WO2012133377A1 - 電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具 - Google Patents
電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具 Download PDFInfo
- Publication number
- WO2012133377A1 WO2012133377A1 PCT/JP2012/057876 JP2012057876W WO2012133377A1 WO 2012133377 A1 WO2012133377 A1 WO 2012133377A1 JP 2012057876 W JP2012057876 W JP 2012057876W WO 2012133377 A1 WO2012133377 A1 WO 2012133377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gel
- solution
- monomer solution
- forming
- electrophoresis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44747—Composition of gel or of carrier mixture
Definitions
- the present invention relates to an electrophoresis gel-forming monomer solution, a solution discharge method, a method for forming an electrophoresis gel, an electrophoresis gel, and a reaction instrument for electrophoresis.
- Electrophoresis is a phenomenon in which charged particles or molecules move an electric field, and is particularly important as a technique for separating DNA or proteins in the fields of molecular biology and biochemistry.
- two-dimensional electrophoresis is widely used as one of methods for separating proteins in order to analyze proteosomes that are attracting attention as a post-genome.
- Two-dimensional electrophoresis is a technique for two-dimensionally separating proteins by two-stage electrophoresis.
- proteins are separated by isoelectric focusing (IEF) using an immobilized pH gradient gel (IPG gel).
- IPG gel immobilized pH gradient gel
- proteins are separated according to molecular weight by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel electrophoresis).
- the present invention has been made in view of the above circumstances, and is an electrophoresis gel-forming monomer solution capable of controlling the timing for starting gelation, a solution discharge method thereof, an electrophoresis gel formation method, an electrophoresis gel, and an electricity It aims at providing the reaction instrument for electrophoresis.
- the electrophoresis gel-forming monomer solution according to the first aspect of the present invention contains at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator.
- the monomer is preferably a radical polymerizable substance.
- the radical polymerizable substance is at least one selected from the group consisting of acrylamide, N, N′-methylenebisacrylamide and acrylamide derivatives. It is preferable that
- the gel polymerization accelerator is preferably tetramethylethylenediamine.
- the solution discharge method discharges an electrophoretic gel-forming monomer solution containing at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator. And a second discharge step of discharging a gel polymerization initiating solution containing a gel polymerization initiator to the electrophoretic gel-forming monomer solution.
- the electrophoresis gel-forming monomer in the first discharge step, so as to show a concentration gradient along one direction of the discharge surface of the discharge object. It is preferable to discharge the solution.
- the electrophoresis gel forming monomer solution is discharged a plurality of times in the first discharge step.
- the monomer is preferably a radical polymerizable substance.
- the radical polymerizable substance is at least one selected from the group consisting of acrylamide, N, N′-methylenebisacrylamide and acrylamide derivatives. Is preferred.
- the solution discharge method according to the second aspect of the present invention preferably uses an inkjet method in the first discharge step.
- the method for forming an electrophoresis gel according to the third aspect of the present invention is an electrophoresis gel-forming monomer containing at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator.
- a solution discharge method comprising: a first discharge step of discharging a solution; and a second discharge step of discharging a gel polymerization initiator solution containing a gel polymerization initiator with respect to the electrophoresis gel-forming monomer solution. .
- the electrophoresis gel according to the fourth aspect of the present invention ejects an electrophoresis gel-forming monomer solution containing at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator.
- An electrophoretic gel having a solution ejection method comprising: a first ejection step to perform; and a second ejection step to eject a gel polymerization initiator solution containing a gel polymerization initiator with respect to the electrophoresis gel-forming monomer solution It is formed by the forming method.
- the electrophoresis reaction device is an electrophoresis gel-forming monomer solution containing at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator. And a second discharging step of discharging a gel polymerization initiating solution containing a gel polymerization initiator with respect to the electrophoretic gel-forming monomer solution.
- An electrophoresis gel formed by the method for forming an electrophoresis gel is provided.
- the timing at which gelation of the electrophoresis gel-forming monomer solution starts can be controlled.
- electrophoresis gel-forming monomer solution The electrophoresis gel forming monomer solution of the embodiment of the present invention will be described.
- the electrophoresis gel-forming monomer solution of this embodiment contains at least a monomer that forms a gel structure and a gel polymerization accelerator that activates a gel polymerization initiator.
- the monomer that forms the gel structure includes a radically polymerizable substance (a substance that polymerizes using radicals as a reaction center), an anionically polymerizable substance, a cationically polymerizable substance, a coordination polymerizable substance, or a ring-opening polymerizable substance Is used.
- a substance capable of radical polymerization is preferable because an electrophoresis gel having a target specification can be formed at an arbitrary timing.
- the material capable of radical polymerization at least one selected from the group consisting of acrylamide, N, N′-methylenebisacrylamide and acrylamide derivatives is used.
- Acrylamide polymerizes to form the main skeleton of the electrophoresis gel.
- N, N′-methylenebisacrylamide copolymerizes with acrylamide to crosslink the main skeleton of the electrophoresis gel.
- the blending ratio (mass ratio) of acrylamide and N, N′-methylenebisacrylamide is appropriately adjusted according to the specifications of the target electrophoresis gel. 1 to 49: 1 is preferred.
- the blending ratio (mass ratio) of acrylamide and N, N′-methylenebisacrylamide is, for example, 37.5: 1.
- Acrylamide derivatives determine the charge distribution of the electrophoresis gel, ie the pH distribution of the electrophoresis gel.
- the acrylamide derivatives are those in which one or more substituents acrylamide is introduced, which acid dissociation constant due to the substituent (pK a) is in the range of 1 to 12 is used.
- one hydrogen of carboxylic acid amide of acrylamide is a cyclic compound containing at least one of a sulfo group (—SO 3 H), a carboxyl group (—COOH), oxygen, nitrogen, sulfur and the like, an amino group ( And derivatives substituted with —NH 2 , —NHR, —NR 2 ) and the like.
- acid dissociation constant (pK a) is 1,3.1,3.6,4.6,6.2,7.0,8.5
- Acrylamide derivatives such as 9.3, 10.3, and 12 are used in combination.
- the electrophoresis gel-forming monomer solution of the present embodiment is an acidic electrophoresis gel-forming monomer solution (hereinafter referred to as “acid gel-forming monomer solution”) or a basic electrophoresis gel-forming monomer solution (hereinafter referred to as “ It is used as “basic gel-forming monomer solution”.
- acidic gel-forming monomer solution acrylamide, N, N′-methylenebisacrylamide, and one containing one or more acrylamide derivatives having different acid dissociation constants are used.
- the blending ratio (mass ratio) of each acrylamide derivative ie, [acrylamide derivative mass / acid gel-forming monomer solution (including acrylamide derivative) mass] is appropriately adjusted according to the specifications of the target electrophoresis gel.
- As the basic gel-forming monomer solution acrylamide, N, N′-methylenebisacrylamide, and one containing one or more acrylamide derivatives having different acid dissociation constants are used.
