号を出力する駆動部12と、各画素トランジスタにドレイン信号を出力する駆動部13とが、表示部11の周辺部に設けられていて、周辺回路を形成している。このドレイン信号及びゲート信号を走査することにより、各画素トランジスタが動作して、バックライトからの光の透光及び遮光を制御する。
 従来は、液晶表示装置のガラス基板上に形成されたアモルファスシリコン膜に対し、レーザ光の線状光源を一方向に走査することにより、アモルファスシリコン膜を溶融凝固させて多結晶化している。このため、図7(a)、(b)に示すように、結晶粒の成長方向は、ガラス基板上のいずれの位置においても、同一方向を向いており、結晶粒は、この結晶成長方向に偏平した形状を有している。従って、周辺回路の例えばドレイン信号の駆動部13が形成された領域では、信号電流iが図7(a)に示すように、結晶成長方向に通流する結果、電流iが通過する結晶粒界の数が少なく、電流の易導度が高く、低抵抗である。しかし、トランジスタの形成位置が例えばゲート信号の駆動部12が形成された領域では、信号電流i2が図7(b)に示すように、結晶成長方向に垂直の方向に通流する結果、電流i2が通過する結晶粒界の数が多く、電流の易導度が低く、高抵抗である。
 これに対し、本実施形態においては、結晶粒の成長方向を、局所的に制御することができ、ガラス基板上のいずれの位置でも、電流が流れる方向に結晶粒の成長方向を調整することができる。先ず、本実施形態の結晶粒の成長方向を制御する動作について説明する。第1工程において、マスク3を使用して、レーザ光を被照射体6に照射する。レーザ光の平行ビームは、マスク3を透過した後、各マイクロレンズ5により集光されて、被照射体6のa-Si:H膜におけるチャネル形成予定領域7に照射される。このとき、レーザ光は、マスク3の遮光領域31においては遮光され、透過領域32を透過した部分のみが、予定領域7に照射され、マスク3と同様の格子状パターンにレーザ光の照射領域が形成される。そして、この予定領域7において、レーザ光が照射された部分のみが溶融凝固して結晶化し、この部分がポリシリコンに相変態する。このポリシリコン部分は、マスク3の透過領域32がマイクロレンズ5により縮小投影された部分であり、この縮小投影された部分にしかレーザ光が照射されないので、図4に示すように、多結晶化したポリシリコンの部分3aは、透過領域32に対応して線状になる。
 次いで、第2工程においては、マスク3を取り外し、その後、レーザ光を被照射体6に照射することにより、各チャネル領域形成予定領域7毎に、その予定領域7の全体にレーザ光を照射する。そうすると、ポリシリコンの部分3aは、アモルファスシリコンの部分よりも融点が高いので、第1工程において多結晶化した部分が再溶融することはない。そして、第1工程において、a-Si:H膜におけるマスク3の遮光領域31に対応する部分がアモルファスのまま残存しているので、このアモルファスの部分が、第2工程におけるレーザ照射により、溶融凝固して多結晶化する。この第2工程において多結晶化する部分は、a-Si:H膜における遮光領域31が縮小投影された部分であるので、この第2工程において多結晶化したポリシリコン部分3bは、遮光領域31に対応して線状になる。
 このようにして、チャネル形成予定領域7においては、先ず、部分3aが多結晶化してポリシリコン部分となり、その後、部分3bが遅れて多結晶化するが、この際、部分3bのアモルファスシリコン膜は、部分3aのポリシリコン膜を核として結晶化する。このため、部分3bにおいては、部分3aから、部分3bを挟んで対向する他の部分3aに向けて結晶粒が成長し、この結晶粒の成長は、2個の部分3a間の中間部分まで進行する。よって、第2工程の終了後、図4に示すように、チャネル形成予定領域7において、一定の方向に結晶粒9の成長方向(偏平な方向)が揃ったポリシリコン膜が得られる。このため、他のチャネル形成予定領域7においては、マスク3の遮光領域31及び透過領域32の延びる方向を変更することにより、結晶粒の成長方向が図4とは異なるポリシリコン膜を得ることができる。つまり、図1に示すように、マイクロレンズ5毎に設けられた多数のマスク3の遮光領域31及び透過領域32の延びる方向を、適宜、その場所に合わせたものに設定することにより、チャネル形成予定領域7毎に、結晶粒の成長方向(偏平方向)を任意に調整することができる。よって、図7(b)に示す場合と異なり、周辺回路に形成される全てのトランジスタにおいて、電流が流れる方向に結晶粒9の成長方向を合わせることができ、全てのトランジスタについて、低抵抗化及び高速化することができるとともに、そのトランジスタ特性を均一にすることができる。なお、各マイクロレンズを透過してレーザ光が照射されてアニールされたチャネル形成領域においては、1個のトランジスタを形成してもよいし、同一方向に電流が流れる複数個のトランジスタを形成することもできる。即ち、1個のマイクロレンズにより形成された1個の低温ポリシリコンのアイランドに、1個又は複数個のトランジスタを形成することができる。
