WO2011158520A1 - 電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット - Google Patents

電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット Download PDF

Info

Publication number
WO2011158520A1
WO2011158520A1 PCT/JP2011/050367 JP2011050367W WO2011158520A1 WO 2011158520 A1 WO2011158520 A1 WO 2011158520A1 JP 2011050367 W JP2011050367 W JP 2011050367W WO 2011158520 A1 WO2011158520 A1 WO 2011158520A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
electrophoresis
region
solution
producing
Prior art date
Application number
PCT/JP2011/050367
Other languages
English (en)
French (fr)
Inventor
大木 博
豊 鵜沼
祐二 丸尾
田中 毅
博史 山木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010139355A external-priority patent/JP4851612B2/ja
Priority claimed from JP2010139354A external-priority patent/JP4851611B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/704,886 priority Critical patent/US20130098764A1/en
Publication of WO2011158520A1 publication Critical patent/WO2011158520A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44747Composition of gel or of carrier mixture

Definitions

  • the present invention relates to a method for producing an electrophoresis reaction instrument, an electrophoresis reaction instrument production apparatus, a gel fixing substrate, an electrophoresis reaction instrument, and an electrophoresis kit.
  • Electrophoresis is a phenomenon in which charged particles or molecules move an electric field, and is particularly important as a technique for separating DNA or proteins in the fields of molecular biology and biochemistry.
  • proteosome analysis has attracted attention as a post-genome.
  • This proteosome analysis refers to a large-scale study on the structure and function of a protein, and in order to analyze the proteosome, usually a protein sample is first separated into individual proteins. At this time, two-dimensional electrophoresis is widely used as one method for separating proteins.
  • Two-dimensional electrophoresis is a technique for two-dimensionally separating proteins by two-stage electrophoresis. For example, in the first dimension, proteins are separated by isoelectric focusing (IEF), and in the second dimension, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel molecular quantity). Is done.
  • Such two-dimensional electrophoresis has a very high resolution and can separate several thousand kinds of proteins into spots.
  • an immobilized pH gradient (IPG) method having excellent reproducibility and resolution is used.
  • an immobilized pH gradient gel (IPG gel) is used.
  • an agarose gel or a polyacrylamide gel is used as the SDS-PAGE gel.
  • a polyacrylamide gel a homogeneous gel with a uniform acrylamide solution is used in many cases, but when observing a wide range of molecular weight, the concentration of the acrylamide solution is gradient from higher to lower. Diendogel is used.
  • IPG gels and SDS-PAGE gels can be coated, for example, on plastic or glass, or by casting the gel solution by pouring it into a mold (for example, a mold between glass substrates opposed via a spacer). Formed and used for first-dimensional electrophoresis and second-dimensional electrophoresis.
  • Patent Document 1 An electrophoresis gel plate using an inkjet method and a method for producing the same have been developed.
  • the gel plate of Patent Document 1 has poor wettability between the plate and the gel solution. For this reason, the fine droplets of the gel solution discharged from the ink jet head onto the plate are not sufficiently mixed, and the yield is lowered.
  • a gel having a concentration gradient may be used in electrophoresis, but if the wettability between the plate and the gel solution is poor, it is difficult to produce a gel having a desired concentration gradient.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for producing an electrophoresis reaction instrument that can form a gel with high reliability and high yield.
  • a method for producing an electrophoresis reaction instrument is a method for producing an electrophoresis reaction instrument in which an electrophoresis gel is fixed to a base material.
  • an apparatus for manufacturing an electrophoresis reaction instrument is an apparatus for manufacturing an electrophoresis reaction instrument in which an electrophoresis gel is fixed to a substrate. And a first discharge means for discharging a liquid to form a liquid reservoir and a second discharge means for discharging a gel solution into the liquid reservoir formed on a surface of the material on which the gel is fixed. It is said.
  • a liquid is discharged onto the substrate to form a liquid pool, and the gel solution is discharged to the formed liquid pool.
  • the quality of the gel to form can be improved.
  • the gel solution when the gel solution is directly discharged onto the surface of the base material, if the wettability between the base material and the gel solution is not good, the discharged gel solution droplets are not sufficiently mixed together, Quality is not enough. In this case, the gel solution does not sufficiently reach the desired region, that is, the region where the gel is formed, and the yield rate of the electrophoretic reaction device to be manufactured decreases.
  • the present invention by previously discharging a liquid onto the base material to form a liquid pool, the wettability between the subsequently discharged gel solution and the base material is improved, and the gel solution spreads over a desired region. Therefore, it is possible to form a gel on the substrate with good position reproducibility, and the yield is improved.
  • the adhesion of the gel is strengthened and a highly reliable reaction apparatus for electrophoresis can be manufactured. it can.
  • the gel fixing substrate according to the present invention is a gel fixing substrate for fixing a gel for electrophoresis in order to solve the above-described problems, and is provided on at least a part of a surface for fixing the gel. , And having a gel adhesion region that has been subjected to a treatment for adhering the gel.
  • the electrophoresis reaction instrument according to the present invention is characterized in that an electrophoresis gel is fixed to the gel fixing base material according to the present invention in order to solve the above-mentioned problems.
  • the gel fixing substrate of the present invention is subjected to a treatment for adhering the gel.
  • This treatment can be applied to a desired region of the fixing substrate in a desired shape, and the gel solution discharged to the fixing substrate is preferentially fixed to the gel adhesion region subjected to the treatment. Is done.
  • the gel can be aligned with the fixing substrate with high accuracy, the gel can be formed with high reliability and high yield.
  • a liquid pool can be formed in the gel adhesion region by discharging the liquid to the gel adhesion region of the gel fixing base material. .
  • the gel solutions discharged as droplets can be sufficiently mixed.
  • the method for producing an electrophoresis reaction instrument according to the present invention is a method for producing an electrophoresis reaction instrument in which an electrophoresis gel is fixed to a base material, the surface of the base material fixing the gel.
  • a gel can be formed with a sufficient yield.
  • the gel fixing base material of the present invention is a gel fixing base material for fixing a gel for electrophoresis, and a treatment for attaching the gel to at least a part of a surface for fixing the gel. Therefore, the gel can be formed with high reliability and high yield.
  • FIG. 2 (a) is a perspective view showing the configuration of an electrophoresis reaction device produced by the manufacturing method according to one embodiment of the present invention
  • FIG. 2 (b) is one embodiment of the present invention.
  • FIG. It is a perspective view which shows the other structure of the gel adhesion area
  • the method for manufacturing an electrophoresis reaction instrument according to the present invention is a method for manufacturing an electrophoresis reaction instrument in which an electrophoresis gel is fixed to a substrate, and a liquid is applied to the surface of the substrate on which the gel is fixed. May be included in the first discharge step of discharging the liquid and forming a liquid reservoir, and the second discharge step of discharging the gel solution into the liquid reservoir after the first discharge step.
  • Electrophoresis is a method for separating biopolymers such as protein, DNA, or RNA using a difference in moving speed in a predetermined electric field caused by a difference in size or charge. Electrophoresis includes a method of moving a biopolymer in a support such as a gel, and examples thereof include polyacrylamide gel electrophoresis and agarose gel electrophoresis.
  • the electrophoresis reaction tool produced in the present invention is a base material on which a gel, which is a support for separating each component of a sample in electrophoresis, is fixed.
  • a gel which is a support for separating each component of a sample in electrophoresis
  • isoelectric focusing (IEF; Proteins separated by isoelectric focusing can be suitably used for two-dimensional electrophoresis in which they are further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gelphoresis).
  • the base material has a gel formed and fixed on at least a part of its surface, and examples thereof include a flat plate or a chip molded into a desired shape.
  • examples of the raw material for the substrate include glass, resin, ceramics, and the like.
  • examples of the glass include quartz glass and non-alkali glass
  • examples of the resin include polyethylene terephthalate (PET), polymethyl methacrylate resin (PMMA) and the like.
  • examples of the ceramic include alumina and a low-temperature co-fired ceramic.
  • an arbitrary region on the upper surface of the base material is formed in, for example, a concave shape or a convex shape, or a plurality of concavo-convex structures are formed in the region.
  • the first discharge step is a step of discharging a liquid onto the surface of the base material on which the gel is fixed to form a liquid pool.
  • the liquid reservoir (droplet capturing region) here refers to a state where the discharged liquid remains on the substrate.
  • the region for forming the liquid pool can be a desired region for forming a gel, for example.
  • the liquid is not particularly limited as long as it does not interfere with gel formation, but is preferably an aqueous solvent, and more preferably a solution containing a reagent that promotes gelation of the second solution.
  • a liquid may be discharged using a pipetter, a dispenser, or an inkjet head.
  • the discharge amount may be set as appropriate according to the film thickness of the gel to be formed.For example, when a thick gel is to be formed, the liquid pool is discharged to be thick, and when a thin gel is to be formed, the liquid pool is It is preferable to discharge so as to be thin. As an example, the liquid may be discharged so that a liquid pool of about 0.2 mm to 0.4 mm is formed.
  • the second discharge step is a step of discharging the gel solution into the liquid pool formed in the first discharge step.
  • the quality of a gel can be improved by forming a liquid pool in the discharge object of a gel solution.
  • the gel solution when the gel solution is directly discharged onto the surface of the base material, if the wettability between the base material and the gel solution is not good, the discharged gel solution droplets are not sufficiently mixed together, Quality is not enough. In this case, the gel solution does not sufficiently reach the desired region, that is, the region where the gel is formed, and the yield rate of the electrophoretic reaction device to be manufactured decreases.
  • the present invention by previously discharging a liquid onto the base material to form a liquid pool, the wettability between the subsequently discharged gel solution and the base material is improved, and the gel solution spreads over a desired region. Therefore, it is possible to form a gel on the substrate with good position reproducibility, and the yield is improved.
  • the discharged gel solution droplets are sufficiently mixed together, so that the adhesion of the gel becomes strong and a highly reliable electrophoresis reaction instrument can be manufactured. it can.
  • the gel solution examples include an acrylamide mixed solution in which acrylamide forming the main skeleton of the gel and N, N′-methylenebisacrylamide that crosslinks the main skeleton of the gel are mixed, an immobiline mixed solution, an agarose mixed solution, and the like. Can be mentioned.
  • the gel solution may be discharged in the second discharge step using, for example, a pipetter, a dispenser, or an ink jet head, and it is particularly preferable to discharge using the ink jet head.
  • this inkjet head can eject the solution as fine droplets
  • the gel solution can be ejected as fine droplets in a liquid reservoir formed to improve the wettability between the substrate and the gel solution.
  • a gel having a desired shape can be easily produced.
  • the ejection method using an inkjet head is mainly classified into a continuous ejection type (continuous inkjet) and an on-demand type (drop-on-demand inkjet).
  • a continuous ink jet for example, a charge control method for controlling charged micro droplets with an electric field can be mentioned
  • the drop-on-demand ink jet for example, a thermal (bubble) method, an electrostatic actuator method or a piezo method can be mentioned.
  • the gel solution is discharged so that the gel to be formed has a gradient of gel concentration or pH, such as an immobilized pH gradient (IPG) gel or a gradient gel. It is preferable to do.
  • IPG immobilized pH gradient
  • An IPG gel is a gel used for isoelectric focusing and has a gradient with respect to pH.
  • the gradient gel is a gel used for SDS-PAGE and has a gradient with respect to the acrylamide concentration.
  • the gel formed through these steps is a support that separates biopolymers such as proteins by electrophoresis, and includes, for example, polyacrylamide gel or agarose gel. According to the present invention, since the gel solution is discharged into a previously formed liquid pool, the gel can be formed at a desired position with good reproducibility.
  • the thickness of the gel is not particularly limited, but is preferably about several hundred millimeters to several millimeters, for example. If the thickness of the formed gel is within this range, it can be optimally used for electrophoresis experiments.
  • a third discharge step of discharging the polymerization initiator into the liquid pool after the second discharge step it is preferable to discharge the reagent for forming the gel in multiple stages.
  • the polymerization initiator is a solution for initiating gelation of the gel solution, and examples thereof include ammonium persulfate (APS; ammonium peroxosulfate).
  • APS ammonium persulfate
  • the gel polymerization may start while the gel solution is being discharged, and the gel preparation jig or the gel preparation device (reaction instrument) May be unnecessarily gelled in the manufacturing apparatus).
  • the amount of gel solution ejected by the inkjet head is 1 ⁇ L, and the number of scans increases in order to increase the film thickness. For this reason, the previously discharged gel solution may be gelled before all the gel solution is discharged, and it is difficult to form a high-quality gel.
  • the gelation time can be controlled by discharging the polymerization initiator after the step of discharging the gel solution. That is, in the above method, unlike the conventional method in which a gel is formed only by discharging a gel solution containing gel particles onto a substrate in advance and drying, the gelation is performed on the substrate. The timing is controlled. Therefore, it is possible to prevent the occurrence of a malfunction of the apparatus such as the gelation reaction unnecessarily progressing and clogging of the piping, and for example, a gel having a large film thickness of 100 ⁇ m or more can be produced.
  • a treatment for chemically modifying the surface properties of the substrate may be performed before the first discharge step.
  • the treatment may be performed so that the region forming the liquid pool has hydrophilicity and the other region has hydrophobicity.
  • the hydrophilic region has good wettability with the liquid
  • the hydrophobic region has poor wettability with the liquid. Therefore, for example, when a liquid is discharged onto a substrate, a liquid pool is formed while the liquid spreads in an area with good wettability, and the liquid pool is less likely to spread further in an area with poor wettability. Therefore, the range in which the liquid pool is formed can be controlled by forming the hydrophilic region and the hydrophobic region on the substrate.
  • the substrate surface modification treatment different treatments can be performed depending on whether the surface on which the gel of the substrate is fixed (also referred to as a gel forming surface) is made of a hydrophilic material or a hydrophobic material.
  • the substrate is subjected to hydrophilic treatment such as nitration using sulfuric acid, sulfonation using nitric acid, introduction of oxygen-containing functional groups using oxygen plasma treatment, etc.
  • hydrophilic treatment such as nitration using sulfuric acid, sulfonation using nitric acid, introduction of oxygen-containing functional groups using oxygen plasma treatment, etc.
  • a hydrophilic region can be formed on the surface (hydrophilic treatment step), but oxygen plasma treatment (oxygen plasma treatment step) is particularly preferable.
