WO2011155771A2 - 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름 - Google Patents

내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름 Download PDF

Info

Publication number
WO2011155771A2
WO2011155771A2 PCT/KR2011/004212 KR2011004212W WO2011155771A2 WO 2011155771 A2 WO2011155771 A2 WO 2011155771A2 KR 2011004212 W KR2011004212 W KR 2011004212W WO 2011155771 A2 WO2011155771 A2 WO 2011155771A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
meth
film
methacrylate
acrylic copolymer
Prior art date
Application number
PCT/KR2011/004212
Other languages
English (en)
French (fr)
Other versions
WO2011155771A3 (ko
Inventor
김수경
성다은
한창훈
강병일
서재범
최은정
전병규
승유택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201180028518.0A priority Critical patent/CN102933624B/zh
Priority to JP2013514115A priority patent/JP5779822B2/ja
Priority to US13/702,911 priority patent/US8765896B2/en
Publication of WO2011155771A2 publication Critical patent/WO2011155771A2/ko
Publication of WO2011155771A3 publication Critical patent/WO2011155771A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate

Definitions

  • the present invention relates to a heat resistant high strength acrylic copolymer, and an optical film comprising the same.
  • twisting films are used for polarizing films, polarizer protective films, retardation films, plastic substrates, light guide plates, and the like.
  • Twisted nematic (TN), super twisted nematic (STN) Various modes of liquid crystal display using vertical alignment (VA), in-plane switching (IPS) liquid crystal cells, and the like have been developed. All of these liquid crystal cells have inherent liquid crystal arrays, and have inherent optical anisotropy. In order to compensate for this optical anisotropy, films have been proposed in which various kinds of polymers are stretched to impart a retardation function.
  • the liquid crystal display uses high birefringence characteristics and orientations of the liquid crystal molecules, the refractive index varies according to the viewing angle, and thus the color and brightness of the screen change.
  • the refractive index varies according to the viewing angle, and thus the color and brightness of the screen change.
  • a compensation film having a negative phase difference in the thickness direction is required to compensate for this.
  • the front of the two polarizers orthogonal to each other do not pass light, but when the angle is inclined, the optical axis of the two polarizers are not orthogonal to cause light leakage.
  • the display device using the liquid crystal requires both phase difference compensation in the thickness direction and plane direction difference compensation in order to widen the viewing angle.
  • a requirement for retardation compensation films is that birefringence must be easily controlled.
  • the birefringence of the film is made not only by the fundamental birefringence of the material but also by the orientation of the polymer chain in the film. Orientation of the polymer chain is mostly caused by the force applied from the outside or due to the inherent properties of the material, the method of aligning the molecule by the external force is to stretch the polymer film uniaxially or biaxially.
  • N-TAC, V-TAC, and COP films have recently been used as compensation films or retardation films.
  • these films have a problem of high cost and complicated manufacturing process.
  • An object of the present invention for solving the problems of the prior art as described above is to provide an acrylic copolymer resin having excellent heat resistance while maintaining transparency.
  • Still another object of the present invention is to provide a resin composition for an optical film comprising the acrylic copolymer resin and a resin containing an aromatic ring and / or an aliphatic ring in the main chain.
  • Still another object of the present invention is to provide an optical film having excellent heat resistance and optical transparency including the resin composition for optical films, and a liquid crystal display device comprising the optical film.
  • the present invention has been made to solve the above problems of the prior art,
  • alkyl (meth) acrylate monomers 1) alkyl (meth) acrylate monomers; 2) (meth) acrylate monomers including aliphatic rings and / or aromatic rings; And 3) an acrylic copolymer for a polymerized optical film including a (meth) acrylamide monomer.
  • the present invention also provides a compounding resin in which the acrylic copolymer for an optical film of the present invention and a resin containing an aromatic ring and / or an aliphatic ring in the main chain are mixed.
  • the acrylic copolymer for an optical film according to the present invention is excellent in heat resistance while maintaining transparency.
  • the optical film including the compounding resin containing the acrylic copolymer for the optical film is excellent in transparency and heat resistance, and excellent in workability, adhesion, retardation characteristics and durability.
  • alkyl (meth) acrylate monomers 1) alkyl (meth) acrylate monomers; 2) (meth) acrylate monomers including aliphatic rings and / or aromatic rings; And 3) an acrylic copolymer for an optical film polymerized including a (meth) acrylamide monomer.
  • the copolymer resin containing a monomer means that the monomer is polymerized and included as a repeating unit in the copolymer resin.
  • a "(meth) acrylate type monomer” means a “acrylate type monomer” or a “methacrylate type monomer”.
  • a "(meth) acrylamide monomer” includes a “acrylamide monomer” or a “methacrylamide monomer”.
  • the acrylic copolymer may be a block copolymer or a random copolymer, but the copolymer form is not limited thereto.
  • an alkyl (meth) acrylate monomer means both an alkyl acrylate monomer and an alkyl methacrylate monomer. It is preferable that the alkyl group of the said alkyl (meth) acrylate type monomer is C1-C10, It is more preferable that it is C1-C4, It is more preferable that it is a methyl group or an ethyl group.
  • the alkyl methacrylate monomer is more preferably methyl methacrylate, but is not limited thereto.
  • the content of the alkyl methacrylate monomer is preferably 50 to 98.9% by weight, more preferably 50 to 90% by weight.
  • the content of the alkyl methacrylate monomer is within the above range, excellent transparency may be maintained while heat resistance.
  • the (meth) acrylate monomer containing an aliphatic ring and / or an aromatic ring serves to increase compatibility with the resin containing an aromatic ring and / or an aliphatic ring in the main chain, and examples
  • it may be a cycloalkyl (meth) acrylate monomer or an aryl (meth) acrylate monomer.
  • the cycloalkyl group of the cycloalkyl (meth) acrylate monomer is preferably 4 to 12 carbon atoms, more preferably 5 to 8 carbon atoms, and most preferably a cyclohexyl group.
  • the aryl group of the aryl (meth) acrylate monomer is preferably 6 to 12 carbon atoms, most preferably a phenyl group.
  • (meth) acrylate monomers including the aliphatic ring and / or the aromatic ring include cyclopentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, cyclohexyl acrylate and 2-phenoxyethyl acryl.
  • cyclohexyl methacrylate or phenyl methacrylate are preferred, but not limited thereto.
  • the content of the (meth) acrylate monomer containing the aliphatic ring and / or the aromatic ring is preferably more than 0% by weight and less than 50% by weight, more than 0% by weight and 30% by weight or less. More preferred.
