WO2011155490A1 - ポリカーボネート系樹脂組成物及びその成形品 - Google Patents

ポリカーボネート系樹脂組成物及びその成形品 Download PDF

Info

Publication number
WO2011155490A1
WO2011155490A1 PCT/JP2011/063050 JP2011063050W WO2011155490A1 WO 2011155490 A1 WO2011155490 A1 WO 2011155490A1 JP 2011063050 W JP2011063050 W JP 2011063050W WO 2011155490 A1 WO2011155490 A1 WO 2011155490A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polycarbonate
metal salt
general formula
resin composition
Prior art date
Application number
PCT/JP2011/063050
Other languages
English (en)
French (fr)
Inventor
佑介 青木
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45098095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011155490(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/702,858 priority Critical patent/US9434840B2/en
Priority to JP2012519396A priority patent/JP5755226B2/ja
Priority to CN201180027825.7A priority patent/CN102933657B/zh
Priority to EP11792447.2A priority patent/EP2581413B2/en
Priority to KR1020127031903A priority patent/KR101820182B1/ko
Publication of WO2011155490A1 publication Critical patent/WO2011155490A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a polycarbonate resin composition having excellent flame retardancy and low temperature impact characteristics. Specifically, the present invention relates to an alkali metal salt of an organic sulfonic acid and / or an alkaline earth metal with respect to a resin mixture containing a polycarbonate-polyorganosiloxane copolymer having an organosiloxane block portion having a specific repeating number and structure.
  • the present invention relates to a resin composition including a salt and a mixed powder composed of polytetrafluoroethylene particles and organic polymer particles, and a molded article formed by molding the resin composition.
  • Polycarbonate resin (PC) produced from bisphenol A, etc. is widely used as a material for various parts in the electric / electronic field, automobile field, construction field, etc. because of its excellent heat resistance, mechanical properties, dimensional stability, etc. .
  • materials such as outdoor electrical / electronic storage boxes such as information communication boxes and junction boxes for photovoltaic power generation that require extremely high impact and flame resistance at low temperatures such as -40 ° C. Performance has not been obtained.
  • a conventional polycarbonate resin it is possible to impart high flame retardancy by using a flame retardant, etc., but a polycarbonate resin having both flame retardancy and low-temperature impact characteristics and satisfactory performance in practical use is obtained. It is not done.
  • impact properties are improved by adding an elastomer to a polycarbonate resin, but impact properties at low temperatures are not sufficient. Further, if the molecular weight of the polycarbonate resin is increased, the low-temperature impact characteristics are improved, but there is a problem that the fluidity is lowered.
  • PC-PDMS polycarbonate-polydimethylsiloxane copolymer
  • Polycarbonate-polydimethylsiloxane copolymer is superior in flame retardancy and low-temperature impact properties compared to conventional polycarbonate resin, but polycarbonate-polydimethylsiloxane copolymer itself has a high degree of V-0 based on UL standard 94. Flame retardant cannot be obtained.
  • Patent Documents 4 and 5 a method is known in which a mixed powder composed of polytetrafluoroethylene particles and organic polymer particles and a metal salt are added to a polycarbonate resin.
  • Patent Documents 4 and 5 a method is known in which a mixed powder composed of polytetrafluoroethylene particles and organic polymer particles and a metal salt are added to a polycarbonate resin.
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and is a polycarbonate system that has both excellent low-temperature impact characteristics and flame retardancy without using halogen-based and phosphate ester-based flame retardants. It aims at provision of a resin composition and its molded article.
  • the present inventors have obtained a resin mixture (A) containing a polycarbonate-polyorganosiloxane copolymer having an organopolysiloxane block portion having a specific repeating number and structure.
  • C a mixed powder composed of polytetrafluoroethylene particles and organic polymer particles.
  • the present invention includes (A); (A-1) a structural unit represented by the general formula (I) and a structural unit represented by the general formula (II), and the general formula (II) 30 to 100% by mass of a polycarbonate-polyorganosiloxane copolymer having an average number of repeating units represented by 30 to 500, and (A-2) an aromatic polycarbonate other than the polycarbonate-polyorganosiloxane copolymer (B) 0.01 to 0.15 parts by mass of an alkali metal salt and / or alkaline earth metal salt of an organic sulfonic acid with respect to 100 parts by mass of a resin mixture comprising 70 to 0% by mass of resin, and (C) poly From 0.1 to 1 part by mass of a mixed powder composed of tetrafluoroethylene particles and organic polymer particles, and from the structural unit represented by the general formula (II) in the resin mixture (A) A polycarbonate-based resin composition characterized in that the content of the polyorganosiloxane
  • R 1 and R 2 each independently represents an alkyl group or alkoxy group having 1 to 6 carbon atoms
  • X represents a single bond, an alkylene group having 1 to 8 carbon atoms, or an alkylidene group having 2 to 8 carbon atoms.
  • R 3 and R 4 are Each independently represents a hydrogen atom, or an optionally substituted alkyl group or aryl group, and a and b each independently represent an integer of 0 to 4.
  • l is the average number of repeating units and represents an integer of 30 to 500.
  • the polycarbonate-based resin composition of the present invention does not use a halogen-based or phosphoric ester-based flame retardant, there is no risk of generation of harmful gas during combustion, contamination of the molding machine, resin burning, and reduction in heat resistance.
  • it has excellent impact strength and flame retardancy, so it can be used as a material for outdoor electrical / electronic storage boxes such as information and communication boxes that require extremely high impact and flame resistance, and junction boxes for photovoltaic power generation. Can be used.
  • the present invention comprises (A); (A-1) a structural unit represented by general formula (I) and a structural unit represented by general formula (II), and represented by general formula (II). 30 to 100% by mass of a polycarbonate-polyorganosiloxane copolymer having an average number of repeating units of 30 to 500, and (A-2) an aromatic polycarbonate resin 70 other than the polycarbonate-polyorganosiloxane copolymer.
  • R 1 and R 2 each independently represents an alkyl group or alkoxy group having 1 to 6 carbon atoms
  • X represents a single bond, an alkylene group having 1 to 8 carbon atoms, or an alkylidene group having 2 to 8 carbon atoms.
  • R 3 and R 4 are Each independently represents a hydrogen atom, or an optionally substituted alkyl group or aryl group, and a and b each independently represent an integer of 0 to 4.
  • l is the average number of repeating units and represents an integer of 30 to 500.
  • the polycarbonate-polyorganosiloxane copolymer used in the present invention is a dihydric phenol represented by the general formula (1) and a polyorganosiloxane represented by the general formula (2).
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, or an optionally substituted alkyl group or aryl group
  • Y represents a halogen, —R 7 OH , —R 7 COOH, —R 7 NH 2 , —COOH or —SH
  • R 7 is a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, or an aryl optionally having an alkoxy group on the ring
  • m represents 0 or 1
  • n represents the average number of repeating units of the organosiloxane constituent unit, and represents an integer of 30 to 500.
  • phosgene, carbonate ester, or chloroformate are examples of the organosiloxane constituent unit.
  • dihydric phenols represented by the general formula (1) used as a raw material for the (A-1) polycarbonate-polyorganosiloxane copolymer.
  • 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferred.
  • bisphenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, and 2,2-bis.
  • (4-hydroxyphenyl) octane bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxyphenyl) ) Naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3, 5-tetramethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorofe) Bis (hydroxyaryl) alkanes such as propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl which may have a substituent, as in the general formula (1).
  • R 8 represents an alkyl, alkenyl, aryl or aralkyl group, n represents an integer of 30 to 500 in terms of the average number of repeating units of the organosiloxane constituent unit, and c represents a positive integer.
  • Etc. are mentioned.
  • the phenol-modified polyorganosiloxane represented by the formula (3) is preferable from the viewpoint of easy polymerization, and ⁇ , ⁇ -bis [3- (o-hydroxyphenyl) which is a kind of the compound represented by the formula (4).
  • the polyorganosiloxane represented by the general formula (2) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, allylphenol, eugenol, isopropenylphenol or the like having a predetermined polymerization degree n. It can be easily produced by hydrosilation reaction at the end of the polyorganosiloxane chain.
  • the average repeating number of the structural unit represented by the general formula (II) is 30 to 500, preferably 70 to 500, more preferably 80 to 400, more preferably 90 to 300.
  • the average repeating number of the structural unit represented by the general formula (II) is less than 30, the impact strength at ⁇ 40 ° C. is not sufficient.
  • the average repeating number of the structural unit represented by the general formula (II) is more than 500, the impact strength and flame retardancy at ⁇ 40 ° C. are not sufficient.
  • the viscosity-average molecular weight (Mv) of the polycarbonate-polyorganosiloxane copolymer is preferably 13,000 to 50,000, more preferably 15,000 to 30,000, still more preferably 15 , 6,000 to 26,000. If the viscosity average molecular weight is 13,000 or more, the strength of the molded article is sufficient, and if it is 50,000 or less, the productivity does not decrease.
  • Aromatic polycarbonate resin is obtained by reacting a dihydric phenol compound and phosgene in the presence of an organic solvent inert to the reaction and an aqueous alkali solution, and then reacting with a tertiary amine or quaternary ammonium salt, etc.