- the blending ratio (mass ratio) of each acrylamide derivative, that is, [acrylamide derivative mass / basic gel forming monomer solution (including acrylamide derivative) mass] is appropriately adjusted according to the specification of the target electrophoresis gel.
- Tetramethylethylenediamine (TEMED) is used as the gel polymerization accelerator. Tetramethylethylenediamine, when mixed with a gel polymerization initiator, immediately forms radicals that are active species of gel polymerization, and without deactivating ammonium persulfate (Ammonium persulfate, APS) suitable as an initiator for radical polymerization of acrylamide. , Can exist stably.
- Ammonium persulfate Ammonium persulfate
- the blending ratio (mass ratio) of the gel polymerization accelerator in the electrophoresis gel-forming monomer solution that is, [gel polymerization accelerator mass / electrophoresis gel-forming monomer solution (including gel polymerization accelerator) mass] is not particularly limited.
- the gel polymerization accelerator is blended at a predetermined blending ratio (mass ratio) in each of the acidic gel-forming monomer solution and the basic gel-forming monomer solution.
- the electrophoretic gel-forming monomer solution of this embodiment may contain a thickener in order to adjust the viscosity appropriately.
- the thickener is not particularly limited, but glycerol is preferable because it does not affect electrophoresis.
- the mixing ratio (mass ratio) of glycerol in the electrophoresis gel-forming monomer solution, ie, [glycerol mass / electrophoresis gel-forming monomer solution (including glycerol) mass] is not particularly limited. It adjusts suitably according to the method.
- the electrophoretic gel-forming monomer solution is an acidic gel-forming monomer solution, and the inkjet method is used as a discharging method of this solution
- the [glycerol mass / acid gel-forming monomer solution (including glycerol) mass] is, for example, 0. 47 is adjusted.
- the electrophoresis gel-forming monomer solution is a basic gel-forming monomer solution and the inkjet method is used as a discharging method of this solution
- [glycerol mass / basic gel-forming monomer solution (including glycerol) mass] is, for example, Adjusted to 0.40.
- the electrophoresis gel-forming monomer solution of this embodiment since it does not contain a gel polymerization initiator, gelation starts by mixing with a gel polymerization initiator solution containing a gel polymerization initiator. Timing can be controlled. Therefore, when this electrophoretic gel-forming monomer solution is ejected by an inkjet head or the like, the electrophoretic gel-forming monomer solution is gelled in the inkjet head by ejecting the electrophoretic gel-forming monomer solution from an inkjet head different from the gel polymerization initiation solution. The nozzle of the head can be prevented from being clogged with the gel.
- FIGS. 1A to 1C are perspective views showing an outline of a solution discharge method according to a first embodiment.
- the discharge unit 3 applies the above-described gel formation region 2 provided on the discharge target surface (one surface) 1a of the base material 1 that is the discharge target.
- the substrate 1 examples include a flat plate or a chip molded into an arbitrary shape.
- the base material 1 is exemplified by a rectangular shape in plan view.
- glass, resin, ceramics, etc. are mentioned, for example.
- the glass include quartz glass and alkali-free glass.
- the resin include polyethylene terephthalate (PET), polymethyl methacrylate resin (PMMA), and the like.
- Specific examples of the ceramic include alumina and a low-temperature co-fired ceramic.
- the gel-forming region 2 is formed by physically coating one surface 1a of the substrate 1 with an organic compound having a chemical structure similar to the monomer contained in the electrophoresis gel-forming monomer solution, or chemically. It is formed by performing surface modification of one surface 1a of the substrate 1 by covalent bonding. That is, the gel forming region 2 is composed of a thin film made of the organic compound.
- the gel-forming region 2 is formed by plasma graft polymerization treatment of acrylic acid, acrylamide, acrylamide derivative or the like. It is preferable to form.
- the obtained gel forming region 2 becomes hydrophilic, and an electrophoresis gel formed using the above-described electrophoresis gel forming monomer solution is formed into a gel formed on one surface 1a of the substrate 1.
- the region 2 can be adhered with a strong adhesion force.
- the gel forming region 2 is exemplified by a rectangular shape in plan view formed along the longitudinal direction of the substrate 1.
- the discharge means 3 is not particularly limited as long as it can form fine droplets because it is necessary to mix a plurality of types of electrophoretic gel-forming monomer solutions directly on one surface 1a of the substrate 1.
- Examples of the ejection unit 3 include an inkjet head and a spray nozzle. In the present embodiment, it is essential to be able to control the pitch between fine droplets in a direction perpendicular to the one surface 1a of the substrate 1.
- the ejection unit 3 is preferably an inkjet head rather than a spray nozzle that sprays the electrophoretic gel-forming monomer solution in a spray form.
- the ejection unit 3 is exemplified by an inkjet head.
- the ejection unit 3 is referred to as an inkjet head 3.
- the inkjet head 3 for example, eight inkjet heads 3A, 3B, 3C, 3D, 3E, 3F, 3G, in which a large number of nozzles 3a are provided at a predetermined pitch on a straight line. What consists of 3H is used.
- the inkjet heads 3A, 3B, 3C, 3D, 3E, 3F, 3G, and 3H are arranged in parallel so that the directions in which the nozzles 3a extend are parallel to each other.
- the inkjet heads 3A, 3B, 3C, 3D, 3E, 3F, 3G, and 3H are provided in order along the direction in which the inkjet head 3 scans the substrate 1 (the direction of the arrow in FIG. 1A).
- the scanning direction of the inkjet head 3 is a direction along the longitudinal direction of the substrate 1.
- the ink jet head 3 is not particularly limited, and a continuous discharge type (continuous ink jet) ink jet head, an on-demand type (drop on demand ink jet) ink jet head, or the like is used.
- a continuous discharge type ink jet head a charge control method for controlling charged fine droplets with an electric field is used.
- an on-demand type inkjet head a thermal (bubble) type, electrostatic actuator type or piezo type is used.
- the scanning direction of the ink-jet head 3 is set to one direction along the longitudinal direction of the base material 1 and both directions (bases) according to the matters required in the formation of the electrophoresis gel using the above-described electrophoresis gel-forming monomer solution.
- the scanning direction of the inkjet head 3 is set to one direction along the longitudinal direction of the substrate 1.
- the scanning direction of the inkjet head 3 is set to both directions along the longitudinal direction of the base material 1 (direction to reciprocate along the longitudinal direction of the base material 1).
- the gel forming region 2 is formed on one surface 1a of the substrate 1 (FIG. 1A).
- a predetermined shape is patterned on an arbitrary region of one surface 1a of the base material 1 using a masking material such as a metal mask, a resist, or a Kapton tape, and surface treatment is performed only on the patterned region.
- the gel formation region 2 is formed.
- the surface treatment method is not particularly limited, but in the case of using the above-described electrophoresis gel-forming monomer solution, for example, plasma graft polymerization treatment such as acrylic acid, acrylamide, and acrylamide derivatives is used.