  • heat resistance can be sufficiently secured.
  • the (meth) acrylamide-based monomer plays a role in making the copolymer of the present invention exhibit higher heat resistance and strength.
  • the (meth) acrylamide-based monomers include, but are not limited to, N-substituted methacrylamide, methacrylamide including aliphatic rings and / or aromatic rings.
  • Substituents of the N-substituted methacrylamide include, but are not limited to, ethyl, isopropyl, tert-butyl, cyclohexyl, benzyl, phenyl, and the like.
  • the methacrylamide is preferably included 0.1 to 10% by weight.
  • the weight average molecular weight of the acrylic copolymer resin is preferably 50,000 to 500,000 in terms of heat resistance, processability and productivity.
  • Glass transition temperature (Tg) of the said acrylic copolymer resin becomes like this. Preferably it is 120 degreeC or more, More preferably, it is 130 degreeC or more.
  • the glass transition temperature of the acrylic copolymer resin is not particularly limited, but may be 200 ° C. or less.
  • the second aspect of the present invention relates to a compounding resin in which the acrylic copolymer of the first aspect of the present invention and a resin containing an aromatic ring and / or an aliphatic ring in the main chain are mixed.
  • the resin composition as the resin containing an aromatic ring and / or an aliphatic ring in the main chain, for example, polycarbonate resin, polyarylate resin, polynaphthalene resin, polynorbornene resin, or the like can be used. Although it is more preferable that it is a carbonate resin, it is not limited only to this.
  • the weight ratio of acrylic copolymer resin and resin which contains an aromatic ring and / or an aliphatic ring in a principal chain is 60-99.9: 0.1-40, and, as for the said resin composition, it is more preferable that it is 70-99: 1-30. .
  • the resin composition may be prepared by blending the acrylic copolymer resin with a resin containing an aromatic ring and / or an aliphatic ring in the main chain according to a method well known in the art, such as compounding, and may be a colorant, flame retardant, reinforcing agent, 0.001 to 70 parts by weight of additives well known in the art, such as fillers, UV stabilizers, antioxidants and the like.
  • the glass transition temperature of the said resin composition is not specifically limited, It may be 200 degrees C or less.
  • the weight average molecular weights of the said resin composition are 50,000-500,000 in terms of heat resistance, sufficient workability, productivity, etc.
  • a third aspect of the invention relates to an optical film comprising the compounding resin.
  • the optical film according to the present invention may have different retardation values depending on the content of the resin containing an aromatic ring and / or an aliphatic ring in the main chain, and thus may be used as a retardation compensation film or a protective film.
  • the retardation compensation film may be used in the VA mode type or the TN mode type according to the retardation value.
  • the optical film according to the present invention may have a plane direction retardation value (R in ) of 30 nm to 80 nm and a thickness direction retardation value (R th ) of -50 nm to -300 nm, in which case it may be used as a VA mode type retardation compensation film.
  • the optical film according to the present invention may have a plane direction retardation value R in of 150 nm to 200 nm and a thickness direction retardation value R th of ⁇ 90 nm or less, that is, an absolute value of 90 or more of the thickness direction retardation value, in this case. It can be used as a TN mode retardation compensation film.
  • the thickness direction retardation value (R th ) is more preferably -90nm to -150nm.
  • the plane direction retardation value (R in ) of the optical film may be 30nm to 80nm
  • the thickness direction retardation value R th may be -50 nm to -300 nm.
  • the optical film according to the present invention can be used as a VA mode type phase difference compensation film.
  • the plane direction retardation of the optical film may be 0 nm to 10 nm, preferably 0 nm to 5 nm, more preferably about 0 nm, and the thickness direction retardation value R th may be -10 nm to 10 nm, preferably -5 nm to 5 nm. And more preferably about 0 nm.
  • the optical film according to the present invention can be used as a polarizer protective film.
  • the 3) optical film may be prepared into a film according to a method well known in the art, such as 2) the resin composition of the solution caster method or extrusion method, of which the solution caster method is preferred.
  • the stretching step may be performed in the longitudinal direction (MD) stretching or in the transverse direction (TD) stretching, or both.
  • MD longitudinal direction
  • TD transverse direction
  • stretching both a longitudinal direction and a lateral direction after extending
  • Stretching can be done in one step or stretched in multiple steps.
  • stretching in a longitudinal direction extending
  • the starting angle of the tenter is 10 degrees or less in total, suppressing the bowing phenomenon which arises at the time of a lateral stretch, and controls the angle of an optical axis regularly.
  • the same boeing suppression effect can also be obtained by making transverse stretching into multiple stages.
  • the stretching may be performed at a temperature of (Tg-20 ° C) to (Tg + 30 ° C) when the glass transition temperature of the resin composition is Tg.
  • the glass transition temperature refers to a region from the temperature at which the storage modulus of the resin composition begins to decrease, and thus the loss modulus becomes larger than the storage modulus, at which the orientation of the polymer chain is relaxed and lost. Glass transition temperatures can be measured by differential scanning calorimetry (DSC). The temperature at the time of the stretching step is more preferably the glass transition temperature of the film.
  • the drawing speed is preferably in the range of 1 to 100 mm / min in the case of a universal drawing machine (Zwick Z010) and in the range of 0.1 to 2 m / min in the case of a pilot drawing machine. It is preferable to stretch the film by applying an elongation of 5 to 300%.
  • the optical film according to the present invention can be uniaxially or biaxially stretched by the above-described method, thereby adjusting the phase difference characteristics.
  • the plane direction retardation value represented by Equation 1 below is preferably 0 nm to 200 nm, and the thickness direction retardation value represented by Equation 2 below is preferably 10 nm to -300 nm.
  • n x is a refractive index of the direction of the largest refractive index in the plane direction of the film
  • n y is a refractive index in the vertical direction in the n x direction in the plane direction of the film
  • n z is the refractive index in the thickness direction
  • d is the thickness of the film.
  • the surface direction retardation value and the thickness direction retardation value may be adjusted according to the content of the resin including the aromatic ring and / or the aliphatic ring in the main chain.
  • the planar retardation value R in of the optical film according to the present invention may be 20 nm to 80 nm, and the thickness direction retardation value R th may be -50 nm to -300 nm.
  • the optical film according to the present invention can be used as a VA mode type phase difference compensation film.