 なお、マスク3の透過領域32を透過したレーザ光は、チャネル形成予定領域7において、縮小投影の比率で厳密に縮小された幅で照射されるものではない。また、この透過領域32を透過して予定領域7に照射されたレーザ光の照射幅で厳密に多結晶化した領域が形成されるものではない。アモルファスシリコン膜において、レーザ光が照射された部分から照射されなかった部分への熱伝導と、レーザ光が照射された部分におけるエネルギ密度の不均一性が存在し、縮小投影系における誤差等も存在する。しかし、本実施形態においては、ポリシリコン部分3aの厳密な幅は別として、一旦、線状にポリシリコン部分3aを形成した後、このポリシリコン部分3aを核として次順の結晶化が進行するので、次順の結晶化においては、一定の方向の結晶粒の偏平方向が揃ったポリシリコン部分3bが得られる。
 以上の実施形態において、レーザ光の発光条件、即ちa-Si:H膜を加熱する条件は、第1工程と第2工程とで同一とすることができる。この発光条件は、レーザ光の照射によりアモルファスシリコン膜を溶融凝固させることができるものである。また、上記実施形態において、部分3aは部分3bにおける多結晶化の際の核となるものであるから、結晶粒が揃った領域を可及的に広くするためには、通常、部分3aは部分3bよりも幅が狭いものとする。また、部分3a同士の間隔は、薄膜トランジスタの大きさが1辺長で10数μm~数十μm程度であるので、チャネルポリシリコン領域の結晶粒の偏平方向の大きさが1μm以下となるようなものとすることが好ましい。この程度の微小な結晶粒(偏平方向についても)であれば、より十分に安定したトランジスタ特性を得ることができる。従って、マスク3の透過領域32の間隔は、被照射体6に縮小投影された領域において、偏平の結晶粒の長寸が1μm以下程度になるようにすることが好ましい。
 なお、この第1実施形態において、マスク3の形状は、図2に示すように、矩形のものに限るものではなく、円形等種々の形状にすることができる。また、遮光領域31及び透過領域32が延びる方向も矩形のマスク4の辺に平行に限らず、傾斜していてもよい。この遮光領域31及び透過領域32が延びる方向は、マスク3毎に変更してもよい。
 また、上記実施形態においては、第2工程にて、チャネル領域を画定する遮光領域以外のマスクを使用しないものであったが、第2工程においても、マスクを使用し、第1工程において、遮光領域であった部分を透過領域とし、透過領域であった部分を遮光領域として、a-Si:H膜において第1工程でアモルファスのまま残存した部分のみにレーザ光を照射してこの部分をアニールすることとしてもよい。また、この場合に、第2工程における透過領域の幅を、第1工程における遮光領域の幅よりも大きくして、第1工程のレーザ光照射領域よりも、第2工程のレーザ光照射領域の方を大きくして、一部で重なるようにしてもよい。これにより、第2工程において、アモルファスシリコン領域が多結晶化するときに、アモルファスシリコンとして残存している領域の全部を確実に加熱することができ、第1工程で既に多結晶化しているポリシリコン部分3aを起点とする結晶成長を促進することができる。
 次に、本発明の第2実施形態について説明する。この実施形態は、レーザ光の照射を1回の工程で行うものである。本実施形態は、図8に示すマスク14を使用する。このマスク14は、第1実施形態のマスク3と基本的には同様の構成であるが、本実施形態のマスク14は、遮光領域141の幅が狭く、透過領域142の幅が広いものであり、各領域の幅の広狭の関係がマスク3と逆である。そして、本実施形態においては、レーザ光の照射条件を、図9に示すように、遮光領域141に対応するアモルファスシリコン膜の部分14bが溶融して多結晶化するのに十分なものとする。遮光領域141に対応するチャネル形成予定領域7の部分14aは、遮光領域141の幅と同様に狭幅であり、透過領域142に対応するチャネル形成予定領域7の部分14bは、透過領域142の幅と同様に広幅である。そして、部分14aは基本的にはレーザ光の照射を受けず、部分14bはレーザ光の照射を受ける。これにより、アモルファスシリコン膜における遮光領域141に対応する部分14aと透過領域142に対応する部分14bとで温度差が発生する。しかし、このレーザ光の照射を受けない部分14aも、レーザ光の照射を受けた部分14bが加熱されて溶融したときに、この部分14bの熱が部分14aにも伝達され、部分14aも昇温して溶融する。