  • aromatic polycarbonates such as interfacial polymerization method in which a polymerization catalyst is added and polymerized, and pyridine method in which a dihydric phenol compound is dissolved in pyridine or a mixed solution of pyridine and an inert solvent and phosgene is directly introduced. What is obtained by a manufacturing method is used. In the above reaction, a molecular weight regulator (terminal terminator), a branching agent and the like are used as necessary.
  • a molecular weight regulator (terminal stopper) is usually used.
  • the molecular weight regulator various types usually used for polymerization of polycarbonate resin can be used. Specifically, as monohydric phenol, for example, phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, ot -Butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn-hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, p-cyclohexylphenol, p
  • a branching polycarbonate can be obtained by using a branching agent in combination in the range of 0.01 to 3.0 mol%, particularly 0.1 to 1.0 mol% with respect to the dihydric phenol compound. it can.
  • the branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene.
  • aromatic polycarbonate resin two or more aromatic polycarbonate resins other than the (A-1) polycarbonate-polyorganosiloxane copolymer can be used in combination as required.
  • the content of (A-1) in the resin mixture (A) is 30 to 100% by mass, preferably 40 to 40%.
  • the amount is 100% by mass, more preferably 50 to 95% by mass.
  • the content of (A-1) is less than 30% by mass, it is necessary to use (A-1) having a relatively high content of the polyorganosiloxane block part in the (A) resin mixture.
  • (A-1) is because industrial production may be difficult.
  • the content of (A-2) is 70 to 0% by mass, preferably 60 to 0% by mass, more preferably 50 to 5% by mass.
  • the (A) resin mixture needs to be adjusted so that the content of the polyorganosiloxane block portion composed of the structural unit represented by the general formula (II) is 2 to 30% by mass.
  • the content is preferably 2 to 20% by mass, more preferably 3 to 15% by mass. If the content is less than 2% by mass or more than 30% by mass, impact characteristics at 40 ° C. and flame retardancy cannot be achieved.
  • the polycarbonate resin composition of the present invention comprises (B) an alkali metal salt and / or alkaline earth metal salt of an organic sulfonic acid, and (C) polytetrafluoro with respect to 100 parts by mass of the above (A) resin mixture. It includes a mixed powder composed of ethylene particles and organic polymer particles.
  • (B) the alkali metal salt and / or alkaline earth metal salt of organic sulfonic acid in the polycarbonate resin composition of the present invention will be described.
  • Component (B) is added to the composition of the present invention for the purpose of imparting flame retardancy.
  • the alkali metal salt and alkaline earth metal salt of organic sulfonic acid include various ones. Alkali metal salt and alkaline earth metal salt of organic sulfonic acid having at least one carbon atom.
  • Examples of the organic acid sulfonic acid include organic sulfonic acid and polystyrene sulfonic acid.
  • Examples of the alkali metal include sodium, potassium, lithium and cesium.
  • Examples of the alkaline earth metal include magnesium, calcium, strontium and barium. Of these, alkali metal salts of sodium, potassium and cesium are preferably used as the organic acid sulfonate.
  • the organic sulfonic acid has the general formula (12). (C c F 2c + 1 SO 3 ) d M (12) [Wherein c represents an integer of 1 to 10, M represents an alkali metal such as lithium, sodium, potassium and cesium, or an alkaline earth metal such as magnesium, calcium, strontium and barium, and d represents an atom of M Indicates the value. ]
  • An alkali metal salt or alkaline earth metal salt of perfluoroalkanesulfonic acid represented by the formula is preferably used.
  • these metal salts for example, those described in Japanese Patent Publication No. 47-40445 are applicable.
  • examples of perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, perfluoro Examples include hexanesulfonic acid, perfluoroheptanesulfonic acid, and perfluorooctanesulfonic acid. In particular, these potassium salts are preferably used.
  • alkylsulfonic acid alkylsulfonic acid, benzenesulfonic acid, alkylbenzenesulfonic acid, diphenylsulfonic acid, naphthalenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, 2,4,5-trichlorobenzenesulfonic acid, diphenylsulfone-3-sulfonic acid, Examples thereof include diphenylsulfone-3,3′-disulfonic acid, naphthalenetrisulfonic acid and their fluorine-substituted products, and alkali metal salts and alkaline earth metal salts of organic sulfonic acids such as polystyrene sulfonic acid.
  • organic sulfonic acid perfluoroalkanesulfonic acid and diphenylsulfonic acid are preferable.
  • alkali metal salt and / or alkaline earth metal salt of polystyrene sulfonic acid the general formula (13)
  • X represents a sulfonate group
  • m represents an integer of 1 to 5.
  • Y represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • n represents a mole fraction, and 0 ⁇ n ⁇ 1.
  • the sulfonate group containing aromatic vinyl type resin represented by this can be mentioned.
  • the sulfonate group is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and examples of the metal include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium and barium. Can be mentioned.
  • Y is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group.
  • m is an integer of 1 to 5
  • n has a relationship of 0 ⁇ n ⁇ 1. That is, the sulfonate group (X) may be a fully substituted aromatic ring, a partially substituted one, or an unsubstituted one.
  • the content of the alkali metal salt and / or alkaline earth metal salt of the organic sulfonic acid is 0.01 to 0.15 parts by mass, preferably 0.1 to 0.1 parts by mass with respect to 100 parts by mass of the (A) resin mixture.
  • the amount is from 02 to 0.13 parts by mass, and more preferably from 0.03 to 0.12 parts by mass. If it is less than 0.01 parts by mass or more than 0.15 parts by mass, the flame retardancy that is the subject of the present invention is not sufficient.
  • the particle diameter of the polytetrafluoroethylene particles in the mixed powder composed of the polytetrafluoroethylene particles and the organic polymer particles is usually 10 ⁇ m or less, preferably 0.05 to 1.0 ⁇ m.
  • the polytetrafluoroethylene particles are prepared, for example, as an aqueous dispersion dispersed in water containing an emulsifier and the like. This aqueous dispersion of polytetrafluoroethylene particles is obtained by emulsion polymerization of a tetrafluoroethylene monomer using a fluorine-containing surfactant.
  • Fluorine-containing olefins such as hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene and perfluoroalkyl vinyl ether as copolymerization components, as long as the properties of polytetrafluoroethylene are not impaired during the emulsion polymerization of polytetrafluoroethylene particles, Fluorine-containing alkyl (meth) acrylates such as perfluoroalkyl (meth) acrylate can be used.
  • the content of the copolymer component is preferably 10% by mass or less with respect to tetrafluoroethylene in the polytetrafluoroethylene particles.
  • the organic polymer particles used in the present invention are not particularly limited, but (A) from the viewpoint of the dispersibility of the polytetrafluoroethylene particles when blended in the resin mixture, the affinity for the polycarbonate resin is given. It is preferable to have it.
  • monomers for producing organic polymer particles include styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, o-methoxystyrene.
  • Styrene monomers such as 2,4-dimethylstyrene and ⁇ -methylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate (Meth) acrylic acid alkyl esters such as 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, octadecyl acrylate, octadecyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc.
  • Monomers vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate; ethylene; Examples thereof include olefin monomers such as propylene and isobutylene; diene monomers such as butadiene, isoprene and dimethylbutadiene.
  • a (meth) acrylic acid alkyl ester monomer refers to both an acrylic acid alkyl ester monomer and a methacrylic acid alkyl ester monomer.
  • organic polymer particles By polymerizing these monomers, organic polymer particles can be obtained.
  • the said monomer can be used 1 type or in mixture of 2 or more types.
  • the organic polymer particles particles made of a (meth) acrylic acid alkyl ester copolymer are preferable.
  • the organic polymer particles are prepared, for example, as an aqueous dispersion of organic polymer particles.
  • the method for producing the aqueous dispersion of organic polymer particles is not particularly limited, and examples thereof include an emulsion polymerization method using an ionic emulsifier and a soap-free emulsion polymerization method using an ionic polymerization initiator.
  • the ionic emulsifier any of an anionic emulsifier, a cationic emulsifier and an amphoteric ionic emulsifier can be used.
  • a nonionic emulsifier can also be used together with these ionic emulsifiers.
  • anionic emulsifiers fatty acid salts, higher alcohol sulfates, liquid fatty oil sulfates, sulfates of aliphatic amines and amides, aliphatic alcohol phosphates, sulfonates of dibasic fatty acid esters And fatty acid amide sulfonates, alkyl allyl sulfonates, and naphthalene sulfonates of formalin condensates.
  • the cationic emulsifier include aliphatic amine salts, quaternary ammonium salts, and alkylpyridinium salts.
  • amphoteric emulsifiers include alkyl betaines.
  • anionic properties such as persulfate (for example, potassium persulfate or ammonium persulfate), azobis (isobutyronitrile sulfonate), 4,4′-azobis (4-cyanovaleric acid), etc.
  • Polymerization initiator 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2 ′ -Cationic polymerization initiators such as azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobisisobutyramide dihydrate.
  • the particle diameter d of the organic polymer particles used in the present invention is not particularly limited, but from the viewpoint of the stability of the aggregated state with the polytetrafluoroethylene particles, the particle diameter D of the polytetrafluoroethylene particles is The range of the following formula is preferable. 0.1D ⁇ d ⁇ 10D
  • the mixed powder composed of polytetrafluoroethylene particles and organic polymer particles is prepared by, for example, mixing the aqueous dispersion of polytetrafluoroethylene particles and the aqueous dispersion of organic polymer particles, and then It is obtained by pulverizing by the method described later.
  • This mixed powder includes aggregated particles in which polytetrafluoroethylene particles and organic polymer particles are aggregated due to a difference in surface charge, and individual particles that remain without being aggregated.