  • the plane direction retardation value R in of the optical film according to the present invention may be 0 nm to 10 nm, preferably 0 nm to 5 nm, more preferably about 0 nm, and the thickness direction retardation value R th is ⁇ 10 nm. It may be from 10nm, preferably -5nm to 5nm, more preferably about 0nm.
  • the optical film according to the present invention can be used as a polarizer protective film.
  • the optical film according to the present invention When the optical film according to the present invention is applied to a liquid crystal display device, it may be provided on only one side of the liquid crystal panel (one sheet type) or may be provided on both sides of the liquid crystal panel (two sheets type). Although one sheet type is illustrated in FIG. 3 and two sheet types are illustrated in FIG. 4, the scope of the present invention is not limited thereto.
  • the plane retardation value R in of the optical film is 30 nm to 80 nm, preferably 35 nm to 70 nm, more preferably about 40 nm to 60 nm. It is preferable that the thickness direction retardation value R in is -270 nm or less, that is, the thickness direction retardation value is preferably 270 or more in absolute value.
  • the plane retardation value R in of the optical film is 30 nm to 80 nm, preferably 35 nm to 70 nm, and more preferably about 40 nm to 60 nm.
  • the thickness direction retardation value R in is preferably -100 nm or less, that is, the thickness direction retardation value is preferably 100 or more in absolute value.
  • the brittleness of the optical film according to the present invention can be measured by dropping a steel sphere having a particle diameter of 15.9 mm and a weight of 16.3 g on a test film to measure a height at which a hole is formed in the film, and the optical film according to the present invention has the height Preferably it is 600 mm or more, More preferably, it is 700 mm or more.
  • the haze value of the optical film which concerns on this invention is 1% or less, It is more preferable that it is 0.5% or less, It is further more preferable that it is 0.1% or less.
  • the physical property evaluation method in the Example of this invention is as follows.
  • Weight average molecular weight (Mw) The prepared resin was dissolved in tetrahydrofuran and measured by gel osmosis chromatography (GPC).
  • Tg glass transition temperature: Measured using a DSC (Differential Scanning Calorimeter) from TA Instrument.
  • Haze value (transparency): The haze value was measured using HAZEMETER HM-150 of Murakami color Research Laboratory.
  • An acrylic copolymer resin was prepared from 89 parts by weight of methyl methacrylate, 10 parts by weight of phenyl methacrylate, and 1 part by weight of methacrylate.
  • the resin with glass transition temperature of 130 degreeC and molecular weight 110,000 was obtained.
  • 99 parts by weight of this resin was prepared by compounding with 1 part by weight of polycarbonate to prepare a final resin composition. After producing this resin composition into the film by the solution casting method, extending
  • An acrylic copolymer resin was prepared from 87 parts by weight of methyl methacrylate, 10 parts by weight of phenyl methacrylate, and 3 parts by weight of methacrylate.
  • the resin with a glass transition temperature of 132 degreeC and molecular weight of 105,000 was obtained.
  • 98.5 parts by weight of this resin was prepared by compounding with 1.5 parts by weight of polycarbonate to prepare a final resin composition.
  • stretching was performed at the glass transition temperature and the phase difference value of the film was measured.
  • the plane retardation value / thickness retardation value was 0.9 / -0.7.
  • An acrylic copolymer resin was prepared from 90 parts by weight of methyl methacrylate, 5 parts by weight of phenyl methacrylate, and 5 parts by weight of methacrylate. As a result of measuring the glass transition temperature and molecular weight of manufactured resin, the resin of glass transition temperature 135 degreeC and molecular weight 120,000 was obtained.
  • the final compounding resin was prepared by compounding 99.2 parts by weight of this resin with 0.8 parts by weight of polycarbonate. After producing this compounding resin into a film by the solution casting method, extending
  • methyl methacrylate, a (meth) acrylate monomer containing an aromatic ring, and methacrylamide acrylic copolymer resin were prepared.
  • the contents of the methyl methacrylate, the (meth) acrylate monomer containing an aromatic ring, and methacrylamide used in each of Examples 4 to 12 were as shown in Table 1 below, and the obtained acrylic system
  • the glass transition temperature and weight average molecular weight of the copolymer resin were also shown in Table 2 below.
  • the obtained acrylic copolymer resin and polycarbonate are mixed in the ratios shown in Table 3 below, the compounding resin is prepared into a film by a solution casting method, followed by stretching at a glass transition temperature, and retardation value of the film. Was measured. The results were as shown in Table 4 below.
  • An acrylic copolymer resin was prepared from 90 parts by weight of methyl methacrylate and 10 parts by weight of phenyl methacrylate. As a result of measuring the glass transition temperature and molecular weight of manufactured resin, the resin with a glass transition temperature of 124 degreeC and a weight average molecular weight 100,000 was able to be obtained. This resin and polycarbonate were mixed in a weight ratio of 90:10, and compounded to prepare a final compounding resin. After the compounding resin was prepared into a film by a solution casting method, stretching was performed at the glass transition temperature, and the retardation value of the film was measured. As a result, the plane retardation value / thickness retardation value was 1.4 / -0.7.
  • Acrylic copolymer resin was prepared from 80 parts by weight of methyl methacrylate and 20 parts by weight of phenyl methacrylate. As a result of measuring the glass transition temperature and molecular weight of manufactured resin, the resin with a glass transition temperature of 119 degreeC and a weight average molecular weight of 90,000 was obtained. This resin and polycarbonate were mixed in a weight ratio of 90:10, and compounded to prepare a final compounding resin. After the compounding resin was prepared into a film by a solution casting method, stretching was performed at the glass transition temperature, and the retardation value of the film was measured. As a result, the plane retardation value / thickness retardation value was 48 / -105.
  • the falling ball test was performed to measure the strength of the films prepared in Examples 1, 2, 3, and Comparative Example 1.
  • the experimental method was measured by dropping steel balls having a particle diameter of 15.9 mm and a weight of 16.3 g on the film to measure the height at which the holes were formed in the film. The measured height is shown in Table 5 below.
  • the acrylic copolymer of the present invention was confirmed that the glass transition temperature is higher than that of the comparative example, excellent heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름에 관한 것으로서, 보다 상세하게는, 1) 알킬(메트)아크릴레이트계 단량체; 2) 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체; 및 3) (메트)아크릴아마이드계 단량체를 포함하여 중합된 아크릴계 공중합체에 관한 것이다. 본 발명에 따른 아크릴계 공중합체는 투명성이 유지되면서도 내열성이 뛰어나다. 또한, 상기 아크릴계 공중합체를 포함하는 컴파운딩 수지를 포함하는 광학 필름은 투명성 및 내열성이 우수하며, 가공성, 접착성, 위상차 특성 및 내구성이 우수하다.