  • the oxygen plasma treatment is a treatment for modifying the surface of a substance, and is a technique for improving hydrophilicity by introducing an oxygen-containing substituent into the surface by, for example, plasma. That is, the wettability of the surface of the base material that has been subjected to the oxygen plasma treatment is improved.
  • the position is controlled so that the liquid discharged in the first discharge process forms the liquid pool in the desired region. can do.
  • an appropriate hydrophobizing process may be performed according to the material of the base material (hydrophobizing process step).
  • the base material is made of glass
  • a portion that becomes a hydrophilic region is masked with Kapton tape or the like, and a region other than the portion is hydrophobized by treatment with a photodegradable silane coupling agent. Thereafter, the portion that becomes the hydrophilic region is irradiated with ultraviolet light, so that the portion becomes hydrophilic. Thereby, a hydrophilic region and a hydrophobic region are formed on the substrate.
  • a region that becomes a hydrophilic region may be masked with a natural oxide film, and a region other than the region may be hydrophobized by wet etching with dilute hydrofluoric acid. After washing with dilute hydrofluoric acid, the region other than the part may be masked and then oxidized. Thereafter, the hydrophilic region and the hydrophobic region are formed on the substrate by making any region hydrophilic by ultraviolet light irradiation or the like.
  • the gel can be patterned with good reproducibility using the wettability related to hydrophilicity / hydrophobicity. Can do.
  • the surface area may be increased to improve the wettability by physically forming a plurality of irregularities on the substrate. The irregularities to be formed are preferably fine as will be described later.
  • the range of the liquid pool is defined by the surface tension, so the region where the gel is formed can be controlled.
  • a gel is formed in an arbitrary region on the substrate, such as a region subjected to surface modification treatment, a region where a concave or convex shape is formed, or a region where a concavo-convex structure is formed ( A region that has been treated so as to be attached) is referred to as a “gel adhesion region”, and a substrate having a gel adhesion region is referred to as a “gel fixing substrate”.
  • FIG. 1 is a cross-sectional view showing a flow when manufacturing an electrophoresis reaction instrument in one embodiment of the present invention.
  • Examples of the reagent for forming a 4% polyacrylamide gel include a 30% acrylamide mixed solution (acrylamide + N, N′-methylenebisacrylamide), 1M Tris-HCl buffer (Tris-HCl), ammonium persulfate (APS; ammonium). peroxosulfate), tetramethylethylenediamine (TEMED; N, N, N ′, N′-tetramethylethylenediamine), and pure water.
  • acrylamide + N, N′-methylenebisacrylamide 1M Tris-HCl buffer
  • APS ammonium persulfate
  • peroxosulfate tetramethylethylenediamine
  • TEMED tetramethylethylenediamine
  • the acrylamide mixed solution is a gel solution in which acrylamide that forms the main skeleton of the gel and N, N′-methylenebisacrylamide that crosslinks the main skeleton of the gel are mixed.
  • Tris-HCl buffer is a buffer
  • APS is It is a polymerization initiator and TEMED is a polymerization accelerator.
  • these reagents for forming the gel are discharged in three stages.
  • the number of times is not limited to this, and the first discharge step for discharging a liquid and the second for discharging a gel solution are not limited thereto. And the discharge step.
  • the upper surface of the substrate 1 is subjected to surface modification treatment, for example, by oxygen plasma treatment or the like to form a gel adhesion region 2 to obtain a gel fixing base material ((a) in FIG. 1).
  • the gel adhesion region 2 is a region that has been processed so that a gel is formed (attached) in an arbitrary region on the base material.
  • it may be a region where a concave cut-out structure or a convex protruding structure is formed, or a region where a fine uneven structure is formed. Moreover, it is possible to combine these.
  • the substrate for example, 70 mm ⁇ 13 mm of polyethylene terephthalate (PET) can be used, and surface modification treatment is performed on the substrate 1 to form the gel adhesion region 2.
  • PET polyethylene terephthalate
  • the gel adhesion region 2 having a hydrophilic region is formed by masking a portion other than the gel adhesion region 2 and performing oxygen plasma treatment.
  • This surface modification treatment such as oxygen plasma treatment is more preferable because patterning is easy and productivity is high.
  • the area of the gel adhesion region 2 can be set to, for example, 50 millimeters ⁇ 2.4 millimeters.
  • the first solution (liquid) is discharged to the gel adhesion region 2 of the substrate 1.
  • the gel adhesion region 2 is made hydrophilic by the oxygen plasma treatment, the first solution remains in the gel adhesion region 2 with good position reproducibility to form a liquid pool 5 ((b) in FIG. 1). .
  • the first solution examples include 1M Tris-HCl buffer, TEMED, pure water, and a mixture thereof. These amounts may be appropriately set according to the concentration of the polyacrylamide gel, and the mixing ratio in the mixed solution is not particularly limited.
  • the first solution discharging means for example, a pipetter, a dispenser, an ink jet head or the like can be used.
  • the liquid discharged in the first discharge step is preferably an aqueous solvent, and more preferably a solution containing a reagent that promotes gelation of the second solution.
  • the gel solution when the gel solution is discharged onto the substrate 1, if the reaction system is in the gas phase, the discharged gel solution microdroplets are not easily mixed on the substrate 1.
  • the gel solution can be sufficiently mixed. it can.
  • the surface modification treatment is performed so that the gel adhesion region 2 has hydrophilicity, the gel solution can be mixed more suitably.
  • the liquid is a solution containing a reagent related to gel formation
  • the reagent for forming the gel is discharged in multiple stages.
  • the second solution After discharging the first solution, the second solution is discharged to the gel adhesion region 2 where the liquid pool 5 is formed.
  • the second solution include a gel solution such as a 30% acrylamide mixed solution.
  • the second solution discharge means for example, a pipetter, a dispenser, an ink jet head, or the like can be mentioned.
  • an ink jet head that ejects fine liquid droplets from a fine nozzle to adhere to the substrate 1.
  • the gel concentration and the formation region can be easily controlled.
  • a high-definition gray scale (gradient) is produced by discharging, for example, a 30% acrylamide mixed solution with a gradient using the inkjet head 11. Can do. Therefore, a high-performance IPG gel or SDS-PAGE gradient gel can be provided.
  • the liquid reservoir 5 is formed when the second liquid droplets 6 are discharged from the inkjet head 11, so that the liquid droplets 6 discharged into the liquid reservoir 5 are mixed together. Can be greatly promoted. Therefore, it is possible to prevent the deterioration of the electrophoretic characteristics that occurs when there is no liquid reservoir 5. In addition, a gradient with higher accuracy can be formed as necessary.
  • the third solution is discharged to the mixed solution 7 of the first solution and the second solution ((d) in FIG. 1).
  • An example of the third solution is an APS solution, which may be discharged using a pipetter, a dispenser, an inkjet head, or the like.
  • the gel plate 10 is preferably produced in an inert gas such as argon or a nitrogen atmosphere, for example. That is, when the gel plate 10 is produced in a reactor (for example, one provided in the gel producing apparatus), the inside of the reactor is, for example, an inert gas such as argon or a nitrogen atmosphere during the production of the gel plate 10. Thus, it is desirable to discharge oxygen that becomes an inhibitor of the gelation reaction from the reactor.
  • an inert gas such as argon or a nitrogen atmosphere
  • the gel plate 10 of this embodiment directly applies the gel solution to the substrate 1. Because of the drawing, most of the surface of the gel solution is exposed to the atmosphere and is susceptible to oxygen. Therefore, it is desirable to make the inside of the reactor an inert gas or nitrogen atmosphere.
  • the gelation reaction may be performed in the atmosphere without using a reactor or the like.
  • the discharge amount of APS is, for example, about 5% to 20% with respect to the total amount of the first to third solutions discharged to the gel adhesion region 2 of the substrate 1.
  • the gel solution can be sufficiently gelled.
  • APS is 20% or less, it is possible to suppress insufficient control due to a decrease in radicals necessary for the start of gelation, which is caused by the influence of APSs on each other to increase the gelation speed. Can do.
  • the APS that is the third solution is preferably discharged in the final stage as described above. This suppresses gelation of the gel solution in the preparation jig or gel preparation apparatus, and prevents problems such as clogging of pipes that are unnecessarily gelled in the gel preparation jig or gel preparation apparatus. Can do.
  • the manufacturing method of the gel plate 10 of this embodiment by discharging each solution with respect to the gel adhesion area
  • the gel plate is formed using a casting jig such as a glass substrate, the place where the gel is formed is limited.
  • a gel can be formed at any place.
  • a gel plate including an isoelectric focusing chip and an SDS-PAGE chip manufactured by the manufacturing method according to the present embodiment.
  • the present invention is not limited to the case of producing a gel plate having a gel adhesion region, and the gel is fixed on the substrate.
  • the present invention can be applied to produce general gel plates.
  • FIGS. 2A is a perspective view showing a configuration of a gel plate 10 which is an example of a gel plate manufactured by the manufacturing method according to the present embodiment
  • FIG. 2B is a configuration of the gel plate 10.
  • the gel plate 10 shown in FIG. 2 is obtained by fixing an electrophoresis gel 3 to a substrate 1 for fixing the electrophoresis gel.
  • the substrate 1 has a gel adhesion region 2 that has been subjected to a treatment for adhering the gel 3 on at least a part of a surface on which the gel 3 is fixed.
  • the gel adhesion region 2 is provided in a frame shape in the vicinity of the outer periphery of the upper surface of the substrate 1. have.
  • a liquid pool can be formed in a desired region, and the region where the gel is formed can be easily controlled.
  • the configuration of the gel adhesion region 2 is not limited to this.
  • a concave or convex structure may be formed in an arbitrary region on the upper surface of the substrate 1, or a fine uneven structure may be formed. It may be.
  • these structures can be combined.
  • the substrate 1 shown in FIG. 3 is provided with a concave structure (hollow structure) having a desired pattern at the center of the upper surface.
  • This hollow structure may have a depth of several micrometers to several hundred micrometers, for example, but may be appropriately set according to the thickness of the substrate 1.
  • a method for producing a hollow structure may be selected according to the material of the substrate 1. For example, in the case of a glass substrate, photolithography, that is, a region other than the desired region to be the gel adhesion region 2 is masked with a photoresist mask, and the desired region can be etched to produce a punched structure. For example, if it is a resin substrate, a hollow structure can be produced by cutting or injection molding.
  • the substrate 1 shown in FIG. 4 is provided with a convex structure (protruding structure) having a desired pattern in the center of the upper surface, opposite to the substrate 1 shown in FIG.
  • the protruding structure may have a depth of several micrometers to several hundred micrometers, for example, but may be appropriately set according to the thickness of the substrate 1.
  • the protruding structure As a method for producing the protruding structure, it can be produced by the same method as the above hollow structure.
  • the substrate 1 is a glass substrate
  • a desired region that becomes the gel adhesion region 2 is masked with a photoresist mask, and a protruding structure can be manufactured by etching other than the desired region.
  • the gel adhesion region 2 may have a plurality of concavo-convex structures formed therein.
  • the uneven structure is preferably fine.
  • a fine concavo-convex structure 4 is formed inside the gel adhesion region 2.
  • the liquid ejected in the first ejection process tends to stay in the minute region where the uneven structure 4 is formed.
  • the wettability of the region is improved, and the gel solution droplets discharged in the second discharge step are likely to be coupled to each other. Therefore, the gel 3 having a desired shape can be efficiently formed.
  • the concavo-convex structure 4 may have a depth or thickness of several nanometers to several tens of nanometers, for example, and can be suitably produced by using a generally known nanoimprint technique. .
  • the concavo-convex structure 4 is formed directly on the plane of the substrate 1.
  • the present invention is not limited to this.
  • An uneven structure 4 may be formed inside.
  • the surface of the substrate 1 may be subjected to a process of chemically modifying the properties of the surface of the base material.
  • the region where the liquid pool is formed has hydrophilicity
  • the treatment is preferably performed so that the region has hydrophobicity.
  • the gel adhesion region 2 of the substrate 1 shown in FIG. 6 includes a hydrophilic region having hydrophilicity, and the other surface of the substrate 1 has hydrophobicity.
  • region 2 since the wettability of the gel adhesion area
  • the gel adhesion region 2 As a method of making the gel adhesion region 2 a hydrophilic region, it is possible to perform different treatments depending on whether at least the surface of the substrate 1 on which the gel adhesion region 2 is formed is made of a hydrophilic material or a hydrophobic material. It is.
  • the hydrophilic treatment according to each material may be performed by the method described in the item “Method for producing electrophoresis reaction instrument” described above, for example.
  • the hydrophilic region preferably has a composition containing many oxygen-containing functional groups.
  • an organic resin having an oxygen-containing functional group may be used as the substrate 1 or a commercially available organic resin may be hydrophilized and used as the substrate 1. If the hydrophilic region is a composition containing many oxygen-containing functional groups, the wettability is even better.
  • the gel can be patterned with good position reproducibility by utilizing the wettability related to the hydrophilicity / hydrophobicity. Can do.
  • the surface modification treatment of the substrate 1 may be performed on the substrate 1 having the configuration shown in FIGS.
  • FIG. 7 is a cross-sectional view showing a flow when manufacturing the isoelectric focusing chip 20.
  • the IPG gel formed on the IEF chip 20 shown in FIG. 7 is a first medium (1D gel) disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-64848 (published on March 15, 2007), that is, immobilized. It can be suitably applied to a pH gradient gel.
  • the first dimension of two-dimensional electrophoresis that is, a method for producing an isoelectric focusing chip 20 (IEF chip) on which an immobilized pH gradient gel (IPG gel) used for isoelectric focusing is formed will be described. To do.
  • a generally known IEF chip used for isoelectric focusing is obtained by casting an IPG gel on a gel bond film and cutting it into a desired shape.
  • the portions other than the portion where the gel adhesion region 2 is formed are masked with respect to PET which is a material of the gel bond film, and glow discharge or arc discharge is performed.
  • the gel adhesion region 2 can be formed.
  • the manufacturing method of this embodiment is used for manufacturing the IEF chip to which the IPG gel is fixed, the gel can be sufficiently formed even for a shape that has been difficult to manufacture.
  • Examples of the reagent for forming the IPG gel include immobiline mixed solution, isoelectric focusing reagent, TEMED, APS, and pure water.
  • the immobiline mixed solution is, for example, a solution in which two types of immobiline with different pH are mixed, and by mixing immobiline having various dissociation constants (pK) with an acrylamide derivative having a positive charge or a negative charge, An immobiline mixed solution having the desired pH is obtained.
  • the isoelectric focusing reagent (Ampholine) is an ampholyte mixture.
  • the gel adhesion region 2 is formed on the upper end surface of the support base 12.
  • a plastic substrate such as polymethyl methacrylate resin (PMMA) or a glass substrate can be used.
  • the gel adhesion region 2 of the support base 12 hydrophilic and make the region other than the gel adhesion region 2 hydrophobic.
  • the gel adhesion region 2 having a hydrophilic region can be formed by masking a region other than the gel adhesion region 2 and performing oxygen plasma treatment or sulfonation treatment.
  • the first solution is discharged to the gel adhesion region 2 of the support base 12.