  • Agglomerated particles have a structure in which polytetrafluoroethylene particles and organic polymer particles are integrated, but there are various morphologies depending on the mixing ratio and particle diameter of both particles.
  • the form in which the organic polymer is surrounded around the polytetrafluoroethylene particles the form in which the polytetrafluoroethylene particles are surrounded around the organic polymer particles, and several for one particle.
  • a nonionic emulsifier may be adsorbed on the surface of the polytetrafluoroethylene particles and / or organic polymer particles before mixing.
  • the nonionic emulsifier is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, dialkylphenoxypoly (ethyleneoxy) ethanol, polyvinyl alcohol, polyacrylic acid and alkyl cellulose.
  • the aqueous dispersion mixed as described above is poured into hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved, salted out, solidified, and then dried or spray-dried. can do.
  • a metal salt such as calcium chloride or magnesium sulfate
  • a monomer having an ethylenically unsaturated bond can be emulsion-polymerized and powdered by coagulation or spray drying.
  • Examples of the ethylenically unsaturated monomer that is emulsion-polymerized in the mixed aqueous dispersion include styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, and o-methoxy.
  • Styrene monomers such as styrene, 2,4-dimethylstyrene, ⁇ -methylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, acrylic acid-2- (Meth) acrylic acid alkyl ester monomers such as ethylhexyl, methacrylic acid-2-ethylhexyl, dodecyl acrylate, dodecyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate; vinyl cyanide such as acrylonitrile and methacrylonitrile Monomer; Vinyl Vinyl ether monomers such as ether and vinyl ethyl ether; vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate; olefin monomers such as ethylene, propylene and isobutylene; buta
  • the content of the polytetrafluoroethylene particles in the (C) mixed powder of the present invention is from the viewpoint of flame retardancy due to the anti-dripping effect of the resulting resin composition, appearance of the molded product, weld strength, etc.
  • the content is preferably 0.1 to 90% by mass, more preferably 30 to 90% by mass, and still more preferably 40 to 90% by mass.
  • the content of the mixed powder composed of (C) polytetrafluoroethylene particles and organic polymer particles in the polycarbonate resin composition of the present invention is 0.1 to 1 with respect to 100 parts by mass of (A) resin mixture. Parts by mass, preferably 0.1 to 0.9 parts by mass, more preferably 0.2 to 0.8 parts by mass.
  • the content of the mixed powder is less than 0.1 parts by mass, the drip performance is lowered and flame retardancy cannot be achieved.
  • it exceeds 1 mass part the ratio of the organic type polymer in a composition will increase, and a flame retardance cannot be achieved.
  • the polycarbonate resin composition of the present invention may optionally contain additive components commonly used in polycarbonate resins for the purpose of improving appearance, antistatic properties, weather resistance, and rigidity.
  • additive components commonly used in polycarbonate resins for the purpose of improving appearance, antistatic properties, weather resistance, and rigidity.
  • antistatic agents polyamide polyether block copolymers (permanent antistatic performance), benzotriazole and benzophenone UV absorbers, hindered amine light stabilizers (weathering agents), antibacterial agents, compatibilizing agents
  • Examples include colorants (dyes and pigments).
  • the amount of the optional component is not particularly limited as long as the characteristics of the polycarbonate resin composition of the present invention are maintained.
  • the polycarbonate resin composition of the present invention contains neither an organic halogen flame retardant nor an organic phosphate ester flame retardant. For this reason, there is no fear of generation of harmful gas, contamination of the molding machine, burning of the resin, and deterioration of heat resistance.
  • the manufacturing method of the polycarbonate-type resin composition of this invention is demonstrated.
  • the above components (A) [(A-1), (A-2)], (B), and (C) are used in the above proportions as necessary. It can be obtained by blending various optional components obtained, and other general components in an appropriate ratio and kneading.
  • the mixing and kneading at this time are premixed by a commonly used equipment such as a ribbon blender, a drum tumbler, etc., and then a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a multi screw screw.
  • the heating temperature at the time of kneading is usually appropriately selected within the range of 240 to 300 ° C.
  • the components other than the polycarbonate-based resin can be added in advance as a master batch with melt-kneading with the polycarbonate-based resin.
  • the polycarbonate resin molded product of the present invention is formed by molding the polycarbonate resin composition produced as described above.
  • the polycarbonate resin molded article of the present invention is a composition obtained by melt-kneading the polycarbonate-based resin composition of the present invention using the above-described melt-kneading molding machine, or by using a pellet obtained from the composition as a raw material.
  • Various molded products can be produced by the method, injection compression molding method, extrusion molding method, blow molding method, press molding method, vacuum molding method, foam molding method and the like.
  • melt-kneading method is used to produce a pellet-shaped molding raw material, and then using this pellet, it is suitable for the production of injection molded products by injection molding or injection compression molding where releasability is most problematic. Can be used.
  • a gas injection molding method for preventing the appearance of sink marks or for reducing the weight can be adopted.
  • the molded product of the present invention formed by molding the polycarbonate-based resin composition obtained as described above is an outdoor electrical / electronic storage box such as an information communication box that requires very high impact characteristics and flame retardancy. It can be used as a material for solar power generation junction boxes.
  • This bisphenol A aqueous solution of sodium hydroxide 40L (hereinafter, L is an abbreviation of liter) / hr, methylene chloride at a flow rate of 15 L / hr, phosgene at a flow rate of 4.0 kg / hr, an inner diameter of 6 mm, and a tube length of 30 m It was continuously passed through the mold reactor.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A aqueous sodium hydroxide solution 2.8 L / hr, 25 mass.
  • the reaction was carried out by adding 0.64 L / hr of a 0.07 L / hr aqueous sodium hydroxide solution, 17 L / hr water, and 1 wt% triethylamine aqueous solution.
  • the reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer thus obtained had a concentration of 329 g / L and a chloroformate group concentration of 0.74 mol / L.
  • a methylene chloride solution of pt-butylphenol (PTBP) (132 g of PTBP dissolved in 2.0 L of methylene chloride), a sodium hydroxide aqueous solution of bisphenol A (577 g of sodium hydroxide and sodium dithionite 2 A solution in which 1012 g of bisphenol A was dissolved in an aqueous solution in which 0.0 g was dissolved in 8.4 L of water was added, and a polymerization reaction was carried out for 50 minutes.
  • PTBP pt-butylphenol
  • the methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
  • Polycarbonate-Polydimethylsiloxane Copolymer (PC-PDMS Copolymer)
  • PC-PDMS Copolymer Polycarbonate-polydimethylsiloxane copolymer was produced with the average number of PDMS repeats of allylphenol-terminated polydimethylsiloxane, the amount used, and the amount of pt-butylphenol used as shown in Table 1.
  • Table 1 shows the PDMS block portion content (mass%), viscosity number, and viscosity average molecular weight Mv of the obtained polycarbonate-polydimethylsiloxane copolymer.
  • Examples 1-7, Comparative Examples 1-10 Each component is mixed in the ratio shown in Table 2.
  • Table 2 Numerical values of each component in the table indicate parts by mass in the resin composition.
  • 0.1 parts by mass of tris (2,4-di-t-butylphenyl) phosphite (trade name; IRGAFOS 168, manufactured by BASF) as an antioxidant is uniformly mixed, and a 50 mm ⁇ single unit with a vent is mixed.
  • Granulation was carried out at a resin temperature of 280 ° C. using a shaft extruder to obtain pellets. The used molding materials and performance evaluation methods are shown below.
  • A-1) Polycarbonate-polydimethylsiloxane copolymer Polycarbonate-polydimethylsiloxane copolymer described in Production Examples 1 to 9
  • B Alkali metal salt of organic sulfonic acid Potassium perfluorobutane sulfonate (trade name; Megafac F114, manufactured by Dainippon Ink & Chemicals, Inc.)
  • C) Mixed powder made of polytetrafluoroethylene (PTFE) particles and organic polymer particles
  • PTFE-1 Mixed powder composed of polytetrafluoroethylene particles and (meth) acrylic acid alkyl ester copolymer; PTFE content
  • the Izod impact strength of the molded article of the polycarbonate resin composition of the present invention is 40 kJ / m 2 or more at both 23 ° C. and ⁇ 40 ° C., and is high even at low temperatures. Impact properties were obtained. In addition, the evaluation results of flammability were all V-0, indicating high flame retardancy. On the other hand, as in Comparative Examples 1 and 2, when the PDMS in the component (A-1), that is, the average number of repeating units of the structural unit represented by the general formula (II) is less than 30, or more than 500, Also, the impact properties at low temperatures were reduced.
  • a polycarbonate-based resin composition that has both excellent impact characteristics and flame retardancy without the risk of generation of harmful gases.
  • molded products made of this composition are used as materials for outdoor electrical / electronic storage boxes such as information communication boxes that require extremely high impact characteristics and flame resistance, and junction boxes for photovoltaic power generation. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 優れた衝撃強度と難燃性を併せ持つポリカーボネート系樹脂組成物及びその成形品を提供すること。 (A);(A-1)一般式(I)で表される構成単位及び一般式(II)で表される構成単位を有し、かつ、一般式(II)で表される構成単位の平均繰り返し数が30~500であるポリカーボネート-ポリオルガノシロキサン共重合体30~100質量%、及び、(A-2)該ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂70~0質量%からなる樹脂混合物100質量部に対して、 (B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、並びに(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含み、かつ、上記樹脂混合物(A)中の一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量が2~30質量%であって、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも含まないことを特徴とするポリカーボネート系樹脂組成物である。