Description

내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름
본 발명은 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름에 관한 것이다.
근래 광학 기술의 발전을 발판으로 종래의 브라운관을 대체하는 플라즈마 디스플레이 패널(plasma display panel, PDP), 액정 디스플레이(liquid crystal display, LCD) 등 여러 가지의 방식을 이용한 디스플레이 기술이 제안, 시판되고 있다. 이러한 디스플레이를 위한 폴리머 소재는 그 요구 특성이 한층 더 고도화되고 있다. 예를 들면, 액정 디스플레이의 경우 박막화, 경량화, 화면 면적의 대형화가 추진되면서 광시야각화, 고콘트라스트화, 시야각에 따른 화상 색조 변화의 억제 및 화면 표시의 균일화가 특히 중요한 문제가 되었다.
이에 따라 편광 필름, 편광자 보호 필름, 위상차 필름, 플라스틱 기판, 도광판 등에 여러 가지의 폴리머 필름이 사용되고 있으며, 액정으로서 트위스티드 네메틱(twisted nematic, TN), 슈퍼 트위스티드 네메틱(super twisted nematic, STN), 버티컬 얼라인먼트(vertical alignment, VA), 인플레인 스위칭(in-plane switching, IPS) 액정 셀 등을 이용한 다양한 모드의 액정 표시 장치가 개발되고 있다. 이들 액정 셀은 모두 고유한 액정 배열을 하고 있어서, 고유한 광학 이방성을 갖고 있으며, 이 광학 이방성을 보상하기 위하여 다양한 종류의 폴리머를 연신하여 위상차 기능을 부여한 필름이 제안되어 왔다.
구체적으로, 액정 표시 장치는 액정 분자가 가지는 높은 복굴절 특성과 배향을 이용하기 때문에 시야각에 따라 굴절율이 달라져 그에 따라 화면의 색상과 밝기가 변한다. 예컨대, 버티컬 얼라인먼트 방식에 사용하는 대부분의 액정 분자는 액정 표시면의 두께 방향으로 양의 위상차를 갖기 때문에 이를 보상하기 위해서 두께 방향으로 음의 위상차를 갖는 보상 필름이 필요하다. 또한, 서로 직교된 두 편광판의 정면에서는 빛을 통과시키지 않지만 각도를 기울이면 두 편광판의 광축이 직교하지 않게 되어 빛샘 현상이 나타나며, 이를 보상하기 위하여 면 방향 위상차를 갖는 보상 필름이 필요하다. 또한, 액정을 이용한 표시 장치는 시야각을 넓게 하기 위해 두께 방향의 위상차 보상과 면 방향 위상차 보상이 동시에 필요하다.
위상차 보상 필름으로 갖추어야 할 요건으로는 복굴절이 쉽게 조절되어야 한다는 것이다. 그런데, 필름의 복굴절은 물질이 가지는 근본적인 복굴절 뿐만 아니라 필름에 있어서 고분자 사슬의 배향에 의하여 이루어진다. 고분자 사슬의 배향은 대부분 외부에서 부가되는 힘에 의해 강제적으로 일어나거나 물질이 갖고 있는 고유 특성에 기인하며, 외부의 힘에 의해 분자를 배향하는 방법은 고분자 필름을 일축 또는 이축으로 연신하는 것이다.
상기와 같은 액정 고유의 복굴절 특성으로 인한 LCD의 시야각 문제를 해결하기 위해, 근래 N-TAC, V-TAC, COP Film이 보상 필름 또는 위상차 필름으로 사용되고 있다. 그러나, 이러한 필름들은 가격이 비싸고 제조시 공정이 복잡해지는 문제점을 가지고 있다.
상기와 같은 종래 기술의 문제점을 해결하기 위한 본 발명의 목적은 투명성이 유지되면서도 종래 보다 내열성이 뛰어난 아크릴계 공중합체 수지를 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 아크릴계 공중합체 수지 및 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지를 포함하는 광학 필름용 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 광학 필름용 수지 조성물을 포함하는 내열성 및 광학적 투명성이 우수한 광학 필름, 및 상기 광학 필름을 포함하는 액정 표시 장치를 제공하는 것이다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서,
1) 알킬(메트)아크릴레이트계 단량체; 2) 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체; 및 3) (메트)아크릴아마이드계 단량체를 포함하여 중합된 광학 필름용 아크릴계 공중합체를 제공한다.
또한, 본 발명의 상기 광학 필름용 아크릴계 공중합체, 및 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지가 혼합된 컴파운딩 수지를 제공한다.
또한, 본 발명의 상기 컴파운딩 수지를 포함하는 광학 필름을 제공한다.
본 발명에 따른 광학 필름용 아크릴계 공중합체는 투명성이 유지되면서도 내열성이 뛰어나다. 또한, 상기 광학 필름용 아크릴계 공중합체를 포함하는 컴파운딩 수지를 포함하는 광학 필름은 투명성 및 내열성이 우수하며, 가공성, 접착성, 위상차 특성 및 내구성이 우수하다.
이하 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면은, 1) 알킬(메트)아크릴레이트계 단량체; 2) 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체; 및 3) (메트)아크릴아마이드계 단량체를 포함하여 중합된 광학 필름용 아크릴계 공중합체에 관한 것이다.
본 명세서에서 단량체를 포함하는 공중합체 수지라 함은, 단량체가 중합되어 공중합체 수지 내에서 반복단위로서 포함되는 것을 의미한다.
또한, 본 명세서에서, "(메트)아크릴레이트계 단량체"의 의미는, "아크릴레이트계 단량체", 또는 "메타크릴레이트계 단량체"를 포함하는 것이다.
또한, 본 명세서에서, "(메트)아크릴아마이드계 단량체"의 의미는, "아크릴아마이드계 단량체", 또는 "메타크릴아마이드계 단량체"를 포함하는 것이다.
상기 아크릴계 공중합체는 블록 공중합체 또는 랜덤 공중합체일 수 있으나, 공중합 형태가 이에 한정되는 것은 아니다.
상기 광학 필름용 아크릴계 공중합체 수지에 있어서, 알킬(메트)아크릴레이트계 단량체는 알킬아크릴레이트계 단량체 및 알킬메타크릴레이트계 단량체를 모두 의미하는 것이다. 상기 알킬(메트)아크릴레이트계 단량체의 알킬기는 탄소수 1 ~ 10인 것이 바람직하며, 탄소수 1 ~ 4인 것이 더욱 바람직하고, 메틸기 또는 에틸기인 것이 더욱 바람직하다. 상기 알킬 메타크릴레이트계 단량체는 메틸 메타크릴레이트인 것이 보다 바람직하나 이에만 한정되는 것은 아니다.
상기 아크릴계 공중합체 수지에 있어서, 알킬 메타크릴레이트계 단량체의 함량은 50 ~ 98.9 중량%인 것이 바람직하고, 50 ~ 90 중량%인 것이 더욱 바람직하다. 알킬 메타크릴레이트계 단량체의 함량이 상기 범위일 경우 투명성이 우수하면서도 내열성이 유지될 수 있다.
상기 아크릴계 공중합체 수지에 있어서, 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체는 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지와의 상용성을 높이는 역할을 하며, 예를 들어 시클로알킬 (메트)아크릴레이트계 단량체 또는 아릴 (메트)아크릴레이트계 단량체일 수 있다.
상기 시클로알킬 (메트)아크릴레이트계 단량체의 시클로알킬기는 탄소수 4 ~ 12인 것이 바람직하고, 탄소 수 5 ~ 8인 것이 더욱 바람직하며, 시클로헥실기인 것이 가장 바람직하다. 또한, 상기 아릴 (메트)아크릴레이트계 단량체의 아릴기는 탄소수 6 ~ 12인 것이 바람직하며, 페닐기인 것이 가장 바람직하다.
상기 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체의 구체적인 예로는 시클로펜틸 메타크릴레이트, 시클로헥실 메타크릴레이트, 벤질 메타크릴레이트, 시클로헥실 아크릴레이트, 2-페녹시에틸 아크릴레이트, 3,3,5-트리메틸시클로헥실 메타크릴레이트, 4-t-부틸시클로헥실 메타크릴레이트, 3-시클로헥실프로필 메타크릴레이트, 페닐 메타크릴레이트, 4-t-부틸페닐 메타크릴레이트, 4-메톡시페틸 메타크릴레이트, 1-페닐에틸 메타크릴레이트, 2-페닐에틸 아크릴레이트, 2-페틸에틸 메타크릴레이트, 2-페녹시에틸 메타크릴레이트, 2-나프틸 메타크릴레이트 등을 들 수 있고, 시클로헥실 메타크릴레이트 또는 페닐 메타크릴레이트가 바람직하나, 이에만 한정되는 것은 아니다.
상기 아크릴계 공중합체 수지에 있어서, 상기 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체의 함량은 0 중량% 초과 50 중량% 미만인 것이 바람직하고, 0 중량% 초과 30 중량% 이하인 것이 더욱 바람직하다. 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체의 함량이 상기 범위일 때 내열성이 충분히 확보될 수 있다.
상기 아크릴계 공중합체 수지에 있어서, 상기 (메트)아크릴아마이드계 단량체는 본 발명의 공중합체가 보다 높은 내열성과 강도를 나타내도록 하는 역할을 한다. 상기 (메트)아크릴아마이드계 단량체의 예로 N-치환된 메타크릴아마이드, 지방족 고리 및/또는 방향족 고리를 포함하는 메타크릴아마이드 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 N-치환된 메타크릴아마이드의 치환기로는 에틸, 이소프로필, tert-부틸, 시클로헥실, 벤질, 페닐기 등이 있으나, 이에만 한정되는 것은 아니다.
상기 메타크릴아마이드는 0.1 내지 10 중량% 포함하는 것이 바람직하다.
또한, 상기 아크릴계 공중합체 수지의 중량 평균 분자량은 내열성, 가공성 및 생산성 측면에서 5만 내지 50만인 것이 바람직하다.
상기 아크릴계 공중합체 수지는 유리 전이 온도(Tg)가 바람직하게는 120℃ 이상, 더욱 바람직하게는 130℃ 이상이다. 상기 아크릴계 공중합체 수지의 유리 전이 온도는 특별히 한정되지 않으나 200℃ 이하일 수 있다.
본 발명의 두 번째 측면은, 상기 본 발명 첫 번째 측면의 아크릴계 공중합체, 및 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지가 혼합된 컴파운딩 수지에 관한 것이다.
상기 수지 조성물에 있어서, 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지는, 예를 들어 폴리카보네이트계 수지, 폴리아릴레이트계 수지, 폴리나프탈렌계 수지, 폴리노보넨계 수지 등을 이용할 수 있고, 폴리카보네이트계 수지인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다.
상기 수지 조성물은, 아크릴계 공중합체 수지와 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지의 중량비가 60 ~ 99.9 : 0.1 ~ 40인 것이 바람직하고, 70 ~ 99 : 1 ~ 30인 것이 더욱 바람직하다.
상기 수지 조성물은 상기 아크릴계 공중합체 수지와 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지를 컴파운딩법과 같이 당 업계에 잘 알려진 방법에 따라 블렌딩함으로써 제조할 수 있으며, 착색제, 난연제, 강화제, 충진제, UV 안정제, 산화 방지제 등과 같은 당 업계에 잘 알려진 첨가제를 0.001 내지 70 중량부 포함할 수 있다.
상기 수지 조성물의 유리 전이 온도는 110℃ 이상인 것이 바람직하고, 120℃ 이상인 것이 더욱 바람직하다. 상기 수지 조성물의 유리 전이 온도는 특별히 한정되지 않으나 200℃이하일 수 있다.
또한, 상기 수지 조성물의 중량 평균 분자량은 내열성, 충분한 가공성, 생산성 등의 면에서 5만 내지 50만인 것이 바람직하다.
본 발명의 세 번째 측면은, 상기 컴파운딩 수지를 포함하는 광학 필름에 관한 것이다.
본 발명에 따른 광학 필름은 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지의 함량에 따라 다른 위상차 값을 가질 수 있으며, 이에 따라 위상차 보상 필름 또는 보호필름으로서 사용될 수 있다.
상기 위상차 보상 필름으로는 위상차 값에 따라 VA 모드형 또는 TN 모드형에서 사용될 수 있다. 본 발명에 따른 광학 필름은 면 방향 위상차값(Rin) 30nm 내지 80nm 및 두께 방향 위상차값(Rth) -50nm 내지 -300nm을 가질 수 있으며, 이 경우 VA 모드형 위상차 보상 필름으로 사용될 수 있다. 또한, 본 발명에 따른 광학 필름은 면 방향 위상차값(Rin) 150nm 내지 200nm 및 두께 방향 위상차값(Rth) -90nm 이하, 즉 두께 방향 위상차값의 절대값 90 이상을 가질 수 있으며, 이 경우 TN 모드형 위상차 보상 필름으로 사용될 수 있다. 상기 TN 모드형 위상차 보상 필름으로 사용되는 경우, 두께 방향 위상차값(Rth)은 -90nm 내지 -150nm인 것이 더욱 바람직하다.
하나의 예로서, 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지의 함량이 10 중량% 내지 40 중량%인 경우, 광학 필름의 면 방향 위상차값(Rin)은 30nm 내지 80nm일 수 있고, 두께 방향 위상차값(Rth)은 -50nm 내지 -300nm일 수 있다. 이 경우 본 발명에 따른 광학 필름은 VA 모드형 위상차 보상 필름으로 사용될 수 있다.
또 다른 예로서, 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지의 함량이 0.1 중량% 내지 10 중량%, 더욱 바람직하게는 1중량% 내지 5중량%인 경우, 광학 필름의 면 방향 위상차값(Rin)이 0nm 내지 10nm, 바람직하게는 0nm 내지 5nm, 더욱 바람직하게는 약 0nm일 수 있고, 두께 방향 위상차값(Rth)은 -10nm 내지 10nm, 바람직하게는 -5nm 내지 5nm일 수 있고, 더욱 바람직하게는 약 0nm일 수 있다. 이 경우 본 발명에 따른 광학 필름은 편광자 보호 필름으로 사용될 수 있다.
상기 3) 광학 필름은 상기 2) 수지 조성물을 용액 캐스터법 또는 압출법과 같은 당 업계에 잘 알려진 방법에 따라 필름으로 제조할 수 있으며, 이 중에서 용액 캐스터법이 바람직하다.
상기와 같이 제조된 필름을 일축 또는 이축 연신하는 단계를 더 포함할 수 있으며, 경우에 따라서 개량제를 첨가하여 제조할 수도 있다.
상기 필름이 일축 또는 이축 연신되는 경우, 상기 연신 공정은 종 방향(MD) 연신, 횡 방향(TD) 연신을 각각 행할 수도 있고 모두 행할 수도 있다. 종 방향과 횡 방향 모두 연신하는 경우에는 어느 한 쪽을 먼저 연신한 후, 다른 방향으로 연신할 수 있고, 두 방향을 동시에 연신할 수도 있다. 연신은 한 단계로 연신할 수도 있으며 다단계에 걸쳐 연신할 수도 있다. 종 방향으로 연신할 경우에는 롤 사이의 속도차에 의한 연신을 할 수 있고, 횡 방향으로 연신할 경우에는 텐타를 사용할 수 있다. 텐타의 레일 개시각은 통산 10도 이내로 하여, 횡 방향 연신시 생기는 보잉(Bowing) 현상을 억제하고 광학 축의 각도를 규칙적으로 제어한다. 횡 방향 연신을 다단계로 하여 같은 보잉 억제 효과를 얻을 수도 있다.
상기 연신은, 상기 수지 조성물의 유리 전이 온도를 Tg라고 할 때, (Tg - 20℃) ~ (Tg + 30℃)의 온도에서 수행할 수 있다. 상기 유리 전이 온도는 수지 조성물의 저장 탄성율이 저하되기 시작하고, 이에 따라 손실 탄성율이 저장 탄성율보다 커지게 되는 온도로부터, 고분자 사슬의 배향이 완화되어 소실되는 온도까지의 영역을 가리키는 것이다. 유리 전이 온도는 시차주사형 열량계(DSC)에 의해 측정될 수 있다. 상기 연신 공정시의 온도는 필름의 유리 전이 온도인 것이 더욱 바람직하다.
연신속도는 소형 연신기(Universal testing machine, Zwick Z010)의 경우는 1 내지 100 mm/min의 범위에서, 그리고 파일로트 연신 장비의 경우는 0.1 내지 2 m/min의 범위에서 연신 조작을 행하는 것이 바람직하며, 5 내지 300%의 연신율을 적용하여 필름을 연신하는 것이 바람직하다.
본 발명에 따른 광학 필름은 전술한 방법에 의하여 일축 또는 이축으로 연신됨으로써, 위상차 특성을 조절할 수 있다.
상기와 같이 제조된 광학 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 0nm 내지 200nm 인 것이 바람직하고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 10nm 내지 -300nm 인 것이 바람직하다.
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
본 발명에 따른 광학 필름은 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지의 함량에 따라 면 방향 위상차값과 두께 방향 위상차값이 조절될 수 있다. 예컨대, 본 발명에 따른 광학 필름의 면상 위상차값(Rin)은 20nm 내지 80nm일 수 있고, 두께 방향 위상차값(Rth)은 -50nm 내지 -300nm일 수 있다. 이 경우 본 발명에 따른 광학 필름은 VA 모드형 위상차 보상 필름으로 사용될 수 있다. 또한, 본 발명에 따른 광학 필름의 면 방향 위상차값(Rin)이 0nm 내지 10nm, 바람직하게는 0nm 내지 5nm, 더욱 바람직하게는 약 0nm일 수 있고, 두께 방향 위상차값(Rth)이 -10nm 내지 10nm, 바람직하게는 -5nm 내지 5nm일 수 있고, 더욱 바람직하게는 약 0nm일 수 있다. 이 경우 본 발명에 따른 광학 필름은 편광자 보호 필름으로 사용될 수 있다.
본 발명에 따른 광학 필름이 액정 표시 장치에 적용되는 경우 액정패널의 어느 한 측에만 구비될 수도 있고(1매형), 액정패널의 양측에 각각 구비될 수 있다(2매형). 1매형을 도 3에 예시하고, 2매형을 도 4에 예시하였으나, 본 발명의 범위가 이에 한정되는 것은 아니다.
본 발명에 따른 광학 필름이 액정패널의 한 측에만 구비되는 경우, 상기 광학필름의 면 방향 위상차 값(Rin)은 30nm 내지 80nm, 바람직하게는 35nm 내지 70nm, 더욱 바람직하게는 약 40nm 내지 60nm인 것이 좋고, 두께 방향 위상차값(Rin)은 -270nm 이하, 즉 두께 방향 위상차 값이 절대값이 270 이상인 것이 바람직하다.
본 발명에 따른 광학 필름이 액정패널의 양측에 각각 구비되는 경우, 상기 광학필름의 면 방향 위상차 값(Rin)은 30nm 내지 80nm, 바람직하게는 35nm 내지 70nm, 더욱 바람직하게는 약 40nm 내지 60nm인 것이 좋고, 두께 방향 위상차값(Rin)은 -100nm 이하, 즉 두께 방향 위상차 값이 절대값이 100 이상인 것이 바람직하다.
본 발명에 따른 광학 필름의 취성(brittleness)은 입경 15.9mm, 무게 16.3g의 강철구를 테스트 필름 위에 떨어뜨려 필름에 구멍이 생기는 높이를 측정함으로써 측정할 수 있으며, 본 발명에 따른 광학 필름은 상기 높이가 바람직하게는 600 mm 이상이고, 더욱 바람직하게는 700mm 이상이다.
본 발명에 따른 광학 필름의 헤이즈 값은 1% 이하인 것이 바람직하고, 0.5% 이하인 것이 더욱 바람직하며, 0.1% 이하인 것이 더더욱 바람직하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 기재한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 이것에 한정하고자 하는 것은 아니다.
실시예
본 발명 실시예에 있어서 물성 평가 방법은 하기와 같다.
1. 중량 평균 분자량(Mw): 제조된 수지를 테트라하이드로퓨란에 녹여 겔 삼투 크로마토그래피(GPC)를 이용하여 측정하였다.
2. Tg(유리 전이 온도): TA Instrument 사의 DSC(Differential Scanning Calorimeter)를 사용하여 측정하였다.
3. 위상차 값(Rin/Rth): 필름의 유리 전이 온도에서 연신 후 Axometrics 사의 AxoScan을 사용하여 측정하였다.
4. Haze 값(투명도): Murakami color Research Laboratory 사의 HAZEMETER HM-150을 사용하여 haze값을 측정하였다.
실시예 1
메틸 메타크릴레이트 89 중량부, 페닐 메타크릴레이트 10 중량부, 및 메타크릴아마이드 1 중량부로 아크릴계 공중합체 수지를 제조하였다. 제조된 수지의 유리 전이 온도와 분자량을 측정한 결과, 유리 전이 온도 130℃, 분자량 11만인 수지를 얻을 수 있었다. 이 수지 99 중량부를 폴리카보네이트 1 중량부와 컴파운딩(compounding)을 통해 최종적인 수지 조성물을 제조하였다. 이 수지 조성물을 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 그 결과 면 방향 위상차 값/두께 방향 위상차 값은 1.5/-0.5이었다.
실시예 2
메틸 메타크릴레이트 87 중량부, 페닐 메타크릴레이트 10 중량부, 및 메타크릴아마이드 3 중량부로 아크릴계 공중합체 수지를 제조하였다. 제조된 수지의 유리 전이 온도와 분자량을 측정한 결과, 유리 전이 온도 132℃, 분자량 10만 5천인 수지를 얻을 수 있었다. 이 수지 98.5중량부를 폴리카보네이트 1.5 중량부와 컴파운딩(compounding)을 통해 최종적인 수지 조성물을 제조하였다. 이 수지 조성물을 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 그 결과 면 방향 위상차 값/두께 방향 위상차 값은 0.9/-0.7이었다.
실시예 3
메틸 메타크릴레이트 90 중량부, 페닐 메타크릴레이트 5 중량부, 및 메타크릴아마이드 5 중량부로 아크릴계 공중합체 수지를 제조하였다. 제조된 수지의 유리 전이 온도와 분자량을 측정한 결과, 유리 전이 온도 135℃, 분자량 12만인 수지를 얻을 수 있었다. 이 수지 99.2 중량부를 폴리카보네이트 0.8 중량부와 컴파운딩(compounding)을 통해 최종적인 컴파운딩 수지를 제조하였다. 이 컴파운딩 수지를 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 그 결과 면 방향 위상차 값/두께 방향 위상차 값은 0.3/-0.9이었다.
실시예 4 내지 12
상기 실시예 1 내지 실시예 3과 동일한 방법으로, 메틸 메타크릴레이트, 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체, 및 메타크릴아마이드 아크릴계 공중합체 수지를 제조하였다. 다만, 실시예 4 내지 12의 각각의 실시예에서 사용된 메틸 메타크릴레이트, 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체, 및 메타크릴아마이드의 함량은 하기 표 1에 나타낸 바와 같았고, 얻어진 아크릴계 공중합체 수지의 유리 전이 온도, 및 중량평균분자량도 하기 표 2에 나타낸 바와 같았다.
상기 얻어진 아크릴계 공중합체 수지와 폴리카보네이트를 하기 표 3에 나타낸 비율로 혼합하고, 이 컴파운딩 수지를 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 결과는 하기 표 4에 나타낸 바와 같았다.
비교예 1
메틸 메타크릴레이트 90 중량부, 페닐 메타크릴레이트 10 중량부로 아크릴계 공중합체 수지를 제조하였다. 제조된 수지의 유리 전이 온도와 분자량을 측정한 결과, 유리 전이 온도 124℃, 중량평균분자량 10만인 수지를 얻을 수 있었다. 이 수지와 폴리카보네이트를 90:10의 중량비로 혼합하고, 이를 컴파운딩하여 최종적인 컴파운딩 수지를 제조하였다. 상기 컴파운딩 수지를 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 그 결과 면 방향 위상차 값/두께 방향 위상차 값은 1.4/-0.7이었다.
비교예 2
메틸 메타크릴레이트 80 중량부, 페닐 메타크릴레이트 20 중량부로 아크릴계 공중합체 수지를 제조하였다. 제조된 수지의 유리 전이 온도와 분자량을 측정한 결과, 유리 전이 온도 119℃, 중량평균분자량 9만인 수지를 얻을 수 있었다. 이 수지와 폴리카보네이트를 90:10의 중량비로 혼합하고, 이를 컴파운딩하여 최종적인 컴파운딩 수지를 제조하였다. 상기 컴파운딩 수지를 용액 캐스팅 법에 의해 필름으로 제조한 후, 유리 전이 온도에서 연신을 실시하고, 그 필름의 위상차 값을 측정하였다. 그 결과 면 방향 위상차 값/두께 방향 위상차 값은 48/-105이었다.
[표1]
Figure PCTKR2011004212-appb-I000001
[표2]
Figure PCTKR2011004212-appb-I000002
[표3]
Figure PCTKR2011004212-appb-I000003
[표4]
Figure PCTKR2011004212-appb-I000004
[낙구 테스트] - 강도 평가
상기 실시예 1, 2, 3, 및 비교예 1 에서 제조된 필름의 강도를 측정하기 위해 낙구 테스트를 수행하였다. 실험 방법은 입경 15.9mm, 무게 16.3g의 강철구를 필름 위에 떨어뜨려 필름에 구멍이 생기는 높이를 측정함으로써 측정하였다. 그 결과 측정된 높이를 하기 표 5에 나타내었다.
[표5]
Figure PCTKR2011004212-appb-I000005
상기 표 2에 나타낸 바와 같이, 본 발명의 아크릴계 공중합체는 유리 전이 온도가 비교예의 그것보다 높은 바 우수한 내열성을 확인할 수 있었다.
또한, 상기 표 5에 나타낸 바와 같이, 최종 광학필름 강도 역시 비교예보다 우수함을 확인할 수 있었다.