 本実施形態においては、レーザ光の照射を受けた部分14bの中央から、この部分14bを挟んで対向する2個のレーザ光の照射を受けない部分14aに向けて熱が伝達される。この伝達熱により部分14aが溶融し、凝固して多結晶化するが、この部分14aは最も温度が低いので、部分14aから先ず凝固して、多結晶化し、その後、凝固線が部分14bの中央に向けて順次移動する。この場合に、部分14aが最も低く、部分14bの中央が最も高い温度勾配のもとで、凝固が進行する。よって、図9に示すように、凝固して多結晶化した後に、その結晶粒は、部分14aから部分14bの中央に向けて偏平した形状となり、第1実施形態と同様に、結晶粒の成長方向が揃ったポリシリコン膜が得られる。
 上述の第1及び第2実施形態においては、マスク3又はマスク14を使用することにより、各マスクに対応する各チャネル形成予定領域7においては、その結晶粒の成長方向を一定の方向にすることができ、結晶粒が一定の方向に偏平したポリシリコン膜を得ることができる。このため、マスク3,14及びマイクロレンズ5を各トランジスタ毎に設けることにより、そのマスクにおける遮光領域及び透過領域の方向をマスク毎に適切に設定することによって、液晶表示装置のガラス基板上におけるポリシリコンチャネル領域の位置に応じて、結晶粒の成長方向を任意に設定することができる。従って、液晶表示装置の周辺回路において、各トランジスタのチャネル領域におけるチャネル電流が流れる方向に、結晶粒の成長方向を揃えることができ、周辺回路の全てのトランジスタについて、低抵抗化及び高速化が可能となるとともに、トランジスタ特性を均一化することができる。
 このとき、各トランジスタと各マイクロレンズ及びマスクとを1:1に対応させるのではなく、1又は複数個のトランジスタと、1組のマイクロレンズ及びマスクとを対応させることができる。つまり、1組のマイクロレンズ及びマスクにより決まるポリシリコンの結晶粒の延びる方向に、複数個のトランジスタの駆動電流が流れる方向を合わせることができる。このように、周辺回路における駆動電流が流れる方向に結晶粒の成長方向が揃うため、駆動電流が交差する結晶粒界の数を少なくすることができ、これにより、駆動電流が流れる方向の抵抗を小さくすることができ、低消費電流化及び高速化が可能である。また、各マイクロレンズに対応するマスクの遮光領域及び透過領域が延びる一方向を、各マイクロレンズが照射する位置に合わせて個別に設定することにより、各チャネル領域毎に結晶粒の成長方向を制御することができ、各チャネル領域のチャネル電流が流れる方向に結晶粒の成長方向を確実に合わせることができる。
 次に、本発明の第3実施形態について説明する。本実施形態においては、図10及び図11に示すように、各マイクロレンズ5に対応するマスク3は、全体がレーザ光の遮光領域31であり、この遮光領域31の中に、一方向に延びる線状の1個の透光領域32が形成されたものである。このため、アモルファスシリコン膜、即ち、被照射体6における各マイクロレンズ5に対応するマスク3の投影領域においては、1本の線状のレーザ光照射領域が形成される。
 そして、図12に示すように、この線状の照射領域3cを、線が延びる前記一方向に垂直の方向に走査する。これは、例えば、レーザ照射装置のマイクロレンズ5及びマスク3を含むレーザ光の照射系を固定して、アモルファスシリコン膜が形成された基板(被照射体6)を前記一方向に垂直の方向に移動させてもよいし、また、前記基板を固定して、前記レーザ光の照射系を前記一方向に垂直の方向に移動させてもよい。
 そうすると、レーザ光の照射領域3cにて、アモルファスシリコン膜が溶融し、その後、照射領域3cが走査により移動して図中矢印方向に移動していくと、熱源が去っていくので、一旦溶融した部分が急冷され、凝固して結晶化する。これにより、レーザ光の線状の照射領域3cが走査により移動していく後方には、前記一方向に垂直の方向に成長した結晶粒9が形成される。
 従って、本実施形態においても、被照射体6における各マイクロレンズに対応する微小領域(例えば、1トランジスタの形成予定領域)において、結晶粒の成長方向が一定の方向に均一化される。
 なお、本発明は、1個のマイクロレンズが1個のトランジスタ形成予定領域のチャネル領域に対応するものに限らず、1個のマイクロレンズが複数個のトランジスタ形成予定領域に対応するように、レーザ光を照射してもよい。
 本発明は、安定したトランジスタ特性の半導体装置の製造に有益である。
1:レーザ光源
3、14:マスク
3a:(多結晶)部分
3b:(アモルファス)部分
3c:レーザ光照射領域
4a、4b、4c:透明基板
5:マイクロレンズ
6:被照射体
7:チャネル領域形成予定領域
8:透過部材
9:結晶粒
31、141:遮光領域
32、142:透過領域