Description

ポリカーボネート系樹脂組成物及びその成形品
 本発明は、難燃性と低温衝撃特性に優れたポリカーボネート系樹脂組成物に関する。詳しくは、本発明は、特定の繰り返し数及び構造を持つオルガノシロキサンブロック部分を有するポリカーボネート-ポリオルガノシロキサン共重合体を含む樹脂混合物に対し、有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩、及び、ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体を含む樹脂組成物、及び該樹脂組成物を成形してなる成形品に関する。
 ビスフェノールA等から製造されるポリカーボネート樹脂(PC)は、耐熱性、機械特性、寸法安定性等に優れることから電気・電子分野、自動車分野、建築分野等で各種部品の材料として多く使用されている。しかし、例えば-40℃のような低温において、非常に高度な衝撃特性、難燃特性を必要とする情報通信ボックス等の屋外電気・電子収納ボックス、太陽光発電用ジャンクションボックス等の材料としては十分な性能が得られていない。
 従来のポリカーボネート樹脂の場合、難燃剤等を用いることにより高い難燃性を付与することも可能であるが、難燃性と低温衝撃特性とを併せ持ち、実用上で満足できる性能のポリカーボネート樹脂は得られていない。例えば、ポリカーボネート樹脂にエラストマーを添加すれば衝撃特性が向上することは知られているが、低温における衝撃特性は十分ではない。また、ポリカーボネート樹脂の分子量を上げれば低温衝撃特性は向上するが、流動性が低下するという問題が生じる。
 そこで、ポリカーボネート樹脂と他のポリマーとの共重合体を用いる方法が検討されている。このような共重合体の1つとしてポリカーボネート-ポリジメチルシロキサン共重合体(PC-PDMS)がある。
 ポリカーボネート-ポリジメチルシロキサン共重合体は、従来のポリカーボネート樹脂に比べ難燃性や低温衝撃特性に優れているが、ポリカーボネート-ポリジメチルシロキサン共重合体単体では、UL規格94に基づくV-0といった高度な難燃性を得ることができない。そこで、高い難燃性を得るために、分岐鎖を有し、かつポリジメチルシロキサン量を1質量%としたポリカーボネート-ポリジメチルシロキサン共重合体と、有機金属塩とを併用する方法がある(特許文献1)。この方法により、透明性の維持および燃焼時のドリップを防止する効果が期待できるが、流動性や低温衝撃特性が低下するという欠点がある。
 一方、低温衝撃特性を維持しつつ高度な難燃性を達成するために、ポリカーボネート-ポリジメチルシロキサン共重合体と有機臭素化合物、有機金属塩とを併用する方法がある(特許文献2)。しかしながらこの方法では、有機臭素化合物を使用しているため、樹脂の燃焼時に有害物質であるダイオキシン類を発生する可能性がある。またドリップ防止剤としてポリテトラフルオロエチレン(PTFE)を添加しているため、-40℃といった低温における衝撃特性が低下するという欠点がある。
 また、衝撃特性と難燃性を両立すべく、衝撃改良材とリン酸エステル系難燃剤を併用する方法がある(特許文献3)。しかしながらこの方法では、リン酸エステル系難燃剤を使用しているため、耐熱性が低下するという欠点がある。
 一方、ポリテトラフルオロエチレン粒子と有機系重合体粒子とからなる混合粉体と金属塩とをポリカーボネート樹脂に添加する方法が知られている(特許文献4,5)。しかしながら、これらの文献には、ポリカーボネート樹脂として特定のポリジメチルシロキサン繰り返し数、及び特定のポリジメチルシロキサン含有量のポリカーボネート-ポリジメチルシロキサン共重合体を選択することで、非常に高い難燃性と低温衝撃特性が得られることについては記載されていない。
特表2004-536193号公報 特公平8-32820号公報 特開2006-52401号公報 特開2005-263908号公報 特開2004-27113号公報
 本発明は、上記従来技術の問題点を解決するためになされたものであって、ハロゲン系、リン酸エステル系難燃剤を使用することなく、優れた低温衝撃特性と難燃性を併せ持つポリカーボネート系樹脂組成物、及びその成形品の提供を目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の繰り返し数と構造を持つオルガノポリシロキサンブロック部分を有するポリカーボネート-ポリオルガノシロキサン共重合体を含む樹脂混合物(A)に、(B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩、及び、(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体を配合することにより、その目的を達成し得ることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、(A);(A-1)一般式(I)で表される構成単位及び一般式(II)で表される構成単位を有し、かつ、一般式(II)で表される構成単位の平均繰り返し数が30~500であるポリカーボネート-ポリオルガノシロキサン共重合体30~100質量%、及び、(A-2)該ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂70~0質量%からなる樹脂混合物100質量部に対して、(B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、並びに(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含み、かつ、前記樹脂混合物(A)中の一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量が2~30質量%であって、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも含まないことを特徴とするポリカーボネート系樹脂組成物、並びに該ポリカーボネート系樹脂組成物を成形してなる成形品を提供するものである。
Figure JPOXMLDOC01-appb-C000002
 [式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基を示し、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示し、R3及びR4は、それぞれ独立に水素原子、又は置換基を有していてもよいアルキル基もしくはアリール基を示し、a及びbは、それぞれ独立に0~4の整数を示す。lは平均繰り返し単位数であり、30~500の整数を示す。]
 本発明のポリカーボネート系樹脂組成物は、ハロゲン系、リン酸エステル系難燃剤を用いないため、燃焼時の有害ガスの発生、成形機の汚染、樹脂の焼け、耐熱性の低下のおそれがなく、また優れた衝撃強度と難燃性を併せ持つので、非常に高度な衝撃特性及び難燃特性を必要とする情報通信ボックス等の屋外電気・電子収納ボックスや、太陽光発電用ジャンクションボックス等の材料として使用することができる。
 本発明は、(A);(A-1)一般式(I)で表される構成単位及び一般式(II)で表される構成単位を有し、かつ、一般式(II)で表される構成単位の平均繰り返し数が30~500であるポリカーボネート-ポリオルガノシロキサン共重合体30~100質量%、及び、(A-2)該ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂70~0質量%からなる樹脂混合物100質量部に対して、(B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、並びに(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含み、かつ、前記樹脂混合物(A)中の一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量が2~30質量%であって、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも含まないことを特徴とするポリカーボネート系樹脂組成物、並びに該ポリカーボネート系樹脂組成物を成形してなる成形品である。
Figure JPOXMLDOC01-appb-C000003
 [式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基を示し、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示し、R3及びR4は、それぞれ独立に水素原子、又は置換基を有していてもよいアルキル基もしくはアリール基を示し、a及びbは、それぞれ独立に0~4の整数を示す。lは平均繰り返し単位数であり、30~500の整数を示す。]
 次に、ポリカーボネート-ポリオルガノシロキサン共重合体について説明する。
 (A-1)本発明において用いられるポリカーボネート-ポリオルガノシロキサン共重合体は、一般式(1)で表される二価フェノールと一般式(2)で表されるポリオルガノシロキサン
Figure JPOXMLDOC01-appb-C000004
 [式(1)中、X、R1~R2及びa及びbは一般式(I)と同様である。式(2)中、R3、R4、R5及びR6は各々独立に水素原子、又は置換基を有していてもよいアルキル基もしくはアリール基を示し、Yはハロゲン、-R7OH、-R7COOH、-R7NH2、-COOH又は-SHを示し、R7は直鎖、分岐鎖もしくは環状アルキレン基、アリール置換アルキレン基、環上にアルコキシ基を有してもよいアリール置換アルキレン基、アリーレン基を示す。mは0又は1を表し、nはオルガノシロキサン構成単位の平均繰り返し単位数であり、30~500の整数を示す。]と、ホスゲン、炭酸エステル、或いはクロロホルメートとを共重合させて得られるものである。
 本発明のポリカーボネート系樹脂組成物において、(A-1)ポリカーボネート-ポリオルガノシロキサン共重合体の原料に用いる一般式(1)で表される二価フェノールとしては様々なものがあるが、特に、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
 ビスフェノールA以外のビスフェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-テトラメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタエン等が挙げられる。
 これらの二価フェノールは、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。
 一般式(2)で表されるポリオルガノシロキサンを例示すると、例えば、
Figure JPOXMLDOC01-appb-C000005
 [前記一般式(3)~(11)中、R3、R4、R5及びR6は一般式(1)と同様に各々独立に水素原子、又は置換基を有していてもよいアルキル基もしくはアリール基を示し、R8はアルキル、アルケニル、アリール又はアラルキル基を示し、nはオルガノシロキサン構成単位の平均繰り返し単位数で30~500の整数を示し、cは正の整数を示す。]等が挙げられる。
 これらの中でも、式(3)に示すフェノール変性ポリオルガノシロキサンが重合の容易さから好ましく、更には式(4)に示す化合物の一種であるα,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、又は式(5)に示す化合物の一種であるα,ω-ビス[3-(4-ヒドロキシ-3-メトキシフェニル)プロピル]ポリジメチルシロキサンが入手の容易さから好ましい。
 一般式(2)で表されるポリオルガノシロキサンは、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、アリルフェノール、オイゲノール、イソプロペニルフェノール等を所定の重合度nを有するポリオルガノシロキサン鎖の末端に、ハイドロシラネーション反応させることにより容易に製造することができる。
 (A-1)ポリカーボネート-ポリオルガノシロキサン共重合体において、一般式(II)で表される構成単位の平均繰り返し数は30~500であり、好ましくは70~500であり、より好ましくは80~400であり、さらに好ましくは90~300である。一般式(II)で表される構成単位の平均繰り返し数が30より少ないと、-40℃における衝撃強度が十分でない。一方、一般式(II)で表される構成単位の平均繰り返し数が500より多いと、-40℃における衝撃強度と難燃性が十分でない。
 (A-1)ポリカーボネート-ポリオルガノシロキサン共重合体の粘度平均分子量(Mv)は、13,000~50,000であることが好ましく、より好ましくは15,000~30,000、さらに好ましくは15,000~26,000である。粘度平均分子量が13,000以上であれば成形品の強度が十分なものとなり、50,000以下であれば生産性が低下することはない。
 次に、(A-2)ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂について説明する。
 (A-2)芳香族ポリカーボネート樹脂は、反応に不活性な有機溶媒、及びアルカリ水溶液の存在下、二価フェノール系化合物及びホスゲンを反応させた後、第三級アミンもしくは第四級アンモニウム塩等の重合触媒を添加して重合させる界面重合法や、二価フェノール系化合物をピリジンまたはピリジンと不活性溶媒の混合溶液に溶解し、ホスゲンを導入し直接製造するピリジン法等従来の芳香族ポリカーボネートの製造法により得られるものが使用される。
 上記の反応に際し、必要に応じて、分子量調節剤(末端停止剤)、分岐化剤等が使用される。
 (A-2)芳香族ポリカーボネート樹脂の製造に使用される二価フェノール系化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン〔=ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4'-ジヒドロキシフェニルエーテル、4,4'-ジヒドロキシ-3,3'-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4'-ジヒロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタエン等が挙げられる。