  • the first solution include isoelectric focusing reagents, TEMED, and pure water. These mixing ratios are not particularly limited. Thereby, the liquid reservoir 13 is formed in the gel adhesion region 2.
  • Examples of the first solution discharging means include a pipetter, a dispenser, and an ink jet head.
  • the second solution is discharged to the gel adhesion region 2 where the liquid reservoir 13 is formed to form a gradient.
  • the second solution include an immobiline mixed solution.
  • the second solution discharge means for example, a pipetter, a dispenser, an ink jet head or the like can be mentioned.
  • the inkjet head 11 is arranged in the longitudinal direction of the support base 12 so that a concentration gradient of two types of immobiline mixed solution can be formed in the gel adhesion region 2 where the liquid reservoir 13 is formed. Scan in the direction (the direction of the arrow indicated by “A” in FIG. 7B).
  • one immobiline mixed solution is adjusted to pH 3 and the other immobiline mixed solution adjusted to pH 10 is ejected from the inkjet head 11 as fine droplets.
  • the general method should just be used about the adjustment method of an immobiline mixed solution, description is abbreviate
  • the immobiline-containing gel solution 14 (FIG. 7 (c)) formed by discharging the immobiline mixed solution from the inkjet head 11 to the liquid reservoir 13 does not cause a gelation reaction until the next step. It can remain in the state.
  • the third solution is discharged to the immobiline-containing gel solution 14.
  • APS may be used, and it may be discharged using a pipetter, a dispenser, an inkjet head, or the like, but an inkjet head is preferably used.
  • the discharge of APS using the inkjet head can be made uniform not only in the plane of the gel adhesion region 2 but also in the depth direction of the immobiline-line containing gel solution 14.
  • the support base 12 having a pH of 3 to 10 and an IPG gel size of 50 millimeters (isoelectric point gradient direction) ⁇ 2.4 millimeters ⁇ 0.5 millimeters, and positional accuracy with respect to the support base 12 It is possible to obtain an IEF chip 20 made of an IPG gel that is well fixed.
  • the volume ratio of APS (APS discharge volume / total discharge volume) is preferably 5 to 20%.
  • the volume ratio of APS may be 1% or less.
  • FIG. 8 is a cross-sectional view showing a flow when manufacturing the SDS-PAGE chip 30.
  • the SDS-PAGE chip 30 used in the generally known SDS-PAGE has a polyacrylamide gel cast on an instrument made of a plastic resin such as PMMA.
  • the gradient gel formed on the SDS-PAGE chip 30 includes, for example, a second medium (2D gel) and a second separation unit disclosed in Japanese Patent Application Laid-Open No. 2007-64848 (published on March 15, 2007). (Sample instrument) Suitable for gradient gel.
  • a solution similar to the polyacrylamide gel described above may be included.
  • the gel adhesion region 2 is formed in a desired region of the support base 15 on which the gradient gel is provided.
  • the support base 15 for example, a plastic substrate such as PMMA or a glass substrate can be used.
  • the gel adhesion region 2 of the support base 15 hydrophilic and make the region other than the gel adhesion region 2 hydrophobic.
  • the gel adhesion region 2 having a hydrophilic region can be formed by masking a region other than the gel adhesion region 2 of the support base 15 and performing oxygen plasma treatment, sulfonation treatment, nitration treatment, or the like.
  • the first solution is discharged to the gel adhesion region 2 of the support base 15.
  • the first solution include 1M Tris-HCl buffer, TEMED, and pure water. These mixing ratios are not particularly limited. Thereby, as shown in FIG. 8B, a liquid pool 16 is formed in the gel adhesion region 2.
  • Examples of the first solution discharging means include a pipetter, a dispenser, and an ink jet head.
  • the second solution After discharging the first solution, the second solution is discharged to the gel adhesion region 2 where the liquid reservoir 16 is formed, thereby forming a gradient.
  • the second solution include an acrylamide mixed solution (acrylamide + N, N′-methylenebisacrylamide).
  • the second solution ejection means includes, for example, a pipetter, a dispenser, an inkjet head, or the like, and the inkjet head 11 is particularly preferably used.
  • the gradient can be suitably formed by scanning along the direction of the arrow indicated by “B” in FIG. 8B using the inkjet head 11.
  • the acrylamide mixture-containing gel solution 17 (FIG. 8C) formed by discharging the second solution from the ink jet head 11 to the liquid reservoir 16 does not cause a gelation reaction until the next step. It can remain in the state.
  • the third solution is discharged to the gel solution 17 containing the acrylamide mixture.
  • the third solution contains, for example, APS and may be discharged using a pipetter, a dispenser, an ink jet head, or the like, but an ink jet head is preferably used.
  • an SDS-PAGE chip 30 composed of a gradient gel formed with high positional accuracy is obtained.
  • the volume ratio (APS discharge volume / total discharge volume) of APS is 5% or more, for example.
  • an IPG gel is produced in an inert gas atmosphere such as nitrogen or argon, that is, a deoxygenated atmosphere, it is not limited to this.
  • the method for manufacturing an electrophoresis reaction instrument according to the present invention may be implemented by the electrophoresis reaction instrument manufacturing apparatus according to the present invention.
  • the manufacturing apparatus includes: a first discharge unit that discharges a liquid to a surface on which a gel of a base material is fixed to form a liquid pool; and a second discharge unit that discharges a gel solution to the formed liquid pool. It only has to be prepared.
  • the first discharge means can discharge the liquid onto the substrate to form a liquid pool, and then the second discharge means can discharge the gel solution.
  • Such a method for producing an electrophoresis reaction instrument can be suitably implemented.
  • first ejection unit and the second ejection unit can be configured by, for example, a pipetter, a dispenser, or an inkjet head.
  • the second discharge means preferably discharges the gel solution using an ink jet head.
  • the manufacturing apparatus may further include a third discharge unit that discharges the polymerization initiator into the liquid pool in which the gel solution is discharged by the second discharge unit.
  • FIG. 9 is a block diagram showing a schematic configuration of a reaction instrument manufacturing apparatus (electrophoresis reaction instrument manufacturing apparatus) 40 according to an embodiment of the present invention.
  • the reaction instrument manufacturing apparatus 40 includes an inkjet head 11, a first container 41, a second container 42, a third container 43, a head moving unit 44, and a sequence control unit 45.
  • the reaction instrument manufacturing apparatus 40 can successfully manufacture an electrophoresis reaction instrument by performing the electrophoresis reaction instrument manufacturing method according to the present invention.
  • the first container 41 stores the first solution as described above
  • the second container 42 stores the second solution as described above.
  • the third solution as described above is stored.
  • the first container 41, the second container 42, and the third container 43 are connected to the inkjet head 11, and the solution stored in each container can be discharged from the inkjet head 11. That is, the first container 41 and the inkjet head 11 constitute a first ejection means, and the second container 42 and the inkjet 11 constitute a second ejection means. Further, the third container 43 and the inkjet 11 may constitute a third ejection unit.
  • the head moving unit 44 is configured by an actuator or the like, and moves the inkjet head 11. Thereby, a gel can be easily formed in the target position on a board
  • the sequence control unit 45 performs sequence control on the behavior of the head moving unit 44 and the inkjet head 11 so as to implement each step of the above-described method for manufacturing an electrophoresis reaction instrument.
  • the substance to be separated that is electrophoresed using the electrophoresis reaction instrument produced by the production method of the present invention may be any substance that is to be separated or analyzed by electrophoresis and transfer. Preparations collected from biological materials such as cell lines, tissue cultures or tissue fragments can be suitably used. In particular, polypeptides or polynucleotides are more preferred.
  • this invention includes the kit for electrophoresis containing the base material for gel fixation which concerns on this invention.
  • the kit may include, for example, a reagent for gel formation, a buffer solution for electrophoresis, an instrument for electrophoresis, and the like.
  • the gel solution is discharged using an inkjet head in the second discharge step.
  • the gel solution is discharged by the ink jet head. Since this inkjet head can eject the solution as fine droplets, if the gel solution is ejected as fine droplets in a liquid reservoir formed so as to improve the wettability between the substrate and the gel solution. A gel having a desired shape can be easily produced.
  • a high-definition gray scale (gradient) can be produced by discharging the gel solution using an inkjet head.
  • a performance IPG gel or SDS-PAGE gradient gel can be provided.
  • the method for producing an electrophoresis reaction instrument according to the present invention preferably includes a third discharge step of discharging a polymerization initiator into the liquid reservoir after the second discharge step.
  • the polymerization initiator for starting the polymerization of the gel is discharged after discharging the gel solution.
  • the gel polymerization may start while the gel solution is being discharged, and in the gel preparation jig or gel preparation device. It may be gelled unnecessarily.
  • the discharge amount of the discharged gel solution per scan is generally 1 ⁇ L, and the number of scans increases in order to increase the film thickness. For this reason, the previously discharged gel solution may be gelled before all the gel solution is discharged, and it is difficult to form a high-quality gel.
  • the liquid reservoir is collected before the first discharge step. It is preferable to include a hydrophilic treatment step in which a hydrophilic treatment is performed on a region where is formed. Furthermore, it is more preferable to perform oxygen plasma treatment in the hydrophilic treatment step.
  • the wettability of the gel adhesion region can be improved before the liquid is discharged, so that the discharged liquid can form a liquid pool in a desired region.
  • the wettability of the gel adhesion region can be improved before the liquid is discharged, so that the discharged liquid can form a liquid pool in a desired region.
  • by performing oxygen plasma treatment using a plasma shielding mask it is possible to form a region having a composition containing a large amount of oxygen-containing functional groups at a desired location, which greatly contributes to improvement in gel position reproducibility. To do.
  • the liquid reservoir is collected before the first discharge step. It is preferable to include a hydrophobizing treatment step in which a hydrophobizing treatment is performed in a region other than the region where the is formed. Furthermore, it is more preferable to perform a silane coupling treatment in the hydrophobic treatment step.
  • the wettability of the gel adhesion region can be improved before the liquid is discharged, so that the discharged liquid can form a liquid pool in a desired region.
  • the gel adhesion region is preferably formed in a concave shape or a convex shape.
  • the gel adhesion region has a structure formed in a concave or convex shape with respect to the surface of the base material for gel fixation.
  • the gel fixing substrate according to the present invention it is preferable that a plurality of uneven structures are formed in the gel adhesion region.
  • the wettability can be controlled by forming a plurality of uneven structures in the gel adhesion region on the gel fixing substrate.
  • a concavo-convex structure in a minute region, it is possible to efficiently form a gel in the region.
  • region has hydrophilicity, and at least one part of areas other than the said surface and said gel adhesion area
  • a region that becomes a gel adhesion region on the surface of a hydrophobic material such as a plastic substrate is made hydrophilic by hydrophilic treatment such as oxygen plasma treatment, or a region other than the gel adhesion region on the surface of a hydrophilic material such as a glass substrate is treated with a silane cup. It is made hydrophobic by a hydrophobic treatment such as a ring treatment.
  • the surface of the gel fixing substrate to have a hydrophilic region and a hydrophobic region, the wettability between the contact surface of the gel fixing substrate and the gel in the gel adhesion region is improved.
  • a gel with a desired shape can be formed.
  • the hydrophilic region of the gel adhesion region has a composition containing an oxygen-containing functional group.
  • the gel is formed to have a gel concentration or pH gradient.
  • the composition, concentration, and the like when preparing a gel having a pH gradient such as an immobilized pH gradient gel or a gel having a gel concentration gradient such as a gradient gel, the composition, concentration, and the like must be sufficiently managed.
  • the gel adhesion region is subjected to a surface modification treatment, the surface of the gel adhesion region of the substrate and the gel solution have good wettability when the gel is produced, and the position for fixing the gel is easy. Can be controlled.
  • a gel having an arbitrary composition and concentration in an arbitrary size at an arbitrary place, and suitably forming a gel having a pH or gel concentration gradient such as an IPG gel or a gradient gel. can do.
  • the method for producing an electrophoresis reaction instrument according to the present invention is a method for producing an electrophoresis reaction instrument according to the present invention, wherein the first ejection step of ejecting a liquid to the gel adhesion region and the first After the discharging step, the method includes a second discharging step of discharging the gel solution to the gel adhesion region.
  • the wettability between the substrate and the gel solution may be poor, and the discharged gel solution droplets may not be sufficiently mixed. Therefore, the liquid droplets are preliminarily ejected to the gel adhesion region to form a liquid pool, so that the coupling between the micro droplets is likely to occur. Therefore, the gel solution can be sufficiently mixed.
  • the liquid is a gel solution containing a reagent related to gel formation
  • the gel solution is discharged in multiple stages.
  • the gel solution is discharged using an inkjet head in the second discharge step.
  • the gel concentration and the formation region can be easily controlled by using the ink jet head capable of discharging the gel solution with fine droplets.
  • an IPG gel or a gradient gel when producing an IPG gel or a gradient gel, it is possible to produce a high-definition gray scale (gradient) by discharging a gel solution using an inkjet head. Therefore, a high-performance IPG gel or SDS-PAGE gradient gel can be provided.
  • a high-definition gray scale gradient
  • the method for producing an electrophoresis reaction instrument according to the present invention includes a gel adhesion region forming step of forming the gel adhesion region by oxygen plasma treatment before the first discharge step.
  • the wettability of the gel adhesion region can be improved before the liquid is discharged, so that the discharged liquid can form a liquid pool in a desired region.
  • the method for manufacturing an electrophoretic reaction device according to the present invention includes a third discharge step of discharging a polymerization initiator to the gel adhesion region after the second discharge step.
  • the polymerization initiator for starting the gel polymerization is discharged after the gel solution is discharged. This suppresses gelation of the gel solution in the preparation jig or gel preparation apparatus, and prevents problems such as clogging of pipes that are unnecessarily gelled in the gel preparation jig or gel preparation apparatus. Can do.
  • the electrophoresis kit according to the present invention is characterized by including the gel fixing base material according to the present invention in order to solve the above-described problems.
  • the present invention can be used for polyacrylamide gel electrophoresis or agarose gel electrophoresis for separating biopolymers such as protein, DNA or RNA, and particularly includes isoelectric focusing and SDS-PAGE electrophoresis. It can be suitably used for two-dimensional electrophoresis.
  • Substrate (base material) 2 Gel attachment area 3 Gel 10 Gel plate (reaction equipment for electrophoresis) 20 IEF chip (reaction equipment for electrophoresis) 30 SDS-PAGE chip (Reaction equipment for electrophoresis) 40 Reaction apparatus manufacturing equipment (electrophoresis reaction apparatus manufacturing apparatus)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明の製造方法は、基板(1)に電気泳動用のゲル(3)が固定されてなる電気泳動用反応器具(10)の製造方法であって、基板(1)のゲルを固定する面に、液体を吐出して液溜まり(5)を形成する第1の吐出工程と、該第1の吐出工程の後、液溜まり(5)にゲル溶液を吐出する第2の吐出工程とを含む。よって、高い信頼性で且つ歩留まりよくゲルを形成することができる電気泳動用反応器具の製造方法を提供する。