- the masking material is removed, and one surface 1a of the substrate 1 is washed.
- an acidic gel-forming monomer solution and a basic gel-forming monomer solution are used as the electrophoresis gel-forming monomer solution.
- the acidic gel-forming monomer solution or the basic gel-forming monomer solution include those containing acrylamide, N, N′-methylenebisacrylamide as described above, and one or more acrylamide derivatives having different acid dissociation constants. Use.
- the first discharge step one of the acidic gel-forming monomer solution and the basic gel-forming monomer solution is discharged so that the droplet exhibits a concentration gradient along one surface 1a of the substrate 1, and the opposite is true.
- the other of the acidic gel-forming monomer solution or the basic gel-forming monomer solution is discharged so as to show a concentration gradient of. That is, in the first discharge step, for example, as shown in FIG. 1B, the density of the droplets 5 of the acidic gel-forming monomer solution is increased from one end 1b of the substrate 1 toward the other end 1c.
- An acidic gel-forming monomer solution is discharged from the inkjet head 3 onto one surface 1a of the substrate 1.
- the acidic gel-forming monomer solution is applied from the inkjet head 3 to one surface 1a of the substrate 1 so that the concentration gradient of the acidic gel-forming monomer solution increases from one end 1b of the substrate 1 toward the other end 1c. Discharged.
- the density of the droplet 6 of the basic gel-forming monomer solution is increased from the inkjet head 3 to the substrate 1 so that the density of the droplet 1 increases from the other end 1c of the substrate 1 toward the one end 1b.
- a basic gel-forming monomer solution is discharged onto one surface 1a.
- the basic gel-forming monomer is applied from the inkjet head 3 to the one surface 1a of the base 1 so that the concentration gradient of the basic gel-forming monomer solution increases from the other end 1c of the base 1 toward the one end 1b.
- the solution is discharged.
- the acidic gel-forming monomer solution and the basic gel-forming monomer solution are separately discharged onto one surface 1a of the substrate 1, and a concentration gradient is formed at the time of discharging each monomer solution.
- the electrophoresis gel-forming monomer solution can be discharged so as to show a pH gradient along the longitudinal direction of one surface 1a of the material 1.
- the present invention is not limited to this.
- the number of times of discharging the acidic gel-forming monomer solution and the basic gel-forming monomer solution is appropriately adjusted according to the electrophoresis gel having the target specification.
- the acidic gel-forming monomer solution and the basic gel-forming monomer solution usually a mixture of acrylamide, N, N′-methylenebisacrylamide, and one or more acrylamide derivatives having different acid dissociation constants is used. It is done. Therefore, the respective acrylamide derivatives are not necessarily discharged to the gel forming region 2 at a preferable composition ratio. Therefore, in the first discharge step, various acrylamide derivatives may be discharged independently in order to more precisely control the density of droplets of the acidic gel-forming monomer solution and the basic gel-forming monomer solution. .
- a mixture of acrylamide and N, N′-methylenebisacrylamide is discharged from one inkjet head 3A, and the acid dissociation constant (pK a ) is calculated from six inkjet heads 3B, 3C, 3D, 3E, 3F, and 3G.
- six different acrylamide derivative e.g., acid dissociation constant (pK a) of those 3.6,4.6,6.2,7.0,8.5,9.3 ejects the separately.
- acrylamide, N, N′-methylenebisacrylamide and an acrylamide derivative are mixed on one surface 1a of the substrate 1, and the above-mentioned electrophoresis gel-forming monomer solution is mixed on one surface 1a of the substrate 1.
- a result equivalent to that of discharging is obtained.
- the electrophoresis gel-forming monomer solution discharged onto one surface 1a of the substrate 1 exhibits a concentration gradient along the longitudinal direction of the one surface 1a of the substrate 1.
- the discharge amount of the mixture of acrylamide and N, N′-methylenebisacrylamide and the discharge amount of the six acrylamide derivatives are controlled.
- the gel polymerization start containing a gel polymerization initiator is performed on the electrophoretic gel-forming monomer solution discharged from one inkjet head 3H to one surface 1a of the substrate 1 in the first discharge step.
- the solution is discharged (second discharge process).
- a gel polymerization accelerator contained in the electrophoresis gel forming monomer solution is mixed.
- the gel polymerization initiator When the gel polymerization initiator is mixed with a gel polymerization accelerator, it immediately generates radicals that are active species that trigger gel polymerization, but these radicals deactivate over time. In other words, in order to control the timing of gelation of the electrophoresis gel-forming monomer solution, the timing of mixing the gel polymerization initiator and the gel polymerization accelerator and the timing of mixing the monomer and the radical that form the gel structure are important. Become. Therefore, in this embodiment, by using an electrophoretic gel-forming monomer solution in which a monomer that forms a gel structure and a gel polymerization accelerator are mixed in advance, the gel polymerization initiator and the gel are used until immediately before gelation of the electrophoretic gel-forming monomer solution.
- the gelation timing of the electrophoretic gel-forming monomer solution is controlled by the timing of discharging the gel polymerization initiating solution containing the gel polymerization initiator to the electrophoretic gel-forming monomer solution, that is, the timing of generating radicals. can do.
- ammonium persulfate As a gel polymerization initiator, ammonium persulfate (Ammonium persulfate, APS) is used. Ammonium persulfate, when mixed with a gel polymerization accelerator such as tetramethylethylenediamine (TEMED), immediately forms a radical that is an active species of gel polymerization and is suitable as an initiator for radical polymerization of acrylamide.
- a gel polymerization accelerator such as tetramethylethylenediamine (TEMED)
- glycerol ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol or the like is used as a solvent for dissolving the gel polymerization initiator.
- the timing for starting gelation of the electrophoretic gel-forming monomer solution can be controlled, so that the electrophoretic gel-forming monomer solution gels in the ink-jet head 3 and the ink-jet head
- the nozzle 3a of the third nozzle can be prevented from being clogged by the gel, and the gelation of the electrophoresis gel-forming monomer solution due to radical inactivation can be avoided. Therefore, it is possible to form an electrophoresis gel having an immobilized pH gradient (IPG; immobilized pH gradient).
- IPG immobilized pH gradient
- a gel-forming region 2 is formed in advance on one surface 1a of the substrate 1 to thereby gel the electrophoretic gel-forming monomer solution. Since the adhesiveness with respect to the one surface 1a of the material 1 is improved, the shape of the electrophoresis gel can be freely formed regardless of the material of the substrate 1.
- an electrophoretic gel-forming monomer solution is discharged at a dot pitch of about several tens of ⁇ m by using an inkjet method in the first discharge step and the second discharge step.
- an electrophoresis gel having a high-definition pH gradient can be formed.
- FIG. 2 is a perspective view showing an outline of a solution discharge method according to a second embodiment.
- the base material 11 for example, a flat plate is used, and the case where the gel forming region 12 is provided on one side surface 11a is illustrated.