 これらの二価フェノールは、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。
 (A-2)芳香族ポリカーボネート樹脂の製造にあたっては、分子量調節剤(末端停止剤)が通常使用される。
 分子量調節剤としては、通常、ポリカーボネート樹脂の重合に用いられる各種のものを用いることができる。
 具体的には、一価フェノールとして、例えば、フェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、o-t-ブチルフェノール、m-t-ブチルフェノール、p-t-ブチルフェノール、o-n-ペンチルフェノール、m-n-ペンチルフェノール、p-n-ペンチルフェノール、o-n-ヘキシルフェノール、m-n-ヘキシルフェノール、p-n-ヘキシルフェノール、p-t-オクチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-n-ノニルフェノール、m-ノニルフェノール、p-n-ノニルフェノール、o-クミルフェノール、m-クミルフェノール、p-クミルフェノール、o-ナフチルフェノール、m-ナフチルフェノール、p-ナフチルフェノール、2,5-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2,5-ジクミルフェノール、3,5-ジクミルフェノール、p-クレゾール、ブロモフェノール、トリブロモフェノール、平均炭素数12~35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン、9-(4-ヒドロキシ-3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル)フルオレン、4-(1-アダマンチル)フェノール等が挙げられる。
 これらの一価フェノールの中では、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノール等が好ましく用いられる。
 2種以上の化合物を併用することも当然に可能である。
 更に、分岐化剤を上記の二価フェノール系化合物に対して、0.01~3.0モル%、特に0.1~1.0モル%の範囲で併用して分岐化ポリカーボネートとすることができる。分岐化剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4'-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログリシン、トリメリト酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物を用いることができる。
 また、(A-2)芳香族ポリカーボネート樹脂としては、必要に応じて(A-1)ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂を2種以上併用することができる。
 上記(A-1)ポリカーボネート-ポリオルガノシロキサン共重合体と(A-2)芳香族ポリカーボネート樹脂とからなる(A)樹脂混合物において、後述のように一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量を2~30質量%に調整する関係から、(A)樹脂混合物中の(A-1)の含有量は、30~100質量%であり、好ましくは40~100質量%、より好ましくは50~95質量%である。(A-1)の含有量が30質量%より少ない場合は、(A)樹脂混合物においてポリオルガノシロキサンブロック部分の含有量が比較的多い(A-1)を使用する必要があり、このような(A-1)は工業的な製造が困難となる可能性もあるためである。
 また、(A-2)の含有量は70~0質量%であり、好ましくは60~0質量%、より好ましくは50~5質量%である。
 また、(A)樹脂混合物は、一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量が2~30質量%になるように調整されることが必要である。上記含有量は好ましくは2~20質量%、より好ましくは3~15質量%である。上記含有量が2質量%より少ないか、或いは30質量%より多いと、-40℃における衝撃特性と難燃性が両立できない。
 本発明のポリカーボネート系樹脂組成物は、上記(A)樹脂混合物100質量部に対して、(B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩、及び、(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体を含むものである。
 次に、本発明のポリカーボネート系樹脂組成物における(B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩について説明する。(B)成分は、難燃性の付与等の目的で本発明の組成物に添加される。
 有機スルホン酸のアルカリ金属塩やアルカリ土類金属塩としては、種々のものが挙げられるが、少なくとも一つの炭素原子を有する有機スルホン酸のアルカリ金属塩やアルカリ土類金属塩である。
 有機酸スルホン酸としては、有機スルホン酸、ポリスチレンスルホン酸等が挙げられる。
 アルカリ金属としては、ナトリウム、カリウム、リチウム及びセシウム等が挙げられる。
 また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム及びバリウム等が挙げられる。中でも、有機酸スルホン酸塩としては、ナトリウム、カリウム及びセシウムのアルカリ金属塩が好ましく用いられる。
 各種有機スルホン酸アルカリ金属塩及び/又は有機スルホン酸アルカリ土類金属塩のうち、有機スルホン酸としては、一般式(12)
   (Cc2c+1SO3dM       ・・・ (12)
 [式中、cは1~10の整数を示し、Mはリチウム、ナトリウム、カリウム及びセシウム等のアルカリ金属、又はマグネシウム、カルシウム、ストロンチウム及びバリウム等のアルカリ土類金属を示し、dはMの原子価を示す。]
で表されるパーフルオロアルカンスルホン酸のアルカリ金属塩やアルカリ土類金属塩が好ましく用いられる。
 これらの金属塩としては、例えば、特公昭47-40445号公報に記載されているものが該当する。
 一般式(12)において、パーフルオロアルカンスルホン酸としては、例えば、パーフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロメチルブタンスルホン酸、パーフルオロヘキサンスルホン酸、パーフルオロヘプタンスルホン酸及びパーフルオロオクタンスルホン酸等を挙げることができる。特に、これらのカリウム塩が好ましく用いられる。
 その他、アルキルスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、ジフェニルスルホン酸、ナフタレンスルホン酸、2,5-ジクロロベンゼンスルホン酸、2,4,5-トリクロロベンゼンスルホン酸、ジフェニルスルホン-3-スルホン酸、ジフェニルスルホン-3,3’-ジスルホン酸、ナフタレントリスルホン酸及びこれらのフッ素置換体並びにポリスチレンスルホン酸等の有機スルホン酸のアルカリ金属塩やアルカリ土類金属塩等を挙げることができる。
 特に、有機スルホン酸としては、パーフルオロアルカンスルホン酸及びジフェニルスルホン酸が好ましい。
 ポリスチレンスルホン酸のアルカリ金属塩及び/又アルカリ土類金属塩としては、一般式(13)
Figure JPOXMLDOC01-appb-C000006
 [式中、Xはスルホン酸塩基を示し、mは1~5の整数を示す。Yは水素原子又は炭素数1~10の炭化水素基を示す。nはモル分率を示し、0<n≦1である。]で表されるスルホン酸塩基含有芳香族ビニル系樹脂を挙げることができる。
 ここで、スルホン酸塩基は、スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩であり、金属としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウム等が挙げられる。
 なお、Yは水素原子又は炭素数1~10の炭化水素基であり、好ましくは水素原子又はメチル基である。
 mは1~5の整数であり、nは、0<n≦1の関係である。
 すなわち、スルホン酸塩基(X)は、芳香環に対して、全置換したものであっても、部分置換したもの、又は無置換のものを含んだものであってもよい。
 (B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩の含有量は、(A)樹脂混合物100質量部に対して0.01~0.15質量部であり、好ましくは0.02~0.13質量部、より好ましくは0.03~0.12質量部である。0.01質量部より少ないか、或いは0.15質量部より多いと、本発明の課題である難燃性が十分でない。
 次に、本発明のポリカーボネート系樹脂組成物における(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体について説明する。
 (C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体におけるポリテトラフルオロエチレン粒子は、粒子径が、通常10μm以下であり、好ましくは0.05~1.0μmである。
 ポリテトラフルオロエチレン粒子は、例えば乳化剤等を含んだ水に分散した、水性分散液として調製される。このポリテトラフルオロエチレン粒子の水性分散液は、含フッ素界面活性剤を用い、テトラフルオロエチレンモノマーを乳化重合することにより得られる。
 ポリテトラフルオロエチレン粒子の乳化重合の際、ポリテトラフルオロエチレンの特性を損なわない範囲で、共重合成分としてヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン及びパーフルオロアルキルビニルエーテル等の含フッ素オレフィン、パーフルオロアルキル(メタ)アクリレート等の含フッ素アルキル(メタ)アクリレートを用いることができる。
 共重合成分の含有量は、好ましくは、ポリテトラフルオロエチレン粒子中のテトラフルオロエチレンに対して10質量%以下である。
 次に、(C)成分における有機系重合体粒子について説明する。
 本発明に用いられる有機系重合体粒子としては、特に制限されるものではないが、(A)樹脂混合物に配合する際のポリテトラフルオロエチレン粒子の分散性の観点から、ポリカーボネート樹脂に親和性を有するものであることが好ましい。
 有機系重合体粒子を製造するための単量体の具体例としては、スチレン、p-メチルスチレン、o-メチルスチレン、p-クロルスチレン、o-クロルスチレン、p-メトキシスチレン,o-メトキシスチレン、2,4-ジメチルスチレン、α-メチルスチレン等のスチレン系単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸トリデシル、メタクリル酸トリデシル、アクリル酸オクタデシル、メタクリル酸オクタデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の(メタ)アクリル酸アルキルエステル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル系単量体;エチレン、プロピレン、イソブチレン等のオレフィン系単量体;ブタジエン、イソプレン、ジメチルブタジエン等のジエン系単量体等を挙げることができる。特に、(メタ)アクリル酸アルキルエステル系単量体の使用が好ましい。なお、(メタ)アクリル酸アルキルエステル系単量体とは、アクリル酸アルキルエステル系及びメタクリル酸アルキルエステル系の両方の単量体を指す。
 これらの単量体を重合することにより、有機系重合体粒子が得られる。上記単量体は、1種又は2種以上混合して用いることができる。有機系重合体粒子としては、(メタ)アクリル酸アルキルエステル系共重合体からなる粒子が好ましい。
 有機系重合体粒子は、例えば有機系重合体粒子の水性分散液として調製される。有機系重合体粒子の水性分散液の製造法は、特に制限はないが、例えば、イオン性乳化剤を用いる乳化重合法、イオン性重合開始剤を用いるソープフリー乳化重合法等を挙げることができる。
 イオン性乳化剤としては、アニオン性乳化剤、カチオン性乳化剤及び両性イオン乳化剤のいずれも用いることができる。又、これらのイオン性乳化剤と共に、ノニオン性乳化剤を併用することもできる。
 アニオン性乳化剤としては、脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アミン及び脂肪族アマイドの硫酸塩類、脂肪族アルコールリン酸エステル塩類、二塩基性脂肪酸エステルのスルホン酸塩類、脂肪酸アミドスルホン酸塩類、アルキルアリルスルホン酸塩類及びホルマリン縮合物のナフタリンスルホン酸塩類等を挙げることができる。
 カチオン性乳化剤としては、脂肪族アミン塩類、第四アンモニウム塩類及びアルキルピリジニウム塩等を挙げることができる。
 両性乳化剤としては、アルキルベタイン等を挙げることができる。
 イオン性重合開始剤としては、過硫酸塩(例えば、過硫酸カリウムや過硫酸アンモニウム)、アゾビス(イソブチロニトリルスルホン酸塩)、4,4’-アゾビス(4-シアノ吉草酸)等のアニオン性重合開始剤、2,2’-アゾビス(アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビスイソブチルアミド二水和物等のカチオン性重合開始剤を挙げることができる。
 本発明に用いられる有機系重合体粒子の粒子径dとしては、特に制限はないが、ポリテトラフルオロエチレン粒子との凝集状態の安定性の観点から、ポリテトラフルオロエチレン粒子の粒子径Dに対して次式の範囲であることが好ましい。
  0.1D<d<10D