Description

電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット
 本発明は、電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キットに関する。
 電気泳動は、荷電粒子又は分子が電界を移動する現象であり、特に、分子生物学及び生化学の分野においてDNA又はタンパク質を分離する手法として重要である。
 また、近年では、ポストゲノムとしてプロテオソーム解析が注目を浴びている。このプロテオソーム解析とは、タンパク質の構造及び機能を対象とした大規模な研究を指し、プロテオソームを解析するために、通常、まずタンパク質試料を個々のタンパク質に分離する。このとき、タンパク質を分離する手法の一つとして、二次元電気泳動が広く用いられている。
 二次元電気泳動とは、二段階の電気泳動によってタンパク質を二次元的に分離する手法である。例えば、一次元目は等電点電気泳動(IEF;isoelctric focusing)によってタンパク質を分離し、二次元目はドデシル硫酸ナトリウム・ポリアクリルアミドゲル電気泳動(SDS-PAGE;sodium dodecyl sulfate-polyacrylamidegel electrophoresis)によって分子量を分離することが行われる。このような二次元電気泳動は分解能が非常に高く、数千種類以上に及ぶタンパク質をスポットに分離することができる。
 一次元目のIEFでは、例えば、再現性及び解像度に優れた固定化pH勾配(IPG;immobilized pH gradient)法が用いられる。固定化pH勾配法では、固定化pH勾配ゲル(IPGゲル)が用いられる。
 また、二次元目のSDS-PAGEでは、SDS-PAGEゲルとして、例えば、アガロースゲル又はポリアクリルアミドゲルが用いられる。特に、ポリアクリルアミドゲルとしては、多くの場合、アクリルアミド溶液が均一なホモジニアスゲルが用いられるが、広い範囲の分子量を観察したい場合にはアクリルアミド溶液の濃度が高い方から低い方まで勾配しているグラジエンドゲルが用いられる。
 これらIPGゲル及びSDS-PAGEゲルは、例えば、プラスチック若しくはガラス上にコーティングするか、又はゲル溶液を型(例えば、スペーサーを介して対向させたガラス基板間等の鋳型)に流し込んでキャスティングするかによって形成され、一次元目の電気泳動及び二次元目の電気泳動に用いられる。
 最近では、動植物ゲノム解析等におけるゲル電気泳動法の利用頻度が飛躍的に増大しており、生産性よく且つ均質なゲルプレートを作製する技術が切望されている。このような要求を受け、インクジェット方式を用いた電気泳動用ゲルプレート及びその作製方法が開発されている(特許文献1)。
日本国公開特許公報「特開2004-77393号(2004年3月11日公開)」
 しかし、特許文献1のゲルプレートでは、プレートとゲル溶液との濡れ性が悪い。そのため、インクジェットヘッドからプレート上に吐出されたゲル溶液の微小な液滴同士の混合が十分に行なわれず、歩留まりが低下する。
 また、電気泳動では濃度勾配を有するゲルを用いることがあるが、プレートとゲル溶液との濡れ性が悪いと所望の濃度勾配を有するゲルを作製することが困難である。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、高い信頼性で且つ歩留まりよくゲルを形成することができる電気泳動用反応器具の製造方法を提供することにある。
 本発明に係る電気泳動用反応器具の製造方法は、上記の課題を解決するために、基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造方法であって、上記基材の上記ゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出工程と、上記第1の吐出工程の後、上記液溜まりにゲル溶液を吐出する第2の吐出工程とを含むことを特徴としている。
 本発明に係る電気泳動用反応器具の製造装置は、上記の課題を解決するために、基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造装置であって、上記基材の上記ゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出手段と、形成された上記液溜まりにゲル溶液を吐出する第2の吐出手段とを備えることを特徴としている。
 上記の構成によれば、本発明では、まず基材上に液体を吐出して液溜まりを形成し、形成された液溜まりに対してゲル溶液を吐出する。これにより、形成するゲルの品質を向上させることができる。
 つまり、ゲル溶液を基材の表面に直接吐出するとき、基材とゲル溶液との濡れ性が良好でない場合には吐出したゲル溶液の液滴同士が十分に混合されず、形成されたゲルの品質が十分ではない。この場合、ゲル溶液が所望の領域、すなわちゲルを形成する領域に十分に行き渡らず、製造される電気泳動用反応器具の良品率(歩留まり)が低下する。
 本発明では、予め基材に液体を吐出して液溜まりを形成しておくことにより、続いて吐出されるゲル溶液と基材との濡れ性が改善し、所望の領域にゲル溶液が行き渡る。よって、基材上に位置再現性よくゲルを形成することが可能であり、歩留まりが向上する。
 また、濡れ性が改善しているために吐出したゲル溶液の液滴同士が十分に混合されるため、ゲルの接着性が強固になり、信頼性の高い電気泳動用反応器具を製造することができる。
 本発明に係るゲル固定用基材は、上記の課題を解決するために、電気泳動用のゲルを固定するためのゲル固定用基材であって、上記ゲルを固定する面の少なくとも一部に、当該ゲルを付着させるための処理が施されたゲル付着領域を有していることを特徴としている。
 本発明に係る電気泳動用反応器具は、上記の課題を解決するために、本発明に係るゲル固定用基材に、電気泳動用のゲルが固定されてなることを特徴としている。
 上記の構成によれば、本発明のゲル固定用基材には、ゲルを付着させるための処理が施されている。この処理は、固定用基材の所望の領域に所望の形状で施すことが可能であり、固定用基材に吐出されたゲル溶液は、該処理が施されたゲル付着領域に優先的に固定される。
 このように、ゲルを高精度に固定用基材にアライメントすることが可能であるため、高い信頼性で且つ歩留まりよくゲルを形成することができる。
 特に、後述する本発明に係る電気泳動用反応器具の製造方法によれば、ゲル固定用基材のゲル付着領域に液体を吐出することにより、該ゲル付着領域に液溜まりを形成することができる。この液溜まりにさらにゲル溶液を吐出することにより、液滴で吐出されるゲル溶液同士を十分に混合させることができる。
 本発明に係る電気泳動用反応器具の製造方法は、基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造方法であって、上記基材の上記ゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出工程と、上記第1の吐出工程の後、上記液溜まりにゲル溶液を吐出する第2の吐出工程とを含むため、高い信頼性で且つ歩留まりよくゲルを形成することができる。
 また、本発明のゲル固定用基材は電気泳動用のゲルを固定するためのゲル固定用基材であって、上記ゲルを固定する面の少なくとも一部に、当該ゲルを付着させるための処理が施されたゲル付着領域を有しているため、高い信頼性で且つ歩留まりよくゲルを形成することができる。
本発明の一実施形態に係る電気泳動用反応器具を製造する際の流れを示す断面図である。 図2の(a)は、本発明の一実施形態に係る製造方法によって作製された電気泳動用反応器具の構成を示す斜視図であり、図2の(b)は、本発明の一実施形態に係る製造方法によって作製された電気泳動用反応器具の構成を示す断面図である。 図2に示す電気泳動用反応器具におけるゲル付着領域の他の構成を示す斜視図である。 図2に示す電気泳動用反応器具におけるゲル付着領域の他の構成を示す斜視図である。 図2に示す電気泳動用反応器具におけるゲル付着領域の他の構成を示す斜視図である。 図2に示す電気泳動用反応器具におけるゲル付着領域の他の構成を示す斜視図である。 本発明の一実施形態に係る電気泳動用反応器具を製造する際の流れを示す斜視図である。 本発明の一実施形態に係る電気泳動用反応器具を製造する際の流れを示す斜視図である。 本発明の一実施形態に係る電気泳動用反応器具の製造装置の概略構成を示すブロック図である。
 本発明の実施形態について以下に説明する。なお、以下の記載は、本発明を説明するものであって、本発明の範囲を限定するものではない。
 (電気泳動用反応器具の製造方法)
 本発明に係る電気泳動用反応器具の製造方法は、基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造方法であって、基材のゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出工程と、第1の吐出工程の後、該液溜まりにゲル溶液を吐出する第2の吐出工程とを含めばよい。
 電気泳動とは、タンパク質、DNA又はRNA等の生体高分子を、大きさ又は電荷の違いに起因した、所定の電場における移動速度の差を利用して、分離する方法である。電気泳動には、生体高分子をゲル等の支持体中で移動させる方法があり、例えば、ポリアクリルアミドゲル電気泳動又はアガロースゲル電気泳動等が挙げられる。
 本発明において製造される電気泳動用反応器具は、電気泳動において試料の各成分を分離するための支持体であるゲルが固定されている基材であり、例えば、等電点電気泳動(IEF;isoelctric focusing)によって分離したタンパク質をさらに、ドデシル硫酸ナトリウム・ポリアクリルアミドゲル電気泳動(SDS-PAGE;sodium dodecyl sulfate-polyacrylamidegel electrophoresis)によって分離する二次元電気泳動に好適に利用することができる。
 基材は、その表面の少なくとも一部に、ゲルが形成及び固定されるものであり、例えば、平板プレート又は所望の形状に成型したチップ等が挙げられる。基材の原料としては、例えばガラス、樹脂又はセラミックス等が挙げられる。
 これら原料のうち、ガラスとしては、例えば、石英ガラス、無アルカリガラス等が挙げられ、樹脂としては、例えば、ポリエチレンテレフタレート(PET;polyethylene terephthalate)、ポリメタクリル酸メチル樹脂(PMMA;polymethyl methacrylate)等が挙げられ、セラミックスとしては、例えば、アルミナ、低温同時焼成セラミック等が挙げられる。
 また、特に限定されるものではないが、基材上面の任意の領域が例えば凹状又は凸状に形成されていたり、該領域内に複数の凹凸構造が形成されていたりすることが好ましい。これにより、後述する第1の吐出工程において液体を吐出するとき、吐出した液体の液溜まりを形成する領域を制御することができる。また、後述する第2の吐出工程においてゲル溶液を吐出するとき、吐出したゲル溶液の液滴が凝集することによって形成される液相を保持することもできる。
 第1の吐出工程とは、基材のゲルを固定する面に、液体を吐出して液溜まりを形成する工程である。ここでいう液溜まり(液滴捕捉領域)とは、吐出された液体が基材上に留まっている状態を指す。液溜まりを形成する領域は、例えばゲルを形成する所望の領域とすることができる。
 液体としては、ゲルの形成に支障を来たすものでなければ特に限定されないが、例えば、水性溶媒であることが好ましく、さらに好ましくは第2の溶液のゲル化を促進させる試薬を含む溶液である。
 第1の吐出工程では、例えば、ピペッター、ディスペンサー又はインクジェットヘッドを用いて液体を吐出すればよい。また、その吐出量は形成するゲルの膜厚に応じて適宜設定すればよく、例えば、厚いゲルを形成したい場合は液溜まりが厚くなるように吐出し、薄いゲルを形成したい場合は液溜まりが薄くなるように吐出することが好ましい。一例として、例えば0.2mm~0.4mm程度の液溜まりが形成されるように吐出してもよい。
 第2の吐出工程とは、第1の吐出工程において形成された液溜まりにゲル溶液を吐出する工程である。本発明では、ゲル溶液の吐出対象に液溜まりを形成しておくことにより、ゲルの品質を向上させることができる。
 つまり、ゲル溶液を基材の表面に直接吐出するとき、基材とゲル溶液との濡れ性が良好でない場合には吐出したゲル溶液の液滴同士が十分に混合されず、形成されたゲルの品質が十分ではない。この場合、ゲル溶液が所望の領域、すなわちゲルを形成する領域に十分に行き渡らず、製造される電気泳動用反応器具の良品率(歩留まり)が低下する。
 本発明では、予め基材に液体を吐出して液溜まりを形成しておくことにより、続いて吐出されるゲル溶液と基材との濡れ性が改善し、所望の領域にゲル溶液が行き渡る。よって、基材上に位置再現性よくゲルを形成することが可能であり、歩留まりが向上する。
 また、濡れ性が改善しているために吐出したゲル溶液の液滴同士が十分に混合されるため、ゲルの接着性が強固になり、信頼性が高い電気泳動用反応器具を製造することができる。
 ゲル溶液としては、例えば、ゲルの主骨格を形成するアクリルアミドと、ゲルの主骨格を架橋するN,N’-メチレンビスアクリルアミドとを混合したアクリルアミド混合溶液、イモビライン混合溶液、アガロース混合溶液等が挙げられる。
 第2の吐出工程におけるゲル溶液の吐出は、例えば、ピペッター、ディスペンサー又はインクジェットヘッドを用いて行なえばよいが、特に、インクジェットヘッドを用いて吐出することが好ましい。
 このインクジェットヘッドは、溶液を微小な液滴として吐出することができるため、基材と該ゲル溶液との濡れ性が改善するように形成された液溜まりにゲル溶液を微小な液滴で吐出すれば、所望の形状のゲルを容易に作製することができる。
 インクジェットヘッドを用いた吐出方法としては、主に連続吐出型(コンティニュアスインクジェット)とオンデマンド型(ドロップオンデマンドインクジェット)とに分類される。さらに、コンティニュアスインクジェットとしては、例えば、チャージした微小液滴を電界でコントロールする荷電制御方式が挙げられ、ドロップオンデマンドインクジェットとしては、例えば、サーマル(バブル)方式、静電アクチュエータ方式又はピエゾ方式等が挙げられる。