- the base material 11 For example, the acrylic board whose thickness is 2 mm is mentioned.
- the inkjet head 13 for example, a configuration including five inkjet heads 13 ⁇ / b> A, 13 ⁇ / b> B, 13 ⁇ / b> C, 13 ⁇ / b> D, and 13 ⁇ / b> E provided with a large number of nozzles 13 a at a predetermined pitch on a straight line is used.
- the inkjet heads 13A, 13B, 13C, 13D, and 13E are arranged in parallel so that the directions in which the nozzles 13a extend are parallel to each other.
- the inkjet heads 13A, 13B, 13C, 13D, and 13E are provided in order along the direction in which the inkjet head 13 scans one side surface 11a of the substrate 11 (the direction of the arrow in FIG. 2).
- the scanning direction of the inkjet head 13 is a direction along the longitudinal direction of the one side surface 11a of the substrate 11.
- the gel forming region 12 is formed on the one side surface 11a of the substrate 11 in the same manner as in the first embodiment described above.
- the electrophoresis gel-forming monomer solution is transferred from the inkjet head 13 to the gel formation region 12 on the one side surface 11 a of the substrate 11. Is discharged (first discharging step). Even in the present embodiment, the electrophoretic gel-forming monomer solution is discharged in the first discharge step in the same manner as in the first embodiment.
- the gel polymerization initiating solution containing the gel polymerization initiator is discharged from the inkjet head 13 to the electrophoretic gel-forming monomer solution discharged to the one side surface 11a of the substrate 11 ( Second discharge step).
- the gel polymerization initiating solution is discharged in the same manner as in the first embodiment described above.
- the electrophoresis gel forming monomer solution can be discharged even in a narrow region or a region having a complicated shape. Therefore, a gel can be formed in a region where it has been difficult to form a gel.
- Method of forming electrophoresis gel 3A to 3D are cross-sectional views schematically showing a method for forming an electrophoresis gel according to an embodiment of the present invention.
- the method for forming an electrophoretic gel according to the present embodiment is a method having the solution ejection method according to the first embodiment or the solution ejection method according to the second embodiment.
- a gel forming region 22 is formed on one surface 21a of the base material 21 (see FIG. 1A).
- the same solution discharging method as that of the first embodiment described above is used.
- a surface treatment method of the one surface 21a of the base material 21 for forming the gel forming region 22 the same method as the solution discharge method of the first embodiment described above is used.
- a Kapton tape in which a polyethylene terephthalate film having a thickness of 200 ⁇ m is used as the base material 21 and a punching pattern having a length of 70 mm and a width of 3 mm is formed on one surface (surface) 21a of the base material 21.
- Polyimide tape, thickness 80 ⁇ m was adhered, and plasma graft polymerization surface treatment of acrylic acid or acrylamide was performed. After the plasma graft polymerization surface treatment, the Kapton tape is peeled off and the surface is cleaned.
- the contact angle of the gel formation region 22 was 20 degrees or less (water droplet), and the gel formation region 22 was stronger than the contact angle (60 degrees or more) of the one surface 21a of the substrate 21. It was confirmed that the surface was hydrophilic.
- pure water or carrier ampholite (amphoteric carrier) is added to the gel forming region 22 on the one surface 21a of the base material 21 using a pipette, a dispenser, an ink jet, or the like.
- a mixed aqueous solution or the like is dropped to form a liquid pool 23 in the gel formation region 22.
- the liquid reservoir 23 is made to spread uniformly over the entire gel forming region 22.
- a gel polymerization accelerator such as tetramethylethylenediamine may be added to the pure water or the aqueous solution forming the liquid pool 23.
- the size of the liquid reservoir 23 (size (area) in plan view) is 70 mm long ⁇ 3 mm wide.
- the liquid reservoir 23 plays an important role in mixing the above-mentioned electrophoresis gel-forming monomer solution and the above-mentioned gel polymerization initiating solution in a subsequent process in order to mix these solutions satisfactorily.
- the liquid reservoir 23 also plays an important role in forming an electrophoresis gel having a desired thickness. That is, when there is no liquid reservoir 23, the production time of the electrophoresis gel is greatly increased.
- a total amount of 140 ⁇ L of solution is discharged to the gel forming region 22 and the film thickness after gel polymerization is adjusted to 500 ⁇ m.
- 67.65 ⁇ L of pure water forming the liquid pool 23 is dropped onto the gel forming region 22 using a pipette.
- an electrophoresis gel is applied from the inkjet head 24 to the liquid reservoir 23 on the one surface 21a of the base material 21 in the same manner as the solution discharge methods of the first and second embodiments described above.
- the forming monomer solution is discharged (first discharging step).
- the density of the droplets 25 (discharge density) is the base material 21.
- the acidic gel-forming monomer solution is discharged from the inkjet head 24 onto the one surface 21a of the substrate 21 so as to increase from one end 21b to the other end 21c.
- the acidic gel-forming monomer solution is applied from the inkjet head 24 to the one surface 21a of the base material 21 so that the concentration gradient of the acidic gel-forming monomer solution increases from the one end 21b of the base material 21 toward the other end 21c.
- the discharge amount of the acidic gel-forming monomer solution is 39.45 ⁇ L.
- the electrophoretic gel-forming monomer solution is a basic gel-forming monomer solution
- the density (discharge density) of the droplets 25 changes from the other end 21c of the substrate 21 to one end 21b.
- the basic gel-forming monomer solution is discharged from the inkjet head 24 onto the one surface 21a of the base material 21 so as to be higher.
- the basic gel-forming monomer solution is applied from the inkjet head 24 to the one surface 21a of the base material 21 so that the concentration gradient of the basic gel-forming monomer solution increases from the other end 21c of the base material 21 toward the one end 21b.
- the solution is discharged.
- the discharge amount of the basic gel-forming monomer solution is 26.90 ⁇ L.
- the present invention is not limited to this.
- the number of times of discharging the acidic gel-forming monomer solution and the basic gel-forming monomer solution is appropriately adjusted according to the electrophoresis gel having the target specification. That is, in the same manner as the solution discharge method of the first embodiment described above, in the first discharge step, in order to more precisely control the density of droplets of the acidic gel-forming monomer solution and the basic gel-forming monomer solution.
- various acrylamide derivatives may be discharged independently.
- a gel polymerization initiating solution containing a gel polymerization initiator is discharged to the electrophoresis gel forming monomer solution (second discharging step).
- a gel polymerization initiator solution in which 20% ammonium persulfate is used as a gel polymerization initiator and 20% ammonium persulfate and glycerol are mixed at a volume ratio of 1: 1 is used.
- the discharge amount of the gel polymerization initiator solution is 7 ⁇ L.
- the electrophoretic gel-forming mixed solution 26 is discharged onto the gel-forming region 22 formed on the one surface 21a of the base material 21.
- the electrophoretic gel-forming mixed solution 26 is left for about 30 minutes to 1 hour, gelation starts and the target electrophoretic gel 27 (FIG. 3D) is formed.