 (C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体は、例えば、上記ポリテトラフルオロエチレン粒子の水性分散液と、有機系重合体粒子の水性分散液とを混合し、その後、後述の方法により粉体化することによって得られる。この混合粉体は、ポリテトラフルオロエチレン粒子と有機系重合体粒子とが表面電荷の違いにより凝集した凝集粒子と、凝集せずに残存したそれぞれの単独粒子を含むものである。
 凝集粒子は、ポリテトラフルオロエチレン粒子と有機系重合体粒子とが一体となった構造を有するが、そのモルフォロジーは両粒子の混合比や粒子径により様々なものがある。即ち、ポリテトラフルオロエチレン粒子の周りを有機系重合体が取り囲んだ形態、その反対に有機系重合体粒子の周りをポリテトラフルオロエチレン粒子が取り囲んだ形態、及び1つの粒子に対して数個の粒子が凝集した形態等が存在する。
 上記水性分散液の混合の際の凝集速度を低下させるために、混合前に、ノニオン性乳化剤をポリテトラフルオロエチレン粒子及び/又は有機系重合体粒子の表面上に吸着させておくこともできる。
 ノニオン性乳化剤としては、特に制限はなく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ジアルキルフェノキシポリ(エチレンオキシ)エタノール、ポリビニルアルコール、ポリアクリル酸及びアルキルセルロース等を挙げることができる。
 そして、上記のようにして混合した水性分散液を、例えば塩化カルシウム、硫酸マグネシウム等の金属塩を溶解した熱水中に投入し、塩析、凝固した後に乾燥、又は、スプレードライにより粉体化することができる。
 また、上記の混合水性分散液中で、エチレン性不飽和結合を有する単量体を乳化重合して、凝固又はスプレードライにより粉体化することもできる。
 混合した水性分散液中で乳化重合させるエチレン性不飽和単量体としては、スチレン、p-メチルスチレン、o-メチルスチレン、p-クロルスチレン、o-クロルスチレン、p-メトキシスチレン,o-メトキシスチレン、2,4-ジメチルスチレン、α-メチルスチレン等のスチレン系単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、等の(メタ)アクリル酸アルキルエステル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル系単量体;エチレン、プロピレン、イソブチレン等のオレフィン単量体;ブタジエン、イソプレン、プレン、ジメチルブタジエン等のジエン系単量体等を挙げることができる。これらの単量体は、1種又は2種以上混合して用いることができる。
 本発明の(C)混合粉体中のポリテトラフルオロエチレン粒子の含有量は、得られる樹脂組成物のアンチドリッピング効果による難燃性、及び成形品の外観や、ウェルド強度などの観点から、好ましくは0.1~90質量%であり、より好ましくは30~90質量%、更に好ましくは40~90質量%である。
 本発明のポリカーボネート系樹脂組成物における(C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体の含有量は、(A)樹脂混合物100質量部に対して、0.1~1質量部であり、好ましくは0.1~0.9質量部、より好ましくは0.2~0.8質量部である。
 上記混合粉体の含有量が0.1質量部未満ではドリップ性能が低下し、難燃性が達成できない。一方、1質量部を超えると、組成物中の有機系重合体の割合が増加し、難燃性が達成できない。
 本発明のポリカーボネート系樹脂組成物は、外観改善、帯電防止、耐候性改善、剛性改善等の目的で、ポリカーボネート系樹脂に常用されている添加剤成分を必要により添加含有することができる。
 例えば、帯電防止剤、ポリアミドポリエーテルブロック共重合体(永久帯電防止性能付与)、ベンゾトリアゾール系やベンゾフェノン系の紫外線吸収剤、ヒンダードアミン系の光安定剤(耐候剤)、抗菌剤、相溶化剤、着色剤(染料、顔料)等が挙げられる。
 任意成分の配合量は、本発明の,ポリカーボネート系樹脂組成物の特性が維持される範囲であれば特に制限はない。
 本発明のポリカーボネート系樹脂組成物は、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも含まない。このため、有害ガスの発生、成形機の汚染、樹脂の焼け、耐熱性の低下のおそれがない。
 次に、本発明のポリカーボネート系樹脂組成物の製造方法について説明する。
 本発明のポリカーボネート系樹脂組成物は、前記の各成分、(A)[(A-1),(A-2)]、(B)、(C)を上記割合で、更に必要に応じて用いられる各種任意成分、更には他の一般的な成分を適当な割合で配合し、混練することにより得られる。
 このときの配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、コニーダ等を用いる方法で行うことができる。
 混練の際の加熱温度は、通常240~300℃の範囲で適宜選択される。
 尚、ポリカーボネート系樹脂以外の含有成分は、予め、ポリカーボネート系樹脂と溶融混練、即ち、マスターバッチとして添加することもできる。
 本発明のポリカーボネート樹脂成形品は、上記のようにして製造されたポリカーボネート樹脂組成物を成形してなる。
 本発明のポリカーボネート樹脂成形品は、本発明のポリカーボネート系樹脂組成物を、上記の溶融混練成形機を用いて溶融混練した組成物、又は、該組成物から得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等により各種成形品を製造することができる。
 特に、上記溶融混練方法により、ペレット状の成形原料を製造し、次いで、このペレットを用いて、離型性が最も問題となるところの射出成形、射出圧縮成形による射出成形品の製造に好適に用いることができる。
 尚、射出成形方法としては、外観のヒケ防止のため、又は、軽量化のためのガス注入成形方法を採用することもできる。
 上記のようにして得られたポリカーボネート系樹脂組成物を成形してなる本発明の成形品は、非常に高度な衝撃特性、難燃特性を必要とする情報通信ボックス等の屋外電気・電子収納ボックスや太陽光発電用ジャンクションボックス等の材料として使用できる。
 本発明の実施例をさらに説明するが、本発明はこれらの例によって何ら限定されるものではない。
〔ポリカーボネート-ポリジメチルシロキサン共重合体(PC-PDMS共重合体)の製造例1〕
<ポリカーボネートオリゴマー製造>
 5.6質量%水酸化ナトリウム水溶液に後から溶解するビスフェノールA(BPA)に対して2000ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにビスフェノールAを溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。
 このビスフェノールAの水酸化ナトリウム水溶液40L(以下、Lはリットルの省略である。)/hr、塩化メチレン15L/hrの流量で、ホスゲンを4.0kg/hrの流量で内径6mm、管長30mの管型反応器に連続的に通した。
 管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここにさらにビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr添加して反応を行った。
 槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
 このようにして得られたポリカーボネートオリゴマーは、濃度329g/L、クロロホーメート基濃度0.74mol/Lであった。
<ポリカーボネート-ポリジメチルシロキサン共重合体の製造>
 邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に、上記で製造したポリカーボネートオリゴマー溶液15L、塩化メチレン9.0L、ジメチルシロキサン単位の繰り返し数が90であるo-アリルフェノール末端変性ポリジメチルシロキサン(PDMS)411g及びトリエチルアミン8.8mLを仕込み、攪拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応を行った。
 この重合液に、p-t-ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP132gを塩化メチレン2.0Lに溶解したもの)、ビスフェノールAの水酸化ナトリウム水溶液(水酸化ナトリウム577gと亜二チオン酸ナトリウム2.0gを水8.4Lに溶解した水溶液にビスフェノールA1012gを溶解させたもの)を添加し、50分間重合反応を行った。
 希釈のため塩化メチレン10Lを加え10分間攪拌した後、ポリカーボネート-ポリジメチルシロキサン共重合体を含む有機相と過剰のビスフェノールA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。
 こうして得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/L水酸化ナトリウム水溶液、0.2モル/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。
 洗浄により得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
 得られたポリカーボネート-ポリジメチルシロキサン共重合体の核磁気共鳴(NMR)により求めたPDMSブロック部分含有量は6.0質量%、ISO1628-4(1999)に準拠して測定した粘度数は49.5、粘度平均分子量Mv=18,500であった。
〔ポリカーボネート-ポリジメチルシロキサン共重合体(PC-PDMS共重合体)の製造例2~9〕
 アリルフェノール末端変性ポリジメチルシロキサンのPDMS平均繰り返し数、使用量、p-t-ブチルフェノールの使用量を表1に記載の通りとして、ポリカーボネート-ポリジメチルシロキサン共重合体を製造した。
 得られたポリカーボネート-ポリジメチルシロキサン共重合体のPDMSブロック部分含有量(質量%)、粘度数、粘度平均分子量Mvを表1に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例1~7、比較例1~10
 表2に示す割合で各成分を混合〔表中の各成分の数値は、樹脂組成物中の質量部を示す。〕し、さらに酸化防止剤としてトリス(2,4-ジ-t-ブチルフェニル)フォスファイト(商品名;IRGAFOS168、BASF社製)0.1質量部とを均一に混合し、ベント付き50mmφの単軸押出機を用いて樹脂温度280℃で造粒し、ペレットを得た。
 用いた成形材料及び性能評価方法を次に示す。
(A-1)ポリカーボネート-ポリジメチルシロキサン共重合体
 製造例1~9に記載のポリカーボネート-ポリジメチルシロキサン共重合体
(A-2)芳香族ポリカーボネート樹脂
 p-t-ブチルフェノールを末端基に有するビスフェノールAポリカーボネート(商品名;タフロンFN1900A、出光興産(株)製、粘度数49.5、粘度平均分子量Mv=18,500)
(B)有機スルホン酸のアルカリ金属塩
 パーフルオロブタンスルホン酸カリウム(商品名;メガファックF114、大日本インキ化学工業(株)製)
(C)ポリテトラフルオロエチレン(PTFE)粒子と有機系重合体粒子とからなる混合粉体
 PTFE-1
 ポリテトラフルオロエチレン粒子と(メタ)アクリル酸アルキルエステル系共重合体からなる混合粉体;PTFE含有量約50~60質量%(商品名;A3800、三菱レイヨン(株)製)
本願の(C)成分ではないPTFE
 PTFE-2
 ポリフルオロオレフィン樹脂(商品名;CD076、旭硝子(株)製)
 PTFE-3
 PTFEの水性分散液;PTFE含有量約60質量%(商品名;AD938L、旭硝子(株)製)
(D)リン酸エステル化合物
 レゾルシノールビス(ジキシレニルホスフェート)(商品名;FP500、大八化学工業(株)製)
[性能評価]
 上記方法で得られたペレットを、射出成形機(型番;IS100EN、東芝機械(株)製)を用い、シリンダー温度280℃、金型温度80℃の成形条件で射出成形して試験片を得た。得られた試験片を用いて以下の測定を行った。
(1)衝撃試験(衝撃強度)
 ASTM D256に準じ、23℃および-40℃にてノッチ付アイゾッド衝撃試験を行った。
(2)燃焼性
 米国アンダーライターラボラトリー社が定めるUL94垂直難燃試験に従い、試験片厚み1/16インチ成形品について行い、V-0、V-1及びV-2に分類して評価した。
Figure JPOXMLDOC01-appb-T000008
 実施例1~7から明らかなように、本発明のポリカーボネート系樹脂組成物の成形体のアイゾッド衝撃強度は、23℃及び-40℃のいずれにおいても40kJ/m2以上であり、低温においても高い衝撃特性が得られた。また、燃焼性評価結果はいずれもV-0であり、高い難燃性を示した。
 一方、比較例1及び2のように、(A-1)成分中のPDMS、すなわち前記一般式(II)で表される構成単位の平均繰り返し数が30未満、或いは500を超える場合は、いずれも低温における衝撃特性が低下した。また、比較例3及び4のように、本願(C)成分ではないポリテトラフルオロエチレンを用いた場合には低温における衝撃特性が低下した。
 比較例5及び6より、(B)又は(C)成分を添加しない場合や、比較例8のように(C)成分が1質量部を超える場合にはいずれも難燃性が低下した。比較例7及び9では、ポリカーボネート系樹脂(A)における(A-1)成分の含有量が30質量%未満であり、また(A)中のPDMSブロック部分含有量が2質量%未満であるため、-40℃における衝撃特性と難燃性の両方が低下した。
 さらに、比較例10のように、(D)有機リン酸エステル系難燃剤であるリン酸エステル化合物を添加した場合には、低温における衝撃特性が低下することがわかった。
 本発明によれば、有害ガスの発生等のおそれがなく、優れた衝撃特性と難燃性を併せ持つポリカーボネート系樹脂組成物を提供することが出来る。また、この組成物からなる成形品は、非常に高度な衝撃特性、難燃特性を必要とする情報通信ボックス等の屋外電気・電子収納ボックスや、太陽光発電用ジャンクションボックス等の材料として使用することができる。