 また、第2の吐出工程では、例えば、固定化pH勾配(IPG;immobilized pH gradient)ゲル又はグラジエントゲル等のように、形成されるゲルがゲル濃度又はpHの勾配を有するようにゲル溶液を吐出することが好ましい。
 IPGゲルとは、等電点電気泳動に用いられるゲルであり、pHに対して勾配を有している。また、グラジエントゲルは、SDS-PAGEに用いられるゲルであり、アクリルアミド濃度に対して勾配を有している。
 これらのゲルを作製する場合、pH又はゲル濃度を十分に管理する必要があり、基材にゲル溶液を吐出する際、微小な液滴で吐出されることが多い。そのため、基材の表面に形成された液溜まりによって濡れ性を改善しておくことにより、ゲル溶液の微小な液滴同士が好適に混合される。
 これらの工程を経て形成されるゲルは、タンパク質等の生体高分子を電気泳動によって分離する支持体であり、例えば、ポリアクリルアミドゲル又はアガロースゲルを含む。本発明によれば、予め形成した液溜まりにゲル溶液を吐出するため、ゲルを所望の位置に再現性よく形成することができる。
 このゲルの厚さは特に限定されないが、例えば、数百ミリメートルから数ミリメートル程度であることが望ましい。形成されるゲルの厚さがこの範囲であれば、電気泳動実験に最適に用いることができる。
 また、本発明では、第2の吐出工程の後、液溜まりに重合開始剤を吐出する第3の吐出工程を含むことが好ましい。つまり、ゲルを形成するための試薬を多段階で吐出することが好ましい。
 重合開始剤とは、ゲル溶液のゲル化を開始させる溶液であり、例えば、過硫酸アンモニウム(APS;ammonium peroxosulfate)が挙げられる。例えば、重合開始剤をゲル溶液よりも前又は同時に吐出した場合、ゲル溶液を吐出している最中にゲルの重合が開始されることが起こり得、ゲル作製治具又はゲル作製装置(反応器具製造装置)内にて不要にゲル化されてしまうことがある。
 また、一般的にインクジェットヘッドにて吐出されるゲル溶液の1スキャンの吐出量は1μLであり、膜厚を大きくするためにはスキャン数が増加する。そのため、先に吐出したゲル溶液がすべてのゲル溶液を吐出し終える前にゲル化してしまうことがあり、品質のよいゲルを形成することが難しい。
 そこで、重合開始剤の吐出を、ゲル溶液を吐出する工程の後に行なうことにより、ゲル化時間を制御することが可能である。すなわち、上記方法では、従来技術のように予めゲル粒子を含有するゲル溶液を基材上に吐出し、乾燥等させることによってのみゲルが形成される方法とは異なり、基材上でゲル化のタイミングを制御している。よって、不必要にゲル化反応が進行して配管が詰る等装置の不具合が生じることを防ぐことができ、例えば100μm以上の膜厚の大きいゲルを作製することができる。
 さらに、例えば、第1の吐出工程の前に、基材の表面の性質を化学的に改質する処理を行なってもよい。具体的には、液溜まりを形成する領域が親水性を有し、それ以外の領域が疎水性を有するように処理を施してもよい。
 つまり、親水性を有する領域は液体との濡れ性がよく、疎水性を有する領域は液体との濡れ性が悪い。そのため、例えば液体を基材上に吐出したとき、濡れ性がよい領域には液体が広がりながら液溜まりを形成し、濡れ性が悪い領域ではそれ以上液溜まりが広がり難い。よって、基材上に親水性を有する領域と疎水性を有する領域とを形成しておくことにより、液溜まりが形成される範囲を制御することができる。
 基材表面の改質処理としては、基材のゲルを固定する面(ゲル形成面ともいう)が親水性材料からなるか、疎水性材料からなるかによって異なる処理を行なうことが可能である。
 例えば、基材のゲル形成面が疎水性材料からなる場合、硫酸を用いたニトロ化、硝酸を用いたスルホン化、酸素プラズマ処理を用いた酸素含有官能基の導入等の親水性処理によって基材上に親水性領域を形成すること(親水性処理工程)ができるが、特に、酸素プラズマ処理を施すこと(酸素プラズマ処理工程)が好ましい。
 酸素プラズマ処理とは、物質の表面を改質する処理であり、例えばプラズマによって酸素含有置換基を該表面に導入することによって親水性を高める技術である。つまり、酸素プラズマ処理が施された基材の表面は濡れ性が改善する。
 このように、液溜まりを形成する領域が酸素プラズマ処理によって濡れ性が改善されているため、第1の吐出工程において吐出された液体が所望の領域に液溜まりを形成するように、位置を制御することができる。
 また、例えば、基材のゲル形成面が親水性材料からなる場合、基材の材質に応じて適切な疎水化処理を行なえばよい(疎水化処理工程)。
 例えば、基材がガラス製である場合、親水性領域になる部位をカプトンテープ等でマスキングし、光分解性シランカップリング剤を用いて処理することにより当該部位以外の領域を疎水化する。その後、親水性領域になる部位を紫外光照射することによって当該部位は親水性になる。これにより、基材上に親水性領域と疎水性領域とが形成される。
 また、例えば基材がシリコーン製である場合、親水性領域となる部位を自然酸化膜によってマスキングし、希フッ酸によってウェットエッチングすることにより当該部位以外の領域を疎水化すればよいし、先に希フッ酸によって洗浄した後、当該部位以外の領域をマスキングしてから酸化処理してもよい。その後、紫外光照射等によって任意の領域を親水性にすることによって、基材上に親水性領域と疎水性領域とが形成される。
 このように、化学的な表面改質処理によって基材上に親水性領域と疎水性領域とを形成することにより、親疎水性に係る濡れ性を利用して、ゲルを位置再現性よくパターニングすることができる。また、化学的な表面処理の代わりに、基材上に、物理的に複数の凹凸を形成することにより、表面積を拡大して濡れ性を向上させてもよい。形成する凹凸は、後述するように微細であることが好ましい。
 また、基材上に凹状又は凸状に形成された領域が存在していれば、表面張力により、上記液溜りの範囲が規定されるため、ゲルが形成される領域を制御することもできる。
 なお、本明細書では、例えば、表面改質処理が施された領域、凹状又は凸状が形成された領域又は凹凸構造が形成された領域等、基材上の任意の領域にゲルが形成(付着)されるように処理が施された領域を「ゲル付着領域」と称し、ゲル付着領域を有している基材を「ゲル固定用基材」と称する。
 (ゲルプレート10の製造方法)
 続いて、本発明に係る電気泳動用反応器具の製造方法の詳細について図面を参照して説明する。まず、図1を参照して本発明の一実施形態における、電気泳動用反応器具の製造の流れについて説明する。図1は、本発明の一実施形態における、電気泳動用反応器具を製造する際の流れを示す断面図である。
 なお、本実施形態では、一例として、典型的な電気泳動用ゲルの一つである4%ポリアクリルアミドゲルが形成されたゲルプレート10(電気泳動用反応器具)の製造方法について説明する。
 4%ポリアクリルアミドゲルを形成するための試薬としては、例えば、30%アクリルアミド混合溶液(アクリルアミド+N,N’-メチレンビスアクリルアミド)、1Mトリス塩酸緩衝液(Tris-HCl)、過硫酸アンモニウム(APS;ammonium peroxosulfate)、テトラメチルエチレンジアミン(TEMED;N,N,N’,N’-tetramethylethylenediamine)、及び純水が挙げられる。
 アクリルアミド混合溶液は、ゲルの主骨格を形成するアクリルアミドと、ゲルの主骨格を架橋するN,N’-メチレンビスアクリルアミドとを混合したゲル溶液であり、トリス塩酸緩衝液はバッファーであり、APSは重合開始剤であり、TEMEDは重合促進剤である。
 本実施形態では、これらゲルを形成するための試薬を3段階で吐出するが、回数はこれに限定されるものではなく、液体を吐出する第1の吐出工程と、ゲル溶液を吐出する第2の吐出工程とを含めばよい。
 まず、基板1(基材)の上面を、例えば酸素プラズマ処理等によって表面改質処理し、ゲル付着領域2を形成し、ゲル固定用基材にする(図1の(a))。
 ゲル付着領域2は、上述したように基材上の任意の領域にゲルが形成(付着)されるように処理が施された領域であり、表面改質処理が施された領域の他にも、例えば凹状のくり抜き構造又は凸状の出っ張り構造が形成された領域、又は微細な凹凸構造が形成された領域であってもよい。また、これらを組み合わせることが可能である。
 基板1としては、例えば、70ミリメートル×13ミリメートルのポリエチレンテレフタレート(PET)を用いることが可能であり、この基板1に対して表面改質処理を行なってゲル付着領域2を形成する。
 本実施形態では、第1の吐出工程の前に、ゲル付着領域2以外の部位をマスキングし、酸素プラズマ処理を行なうことにより親水性領域を有するゲル付着領域2を形成する。この酸素プラズマ処理等の表面改質処理はパターニングが容易で且つ生産性が高いため、より好ましい。このとき、ゲル付着領域2の面積は、例えば50ミリメートル×2.4ミリメートルにすることができる。
 次に、基板1のゲル付着領域2に対して、第1の溶液(液体)を吐出する。このとき、ゲル付着領域2は酸素プラズマ処理によって親水性にされているため、第1の溶液が位置再現性よくゲル付着領域2に留まって液溜まり5を形成する(図1の(b))。
 第1の溶液としては、例えば、1Mトリス塩酸緩衝液、TEMED、純水、及びこれらの混合液が挙げられる。これらの量は、ポリアクリルアミドゲルの濃度に応じて適宜設定すればよく、混合液における混合比率も特に限定されない。また、第1の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等を用いることができる。
 第1の吐出工程において吐出される液体は、上述したように、水性溶媒であることが好ましく、第2の溶液のゲル化を促進させる試薬を含む溶液であることがさらに好ましい。
 つまり、ゲル溶液を基板1に吐出するとき、反応系が気相中である場合には吐出したゲル溶液の微小液滴が基板1上で十分に混合され難い。一方、ゲル付着領域2に予め液体を吐出して液溜まり5を形成しておくことにより、微小液滴間での結合を起こり易くすることができ、よって、ゲル溶液を十分に混合させることができる。このとき、ゲル付着領域2が親水性を有するように表面改質処理がなされていれば、より好適にゲル溶液を混合させることができる。
 また、液体がゲル形成に関連する試薬を含む溶液であれば、ゲルを形成するための試薬を多段階で吐出することになる。このようなゲルの作製方法では、ゲル化時間を制御することが可能であり、例えば、不必要にゲル化反応が進行して配管が詰る等装置の不具合が生じることを防ぐことができる。
 第1の溶液の吐出後、液溜まり5が形成されたゲル付着領域2に対して第2の溶液を吐出する。第2の溶液としては、例えば、30%アクリルアミド混合溶液等のゲル溶液が挙げられる。
 第2の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等が挙げられるが、特に、微小なノズルから微小液滴を飛ばして基板1に付着させるインクジェットヘッドを用いることが好ましい。図1の(c)に示すように、インクジェットヘッド11を用いて、第2の溶液を微小液滴6として吐出することができれば、ゲルの濃度及び形成領域を容易に制御することができる。
 また、例えば、IPGゲル又はグラジエントゲルを作製する場合、インクジェットヘッド11を用いて、例えば30%のアクリルアミド混合溶液を勾配を付けて吐出することにより、高精細なグレースケール(グラジエント)を作製することができる。よって、高性能なIPGゲル又はSDS-PAGEグラジエントゲルを提供することができる。
 本実施形態のように、インクジェットヘッド11から第2の溶液の微小液滴6を吐出するときに液溜まり5が形成されていることにより、液溜まり5に吐出された微小液滴6同士の混合を大きく促進させることができる。よって、液溜まり5がない場合に生じる電気泳動特性の劣化を防ぐことができる。また、必要に応じてより精度の高いグラジエントを形成することができる。
 続いて、第1の溶液と第2の溶液との混合溶液7に対して、第3の溶液を吐出する(図1の(d))。第3の溶液としては、例えばAPS溶液が挙げられ、ピペッター、ディスペンサー又はインクジェットヘッド等を用いて吐出すればよい。
 これにより、例えば、50ミリメートル×2.4ミリメートルの面積を有するゲル付着領域2に対して、総量80マイクロリットルの第1~第3の溶液を吐出する場合、0.5~1.0ミリメートルのポリアクリルアミドゲル3が形成されたゲルプレート10が得られる。
 なお、ゲルプレート10の作製は、例えば、アルゴン等の不活性ガス又は窒素雰囲気で行なうことが好ましい。すなわち、反応器(例えば、ゲル作製装置が備えているもの)内においてゲルプレート10の作製を行なう場合、ゲルプレート10の作製中は該反応器の内部を例えばアルゴン等の不活性ガス又は窒素雰囲気にして、ゲル化反応の阻害因子になる酸素を反応器内から排出することが望ましい。
 従来の典型的なゲル化反応では、ガラス基板等によって形成されるゲル作製治具にゲルがキャスティングされているため大気に触れ難いが、本実施形態のゲルプレート10はゲル溶液を基板1に直接描画するため、ゲル溶液の大部分の表面が大気中に暴露され、酸素の影響を受け易い。よって、反応器内を不活性ガス又は窒素雰囲気にすることが望ましい。
 しかし、ゲルプレート10を簡便に作製する場合、反応器等は用いずに大気中でゲル化反応を行なう場合がある。この場合、APSの吐出量を、例えば基板1のゲル付着領域2に吐出される第1~第3の溶液の全量に対して、5%~20%程度にすることが好ましい。
 APSが5%以上であれば、ゲル溶液を十分にゲル化し得る。また、APSが20%以下であれば、APS同士が影響し合ってゲル化速度が速くなることに起因する、ゲル化開始に必要なラジカルが減少して制御不十分になることを抑制することができる。
 この第3の溶液であるAPSは、上述したように最終段階に吐出することが好ましい。これにより、作製治具又はゲル作製装置内におけるゲル溶液のゲル化を抑制し、例えば配管詰り等、ゲル作製治具又はゲル作製装置内で不要にゲル化されてしまうような問題を防止することができる。
 このように、本実施形態のゲルプレート10の製造方法によれば、基板1上の任意の位置に形成されたゲル付着領域2に対して各溶液を吐出することにより、任意の大きさ、組成及び濃度を有し、位置再現性高くゲル3を直接的に形成することができる。
 よって、従来ではガラス基板等のキャスティング治具を用いてゲルプレートを形成していたためにゲルを形成する場所が制限されていたが、本実施形態の製造方法によれば、例えば基板1の端面等、任意の場所にゲルを形成することができる。
 続いて、本実施形態に係る製造方法によって作製されるゲルプレート(等電点電気泳動チップ、SDS-PAGEチップを含む)の構成について説明する。なお、以下では、ゲルプレートがゲル付着領域を有している場合について説明するが、本発明はゲル付着領域を有しているゲルプレートを作製する場合に限定されず、基板上にゲルが固定されてなるゲルプレート一般を作製するために適用することができる。
 (ゲルプレート10の構成)
 本実施形態に係る製造方法によって作製されたゲルプレートの一例について図2~6を参照して説明する。図2の(a)は、本実施形態に係る製造方法によって作製されたゲルプレートの一例であるゲルプレート10の構成を示す斜視図であり、図2の(b)は、ゲルプレート10の構成を示す断面図である。
 図2に示すゲルプレート10は、電気泳動用のゲルを固定するための基板1に電気泳動用のゲル3が固定されてなるものである。この基板1は、ゲル3を固定する面の少なくとも一部に、当該ゲル3を付着させるための処理が施されたゲル付着領域2を有している。
 図2では、ゲル付着領域2が基板1の上面の外周近傍に枠状に設けられており、例えば、表面改質層レベルである数ナノメートルから溝構造レベルである数百マイクロメートルの厚さを有している。基板1にこのようなゲル付着領域2を設けることにより、所望の領域に液溜まりを形成することが可能であり、ゲルが形成される領域を容易に制御することができる。
 しかしながら、ゲル付着領域2の構成はこれに限定されるものではなく、例えば、基板1上面の任意の領域に凹状又は凸状の構造が形成されていてもよいし、微細な凹凸構造が形成されていてもよい。また、これらの構成を組み合わせることができる。
 例えば、図3に示す基板1には、上面中央に所望のパターンの凹構造(くり抜き構造)が設けられている。このくり抜き構造は、例えば、数マイクロメートルから数百マイクロメートルの深さを有していてもよいが、基板1の厚さに応じて適宜設定すればよい。
 くり抜き構造の作製方法としては、基板1の材質に応じて選択すればよい。例えば、ガラス基板であればフォトリソグラフィ、つまり、ゲル付着領域2になる所望の領域以外をフォトレジストマスクによってマスクし、該所望の領域をエッチングしてくり抜き構造を作製することができる。また、例えば、樹脂基板であれば、切削加工又は射出成型によってくり抜き構造を作製することができる。
 また、例えば図4に示す基板1には、図3に示す基板1とは反対に上面中央に所望のパターンの凸構造(出っ張り構造)が設けられている。この出っ張り構造は、例えば、数マイクロメートルから数百マイクロメートルの深さを有していてもよいが、基板1の厚さに応じて適宜設定すればよい。
 出っ張り構造の作製方法としては、上述のくり抜き構造と同様の方法により作製することができる。例えば、基板1がガラス基板である場合、ゲル付着領域2になる所望の領域をフォトレジストマスクによってマスクし、該所望の領域以外をエッチングして出っ張り構造を作製することができる。
 さらに、ゲル付着領域2には、その内部に複数の凹凸構造が形成されていてもよい。該凹凸構造は微細であることが好ましい。例えば、図5に示す基板1においては、ゲル付着領域2の内部に微細な凹凸構造4が形成されている。
 例えば、ゲル溶液を微小な液滴で基板1に吐出したとき、ゲル溶液と基板1との濡れ性が悪いと、吐出された液滴同士が十分に混合されず、電気泳動特性の悪いゲルになる。これに対し、図5に示す微細な凹凸構造4によってゲルが形成される領域を制御することが可能である。
 つまり、凹凸構造4が形成された微小領域には第1の吐出工程において吐出された液体が留まり易い。その結果、該領域の濡れ性が改善し、第2の吐出工程において吐出するゲル溶液の液滴同士の結合が起こり易い。よって、効率よく所望の形状のゲル3を形成することができる。
 この凹凸構造4は、例えば、数ナノメートルから数十ナノメートルの深さ又は厚さを有していてもよく、一般的に知られているナノインプリント技術を用いることにより好適に作製することができる。
 また、図5に示す例では、基板1の平面上に直接凹凸構造4が形成されているが、これに限定されるものではなく、例えば、図2~4に示す構成のゲル付着領域2の内部に凹凸構造4が形成されていてもよい。
 また、上述したように、基板1の表面を基材の表面の性質を化学的に改質する処理を行なってもよく、例えば、液溜まりを形成する領域が親水性を有し、それ以外の領域が疎水性を有するように処理を施すことが好ましい。
 例えば、図6に示す基板1のゲル付着領域2の内部に親水性を有する親水性領域を含み、それ以外の基板1の表面が疎水性を有することが望ましい。これにより、ゲル付着領域2の濡れ性が向上するため、ゲル3を位置再現性よく形成することができる。
 ゲル付着領域2を親水性領域にする方法としては、基板1の少なくともゲル付着領域2が形成されている面が親水性材料からなるか、疎水性材料からなるかによって異なる処理を行なうことが可能である。なお、それぞれの材料に応じた親水性処理は、例えば上述の「電気泳動用反応器具の製造方法」の項目にて説明した方法により行なえばよい。
 また、親水性領域は、酸素含有官能基を多く含む組成であることが好ましい。この場合、例えば、酸素含有官能基を有する有機樹脂を基板1として用いるか、市販品の有機樹脂を親水化処理して基板1として用いればよい。親水性領域が酸素含有官能基を多く含む組成であれば、さらに濡れ性がよい。
 このように、化学的な表面改質処理によって基板1上に親水性領域と疎水性領域とを形成することにより、親疎水性に係る濡れ性を利用して、ゲルを位置再現性よくパターニングすることができる。
 なお、基板1の表面改質処理は、図2~5に示す構成の基板1に対して行なってもよい。
 (等電点電気泳動チップ20の作製)
 次に、本発明に係る製造方法の他の例として、図7に示すような等電点電気泳動チップ20を製造する場合について説明する。図7は、等電点電気泳動チップ20を製造する際の流れを示す断面図である。なお、図7に示すIEFチップ20に形成されたIPGゲルは、例えば特開2007-64848号公報(2007年3月15日公開)に開示されている第1媒体(1Dゲル)、すなわち固定化pH勾配ゲルに好適に適用可能である。
 以下では、二次元電気泳動の一次元目、すなわち等電点電気泳動に用いられる固定化pH勾配ゲル(IPGゲル)が形成された等電点電気泳動チップ20(IEFチップ)の製造方法について説明する。
 一般的に知られる等電点電気泳動に用いられるIEFチップは、ゲルボンドフィルム上にIPGゲルをキャスティングし、所望の形状に切断することにより得られる。
 例えば、このようなIPGゲルにおいて本実施形態の製造方法を適用する場合、ゲルボンドフィルムの素材であるPETに対してゲル付着領域2を形成する部位以外をマスキングし、グロー放電又はアーク放電等によって酸素プラズマ処理を行なうことにより、ゲル付着領域2を形成することができる。
 このように、IPGゲルが固定されたIEFチップの作製に本実施形態の製造方法を用いれば、従来、作製が困難であった形状に対しても十分にゲルを形成することができる。
 IPGゲルを形成するための試薬としては、例えば、イモビライン混合溶液、等電点電気泳動試薬、TEMED、APS、及び純水が挙げられる。
 イモビライン混合溶液は、例えばpHが異なる2種類のイモビラインを混合した溶液であり、正電荷又は負電荷を有するアクリルアミド誘導体によって、様々な解離定数(pK)を有するイモビラインを混合することにより、所望のpHを有するイモビライン混合溶液が得られる。また、等電点電気泳動試薬(アンフォライン)は両性電解質混合物である。
 まず、図7の(a)に示すように、支持基体12の上端面にゲル付着領域2を形成する。支持基体12としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等のプラスチック基板又はガラス基板を用いることができる。
 また、本実施形態においても、支持基体12のゲル付着領域2を親水性にし、ゲル付着領域2以外の領域を疎水性にすることが好ましい。例えば、支持基体12がPMMAである場合、ゲル付着領域2以外の領域をマスキングし、酸素プラズマ処理又はスルホン化処理を行なうことにより親水性領域を有するゲル付着領域2を形成することができる。
 次に、支持基体12のゲル付着領域2に対して、第1の溶液を吐出する。第1の溶液としては、例えば、等電点電気泳動試薬、TEMED、及び純水が挙げられる。これらの混合比率は特に限定されない。これにより、ゲル付着領域2に液溜まり13が形成される。
 第1の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等が挙げられる。
 第1の溶液の吐出後、液溜まり13が形成されたゲル付着領域2に対して第2の溶液を吐出し、グラジエントを形成する。第2の溶液としては、例えば、イモビライン混合溶液が挙げられる。
 第2の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等が挙げられるが、特に、インクジェットヘッドを用いることが好ましい。例えば、図7の(b)に示すように、液溜まり13が形成されたゲル付着領域2に、2種類のイモビライン混合溶液の濃度勾配ができるように、インクジェットヘッド11を支持基体12の長手方向(図7の(b)中、「A」で示す矢印の方向)にスキャンさせる。
 例えば、一方のイモビライン混合溶液をpH3に調整し、他方のイモビライン混合溶液をpH10に調整したイモビライン混合溶液をインクジェットヘッド11から微小液滴で吐出する。なお、イモビライン混合溶液の調整方法については一般的な方法を用いればよいため説明を省略する。
 なお、液溜まり13に対してインクジェットヘッド11からイモビライン混合溶液を吐出して形成したイモビライン含有ゲル溶液14(図7の(c))は、次工程まではゲル化反応が起こらず、溶液状態のままであり得る。
 続いて、イモビライン含有ゲル溶液14に対して、第3の溶液を吐出する。第3の溶液としては、例えばAPSが挙げられ、ピペッター、ディスペンサー又はインクジェットヘッド等を用いて吐出すればよいが、インクジェットヘッドを用いることが好ましい。
 例えば、ピペッター等を用いてAPSを吐出した場合、APSを吐出していない領域のゲル化がAPSを滴下した領域に対して抑制されるため、IPGゲルの均一性が劣化する。よって、インクジェットヘッドを用いたAPSの吐出は、ゲル付着領域2の平面に加え、イモビライン含有ゲル溶液14の深さ方向に対しても均一にすることができる。
 これにより、例えば、pH3~10であり、IPGゲルのサイズが50ミリメートル(等電点グラジエント方向)×2.4ミリメートル×0.5ミリメートルである支持基体12と、支持基体12に対して位置精度よく固定化して形成されたIPGゲルとからなるIEFチップ20を得ることができる。
 なお、窒素又はアルゴン等の不活性ガス雰囲気以外でIPGゲルを作製する場合、例えば、APSの体積比(APSの吐出体積/全吐出体積)は、5~20%であることが好ましい。しかし、窒素又はアルゴン等の不活性ガス雰囲気、すなわち脱酸素雰囲気においてIPGゲルを作製する場合は、APSの体積比は1%以下であってもよい。
 (SDS-PAGEチップ30の作製)
 次に、本発明に係る製造方法の他の例として、図8に示すようなSDS-PAGEチップ30を製造する場合について説明する。図8は、SDS-PAGEチップ30を製造する際の流れを示す断面図である。
 以下では、二次元電気泳動の二次元目、すなわちSDS-PAGE電気泳動に用いられるグラジエントゲルが形成されたSDS-PAGEチップ30の製造方法について説明する。
 一般的に知られるSDS-PAGEに用いられるSDS-PAGEチップ30は、PMMA等のプラスチック樹脂からなる器具等にポリアクリルアミドゲルをキャスティングしている。
 しかし、本実施形態のSDS-PAGEチップ30の製造方法を用いれば、IEFチップ20と同様にキャスティング構造を設ける必要がなく、プラスチック平板又はガラス平板等の構造であってもよい。なお、SDS-PAGEチップ30に形成されたグラジエントゲルは、例えば、特開2007-64848号公報(2007年3月15日公開)に開示されている第2媒体(2Dゲル)及び第2分離部(サンプル器具)、グラジエントゲルに好適である。
 グラジエントゲルを形成するための試薬としては、例えば、上述したポリアクリルアミドゲルと同様の溶液を含み得る。
 まず、図8の(a)に示すように、グラジエントゲルを設ける支持基体15の所望の領域に、ゲル付着領域2を形成する。支持基体15としては、例えば、PMMA等のプラスチック基板又はガラス基板を用いることができる。
 また、本実施形態においても、支持基体15のゲル付着領域2を親水性にし、ゲル付着領域2以外の領域を疎水性にすることが好ましい。例えば、支持基体15のゲル付着領域2以外の領域をマスキングし、酸素プラズマ処理、スルホン化処理又はニトロ化処理等を行なうことにより親水性領域を有するゲル付着領域2を形成することができる。
 次に、支持基体15のゲル付着領域2に対して、第1の溶液を吐出する。第1の溶液としては、例えば、1Mトリス塩酸緩衝液、TEMED、及び純水が挙げられる。これらの混合比率は特に限定されない。これにより、図8の(b)に示すように、ゲル付着領域2に液溜まり16が形成される。
 第1の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等が挙げられる。
 第1の溶液の吐出後、液溜まり16が形成されたゲル付着領域2に対して第2の溶液を吐出し、グラジエントを形成する。第2の溶液としては、例えば、アクリルアミド混合溶液(アクリルアミド+N,N’-メチレンビスアクリルアミド)が挙げられる。アクリルアミド混合溶液の濃度は、例えば、30~50%(アクリルアミド:N,N’-メチレンビスアクリルアミド=37.5:1)の比較的高濃度にすることができる。
 第2の溶液の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッド等を含むが、特に、インクジェットヘッド11を用いることが好ましい。例えば、インクジェットヘッド11を用いて図8の(b)中、「B」で示す矢印の方向に沿ってスキャンさせることにより、好適にグラジエントを形成することができる。