Claims (21)

1) 알킬(메트)아크릴레이트계 단량체; 2) 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체; 및 3) (메트)아크릴아마이드계 단량체를 포함하여 중합된 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 알킬(메트)아크릴레이트계 단량체의 알킬기는 탄소수가 1 ~ 10인 것을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 알킬(메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트인 것임을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체는 시클로알킬 (메트)아크릴레이트계 단량체 또는 아릴 (메트)아크릴레이트계 단량체인 것임을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 4에 있어서, 상기 시클로알킬 (메트)아크릴레이트계 단량체의 시클로알킬기는 탄소수가 4 ~ 12이고, 상기 아릴 (메트)아크릴레이트계 단량체의 아릴기는 탄소수가 6 ~ 12인 것임을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체는, 시클로펜틸 메타크릴레이트, 시클로헥실 메타크릴레이트, 벤질 메타크릴레이트, 시클로헥실 아크릴레이트, 2-페녹시에틸 아크릴레이트, 3,3,5-트리메틸시클로헥실 메타크릴레이트, 4-t-부틸시클로헥실 메타크릴레이트, 3-시클로헥실프로필 메타크릴레이트, 페닐 메타크릴레이트, 4-t-부틸페닐 메타크릴레이트, 4-메톡시페틸 메타크릴레이트, 1-페닐에틸 메타크릴레이트, 2-페닐에틸 아크릴레이트, 2-페틸에틸 메타크릴레이트, 2-페녹시에틸 메타크릴레이트 및 2-나프틸 메타크릴레이트로 이루어진 군에서 선택되는 하나 이상인 것임을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 (메트)아크릴아마이드계 단량체는 N-치환된 메타크릴아마이드 또는 지방족 고리 및/또는 방향족 고리를 포함하는 메타크릴아마이드이며, 상기 N-치환된 메타크릴아마이드의 치환기는 에틸, 이소프로필, tert-부틸, 시클로헥실, 벤질 및 페닐기로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 알킬(메트)아크릴레이트계 단량체 50 내지 98.9 중량%; 지방족 고리 및/또는 방향족 고리를 포함하는 (메트)아크릴레이트계 단량체 1 내지 49.9 중량%; 및 (메트)아크릴아마이드계 단량체 0.1 내지 10 중량%를 포함하여 중합된 것을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 아크릴계 공중합체의 유리 전이 온도(Tg)는 120?이상인 것을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1에 있어서, 상기 아크릴계 공중합체의 중량평균분자량은 5만 내지 50만인 것을 특징으로 하는 광학 필름용 아크릴계 공중합체.
청구항 1 내지 청구항 10 중 어느 하나의 광학 필름용 아크릴계 공중합체, 및 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지가 혼합된 컴파운딩 수지.
청구항 11에 있어서, 상기 주쇄에 방향족 고리 및/또는 지방족 고리를 포함하는 수지는 폴리카보네이트인 것임을 특징으로 하는 컴파운딩 수지.
청구항 12에 있어서, 상기 광학 필름용 아크릴계 공중합체 60 내지 99.9 중량%, 및 상기 폴리카보네이트 0.1 내지 40 중량%를 포함하는 것을 특징으로 하는 컴파운딩 수지.
청구항 11의 컴파운딩 수지를 포함하는 광학 필름.
청구항 14에 있어서, 상기 광학 필름은 위상차 보상 필름 또는 보호 필름인 것인 광학 필름.
청구항 15에 있어서, 상기 위상차 보상 필름은 VA 모드 액정표시장치용 또는 TN 모드 액정표시장치용인 것을 특징으로 하는 광학 필름.
청구항 14에 있어서, 상기 광학 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 -5nm 내지 200nm인 것을 특징으로 하는 광학 필름:
[수학식 1]
Rin = (nx - ny) ×d
상기 수학식 1에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
d는 필름의 두께이다.
청구항 14에 있어서, 상기 광학 필름은 하기 수학식 2로 표시되는 두께 방향 위상차 값이 5nm 내지 -300nm인 것을 특징으로 하는 광학 필름:
[수학식 2]
Rth = (nz - ny) ×d
상기 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 14에 있어서, 상기 광학 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 20nm 내지 80nm이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 -50nm 내지 -300nm인 것을 특징으로 하는 광학 필름:
[수학식 1]
Rin = (nx - ny) ×d
[수학식 2]
Rth = (nz - ny) ×d
상기 수학식 1 및 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 14에 있어서, 상기 광학 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 0nm 내지 10nm이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 -10nm 내지 10nm인 것을 특징으로 하는 광학 필름:
[수학식 1]
Rin = (nx - ny) ×d
[수학식 2]
Rth = (nz - ny) ×d
상기 수학식 1 및 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 14에 있어서, 상기 광학 필름은 광탄성 계수가 10 이하인 것인 특징으로 하는 광학 필름.
PCT/KR2011/004212 2010-06-08 2011-06-08 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름 WO2011155771A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180028518.0A CN102933624B (zh) 2010-06-08 2011-06-08 具有高耐热性和高强度的丙烯酸类共聚物以及包含该丙烯酸类共聚物的光学膜
JP2013514115A JP5779822B2 (ja) 2010-06-08 2011-06-08 光学フィルム
US13/702,911 US8765896B2 (en) 2010-06-08 2011-06-08 Acrylic copolymer with high heat resistance and high strength, and optical film comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0053980 2010-06-08
KR1020100053980A KR101304592B1 (ko) 2010-06-08 2010-06-08 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름

Publications (2)

Publication Number Publication Date
WO2011155771A2 true WO2011155771A2 (ko) 2011-12-15
WO2011155771A3 WO2011155771A3 (ko) 2012-05-03

Family

ID=45098534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004212 WO2011155771A2 (ko) 2010-06-08 2011-06-08 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름

Country Status (5)

Country Link
US (1) US8765896B2 (ko)
JP (1) JP5779822B2 (ko)
KR (1) KR101304592B1 (ko)
CN (1) CN102933624B (ko)
WO (1) WO2011155771A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140020763A (ko) * 2012-08-09 2014-02-19 스미또모 가가꾸 가부시키가이샤 광학 재료용 수지 조성물 및 그 제조 방법
JP2018028098A (ja) * 2012-08-09 2018-02-22 住友化学株式会社 光学材料用樹脂組成物およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304592B1 (ko) * 2010-06-08 2013-09-05 주식회사 엘지화학 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름
TWI651356B (zh) * 2014-01-23 2019-02-21 可樂麗股份有限公司 薄膜
JP6675820B2 (ja) * 2014-02-25 2020-04-08 日立化成株式会社 アクリル樹脂組成物及び電子部品
WO2015186629A1 (ja) * 2014-06-03 2015-12-10 株式会社クラレ メタクリル樹脂組成物
JP2016048363A (ja) * 2014-06-03 2016-04-07 株式会社クラレ 樹脂フィルム
CN109777071B (zh) * 2014-08-29 2022-05-31 三菱化学株式会社 聚碳酸酯树脂组合物
WO2016121924A1 (ja) * 2015-01-30 2016-08-04 株式会社クラレ メタクリル系樹脂組成物およびそれを用いた積層体
CN109476998A (zh) * 2016-07-27 2019-03-15 捷恩智株式会社 液晶组合物及液晶显示元件
CN113150191A (zh) * 2021-04-01 2021-07-23 深圳市新纶科技股份有限公司 改性聚甲基丙烯酸甲酯、光学薄膜材料及其制备方法、偏光片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324793A (en) * 1991-09-14 1994-06-28 Rohm Gmbh Method for making polymethacrylimide polymers
KR20080069355A (ko) * 2007-01-23 2008-07-28 주식회사 엘지화학 광학 보상된 아크릴계 점착제 조성물, 이를 포함하는편광판 및 액정표시소자
JP2009222743A (ja) * 2008-03-13 2009-10-01 Toray Ind Inc 偏光子保護フィルム
JP2009293021A (ja) * 2008-05-09 2009-12-17 Sanyo Chem Ind Ltd 光学材料用透明樹脂組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US532479A (en) * 1895-01-15 Karl pathe and oscar dressel
JP3119457B2 (ja) 1992-04-29 2000-12-18 株式会社クラレ 透明フィルム
JP3215719B2 (ja) * 1992-06-18 2001-10-09 株式会社クラレ 重合体組成物
JPH06108025A (ja) 1992-09-28 1994-04-19 Nippon Synthetic Chem Ind Co Ltd:The 偏光板用粘着剤
WO1998055885A1 (fr) * 1997-06-03 1998-12-10 Kureha Kagaku Kogyo Kabushiki Kaisha Materiau optique constitue de resine synthetique, filtre optique, et dispositif, verre de lunette, filtre d'absorption de rayons thermiques et fibre optique pourvus dudit filtre optique
KR100775440B1 (ko) 2006-12-20 2007-11-12 동우신테크 주식회사 리세드로네이트 나트륨 헤미펜타히드레이트의 제조방법
JP4846685B2 (ja) * 2007-09-25 2011-12-28 日東電工株式会社 粘着型光学フィルムおよび画像表示装置
JP2009235249A (ja) 2008-03-27 2009-10-15 Toray Ind Inc 熱可塑性共重合体、熱可塑性樹脂組成物およびそれらからなる成形品
KR101361561B1 (ko) 2008-08-28 2014-02-13 주식회사 엘지화학 위상차 필름 및 이를 포함하는 액정 표시 장치
DE102008057438A1 (de) * 2008-11-14 2010-05-20 Evonik Röhm Gmbh Copolymer zur Herstellung wärmeformstabiler Formkörper aus Formmassen oder Gussglas
JP5633851B2 (ja) * 2008-11-28 2014-12-03 エルジー・ケム・リミテッド 位相差フィルム、位相差フィルムの製造方法、液晶表示装置及び一体型偏光板
KR101304592B1 (ko) * 2010-06-08 2013-09-05 주식회사 엘지화학 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324793A (en) * 1991-09-14 1994-06-28 Rohm Gmbh Method for making polymethacrylimide polymers
KR20080069355A (ko) * 2007-01-23 2008-07-28 주식회사 엘지화학 광학 보상된 아크릴계 점착제 조성물, 이를 포함하는편광판 및 액정표시소자
JP2009222743A (ja) * 2008-03-13 2009-10-01 Toray Ind Inc 偏光子保護フィルム
JP2009293021A (ja) * 2008-05-09 2009-12-17 Sanyo Chem Ind Ltd 光学材料用透明樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140020763A (ko) * 2012-08-09 2014-02-19 스미또모 가가꾸 가부시키가이샤 광학 재료용 수지 조성물 및 그 제조 방법
JP2018028098A (ja) * 2012-08-09 2018-02-22 住友化学株式会社 光学材料用樹脂組成物およびその製造方法
KR102144131B1 (ko) 2012-08-09 2020-08-12 스미또모 가가꾸 가부시키가이샤 광학 재료용 수지 조성물 및 그 제조 방법

Also Published As

Publication number Publication date
CN102933624A (zh) 2013-02-13
US8765896B2 (en) 2014-07-01
JP5779822B2 (ja) 2015-09-16
CN102933624B (zh) 2015-11-25
KR20110134152A (ko) 2011-12-14
US20130144023A1 (en) 2013-06-06
WO2011155771A3 (ko) 2012-05-03
JP2013534942A (ja) 2013-09-09
KR101304592B1 (ko) 2013-09-05

Similar Documents

Publication Publication Date Title
WO2011155771A2 (ko) 내열성·고강도 아크릴계 공중합체, 및 이를 포함하는 광학필름
WO2010095870A2 (ko) 아크릴계 수지 조성물 및 이를 포함하는 광학 필름
WO2009134098A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
WO2009088239A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
WO2010024573A9 (ko) 면상 스위칭 모드 액정 표시 장치
WO2010079920A2 (ko) 광학 필름 및 이를 포함하는 액정 표시 장치
WO2010151065A9 (ko) 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
WO2009134097A2 (ko) 수지 조성물 및 이를 이용하여 형성된 광학 필름
WO2010038995A2 (ko) 광학 필름 및 이의 제조방법
WO2009088237A2 (ko) 투명한 수지 조성물
WO2013180504A1 (ko) 수지 조성물, 이를 이용하여 형성된 광학 필름, 이를 포함하는 편광판 및 액정 표시 장치
WO2009093848A1 (en) Retardation film, fabrication method thereof, and liquid crystal display comprising the same
WO2013005964A2 (ko) 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
WO2012002634A1 (en) Acryl-based copolymers and optical film including the same
WO2011162499A2 (ko) 아크릴계 공중합체 및 이를 포함하는 광학필름
WO2010062133A2 (ko) 위상차 필름 및 이를 포함하는 액정 표시 장치
WO2013051814A2 (ko) 수지 조성물 및 이를 이용하여 형성된 광학 필름
WO2010128779A2 (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
WO2019203596A1 (ko) 위상차 필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치
WO2015047005A1 (ko) 광학 필름용 수지 조성물, 이를 이용하여 형성된 광학 필름, 이를 포함하는 편광판 및 화상 표시 장치
WO2018080227A2 (ko) 보호필름, 편광판 및 이를 포함하는 표시장치
WO2012023834A2 (ko) 고내열성, 고강도 아크릴계 공중합체, 이를 포함하는 수지 조성물, 이를 포함하는 광학 필름 및 ips 모드 액정표시장치
WO2014092326A1 (ko) 위상차층, 편광판 및 이를 포함하는 편광판과 화상 표시 장치
WO2013051847A2 (ko) 수지 조성물 및 이를 이용하여 형성된 광학 보상필름
WO2013051802A1 (ko) 광학 필름용 수지 조성물 및 이를 이용한 보상필름

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028518.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792682

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013514115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13702911

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11792682

Country of ref document: EP

Kind code of ref document: A2