Claims (4)

  1.  (A);(A-1)一般式(I)で表される構成単位及び一般式(II)で表される構成単位を有し、かつ、一般式(II)で表される構成単位の平均繰り返し数が30~500であるポリカーボネート-ポリオルガノシロキサン共重合体30~100質量%、及び、(A-2)該ポリカーボネート-ポリオルガノシロキサン共重合体以外の芳香族ポリカーボネート樹脂70~0質量%からなる樹脂混合物100質量部に対して、
    (B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、並びに
    (C)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含み、
    かつ、前記樹脂混合物(A)中の一般式(II)で表される構成単位からなるポリオルガノシロキサンブロック部分の含有量が2~30質量%であって、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも含まないことを特徴とするポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基を示し、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示し、R3及びR4は、それぞれ独立に水素原子、又は置換基を有していてもよいアルキル基もしくはアリール基を示し、a及びbは、それぞれ独立に0~4の整数を示す。lは平均繰り返し単位数であり、30~500の整数を示す。]
  2.  (B)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩がパーフルオロアルカンスルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩である、請求項1に記載のポリカーボネート系樹脂組成物。
  3.  (C)成分における有機系重合体粒子が(メタ)アクリル酸アルキルエステル系共重合体からなる粒子である、請求項1又は2に記載のポリカーボネート系樹脂組成物。
  4.  請求項1~3のいずれかに記載のポリカーボネート系樹脂組成物を成形してなる成形品。
PCT/JP2011/063050 2010-06-09 2011-06-07 ポリカーボネート系樹脂組成物及びその成形品 WO2011155490A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/702,858 US9434840B2 (en) 2010-06-09 2011-06-07 Polycarbonate-based resin composition and molded article thereof
JP2012519396A JP5755226B2 (ja) 2010-06-09 2011-06-07 ポリカーボネート系樹脂組成物及びその成形品
CN201180027825.7A CN102933657B (zh) 2010-06-09 2011-06-07 聚碳酸酯系树脂组合物及其成型品
EP11792447.2A EP2581413B2 (en) 2010-06-09 2011-06-07 Polycarbonate-based resin composition and molded article thereof
KR1020127031903A KR101820182B1 (ko) 2010-06-09 2011-06-07 폴리카보네이트계 수지 조성물 및 그 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132484 2010-06-09
JP2010-132484 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155490A1 true WO2011155490A1 (ja) 2011-12-15

Family

ID=45098095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063050 WO2011155490A1 (ja) 2010-06-09 2011-06-07 ポリカーボネート系樹脂組成物及びその成形品

Country Status (7)

Country Link
US (1) US9434840B2 (ja)
EP (1) EP2581413B2 (ja)
JP (1) JP5755226B2 (ja)
KR (1) KR101820182B1 (ja)
CN (1) CN102933657B (ja)
TW (1) TWI516541B (ja)
WO (1) WO2011155490A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148641A1 (ja) * 2013-03-21 2014-09-25 帝人株式会社 ガラス繊維強化ポリカーボネート樹脂組成物
CN104114641A (zh) * 2012-02-28 2014-10-22 出光兴产株式会社 电流断路器筐体及使用其的电流断路器
EP2810991A4 (en) * 2012-01-30 2015-11-18 Idemitsu Kosan Co POLYCARBONATE RESIN COMPOSITION AND MOLDING PRODUCTS
WO2016063656A1 (ja) * 2014-10-20 2016-04-28 出光興産株式会社 リサイクル材を含むポリカーボネート系樹脂組成物及びその成形品
KR20180084767A (ko) * 2015-11-17 2018-07-25 사빅 글로벌 테크놀러지스 비.브이. 휴대폰 하우징 적용을 위한 폴리카보네이트-폴리실록산 공중합체 조성물
WO2018159780A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 難燃性ポリカーボネート系樹脂組成物及びその成形品
WO2018159779A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
WO2018159778A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
US10214644B2 (en) 2013-06-26 2019-02-26 Sabic Global Technologies B.V. Dark polycarbonate composition
CN110832029A (zh) * 2017-06-28 2020-02-21 出光兴产株式会社 聚碳酸酯系树脂组合物及其成形品