Claims (9)

  1. 1次元又は2次元的に配置された複数個のマイクロレンズと、レーザ光の発生源と、この発生源からのレーザ光を前記マイクロレンズに導き前記マイクロレンズにより前記レーザ光をアモルファスシリコン膜に集光させる導光部と、各マイクロレンズ毎に配置された複数個のマスクと、を有し、前記各マスクには、前記レーザ光を遮光する遮光領域と前記レーザ光を透過する透過領域とがいずれも一方向に延びるように且つ前記一方向に垂直の方向に隣接するように設けられていることを特徴とする低温ポリシリコン膜の形成装置。
  2. 前記遮光領域及び前記透過領域は各マスクについて複数個設けられており、これらの遮光領域及び透過領域は、交互に配置されていることを特徴とする請求項1に記載の低温ポリシリコン膜の形成装置。
  3. 前記各マイクロレンズを通過したレーザ光によりアモルファスシリコン膜をアニールして形成された各ポリシリコン膜には、1又は複数個のトランジスタが形成されるものであることを特徴とする請求項1又は2に記載の低温ポリシリコン膜の形成装置。
  4. 前記請求項1乃至3のいずれか1項に記載の低温ポリシリコン膜の形成装置を使用し、先ず、前記マスクを介して前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射することにより前記透過領域を透過したレーザ光を前記アモルファスシリコン膜に照射してポリシリコン領域を形成する第1の工程と、次いで、前記マスクを使用しないで前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射することにより前記ポリシリコン膜を結晶の核として残部のアモルファスシリコン膜を多結晶化する第2の工程とを有することを特徴とする低温ポリシリコン膜の形成方法。
  5. 前記第1の工程と前記第2の工程とは、前記レーザ光源によるレーザ光の発光条件は同一であることを特徴とする請求項4に記載の低温ポリシリコン膜の形成方法。
  6. 前記請求項1乃至3のいずれか1項に記載の低温ポリシリコン膜の形成装置を使用し、前記マスクを介して、前記マイクロレンズによりレーザ光をアモルファスシリコン膜に照射する工程を有し、前記レーザ光の照射条件は、前記遮光領域に対応するアモルファスシリコン膜の部分が溶融して多結晶化するに十分なものであり、多結晶化に際し、前記アモルファスシリコン膜における前記遮光領域に対応する部分と前記透過領域に対応する部分とで温度差が存在するものであることを特徴とする低温ポリシリコン膜の形成方法。
  7. 液晶表示装置の周辺回路における低温ポリシリコン膜の形成方法であって、前記周辺回路の1又は複数個のトランジスタからなるトランジスタ群毎に、夫々マイクロレンズを対応させ、前記マスクの前記一方向をそのトランジスタ群に合わせて決めることにより、そのトランジスタ群のアモルファスシリコン膜の結晶化方向を調整することを特徴とする請求項4乃至6のいずれか1項に記載の低温ポリシリコン膜の形成方法。
  8. 1次元又は2次元的に配置された複数個のマイクロレンズと、レーザ光の発生源と、この発生源からのレーザ光を前記マイクロレンズに導き前記マイクロレンズにより前記レーザ光をアモルファスシリコン膜に集光させる導光部と、各マイクロレンズ毎に配置された複数個のマスクと、を有し、前記各マスクは、前記レーザ光を遮光する遮光領域の中に、前記レーザ光を透過する一方向に延びる線状の1個の透過領域が設けられているものである低温ポリシリコン膜の形成装置を使用し、前記マスクが前記マイクロレンズにより投影されるアモルファスシリコン膜上の投影領域において、前記透過領域を透過した線状のレーザ光が前記投影領域を前記一方向に垂直の方向に走査することを特徴とする低温ポリシリコン膜の形成方法。
  9. 前記低温ポリシリコン形成装置の前記マイクロレンズ及び前記マスクを含むレーザ光の照射系と前記アモルファスシリコン膜が形成された基板とを、相対的に移動させることにより、前記レーザ光を前記投影領域で走査することを特徴とする請求項8に記載の低温ポリシリコン膜の形成方法。
PCT/JP2011/061772 2010-06-15 2011-05-23 低温ポリシリコン膜の形成装置及び方法 WO2011158612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-136595 2010-06-15
JP2010136595A JP2012004250A (ja) 2010-06-15 2010-06-15 低温ポリシリコン膜の形成装置及び方法

Publications (1)

Publication Number Publication Date
WO2011158612A1 true WO2011158612A1 (ja) 2011-12-22

Family

ID=45348021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061772 WO2011158612A1 (ja) 2010-06-15 2011-05-23 低温ポリシリコン膜の形成装置及び方法

Country Status (3)

Country Link
JP (1) JP2012004250A (ja)
TW (1) TW201205680A (ja)
WO (1) WO2011158612A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037813A1 (en) * 2011-08-12 2013-02-14 Samsung Display Co., Ltd. Crystallization method of thin film transistor, thin film transistor array panel and manufacturing method for thin film transistor array panel
CN109801837A (zh) * 2019-02-02 2019-05-24 京东方科技集团股份有限公司 驱动背板的激光退火工艺及掩膜版

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221088B2 (ja) * 2012-01-31 2017-11-01 株式会社ブイ・テクノロジー レーザアニール装置及びレーザアニール方法
JP6655301B2 (ja) 2015-05-19 2020-02-26 株式会社ブイ・テクノロジー レーザアニール装置及び薄膜トランジスタの製造方法
JP6623078B2 (ja) * 2016-02-23 2019-12-18 株式会社ブイ・テクノロジー レーザアニール方法及びレーザアニール装置
CN109075043A (zh) * 2016-03-04 2018-12-21 堺显示器制品株式会社 激光退火装置、掩膜、薄膜晶体管和激光退火方法
WO2018101154A1 (ja) * 2016-11-30 2018-06-07 株式会社ブイ・テクノロジー レーザ照射装置および薄膜トランジスタの製造方法
JP2019036635A (ja) * 2017-08-15 2019-03-07 株式会社ブイ・テクノロジー レーザ照射装置、薄膜トランジスタの製造方法、プログラムおよび投影マスク
JP7126244B2 (ja) * 2018-06-01 2022-08-26 株式会社ブイ・テクノロジー 投影マスク、およびレーザ照射装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246819A (ja) * 1991-01-31 1992-09-02 Ricoh Co Ltd 半導体薄膜の製造方法
JP2001269789A (ja) * 2000-01-20 2001-10-02 Komatsu Ltd レーザ加工装置
JP2003109911A (ja) * 2001-10-01 2003-04-11 Sharp Corp 薄膜処理装置、薄膜処理方法および薄膜デバイス
JP2003203874A (ja) * 2002-01-10 2003-07-18 Sharp Corp レーザ照射装置
JP2004311906A (ja) * 2003-04-10 2004-11-04 Phoeton Corp レーザ処理装置及びレーザ処理方法
JP2008055467A (ja) * 2006-08-31 2008-03-13 Semiconductor Energy Lab Co Ltd レーザビーム照射装置及びレーザビーム照射方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246819A (ja) * 1991-01-31 1992-09-02 Ricoh Co Ltd 半導体薄膜の製造方法
JP2001269789A (ja) * 2000-01-20 2001-10-02 Komatsu Ltd レーザ加工装置
JP2003109911A (ja) * 2001-10-01 2003-04-11 Sharp Corp 薄膜処理装置、薄膜処理方法および薄膜デバイス
JP2003203874A (ja) * 2002-01-10 2003-07-18 Sharp Corp レーザ照射装置
JP2004311906A (ja) * 2003-04-10 2004-11-04 Phoeton Corp レーザ処理装置及びレーザ処理方法
JP2008055467A (ja) * 2006-08-31 2008-03-13 Semiconductor Energy Lab Co Ltd レーザビーム照射装置及びレーザビーム照射方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037813A1 (en) * 2011-08-12 2013-02-14 Samsung Display Co., Ltd. Crystallization method of thin film transistor, thin film transistor array panel and manufacturing method for thin film transistor array panel
US8741672B2 (en) * 2011-08-12 2014-06-03 Samsung Display Co., Ltd. Crystallization method of thin film transistor, thin film transistor array panel and manufacturing method for thin film transistor array panel
US9406807B2 (en) 2011-08-12 2016-08-02 Samsung Display Co., Ltd. Crystallization method of thin film transistor, thin film transistor array panel and manufacturing method for thin film transistor array panel
CN109801837A (zh) * 2019-02-02 2019-05-24 京东方科技集团股份有限公司 驱动背板的激光退火工艺及掩膜版
US10998189B2 (en) 2019-02-02 2021-05-04 Boe Technology Group Co., Ltd. Laser annealing process of drive backplane and mask

Also Published As

Publication number Publication date
JP2012004250A (ja) 2012-01-05
TW201205680A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2011158612A1 (ja) 低温ポリシリコン膜の形成装置及び方法
KR101645770B1 (ko) 저온 폴리실리콘막의 형성 장치 및 방법
JP4403599B2 (ja) 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法
JP5495043B2 (ja) レーザアニール方法、装置及びマイクロレンズアレイ
JP2004363130A (ja) 半導体薄膜の製造方法及び製造装置、並びに薄膜トランジスタ
US7651931B2 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
KR20040104430A (ko) 결정화 반도체층의 형성방법 및 형성장치, 및반도체장치의 제조방법
KR20140018081A (ko) 박막 반도체 장치의 제조 방법, 박막 반도체 어레이 기판의 제조 방법, 결정성 실리콘 박막의 형성 방법, 및 결정성 실리콘 박막의 형성 장치
JP5800292B2 (ja) レーザ処理装置
JP6221088B2 (ja) レーザアニール装置及びレーザアニール方法
JP2008227077A (ja) レーザ光のマスク構造、レーザ加工方法、tft素子およびレーザ加工装置
WO2006075568A1 (ja) 多結晶半導体薄膜の製造方法および製造装置
JP4769491B2 (ja) 結晶化方法、薄膜トランジスタの製造方法、薄膜トランジスタおよび表示装置
US10937651B2 (en) Laser annealing method
JP2007281465A (ja) 多結晶膜の形成方法
JP2005276944A (ja) 半導体デバイス、その製造方法および製造装置
JP2004281771A (ja) 半導体薄膜の結晶成長方法および結晶成長装置ならびに薄膜トランジスタの製造方法
JP2007207896A (ja) レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置
JP4467276B2 (ja) 半導体薄膜を製造する方法と装置
JP2014060184A (ja) 低温ポリシリコン膜の形成方法及び薄膜トランジスタの製造方法
JP2005347380A (ja) 半導体薄膜の製造方法および製造装置
US7649206B2 (en) Sequential lateral solidification mask
JP2008147236A (ja) 結晶化装置およびレーザ加工方法
KR20050121548A (ko) 실리콘 결정화 방법과 이를 이용한 박막트랜지스터 기판의제조방법
JP2005026705A (ja) 多結晶半導体薄膜の作成方法、薄膜半導体装置の製造方法及び液晶表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795520

Country of ref document: EP

Kind code of ref document: A1