- the electrophoresis gel forming step including the first discharge step and the second discharge step is performed in a nitrogen atmosphere in order to avoid the influence of oxygen that suppresses the gel polymerization reaction. It is preferable to carry out by crystallization.
- the electrophoresis gel 27 is washed with a washing solution.
- a washing solution pure water or an aqueous solution in which pure water is mixed with a small amount of carrier ampholite is used.
- the substrate 21 on which the electrophoresis gel 27 is formed is immersed in pure water or an aqueous solution, and these are shaken by a shaker or the like.
- the process of immersing the base material 21 on which the electrophoresis gel 27 is formed in pure water and shaking for 20 minutes at a cycle of 40 rpm was repeated three times.
- pure water was exchanged every time one washing was completed.
- the substrate 21 on which the electrophoresis gel 27 is formed is dried in a desiccator.
- the timing for starting gelation of the electrophoretic gel-forming monomer solution can be controlled, so that the electrophoretic gel-forming monomer solution gels in the inkjet head 24.
- the nozzle of the inkjet head 24 can be prevented from being clogged by the gel, and the inhibition of gelation of the electrophoretic gel-forming monomer solution due to radical inactivation can be avoided. Therefore, it is possible to form an electrophoresis gel having an immobilized pH gradient (IPG; immobilized pH gradient).
- IPG immobilized pH gradient
- the electrophoresis gel manufactured by the method for manufacturing an electrophoresis gel of the present embodiment has a high-definition pH gradient and a low impurity content.
- an electrophoretic reaction instrument equipped with the electrophoretic gel can be obtained.
- Examples of the electrophoresis reaction tool of the present embodiment include those in which the above-described electrophoresis gel is directly provided on one surface of the substrate 11 shown in FIG.
- Examples of the base material 11 include a plate-like injection-molded product formed of polymethyl methacrylate (PMMA) or the like.
- the electrophoresis reaction instrument of this embodiment is applied to, for example, an automated two-dimensional electrophoresis apparatus.
- the automated two-dimensional electrophoresis apparatus is, for example, a fixing means for fixing a second separation unit (sample separation instrument) that performs second-dimensional separation of a sample, and a support with a gel that supports a first medium that performs first-dimensional separation.
- a holding means having an arm for holding the holding means, a fixing means and / or a driving means for moving the holding means to change the relative positions of both.
- the electrophoresis reaction instrument of the present embodiment is used as the first medium for performing the first-dimensional separation.
- the present invention can be used for polyacrylamide gel electrophoresis or agarose gel electrophoresis for separating biopolymers such as protein, DNA or RNA, and particularly includes isoelectric focusing and SDS-PAGE electrophoresis. It can be suitably used for two-dimensional electrophoresis.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
本願は、2011年3月29日に、日本に出願された特願2011-072885号に基づき優先権を主張し、その内容をここに援用する。
また、ポストゲノムとして注目されているプロテオソームを解析するために、タンパク質を分離するための手法の1つとして、二次元電気泳動が広く用いられている。
例えば、一次元目では、固定化pH勾配ゲル(IPGゲル)を用いた等電点電気泳動(IEF;isoelctric focusing)によってタンパク質を分離する。二次元目では、ドデシル硫酸ナトリウム・ポリアクリルアミドゲル電気泳動(SDS-PAGE;sodium dodecyl sulfate-polyacrylamidegel electrophoresis)によって分子量ごとにタンパク質を分離する。
このような電気泳動用ゲルプレートの作製方法としては、インクジェット方式を用いた方法が知られている(例えば、特許文献1参照)。
本発明の実施形態の電気泳動ゲル形成モノマー溶液について説明する。
本実施形態の電気泳動ゲル形成モノマー溶液は、ゲル構造を形成するモノマーと、ゲル重合開始剤を活性化するゲル重合促進剤と、を少なくとも含有する。
アクリルアミドは、重合して電気泳動ゲルの主骨格を形成する。
N,N’-メチレンビスアクリルアミドは、アクリルアミドと共重合して、電気泳動ゲルの主骨格を架橋する。
本実施形態の電気泳動ゲル形成モノマー溶液において、アクリルアミドとN,N’-メチレンビスアクリルアミドの配合比(質量比)は、目的とする電気泳動ゲルの仕様に応じて適宜調整されるが、19:1~49:1が好ましい。本実施形態では、アクリルアミドとN,N’-メチレンビスアクリルアミドの配合比(質量比)を、例えば、37.5:1とする。
アクリルアミド誘導体としては、アクリルアミドに1つ以上の置換基が導入されたものであり、その置換基に起因する酸解離定数(pKa)が1~12の範囲にあるものが用いられる。
アクリルアミド誘導体としては、アクリルアミドのカルボン酸アミドの1つの水素をスルホ基(-SO3H)、カルボキシル基(-COOH)、酸素、窒素、硫黄などを少なくとも1つ含有する環式化合物、アミノ基(-NH2、-NHR、-NR2)などで置換した誘導体が挙げられる。
本実施形態では、目的とする電気泳動ゲルを得るために、酸解離定数(pKa)が1、3.1、3.6、4.6、6.2、7.0、8.5、9.3、10.3、12などのアクリルアミド誘導体が組み合わされて用いられる。
酸性ゲル形成モノマー溶液としては、アクリルアミド、N,N’-メチレンビスアクリルアミド、および、酸解離定数が異なる1種または2種以上のアクリルアミド誘導体を含むものが用いられる。各アクリルアミド誘導体の配合比(質量比)、すなわち、[アクリルアミド誘導体質量/酸性ゲル形成モノマー溶液(アクリルアミド誘導体を含む)質量]は、目的とする電気泳動ゲルの仕様に応じて適宜調整される。
塩基性ゲル形成モノマー溶液としては、アクリルアミド、N,N’-メチレンビスアクリルアミド、および、酸解離定数が異なる1種または2種以上のアクリルアミド誘導体を含むものが用いられる。各アクリルアミド誘導体の配合比(質量比)、すなわち、[アクリルアミド誘導体質量/塩基性ゲル形成モノマー溶液(アクリルアミド誘導体を含む)質量]は、目的とする電気泳動ゲルの仕様に応じて適宜調整される。
増粘剤としては、特に限定されないが、電気泳動に影響を与えないことから、グリセロールが好ましい。
電気泳動ゲル形成モノマー溶液におけるグリセロールの配合比(質量比)、すなわち、[グリセロール質量/電気泳動ゲル形成モノマー溶液(グリセロールを含む)質量]は、特に限定されないが、電気泳動ゲル形成モノマー溶液の吐出方法に応じて適宜調整される。
電気泳動ゲル形成モノマー溶液が塩基性ゲル形成モノマー溶液であり、この溶液の吐出方法としてインクジェット法が用いられる場合、[グリセロール質量/塩基性ゲル形成モノマー溶液(グリセロールを含む)質量]は、例えば、0.40に調整される。
(1)第1実施形態
図1A~図1Cは、第1実施形態の溶液吐出方法の概要を示す斜視図である。
本実施形態の溶液吐出方法は、被吐出物である基材1の被吐出面(一方の面)1aに設けられた任意の形状のゲル形成領域2に対して、吐出手段3により、上述の電気泳動ゲル形成モノマー溶液を吐出する第一の吐出工程と、第一の吐出工程により基材1の被吐出面(一方の面)1aに吐出した電気泳動ゲル形成モノマー溶液に対して、吐出手段3により、ゲル重合開始剤を含有するゲル重合開始溶液を吐出する第二の吐出工程と、を有する。
基材1の原料としては、例えば、ガラス、樹脂またはセラミックスなどが挙げられる。
ガラスとしては、具体的には、石英ガラス、無アルカリガラスなどが挙げられる。
樹脂としては、具体的には、ポリエチレンテレフタレート(polyethylene terephthalate、PET)、ポリメタクリル酸メチル樹脂(polymethyl methacrylate、PMMA)などが挙げられる。
セラミックスとしては、具体的には、アルミナ、低温同時焼成セラミックなどが挙げられる。
上述のように、アクリルアミド、N,N’-メチレンビスアクリルアミドおよびアクリルアミド誘導体を含む電気泳動ゲル形成モノマー溶液を用いる場合、アクリル酸、アクリルアミド、アクリルアミド誘導体などのプラズマグラフト重合処理により、ゲル形成領域2を形成することが好ましい。このようにすれば、得られたゲル形成領域2は親水性となり、上述の電気泳動ゲル形成モノマー溶液を用いて形成した電気泳動ゲルを、基材1の一方の面1aに設けられたゲル形成領域2に対して、強い付着力で付着させることができる。
本実施形態では、ゲル形成領域2としては、基材1の長手方向に沿って形成された平面視長方形状のものを例示する。
本実施形態では、基材1の一方の面1aに対して垂直方向に、微細な液滴間のピッチを制御できることも必須である。このような点を考慮すると、吐出手段3としては、電気泳動ゲル形成モノマー溶液をスプレー状に噴霧するスプレーノズルよりも、インクジェットヘッドが好ましい。
本実施形態では、吐出手段3としては、インクジェットヘッドを例示する。以下、吐出手段3を、インクジェットヘッド3と言う。
インクジェットヘッド3A,3B,3C,3D,3E,3F,3G,3Hは、それぞれのノズル3aが延在する方向が互いに平行になるように、並列に配設される。また、インクジェットヘッド3A,3B,3C,3D,3E,3F,3G,3Hは、インクジェットヘッド3が基材1をスキャンする方向(図1Aにおける矢印の方向)に沿って順に設けられている。本実施形態では、インクジェットヘッド3のスキャン方向は、基材1の長手方向に沿った方向である。
連続吐出型インクジェットヘッドとしては、帯電させた微小液滴を電界で制御する荷電制御方式などが用いられる。
オンデマンド型インクジェットヘッドとしては、サーマル(バブル)方式、静電アクチュエータ方式またはピエゾ方式のものが用いられる。
基材1に対する電気泳動ゲルのアライメント精度を優先する場合、インクジェットヘッド3のスキャン方向は、基材1の長手方向に沿った一方向とされる。
一方、タクトタイムを優先する場合、インクジェットヘッド3のスキャン方向は、基材1の長手方向に沿った両方向(基材1の長手方向に沿って往復する方向)とされる。
この工程では、基材1の一方の面1aの任意の領域に、メタルマスク、レジスト、カプトンテープなどのマスキング材により、所定の形状をパターニングし、そのパターニングされた領域のみに表面処理を施して、ゲル形成領域2を形成する。
酸性ゲル形成モノマー溶液または塩基性ゲル形成モノマー溶液としては、上述のようなアクリルアミド、N,N’-メチレンビスアクリルアミド、および、酸解離定数が異なる1種または2種以上のアクリルアミド誘導体を含むものを用いる。
すなわち、第一の吐出工程では、例えば、図1Bに示すように、酸性ゲル形成モノマー溶液の液滴5の濃淡密度が、基材1の一端1bから他端1cに向かって高くなるように、インクジェットヘッド3から基材1の一方の面1aに、酸性ゲル形成モノマー溶液を吐出する。これにより、酸性ゲル形成モノマー溶液の濃度勾配が、基材1の一端1bから他端1cに向かって高くなるよう、インクジェットヘッド3から基材1の一方の面1aに、酸性ゲル形成モノマー溶液が吐出される。
一方、図1Cに示すように、塩基性ゲル形成モノマー溶液の液滴6の濃淡密度が、基材1の他端1cから一端1bに向かって高くなるように、インクジェットヘッド3から基材1の一方の面1aに、塩基性ゲル形成モノマー溶液を吐出する。これにより、塩基性ゲル形成モノマー溶液の濃度勾配が、基材1の他端1cから一端1bに向かって高くなるよう、インクジェットヘッド3から基材1の一方の面1aに、塩基性ゲル形成モノマー溶液が吐出される。
そこで、第一の吐出工程では、酸性ゲル形成モノマー溶液および塩基性ゲル形成モノマー溶液の液滴の濃淡密度を、より精密に制御するために、種々のアクリルアミド誘導体を独立して吐出してもよい。
そこで、本実施形態では、ゲル構造を形成するモノマーとゲル重合促進剤を予め混合した電気泳動ゲル形成モノマー溶液を用いることにより、電気泳動ゲル形成モノマー溶液のゲル化直前まで、ゲル重合開始剤とゲル重合促進剤を混合しない。したがって、電気泳動ゲル形成モノマー溶液のゲル化のタイミングは、電気泳動ゲル形成モノマー溶液に対して、ゲル重合開始剤を含有するゲル重合開始溶液を吐出するタイミング、すなわち、ラジカルを生成するタイミングによって制御することができる。
図2は、第2実施形態の溶液吐出方法の概要を示す斜視図である。
本実施形態では、基材11としては、例えば、平板プレートを用い、その一側面11aに、ゲル形成領域12を設けた場合について例示する。
インクジェットヘッド13A,13B,13C,13D,13Eは、それぞれのノズル13aが延在する方向が互いに平行になるように、並列に配設される。また、インクジェットヘッド13A,13B,13C,13D,13Eは、インクジェットヘッド13が基材11の一側面11aをスキャンする方向(図2における矢印の方向)に沿って順に設けられている。本実施形態では、インクジェットヘッド13のスキャン方向は、基材11の一側面11aの長手方向に沿った方向である。
本実施形態にあっても、第一の吐出工程において、上述の第1実施形態と同様にして、電気泳動ゲル形成モノマー溶液を吐出する。
本実施形態にあっても、第二の吐出工程において、上述の第1実施形態と同様にして、ゲル重合開始溶液を吐出する。
図3A~図3Dは、本発明の一実施形態に係る電気泳動ゲルの形成方法の概略を示す断面図である。
本実施形態の電気泳動ゲルの形成方法は、上述の第1実施形態の溶液吐出方法または第2実施形態の溶液吐出方法を有する方法である。
ゲル形成領域22を形成するための基材21の一方の面21aの表面処理方法としては、上述の第1実施形態の溶液吐出方法と同様の方法が用いられる。
プラズマグラフト重合表面処理後、カプトンテープを剥がして、表面洗浄を行う。
その後、ゲル形成領域22の接触角を測定したところ、20度以下(水液滴)となり、基材21の一方の面21aの接触角(60度以上)と比較すると、ゲル形成領域22は強い親水性を有する面であることが確認された。
液溜まり23を形成する純水または水溶液には、必要に応じて、テトラメチルエチレンジアミンなどのゲル重合促進剤を添加してもよい。
本実施形態では、例えば、液溜まり23の大きさ(平面視した場合の大きさ(面積))を、長さ70mm×幅3mmとした。
また、液溜まり23は、所望の厚さの電気泳動ゲルを形成するためにも重要な役割を果たす。すなわち、液溜まり23がないと、電気泳動ゲルの製造時間が大幅に増加する。
本実施形態では、例えば、ピペットを用いて、液溜まり23を形成する純水67.65μLを、ゲル形成領域22に滴下した。
これにより、酸性ゲル形成モノマー溶液の濃度勾配が、基材21の一端21bから他端21cに向かって高くなるよう、インクジェットヘッド24から基材21の一方の面21aに、酸性ゲル形成モノマー溶液が吐出される。
本実施形態では、例えば、酸性ゲル形成モノマー溶液の吐出量を、39.45μLとした。
これにより、塩基性ゲル形成モノマー溶液の濃度勾配が、基材21の他端21cから一端21bに向かって高くなるよう、インクジェットヘッド24から基材21の一方の面21aに、塩基性ゲル形成モノマー溶液が吐出される。
本実施形態では、例えば、塩基性ゲル形成モノマー溶液の吐出量を26.90μLとした。
すなわち、上述の第1実施形態の溶液吐出方法と同様にして、第一の吐出工程では、酸性ゲル形成モノマー溶液および塩基性ゲル形成モノマー溶液の液滴の濃淡密度を、より精密に制御するために、種々のアクリルアミド誘導体を独立して吐出してもよい。
本実施形態では、例えば、ゲル重合開始剤として20%過硫酸アンモニウムを用い、20%過硫酸アンモニウムとグリセロールを体積比で1:1の割合で混合した、ゲル重合開始剤溶液を用いた。
また、本実施形態では、例えば、ゲル重合開始剤溶液の吐出量を7μLとした。
この電気泳動ゲル形成混合溶液26は、30分~1時間程度放置すると、ゲル化が始まり、目的とする電気泳動ゲル27(図3D)が形成される。
なお、本実施形態では、ラジカル反応を用いているため、第一の吐出工程および第二の吐出工程を含む電気泳動ゲル形成工程は、ゲル重合反応を抑制する酸素の影響を避けるため、窒素雰囲気化で行うことが好ましい。
洗浄液としては、純水、または、純水に少量のキャリアアンフォライトを混合した水溶液などが用いられる。
電気泳動ゲル27を洗浄するには、純水または水溶液に電気泳動ゲル27が形成された基材21を浸漬し、これらを振盪機などにより振盪する。
本実施形態では、純水中に電気泳動ゲル27が形成された基材21を浸漬し、周期40rpmで、20分間振盪する工程を3回繰り返した。なお、1回の洗浄が完了する毎に、純水を交換した。
基材11としては、ポリメチルメタクリレート(PMMA)などで成形された板状の射出成形品などが挙げられる。
本実施形態の電気泳動用反応器具は、例えば、自動化2次元電気泳動装置に適用される。
自動化2次元電気泳動装置は、例えば、サンプルの2次元目分離を行う第2分離部(サンプル分離器具)を固定する固定手段、1次元目の分離を行う第1媒体を支持したゲル付支持体を保持するアームを備えた保持手段、固定手段および/または保持手段を移動して双方の相対位置を変更させる駆動手段を具備する。
この自動化2次元電気泳動装置では、例えば、1次元目の分離を行う第1媒体として、本実施形態の電気泳動用反応器具が用いられる。
2 ゲル形成領域
3 吐出手段(インクジェットヘッド)
3A,3B,3C,3D,3E,3F,3G,3H インクジェットヘッド
4 酸性ゲル形成モノマー溶液の液滴
5 塩基性ゲル形成モノマー溶液の液滴
11 基材
12 ゲル形成領域
13 インクジェットヘッド
21 基材
22 ゲル形成領域
23 液溜まり
24 インクジェットヘッド
25 液滴
26 電気泳動ゲル形成混合溶液
27 電気泳動ゲル
Claims (14)
- ゲル構造を形成するモノマーと、
ゲル重合開始剤を活性化するゲル重合促進剤と、
を少なくとも含有する電気泳動ゲル形成モノマー溶液。 - 前記モノマーは、ラジカル重合可能な物質である請求項1に記載の電気泳動ゲル形成モノマー溶液。
- 前記ラジカル重合可能な物質は、アクリルアミド、N,N’-メチレンビスアクリルアミドおよびアクリルアミド誘導体からなる群から選択される少なくとも1種である請求項2に記載の電気泳動ゲル形成モノマー溶液。
- 前記ゲル重合促進剤は、テトラメチルエチレンジアミンである請求項1に記載の電気泳動ゲル形成モノマー溶液。
- ゲル構造を形成するモノマーと、ゲル重合開始剤を活性化するゲル重合促進剤と、を少なくとも含有する電気泳動ゲル形成モノマー溶液を吐出する第一の吐出工程と、
前記電気泳動ゲル形成モノマー溶液に対して、ゲル重合開始剤を含有するゲル重合開始溶液を吐出する第二の吐出工程と、
を有する溶液吐出方法。 - 前記第一の吐出工程において、被吐出物の被吐出面の一方向に沿って濃度勾配を示すように、前記電気泳動ゲル形成モノマー溶液を吐出する請求項5に記載の溶液吐出方法。
- 前記第一の吐出工程において、前記電気泳動ゲル形成モノマー溶液を複数回吐出する請求項5に記載の溶液吐出方法。
- 前記モノマーは、ラジカル重合可能な物質である請求項5に記載の溶液吐出方法。
- 前記ラジカル重合可能な物質は、アクリルアミド、N,N’-メチレンビスアクリルアミドおよびアクリルアミド誘導体からなる群から選択される少なくとも1種である請求項8に記載の溶液吐出方法。
- 前記第一の吐出工程において、インクジェット法を用いる請求項5に記載の溶液吐出方法。
- 前記第二の吐出工程において、インクジェット法を用いる請求項5に記載の溶液吐出方法。
- ゲル構造を形成するモノマーと、ゲル重合開始剤を活性化するゲル重合促進剤と、を少なくとも含有する電気泳動ゲル形成モノマー溶液を吐出する第一の吐出工程と、前記電気泳動ゲル形成モノマー溶液に対して、ゲル重合開始剤を含有するゲル重合開始溶液を吐出する第二の吐出工程と、を有する溶液吐出方法を有する電気泳動ゲルの形成方法。
- ゲル構造を形成するモノマーと、ゲル重合開始剤を活性化するゲル重合促進剤と、を少なくとも含有する電気泳動ゲル形成モノマー溶液を吐出する第一の吐出工程と、前記電気泳動ゲル形成モノマー溶液に対して、ゲル重合開始剤を含有するゲル重合開始溶液を吐出する第二の吐出工程と、を有する溶液吐出方法を有する電気泳動ゲルの形成方法によって形成される電気泳動ゲル。
- ゲル構造を形成するモノマーと、ゲル重合開始剤を活性化するゲル重合促進剤と、を少なくとも含有する電気泳動ゲル形成モノマー溶液を吐出する第一の吐出工程と、前記電気泳動ゲル形成モノマー溶液に対して、ゲル重合開始剤を含有するゲル重合開始溶液を吐出する第二の吐出工程と、を有する溶液吐出方法を有する電気泳動ゲルの形成方法によって形成された電気泳動ゲルを備える電気泳動用反応器具。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507592A JPWO2012133377A1 (ja) | 2011-03-29 | 2012-03-27 | 溶液吐出方法、電気泳動用反応器具 |
US14/007,748 US20140076727A1 (en) | 2011-03-29 | 2012-03-27 | Electrophoresis-gel-forming monomer solution, solution ejecting method, method for forming electrophoresis gel, electrophoresis gel, and electrophoresis reaction instrument |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011072885 | 2011-03-29 | ||
JP2011-072885 | 2011-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133377A1 true WO2012133377A1 (ja) | 2012-10-04 |
Family
ID=46931094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057876 WO2012133377A1 (ja) | 2011-03-29 | 2012-03-27 | 電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140076727A1 (ja) |
JP (1) | JPWO2012133377A1 (ja) |
WO (1) | WO2012133377A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006528354A (ja) * | 2003-07-18 | 2006-12-14 | バイオ−ラッド ラボラトリーズ インコーポレーティッド | 補填モノマー溶液からのプレキャスト電気泳動スラブゲル |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279506B2 (en) * | 2004-05-05 | 2007-10-09 | Xerox Corporation | Ink jettable overprint compositions |
JP2006088474A (ja) * | 2004-09-22 | 2006-04-06 | Fuji Photo Film Co Ltd | 画像形成装置及び方法 |
US7845786B2 (en) * | 2005-09-16 | 2010-12-07 | Fujifilm Corporation | Image forming apparatus and ejection state determination method |
JP2009128834A (ja) * | 2007-11-27 | 2009-06-11 | Seiko Epson Corp | カラーフィルタの製造方法、カラーフィルタ、画像表示装置および電子機器 |
JP2009233867A (ja) * | 2008-03-25 | 2009-10-15 | Fujifilm Corp | インクジェット記録方法及び記録物 |
WO2011065909A1 (en) * | 2009-11-27 | 2011-06-03 | Ge Healthcare Bio-Sciences Ab | Printing of electrophoresis gels |
US20130098764A1 (en) * | 2010-06-18 | 2013-04-25 | Sharp Kabushiki Kaisha | Method for producing reaction instrument for electrophoresis, apparatus for producing reaction instrument for electrophoresis, base for gel immobilization, reaction instrument for electrophoresis and kit for electrophoresis |
-
2012
- 2012-03-27 WO PCT/JP2012/057876 patent/WO2012133377A1/ja active Application Filing
- 2012-03-27 US US14/007,748 patent/US20140076727A1/en not_active Abandoned
- 2012-03-27 JP JP2013507592A patent/JPWO2012133377A1/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006528354A (ja) * | 2003-07-18 | 2006-12-14 | バイオ−ラッド ラボラトリーズ インコーポレーティッド | 補填モノマー溶液からのプレキャスト電気泳動スラブゲル |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012133377A1 (ja) | 2014-07-28 |
US20140076727A1 (en) | 2014-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6384210B1 (en) | Solvent for biopolymer synthesis, solvent microdroplets and methods of use | |
US6419883B1 (en) | Chemical synthesis using solvent microdroplets | |
WO2011158520A1 (ja) | 電気泳動用反応器具の製造方法、電気泳動用反応器具の製造装置、ゲル固定用基材、電気泳動用反応器具及び電気泳動用キット | |
JP2001337088A (ja) | バイオチップ作製方法およびそれを用いたバイオチップ作製装置 | |
WO2012133377A1 (ja) | 電気泳動ゲル形成モノマー溶液、溶液吐出方法、電気泳動ゲルの形成方法、電気泳動ゲルおよび電気泳動用反応器具 | |
JP2003098183A (ja) | 液滴吐出方法 | |
CA2423068A1 (en) | Acoustic ejection of fluids from a plurality of reservoirs | |
WO2013118775A1 (ja) | 二次元電気泳動キット、二次元電気泳動キットの製造方法、製造方法及び二次元電気泳動チップ | |
JP2004077393A (ja) | 電気泳動用ゲルプレート及びその作製方法 | |
CN112449682A (zh) | 用于芯片上微流体分配的设备和方法 | |
JP2006281139A (ja) | 液体混合方法、該液体混合方法を用いたタンパク質結晶化条件のスクリーニング方法、液滴吐出装置 | |
JP5028794B2 (ja) | パターン形成方法及び液滴吐出装置 | |
US8469492B2 (en) | Method of printing droplet using capillary electric charge concentration | |
WO2013161368A1 (ja) | 等電点電気泳動用試験具およびその製造方法 | |
WO2014041908A1 (ja) | 電気泳動用試験具およびその製造方法 | |
US20060177585A1 (en) | Liquid dispense method and microarray manufacturing method | |
JP2013205088A (ja) | 溶液塗布方法および等電点電気泳動用試験具の製造方法 | |
Lee et al. | On-demand dna synthesis on solid surface by four directional ejectors on a chip | |
JP2004163394A (ja) | 液滴吐出ヘッド及びその製造方法、マイクロアレイ製造装置並びにマイクロアレイの製造方法 | |
WO2012176782A1 (ja) | 電気泳動用チップおよびその製造方法 | |
JP2003287537A (ja) | インクジェットヘッド及びプローブアレイの製造方法 | |
JP2014059161A (ja) | 電気泳動用試験具およびその製造方法 | |
KR20070109243A (ko) | 모세관 전기전하집중 방식의 액적 프린팅 장치 | |
JPWO2007145228A1 (ja) | マイクロアレイの作製方法 | |
JP2002104595A (ja) | 液体吐出方法および装置、並びにマイクロアレイ製造方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12763862 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013507592 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14007748 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12763862 Country of ref document: EP Kind code of ref document: A1 |