 なお、液溜まり16に対してインクジェットヘッド11から第2の溶液を吐出して形成したアクリルアミド混合物含有ゲル溶液17(図8の(c))は、次工程まではゲル化反応が起こらず、溶液状態のままであり得る。
 続いて、アクリルアミド混合物含有ゲル溶液17に対して、第3の溶液を吐出する。第3の溶液としては、例えばAPSを含み、ピペッター、ディスペンサー又はインクジェットヘッド等を用いて吐出すればよいが、インクジェットヘッドを用いることが好ましい。
 IEFチップ20と同様に、APSの吐出は、ゲル付着領域2の平面に加え、アクリルアミド混合物含有ゲル溶液17の深さ方向に対しても均一にすることが望ましいため、インクジェットヘッドを用いることが好ましい。このように、グラジエントを有するアクリルアミド混合物含有ゲル溶液17に対して所望の量のAPSを吐出することにより、支持基体15の所望の領域に作製されたゲル付着領域2の上にグラジエントゲルを形成することができる。
 例えば、低濃度側が4%及び高濃度側15%であり、グラジエントゲルのサイズが50ミリメートル(濃度グラジエント方向)×2.4ミリメートル×0.5ミリメートルである支持基体15と、支持基体15に対して位置精度よく固定化して形成されたグラジエントゲルとからなるSDS-PAGEチップ30が得られる。
 なお、窒素又はアルゴン等の不活性ガス雰囲気以外でグラジエントゲルを作製する場合、例えば、APSの体積比(APSの吐出体積/全吐出体積)は、5%以上であることが好ましい。しかし、窒素又はアルゴン等の不活性ガス雰囲気、すなわち脱酸素雰囲気においてIPGゲルを作製する場合は、これに限定されるものではない。
 (反応器具製造装置)
 一実施形態において、本発明に係る電気泳動用反応器具の製造方法は、本発明に係る電気泳動用反応器具の製造装置によって実施されてもよい。上記製造装置は、基材のゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出手段と、形成された液溜まりにゲル溶液を吐出する第2の吐出手段とを備えていればよい。
 本発明の製造装置によれば、第1の吐出手段が基材に液体を吐出して液溜まりを形成し、続いて第2の吐出手段によってゲル溶液を吐出することができるため、本発明に係る電気泳動用反応器具の製造方法を好適に実施することができる。
 なお、第1の吐出手段及び第2の吐出手段としては、例えば、ピペッター、ディスペンサー又はインクジェットヘッドによって構成することができる。例えば、第2の吐出手段は、インクジェットヘッドを用いて上記ゲル溶液を吐出するようになっていることが好ましい。また、上記製造装置は、第2の吐出手段によりゲル溶液が吐出された上記液溜まりに重合開始剤を吐出する第3の吐出手段をさらに備えていてもよい。
 図9は、本発明の一実施形態に係る反応器具製造装置(電気泳動用反応器具の製造装置)40の概略構成を示すブロック図である。図9に示すように、反応器具製造装置40は、インクジェットヘッド11、第1の容器41、第2の容器42、第3の容器43、ヘッド移動部44、及びシーケンス制御部45を備えている。反応器具製造装置40は、本発明に係る電気泳動用反応器具の製造方法を実施して、電気泳動用反応器具を首尾よく製造することができる。
 第1の容器41には、上述したような第1の溶液が貯められており、第2の容器42には、上述したような第2の溶液が貯められており、第3の容器43には、上述したような第3の溶液が貯められている。第1の容器41、第2の容器42及び第3の容器43は、インクジェットヘッド11に接続されており、それぞれの容器に貯められた溶液をインクジェットヘッド11から吐出することができる。すなわち、第1の容器41とインクジェットヘッド11とで第1の吐出手段が構成され、第2の容器42とインクジェット11とで第2の吐出手段が構成されている。また、第3の容器43とインクジェット11とで第3の吐出手段を構成してもよい。
 ヘッド移動部44は、アクチュエータ等によって構成され、インクジェットヘッド11を移動させる。これにより、基板上の目的の位置にゲルを容易に形成することができる。シーケンス制御部45は、ヘッド移動部44及びインクジェットヘッド11の挙動を、上述した電気泳動用反応器具の製造方法の各工程を実施するようにシーケンス制御するものである。
 (被分離物質)
 本発明の製造方法によって製造された電気泳動用反応器具を用いて電気泳動される被分離物質としては、電気泳動及び転写によって分離又は分析する対象の物質であればよく、例えば、生物個体、体液、細胞株、組織培養物又は組織断片等の生物材料から採取した調製物を好適に用いることができる。特に、ポリペプチド又はポリヌクレオチドがより好適である。
 (電気泳動用キット)
 さらに、本発明は、本発明に係るゲル固定用基材を含む、電気泳動用キットを包含する。
 上記キットは、本発明に係るゲル固定用基材の他に、例えば、ゲル形成に関する試薬、電気泳動のための緩衝液、電気泳動のための器具等を備えていてもよい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記第2の吐出工程では、インクジェットヘッドを用いて上記ゲル溶液を吐出することが好ましい。
 上記の構成によれば、ゲル溶液をインクジェットヘッドによって吐出する。このインクジェットヘッドは溶液を微小な液滴として吐出することができるため、基材と該ゲル溶液との濡れ性が改善するように形成された液溜まりにゲル溶液を微小な液滴で吐出すれば、所望の形状のゲルを容易に作製することができる。
 また、例えば、IPGゲル又はグラジエントゲル等の所望の濃度分布を有するゲルを作製する場合、インクジェットヘッドを用いてゲル溶液を吐出することにより、高精細なグレースケール(グラジエント)を作製し得、高性能なIPGゲル又はSDS-PAGEグラジエントゲルを提供することができる。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記第2の吐出工程の後、上記液溜まりに重合開始剤を吐出する第3の吐出工程を含むことが好ましい。
 上記の構成によれば、ゲルの重合を開始させるための重合開始剤を、ゲル溶液を吐出した後に吐出している。
 例えば、重合開始剤をゲル溶液よりも前又は同時に吐出した場合、ゲル溶液を吐出している最中にゲルの重合が開始されることが起こり得、ゲル作製治具又はゲル作製装置内にて不要にゲル化されてしまうことがある。
 また、例えばゲル溶液をインクジェットヘッドで吐出する場合、吐出されるゲル溶液の1スキャン当たりの吐出量は一般的に1μLであり、膜厚を大きくするためにはスキャン数が増加する。そのため、先に吐出したゲル溶液がすべてのゲル溶液を吐出し終える前にゲル化してしまうことがあり、品質のよいゲルを形成することが難しい。
 よって、重合開始剤の吐出を、ゲル溶液を吐出する工程の後に行なうことにより、ゲル化のタイミングを制御して処理系内において不要にゲルが形成してしまうことを防ぐことができる。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記基材のゲルを固定する面の少なくとも一部が疎水性材料からなる場合、上記第1の吐出工程の前に、上記液溜まりが形成される領域に親水性処理を施す親水性処理工程を含むことが好ましい。さらに、上記親水性処理工程では、酸素プラズマ処理を施すことがより好ましい。
 上記の構成によれば、液体を吐出する前にゲル付着領域の濡れ性を向上させることができるため、吐出した液体が所望の領域に液溜まりを形成することができる。また、例えば、プラズマ遮蔽マスクを用いて酸素プラズマ処理することにより、所望の場所に酸素含有官能基を多く含む組成の領域を形成することが可能であり、ゲルの位置再現性の向上に大きく寄与する。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記基材のゲルを固定する面の少なくとも一部が親水性材料からなる場合、上記第1の吐出工程の前に、上記液溜まりが形成される領域以外に疎水化処理を施す疎水化処理工程を含むことが好ましい。さらに、上記疎水化処理工程では、シランカップリング処理を施すことがより好ましい。
 上記の構成によれば、液体を吐出する前にゲル付着領域の濡れ性を向上させることができるため、吐出した液体が所望の領域に液溜まりを形成することができる。
 また、本発明に係るゲル固定用基材では、上記ゲル付着領域が、凹状又は凸状に形成されていることが好ましい。
 上記の構成によれば、ゲル付着領域はゲル固定用基材の表面に対して凹状又は凸状に形成された構造を有している。これらの構造を形成しておくことにより、ゲルの形成位置を制御することが可能であり、固定用基材に対するゲルのアライメントを向上することができる。
 また、本発明に係るゲル固定用基材では、上記ゲル付着領域内に、複数の凹凸構造が形成されていることが好ましい。
 このように、ゲル固定用基材上のゲル付着領域内に複数の凹凸構造を形成することにより、濡れ性を制御することができる。特に、微小領域に凹凸構造を形成することにより、該領域に効率よくゲルを形成することが可能である。
 また、本発明に係るゲル固定用基材では、上記ゲル付着領域の少なくとも一部が親水性を有し、上記面であって且つ当該ゲル付着領域以外の領域の少なくとも一部が疎水性を有することが好ましい。
 例えば、プラスチック基板等の疎水性材料表面のゲル付着領域となる領域を酸素プラズマ処理等の親水性処理によって親水性にしたり、ガラス基板等の親水性材料表面のゲル付着領域以外の領域をシランカップリング処理等の疎水化処理によって疎水性にしたりする。
 このように、ゲル固定用基材の表面をパターニングして親水性領域と疎水性領域とを有する構成にすることによって、ゲル付着領域におけるゲル固定用基材の接触面とゲルとの濡れ性がよく、所望の形状のゲルを形成することができる。
 また、本発明に係るゲル固定用基材では、上記ゲル付着領域の親水性を有する領域が、酸素含有官能基を含む組成であることが好ましい。
 上記の構成によれば、よりゲル固定用基材の接触面とゲルとの濡れ性のよいゲル固定用基材を提供することができる。
 また、本発明に係る電気泳動用反応器具では、上記ゲルが、ゲル濃度又はpHの勾配を有するように形成されていることが好ましい。
 例えば、固定化pH勾配ゲル等のpH勾配を有するゲル、又はグラジエントゲル等のゲル濃度勾配を有するゲルを作製する場合、その組成及び濃度等を十分に管理しなくてはならない。本発明によれば、ゲル付着領域が表面改質処理等なされているため、ゲルを作製する際に基板のゲル付着領域の表面とゲル溶液との濡れ性がよく、ゲルを固定する位置を容易に制御できる。
 そのため、任意の場所に、任意の大きさで、任意の組成及び濃度を有するゲルを形成することが可能であり、IPGゲル又はグラジエントゲル等のpH又はゲル濃度の勾配を有するゲルを好適に形成することができる。
 本発明に係る電気泳動用反応器具の製造方法は、本発明に係る電気泳動用反応器具の製造方法であって、上記ゲル付着領域に液体を吐出する第1の吐出工程と、上記第1の吐出工程の後、上記ゲル付着領域にゲル溶液を吐出する第2の吐出工程とを含んでいることを特徴としている。
 例えば、ゲル固定用基材にゲル溶液を吐出したとき、該基材とゲル溶液との濡れ性が悪く、吐出されたゲル溶液の液滴同士が十分に混合されないことがある。そのため、ゲル付着領域に予め液体を吐出して液溜まりを形成しておくことにより、微小液滴間での結合が起こり易い。よって、ゲル溶液を十分に混合させることができる。
 また、例えば、液体がゲル形成に関連する試薬を含むゲル溶液であれば、ゲル溶液の吐出を多段階で行なうことになる。この場合、ゲル化時間を制御することが可能であり、例えば、不必要にゲル化反応が進行して配管が詰る等装置の不具合が生じることを防ぐことができる。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記第2の吐出工程では、インクジェットヘッドを用いて上記ゲル溶液を吐出することが好ましい。
 上記の構成によれば、ゲル溶液を微小な液滴で吐出することが可能なインクジェットヘッドを用いることにより、ゲル濃度及び形成領域を制御し易い。
 また、例えば、IPGゲル又はグラジエントゲルを作製する場合、インクジェットヘッドを用いてゲル溶液を吐出することにより、高精細なグレースケール(グラジエント)を作製することが可能である。よって、高性能なIPGゲル又はSDS-PAGEグラジエントゲルを提供することができる。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記第1の吐出工程の前に、酸素プラズマ処理によって上記ゲル付着領域を形成するゲル付着領域形成工程を含んでいることが好ましい。
 上記の構成によれば、液体を吐出する前にゲル付着領域の濡れ性を向上させることができるため、吐出した液体が所望の領域に液溜まりを形成することができる。
 また、例えば、プラズマ遮蔽マスクを用いて酸素プラズマ処理することにより、所望の場所に酸素含有官能基を多く含む組成の領域を形成することが可能であり、ゲルの位置再現性の向上に大きく寄与する。
 また、本発明に係る電気泳動用反応器具の製造方法では、上記第2の吐出工程の後、上記ゲル付着領域に重合開始剤を吐出する第3の吐出工程を含んでいることが好ましい。
 上記の構成によれば、ゲルの重合を開始させる重合開始剤の吐出をゲル溶液の吐出後に行なっている。これにより、作製治具又はゲル作製装置内におけるゲル溶液のゲル化を抑制し、例えば配管詰り等、ゲル作製治具又はゲル作製装置内で不要にゲル化されてしまうような問題を防止することができる。
 本発明に係る電気泳動用キットは、上記の課題を解決するために、本発明に係るゲル固定用基材を備えることを特徴としている。
 本発明は、タンパク質、DNA又はRNA等の生体高分子を分離させるポリアクリルアミドゲル電気泳動又はアガロースゲル電気泳動に用いることが可能であり、特に、等電点電気泳動及びSDS-PAGE電気泳動を含む二次元電気泳動に好適に利用可能である。
 1  基板(基材)
 2  ゲル付着領域
 3  ゲル
 10 ゲルプレート(電気泳動用反応器具)
 20 IEFチップ(電気泳動用反応器具)
 30 SDS-PAGEチップ (電気泳動用反応器具)
 40 反応器具製造装置(電気泳動用反応器具の製造装置)
 
 

Claims (20)

  1.  基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造方法であって、
     上記基材の上記ゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出工程と、
     上記第1の吐出工程の後、上記液溜まりにゲル溶液を吐出する第2の吐出工程とを含むことを特徴とする電気泳動用反応器具の製造方法。
  2.  上記第2の吐出工程では、インクジェットヘッドを用いて上記ゲル溶液を吐出することを特徴とする請求項1に記載の電気泳動用反応器具の製造方法。
  3.  上記第2の吐出工程の後、上記液溜まりに重合開始剤を吐出する第3の吐出工程を含むことを特徴とする請求項1又は2に記載の電気泳動用反応器具の製造方法。
  4.  上記基材のゲルを固定する面の少なくとも一部が疎水性材料からなる場合、上記第1の吐出工程の前に、上記液溜まりが形成される領域に親水性処理を施す親水性処理工程を含むことを特徴とする請求項1~3のいずれか1項に記載の電気泳動用反応器具の製造方法。
  5.  上記親水性処理工程では、酸素プラズマ処理を施すことを特徴とする請求項4に記載の電気泳動用反応器具の製造方法。
  6.  上記基材のゲルを固定する面の少なくとも一部が親水性材料からなる場合、上記第1の吐出工程の前に、上記液溜まりが形成される領域以外に疎水化処理を施す疎水化処理工程を含むことを特徴とする請求項1~3のいずれか1項に記載の電気泳動用反応器具の製造方法。
  7.  上記疎水化処理工程では、シランカップリング処理を施すことを特徴とする請求項6に記載の電気泳動用反応器具の製造方法。
  8.  基材に電気泳動用のゲルが固定されてなる電気泳動用反応器具の製造装置であって、
     上記基材の上記ゲルを固定する面に、液体を吐出して液溜まりを形成する第1の吐出手段と、
     上記面上に形成された上記液溜まりにゲル溶液を吐出する第2の吐出手段とを備えることを特徴とする電気泳動用反応器具の製造装置。
  9.  電気泳動用のゲルを固定するためのゲル固定用基材であって、
     上記ゲルを固定する面の少なくとも一部に、当該ゲルを付着させるための処理が施されたゲル付着領域を有していることを特徴とするゲル固定用基材。
  10.  上記ゲル付着領域が、凹状又は凸状に形成されていることを特徴とする請求項9に記載のゲル固定用基材。
  11.  上記ゲル付着領域内に、複数の凹凸構造が形成されていることを特徴とする請求項9又は10に記載のゲル固定用基材。
  12.  上記ゲル付着領域の少なくとも一部が親水性を有し、上記面であって且つ当該ゲル付着領域以外の領域の少なくとも一部が疎水性を有することを特徴とする請求項9から11のいずれか1項に記載のゲル固定用基材。
  13.  上記ゲル付着領域の親水性を有する領域が、酸素含有官能基を含む組成であることを特徴とする請求項12に記載のゲル固定用基材。
  14.  請求項9から13のいずれかに記載のゲル固定用基材に、電気泳動用のゲルが固定されてなることを特徴とする電気泳動用反応器具。
  15.  上記ゲルが、ゲル濃度又はpHの勾配を有するように形成されていることを特徴とする請求項14に記載の電気泳動用反応器具。
  16.  請求項14又は15に記載の電気泳動用反応器具の製造方法であって、
     上記ゲル付着領域に液体を吐出する第1の吐出工程と、
     上記第1の吐出工程の後、上記ゲル付着領域にゲル溶液を吐出する第2の吐出工程とを含んでいることを特徴とする電気泳動用反応器具の製造方法。
  17.  上記第2の吐出工程では、インクジェットヘッドを用いて上記ゲル溶液を吐出することを特徴とする請求項16に記載の電気泳動用反応器具の製造方法。
  18.  上記第1の吐出工程の前に、酸素プラズマ処理によって上記ゲル付着領域を形成するゲル付着領域形成工程を含んでいることを特徴とする請求項16又は17に記載の電気泳動用反応器具の製造方法。
  19.  上記第2の吐出工程の後、上記ゲル付着領域に重合開始剤を吐出する第3の吐出工程を含んでいることを特徴とする請求項16から18のいずれか1項に記載の電気泳動用反応器具の製造方法。
  20.  請求項9から13のいずれかに記載のゲル固定用基材を備えていることを特徴とする電気泳動用キット。
PCT/JP2011/050367 2010-06-18 2011-01-12 電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット WO2011158520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,886 US20130098764A1 (en) 2010-06-18 2011-01-12 Method for producing reaction instrument for electrophoresis, apparatus for producing reaction instrument for electrophoresis, base for gel immobilization, reaction instrument for electrophoresis and kit for electrophoresis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010139355A JP4851612B2 (ja) 2010-06-18 2010-06-18 電気泳動用反応器具の製造方法及び電気泳動用反応器具の製造装置
JP2010-139354 2010-06-18
JP2010139354A JP4851611B2 (ja) 2010-06-18 2010-06-18 ゲル固定用基材、電気泳動用反応器具、電気泳動用反応器具の製造方法及び電気泳動用キット
JP2010-139355 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158520A1 true WO2011158520A1 (ja) 2011-12-22

Family

ID=45347935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050367 WO2011158520A1 (ja) 2010-06-18 2011-01-12 電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット

Country Status (2)

Country Link
US (1) US20130098764A1 (ja)
WO (1) WO2011158520A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128777A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
WO2013128774A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
WO2013128772A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
US20150010867A1 (en) * 2012-03-05 2015-01-08 Sharp Kabushiki Kaisha Method for manufacturing electrophoresis gel and apparatus for manufacturing electrophoresis gel
WO2018030052A1 (ja) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 電気泳動支持体、電気泳動装置および電気泳動支持体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133377A1 (ja) * 2011-03-29 2012-10-04 シャープ株式会社 電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具
CN113325056B (zh) * 2021-06-01 2023-07-07 中南大学湘雅二医院 一种多功能分子生物学电泳辅助装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150760A (ja) * 1988-11-30 1990-06-11 Fuji Photo Film Co Ltd 電気泳動における染色処理方法
JP2000214132A (ja) * 1999-01-21 2000-08-04 Kawamura Inst Of Chem Res 電気泳動セル及びその製造方法
JP2004077393A (ja) * 2002-08-21 2004-03-11 Seiko Epson Corp 電気泳動用ゲルプレート及びその作製方法
JP2004219199A (ja) * 2003-01-14 2004-08-05 Teruo Fujii 化学マイクロデバイス
JP2009042004A (ja) * 2007-08-07 2009-02-26 Norio Okuyama 電気泳動用支持体
JP2009270963A (ja) * 2008-05-08 2009-11-19 Toppan Printing Co Ltd 電気泳動用カセット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018891A1 (en) * 1994-12-15 1996-06-20 University College London Gel-matrix electrophoresis
US6096545A (en) * 1996-07-31 2000-08-01 Queen's University At Kingston Phosphate starvation-inducible proteins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150760A (ja) * 1988-11-30 1990-06-11 Fuji Photo Film Co Ltd 電気泳動における染色処理方法
JP2000214132A (ja) * 1999-01-21 2000-08-04 Kawamura Inst Of Chem Res 電気泳動セル及びその製造方法
JP2004077393A (ja) * 2002-08-21 2004-03-11 Seiko Epson Corp 電気泳動用ゲルプレート及びその作製方法
JP2004219199A (ja) * 2003-01-14 2004-08-05 Teruo Fujii 化学マイクロデバイス
JP2009042004A (ja) * 2007-08-07 2009-02-26 Norio Okuyama 電気泳動用支持体
JP2009270963A (ja) * 2008-05-08 2009-11-19 Toppan Printing Co Ltd 電気泳動用カセット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128777A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
WO2013128774A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
WO2013128772A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 等電点電気泳動用試験具およびその製造方法
US20150010867A1 (en) * 2012-03-05 2015-01-08 Sharp Kabushiki Kaisha Method for manufacturing electrophoresis gel and apparatus for manufacturing electrophoresis gel
WO2018030052A1 (ja) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 電気泳動支持体、電気泳動装置および電気泳動支持体の製造方法
CN109564186A (zh) * 2016-08-10 2019-04-02 松下知识产权经营株式会社 电泳支承体、电泳装置以及电泳支承体的制造方法

Also Published As

Publication number Publication date
US20130098764A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2011158520A1 (ja) 電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット
JP3603886B2 (ja) 分離装置およびその製造方法
US7586091B2 (en) Mass spectrometric system and mass spectrometry
US20060011480A1 (en) Separation apparatus, method of fabricating the same, and analytical system
US20030049563A1 (en) Fractionating apparatus having colonies of pillars arranged in migration passage at interval and process for fabricating pillars
JP2001157855A (ja) キャピラリーゲル電気泳動用マイクロチップおよびその製造方法
KR20030061387A (ko) 기판 상의 서브마이크로리터 볼륨들의 배달을 위한 방법및 장치
JP2008039541A (ja) マイクロ流路チップ及びそれを用いた生体高分子の処理方法
CN107828653B (zh) 开放式单细胞研究用芯片及其制备方法
JP2003222611A (ja) 分離装置、分離方法および分離装置の製造方法
JP4851612B2 (ja) 電気泳動用反応器具の製造方法及び電気泳動用反応器具の製造装置
JP2012002801A (ja) ゲル固定用基材、電気泳動用反応器具、電気泳動用反応器具の製造方法及び電気泳動用キット
US20220187710A1 (en) Flow cell coating methods
US20040251171A1 (en) Separation apparatus, method of separation, and process for producing separation apparatus
WO2013118775A1 (ja) 二次元電気泳動キット、二次元電気泳動キットの製造方法、製造方法及び二次元電気泳動チップ
JP4851611B2 (ja) ゲル固定用基材、電気泳動用反応器具、電気泳動用反応器具の製造方法及び電気泳動用キット
US20150010867A1 (en) Method for manufacturing electrophoresis gel and apparatus for manufacturing electrophoresis gel
WO2013161368A1 (ja) 等電点電気泳動用試験具およびその製造方法
US20040156754A1 (en) Pipetting device and method for producing the same
WO2012176782A1 (ja) 電気泳動用チップおよびその製造方法
WO2012133377A1 (ja) 電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具
WO2013128777A1 (ja) 等電点電気泳動用試験具およびその製造方法
WO2014041908A1 (ja) 電気泳動用試験具およびその製造方法
WO2013146008A1 (ja) 等電点電気泳動用試験具およびその製造方法
KR20120029144A (ko) 혼합된 자기조립 단분자 막을 이용한 단백질 결합 방법 및 그 방법을 이용한 단백질 칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795428

Country of ref document: EP

Kind code of ref document: A1