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706667B2 (ja) 2010-11-08 2015-04-22 出光興産株式会社 ポリカーボネート系樹脂組成物、成形品、及び太陽光発電用構造部材
JP6200137B2 (ja) 2012-09-14 2017-09-20 出光興産株式会社 ポリカーボネート系樹脂組成物、及び成形品
WO2014144438A1 (en) * 2013-03-15 2014-09-18 Sabic Innovative Plastics Ip B.V. Blends containing photoactive additive
KR20160051756A (ko) * 2013-08-29 2016-05-11 이데미쓰 고산 가부시키가이샤 폴리카보네이트 수지 조성물 및 성형체
KR101779188B1 (ko) 2014-09-05 2017-09-15 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
KR20160067714A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 물품
KR101685665B1 (ko) * 2014-12-04 2016-12-12 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
TWI711646B (zh) * 2015-08-27 2020-12-01 日商出光興產股份有限公司 聚碳酸酯-聚有機矽氧烷共聚物之製造方法
KR101948823B1 (ko) * 2015-09-04 2019-02-15 주식회사 엘지화학 신규한 폴리오르가노실록산 및 이를 사용하여 제조되는 코폴리카보네이트
KR20180098259A (ko) 2015-12-22 2018-09-03 이데미쓰 고산 가부시키가이샤 폴리카보네이트계 수지 조성물
TWI588161B (zh) * 2016-07-28 2017-06-21 廣科工業股份有限公司 低介電常數材料與其前驅物
US11186714B2 (en) * 2017-03-01 2021-11-30 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded product thereof
JP7252727B2 (ja) * 2018-09-14 2023-04-05 出光興産株式会社 ポリカーボネート系樹脂組成物
CN112143227A (zh) * 2019-06-27 2020-12-29 住友化学株式会社 光学膜、柔性显示装置及光学膜的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027113A (ja) 2002-06-27 2004-01-29 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物及び成形品
JP2004536193A (ja) 2001-07-18 2004-12-02 ゼネラル・エレクトリック・カンパニイ 透明難燃性ポリカーボネート組成物
JP2005263908A (ja) 2004-03-17 2005-09-29 Sumitomo Dow Ltd 難燃性ポリカーボネート樹脂組成物
JP2006052401A (ja) 2004-08-05 2006-02-23 General Electric Co <Ge> 難燃性の熱可塑性ポリカーボネート組成物、その用途及び製造方法
WO2007132657A1 (ja) * 2006-05-12 2007-11-22 Kaneka Corporation ポリオルガノシロキサン含有グラフト共重合体、それからなる難燃剤、及びそれを含有する樹脂組成物
JP2008208151A (ja) * 2007-02-23 2008-09-11 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物及びそれから得られた成形体
JP2009280725A (ja) * 2008-05-23 2009-12-03 Idemitsu Kosan Co Ltd 難燃性ポリカーボネート樹脂組成物および光反射部材
JP2009280636A (ja) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd ガラス繊維強化難燃性ポリカーボネート樹脂組成物及び該樹脂組成物を用いた成形品
JP2010037495A (ja) * 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd 摺動用ポリカーボネート系樹脂組成物、および同樹脂組成物を用いた成形品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740445Y1 (ja) 1969-08-28 1972-12-07
DE3629546A1 (de) 1986-08-30 1988-03-03 Bayer Ag Schlagzaehe, flammwidrige formmassen
US4994510A (en) 1990-04-05 1991-02-19 General Electric Company Poly(carbonate-siloxane) with reduced tendency to burn
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
ES2173080T3 (es) * 1991-07-01 2002-10-16 Gen Electric Mezclas de polimeros de copolimeros de bloque policarbonato-polisoloxano con policarbonato y poliestercarbonato.
EP0522751B1 (en) 1991-07-01 1998-04-01 General Electric Company Polycarbonate-polysiloxane block copolymers
JP3223046B2 (ja) 1994-07-20 2001-10-29 ケイディーディーアイ株式会社 誤差拡散法2値画像の符号化装置
US20050085580A1 (en) * 2003-10-16 2005-04-21 General Electric Company Light-Colored Polycarbonate Compositions and Methods
US20060142486A1 (en) * 2004-12-23 2006-06-29 Derudder James L Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture
US7939591B2 (en) * 2005-05-19 2011-05-10 Teijin Chemicals, Ltd. Polycarbonate resin composition
US7728059B2 (en) * 2006-02-14 2010-06-01 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions and articles formed therefrom
US7632881B2 (en) * 2006-06-22 2009-12-15 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions and articles formed therefrom
US7553895B2 (en) * 2006-06-29 2009-06-30 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions and articles formed therefrom
WO2009145340A1 (ja) 2008-05-26 2009-12-03 帝人化成株式会社 難燃性ポリカーボネート樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536193A (ja) 2001-07-18 2004-12-02 ゼネラル・エレクトリック・カンパニイ 透明難燃性ポリカーボネート組成物
JP2004027113A (ja) 2002-06-27 2004-01-29 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物及び成形品
JP2005263908A (ja) 2004-03-17 2005-09-29 Sumitomo Dow Ltd 難燃性ポリカーボネート樹脂組成物
JP2006052401A (ja) 2004-08-05 2006-02-23 General Electric Co <Ge> 難燃性の熱可塑性ポリカーボネート組成物、その用途及び製造方法
WO2007132657A1 (ja) * 2006-05-12 2007-11-22 Kaneka Corporation ポリオルガノシロキサン含有グラフト共重合体、それからなる難燃剤、及びそれを含有する樹脂組成物
JP2008208151A (ja) * 2007-02-23 2008-09-11 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物及びそれから得られた成形体
JP2009280636A (ja) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd ガラス繊維強化難燃性ポリカーボネート樹脂組成物及び該樹脂組成物を用いた成形品
JP2009280725A (ja) * 2008-05-23 2009-12-03 Idemitsu Kosan Co Ltd 難燃性ポリカーボネート樹脂組成物および光反射部材
JP2010037495A (ja) * 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd 摺動用ポリカーボネート系樹脂組成物、および同樹脂組成物を用いた成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2581413A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2810991A4 (en) * 2012-01-30 2015-11-18 Idemitsu Kosan Co POLYCARBONATE RESIN COMPOSITION AND MOLDING PRODUCTS
US9499694B2 (en) 2012-01-30 2016-11-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
CN109021586A (zh) * 2012-02-28 2018-12-18 出光兴产株式会社 电流断路器筐体及使用其的电流断路器
CN104114641A (zh) * 2012-02-28 2014-10-22 出光兴产株式会社 电流断路器筐体及使用其的电流断路器
US9303119B2 (en) 2012-02-28 2016-04-05 Idemitsu Kosan Co., Ltd. Current breaker case and current breaker using the same
US10196515B2 (en) 2013-03-21 2019-02-05 Teijin Limited Glass-fiber-reinforced polycarbonate resin composition
JPWO2014148641A1 (ja) * 2013-03-21 2017-02-16 帝人株式会社 ガラス繊維強化ポリカーボネート樹脂組成物
KR20150132087A (ko) * 2013-03-21 2015-11-25 데이진 가부시키가이샤 유리 섬유 강화 폴리카보네이트 수지 조성물
KR102141725B1 (ko) 2013-03-21 2020-09-14 데이진 가부시키가이샤 유리 섬유 강화 폴리카보네이트 수지 조성물
WO2014148641A1 (ja) * 2013-03-21 2014-09-25 帝人株式会社 ガラス繊維強化ポリカーボネート樹脂組成物
US10214644B2 (en) 2013-06-26 2019-02-26 Sabic Global Technologies B.V. Dark polycarbonate composition
JP2016079333A (ja) * 2014-10-20 2016-05-16 出光興産株式会社 リサイクル材を含むポリカーボネート系樹脂組成物及びその成形品
WO2016063656A1 (ja) * 2014-10-20 2016-04-28 出光興産株式会社 リサイクル材を含むポリカーボネート系樹脂組成物及びその成形品
KR20180084767A (ko) * 2015-11-17 2018-07-25 사빅 글로벌 테크놀러지스 비.브이. 휴대폰 하우징 적용을 위한 폴리카보네이트-폴리실록산 공중합체 조성물
JP2018533671A (ja) * 2015-11-17 2018-11-15 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 携帯電話のハウジング用途のためのポリカーボネート−ポリシロキサンコポリマー組成物
KR102523039B1 (ko) 2015-11-17 2023-04-18 에스에이치피피 글로벌 테크놀러지스 비.브이. 휴대폰 하우징 적용을 위한 폴리카보네이트-폴리실록산 공중합체 조성물
WO2018159780A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 難燃性ポリカーボネート系樹脂組成物及びその成形品
US11072703B2 (en) 2017-03-01 2021-07-27 Idemitsu Kosan Co., Ltd. Polycarbonate-based resin composition and molded product thereof
WO2018159778A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
JPWO2018159779A1 (ja) * 2017-03-01 2019-12-26 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
JPWO2018159778A1 (ja) * 2017-03-01 2019-12-26 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
US11851560B2 (en) 2017-03-01 2023-12-26 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded product thereof
WO2018159779A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
JPWO2018159780A1 (ja) * 2017-03-01 2019-12-26 出光興産株式会社 難燃性ポリカーボネート系樹脂組成物及びその成形品
US11352478B2 (en) 2017-03-01 2022-06-07 Idemitsu Kosan Co., Ltd. Flame-retardant polycarbonate-based resin composition and molded product thereof
CN110402270B (zh) * 2017-03-01 2022-06-14 出光兴产株式会社 阻燃性聚碳酸酯系树脂组合物及其成形品
JP7109420B2 (ja) 2017-03-01 2022-07-29 出光興産株式会社 難燃性ポリカーボネート系樹脂組成物及びその成形品
JP7109419B2 (ja) 2017-03-01 2022-07-29 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
JP7109418B2 (ja) 2017-03-01 2022-07-29 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
CN110402270A (zh) * 2017-03-01 2019-11-01 出光兴产株式会社 阻燃性聚碳酸酯系树脂组合物及其成形品
CN110832029A (zh) * 2017-06-28 2020-02-21 出光兴产株式会社 聚碳酸酯系树脂组合物及其成形品

Also Published As

Publication number Publication date
JPWO2011155490A1 (ja) 2013-08-01
EP2581413B2 (en) 2019-02-27
CN102933657A (zh) 2013-02-13
EP2581413A1 (en) 2013-04-17
KR101820182B1 (ko) 2018-01-18
US9434840B2 (en) 2016-09-06
KR20130111213A (ko) 2013-10-10
US20130082222A1 (en) 2013-04-04
JP5755226B2 (ja) 2015-07-29
CN102933657B (zh) 2014-11-05
TW201202340A (en) 2012-01-16
EP2581413A4 (en) 2014-12-17
TWI516541B (zh) 2016-01-11
EP2581413B1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5755226B2 (ja) ポリカーボネート系樹脂組成物及びその成形品
TWI586754B (zh) Polycarbonate resin composition
JP5852797B2 (ja) 電池パック用ポリカーボネート樹脂組成物及び電池パック
JP6200137B2 (ja) ポリカーボネート系樹脂組成物、及び成形品
JP5988971B2 (ja) ポリカーボネート樹脂組成物及びそれを用いた成形体
JP5877098B2 (ja) ポリカーボネート樹脂組成物及びそれを用いた成形体
JP2017036412A (ja) ポリカーボネート樹脂組成物及びその成形体
KR20110013350A (ko) 난연성 폴리카보네이트 수지 조성물
US9303119B2 (en) Current breaker case and current breaker using the same
KR20140035142A (ko) 난연성 폴리실록산-폴리카보네이트 수지 조성물 및 이의 성형품
JP6495683B2 (ja) 絶縁熱伝導性ポリカーボネート樹脂組成物
JP2016113480A (ja) 難燃性ポリカーボネート樹脂組成物
JP6541082B2 (ja) ポリカーボネート系樹脂組成物、及び成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027825.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519396

Country of ref document: JP

Ref document number: 2011792447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127031903

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE