WO2011155406A1 - Heat-curable die-bonding film - Google Patents

Heat-curable die-bonding film Download PDF

Info

Publication number
WO2011155406A1
WO2011155406A1 PCT/JP2011/062795 JP2011062795W WO2011155406A1 WO 2011155406 A1 WO2011155406 A1 WO 2011155406A1 JP 2011062795 W JP2011062795 W JP 2011062795W WO 2011155406 A1 WO2011155406 A1 WO 2011155406A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
bonding
film
bonding film
semiconductor chip
Prior art date
Application number
PCT/JP2011/062795
Other languages
French (fr)
Japanese (ja)
Inventor
剛一 井上
悠樹 菅生
三隅 貞仁
松村 健
尚英 高本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201180026558.1A priority Critical patent/CN102934211B/en
Publication of WO2011155406A1 publication Critical patent/WO2011155406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20103Temperature range 60 C=<T<100 C, 333.15 K =< T< 373.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20104Temperature range 100 C=<T<150 C, 373.15 K =< T < 423.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20105Temperature range 150 C=<T<200 C, 423.15 K =< T < 473.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a thermosetting die-bonding film used when, for example, a semiconductor chip is bonded and fixed onto an adherend such as a substrate or a lead frame.
  • the present invention also relates to a dicing die bond film in which the thermosetting die bond film and the dicing film are laminated. Furthermore, this invention relates to the manufacturing method of the semiconductor device using the said dicing die-bonding film.
  • silver paste is used for fixing a semiconductor chip to a lead frame or an electrode member in a manufacturing process of a semiconductor device.
  • the fixing process is performed by applying a paste adhesive on a die pad or the like of the lead frame, mounting a semiconductor chip on the lead adhesive, and curing the paste adhesive layer.
  • paste adhesives have large variations in coating amount and coating shape due to their viscosity behavior and deterioration.
  • the thickness of the paste-like adhesive formed is not uniform, and the reliability of the fixing strength related to the semiconductor chip is poor. That is, when the application amount of the paste adhesive is insufficient, the bonding strength between the semiconductor chip and the electrode member is lowered, and the semiconductor chip is peeled off in the subsequent wire bonding process.
  • the application amount of the paste adhesive is too large, the paste adhesive is cast onto the semiconductor chip, resulting in poor characteristics, and the yield and reliability are lowered.
  • Such a problem in the adhering process becomes particularly remarkable as the semiconductor chip becomes larger. Therefore, it is necessary to frequently control the amount of paste adhesive applied, which hinders workability and productivity.
  • This dicing die-bonding film has an adhesive layer (die-bonding film) that can be peeled off on a supporting substrate, and after the semiconductor wafer is diced while being held by the adhesive layer, the supporting substrate is stretched. Then, the semiconductor chip is peeled off together with the adhesive layer, which is individually collected and fixed to an adherend such as a lead frame through the adhesive layer.
  • an adhesive layer die-bonding film
  • Patent Document 2 discloses a dicing die bond film in which an inorganic filler or the like is added to the adhesive layer from the viewpoint of imparting thermal conductivity, adjustment of melt viscosity, and thixotropic properties.
  • the dicing die-bonding film described in Patent Document 2 has the following problems. That is, a semiconductor package represented by a memory is mainly a semiconductor package in which thin semiconductor chips are stacked in a multistage manner as the capacity increases. In addition, since restrictions are imposed on the thickness of the semiconductor package itself, the die bond film is also becoming thinner. Under such a background, the mechanical strength of a semiconductor wafer or a semiconductor chip obtained by dividing the semiconductor wafer is extremely lowered and fragile. Therefore, there is a problem that the semiconductor chip is damaged when the semiconductor chip is die-bonded on the adherend via the die-bonding film.
  • the reason why the semiconductor chip is damaged is improper mixing of a filler such as an inorganic filler contained in the die bond film.
  • a filler such as an inorganic filler contained in the die bond film.
  • the die bond pressure applied during die bonding causes local bonding to the semiconductor chip via the filler.
  • the semiconductor chip is damaged.
  • the present invention has been made in view of the above problems, and its object is to provide a semiconductor chip with a filler via a thermosetting die-bonding film when the semiconductor chip is die-bonded on an adherend.
  • An object of the present invention is to provide a thermosetting die-bonding film capable of preventing a local stress from being applied and thereby reducing breakage of a semiconductor chip, and a dicing die-bonding film including the thermosetting die-bonding film.
  • this invention is providing the manufacturing method of the semiconductor device using the said dicing die-bonding film.
  • thermosetting die-bonding film a dicing die-bonding film including the thermosetting die-bonding film
  • a method for manufacturing a semiconductor device in order to solve the conventional problems.
  • the inventors have found that the object can be achieved by adopting the following configuration, and have completed the present invention.
  • thermosetting die-bonding film according to the present invention is a thermosetting die-bonding film including a filler composed of an adhesive composition and fine particles, and the thickness of the thermosetting die-bonding film is Y ( ⁇ m), The ratio X / Y ( ⁇ ) is 1 or less when the maximum particle size of the filler is X ( ⁇ m).
  • the relationship between the thickness Y ( ⁇ m) of the thermosetting die-bonding film and the maximum particle size X ( ⁇ m) of the filler is X / Y ⁇ 1, thereby allowing the semiconductor through the die-bonding film.
  • the X ( ⁇ m) is preferably in the range of 0.05 to 5 ⁇ m.
  • the Y ( ⁇ m) is preferably in the range of 1 to 5 ⁇ m.
  • the content of the filler is preferably in the range of 1 to 80 parts by weight with respect to 100 parts by weight of the adhesive composition.
  • the content of the filler is in the range of 1 to 40 parts by volume with respect to 100 parts by volume of the adhesive composition.
  • the maximum cross-sectional height Rt of the roughness curve in the thermosetting die-bonding film is in the range of 0.1 to 2.3 ⁇ m.
  • thermosetting die-bonding film described above is laminated on the dicing film.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device using the dicing die-bonding film described above, wherein the thermosetting die-bonding film is bonded to the surface.
  • the temperature is 100 to 180 ° C
  • the bonding pressure is 0.05 to 0.5 MPa
  • the bonding time is 0.1 to 5 Condition in seconds
  • a die bonding step of die-bonding the semiconductor chip onto an adherend
  • thermosetting die-bonding film that reduces the concentration of stress on the semiconductor chip due to the filler compounded in the film when the semiconductor chip is die-bonded on the adherend is used. For this reason, even if the die bonding of the semiconductor chip is performed under the die bonding conditions, the damage of the semiconductor chip can be reduced. That is, according to the above method, it is possible to reduce the damage to the semiconductor chip and improve the throughput to manufacture the semiconductor device.
  • thermosetting die-bonding film of the present invention has the following effects by the means described above. That is, in the thermosetting die-bonding film of the present invention, the relationship between the thickness Y ( ⁇ m) of the thermosetting die-bonding film and the maximum particle size X ( ⁇ m) of the filler is X / Y ⁇ 1. Thereby, when die-bonding a semiconductor chip on an adherend via a thermosetting die-bonding film, it is possible to reduce the filler contained in the film from applying local stress to the semiconductor chip. As a result, it is possible to reduce breakage of the semiconductor chip, and it is possible to improve the throughput and manufacture the semiconductor device.
  • Base Material 2 Adhesive Layer 3 Die Bond Film (Thermosetting Die Bond Film) 4 semiconductor wafer 5 semiconductor chip 6 adherend 7 bonding wire 8 sealing resin 9 spacer 10, 11 dicing die bond film 13 die bond film (thermosetting die bond film) 15 Semiconductor Chip 21 Die Bond Film (Thermosetting Die Bond Film)
  • thermosetting die-bonding film of the present invention (hereinafter referred to as “die-bonding film”) will be described below by taking a dicing die-bonding film integrally laminated with a dicing film (adhesive film) as an example.
  • FIG. 1 is a schematic cross-sectional view showing a dicing die-bonding film according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing another dicing die-bonding film according to the present embodiment.
  • the dicing die-bonding film 10 has a configuration in which the die-bonding film 3 is laminated on the dicing film.
  • the dicing film is configured by laminating the pressure-sensitive adhesive layer 2 on the substrate 1, and the die-bonding film 3 is provided on the pressure-sensitive adhesive layer 2.
  • the present invention may have a configuration in which a die bond film 3 'is formed only on a work pasting portion.
  • the base material 1 has ultraviolet transparency and becomes a strength matrix of the dicing die-bonding films 10 and 11.
  • polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, flu
  • examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the adhesive area between the pressure-sensitive adhesive layer 2 and the die bond films 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, so that the semiconductor chip Can be easily recovered.
  • the surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the base material 1 can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary.
  • the base material 1 is provided with a vapor-deposited layer of a conductive material having a thickness of about 30 to 500 mm made of a metal, an alloy, an oxide thereof, etc. on the base material 1 in order to impart an antistatic ability. be able to.
  • the substrate 1 may be a single layer or two or more types.
  • the thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive layer 2 includes an ultraviolet curable pressure-sensitive adhesive.
  • the UV curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation of ultraviolet light, and only the portion 2a corresponding to the semiconductor wafer attachment portion of the pressure-sensitive adhesive layer 2 shown in FIG. By irradiating with ultraviolet rays, a difference in adhesive strength with the other portion 2b can be provided.
  • the portion 2 a having a significantly reduced adhesive force can be easily formed. Since the die bond film 3 ′ is attached to the portion 2 a that has been cured and has reduced adhesive strength, the interface between the portion 2 a and the die bond film 3 ′ of the pressure-sensitive adhesive layer 2 has a property of being easily peeled off during pick-up. On the other hand, the portion not irradiated with ultraviolet rays has a sufficient adhesive force, and forms the portion 2b.
  • the portion 2b formed of the uncured ultraviolet-curing pressure-sensitive adhesive adheres to the die-bonding film 3 and is used when dicing. A holding force can be secured.
  • the ultraviolet curable pressure-sensitive adhesive can support the die bond film 3 for fixing the semiconductor chip to an adherend such as a substrate with a good balance of adhesion and peeling.
  • the portion 2b can fix the wafer ring.
  • the ultraviolet curable adhesive those having an ultraviolet curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the ultraviolet curable pressure-sensitive adhesive include an additive-type ultraviolet curable pressure-sensitive adhesive in which an ultraviolet curable monomer component or an oligomer component is blended with a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive. Can be illustrated.
  • the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
  • Examples of the ultraviolet curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and penta.
  • Examples include erythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like.
  • Examples of the ultraviolet curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the blending amount of the ultraviolet curable monomer component and oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the UV-curable adhesive has a carbon-carbon double bond in the polymer side chain or main chain or at the main chain end as a base polymer.
  • Intrinsic ultraviolet curable pressure sensitive adhesives using Intrinsic UV curable pressure-sensitive adhesive does not need to contain an oligomer component or the like, which is a low molecular weight component, or does not contain much, so that the oligomer component or the like does not move through the pressure-sensitive adhesive over time and is stable. It is preferable because an adhesive layer having a layer structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into an ultraviolet curable carbon-carbon double bond.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the ultraviolet curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the UV-curable oligomer component and the like are usually in the range of 30 parts by weight, preferably 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the ultraviolet curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the ultraviolet curable pressure-sensitive adhesive examples include photopolymerizable compounds such as addition polymerizable compounds having two or more unsaturated bonds and alkoxysilanes having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • photopolymerizable compounds such as addition polymerizable compounds having two or more unsaturated bonds and alkoxysilanes having an epoxy group disclosed in JP-A-60-196956.
  • a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer 2 after UV curing is 0.001 to 1 N / 10 mm width, preferably 0.005 to 0.5 N / 10 mm width, more preferably 0.001 to the die bond films 3 and 3 ′.
  • the width is 01 to 0.1 N / 10 mm (180 degree peel force, peel speed 300 mm / mm).
  • Examples of the method for forming the portion 2a on the pressure-sensitive adhesive layer 2 include a method in which after the ultraviolet curable pressure-sensitive adhesive layer 2 is formed on the substrate 1, the portion 2a is partially irradiated with ultraviolet rays to be cured. .
  • the partial ultraviolet irradiation can be performed through a photomask on which a pattern corresponding to the portion 3b other than the semiconductor wafer bonding portion 3a is formed.
  • curing an ultraviolet-ray spotly are mentioned.
  • the ultraviolet curable pressure-sensitive adhesive layer 2 can be formed by transferring what is provided on the separator onto the substrate 1. Partial UV curing can also be performed on the UV curable pressure-sensitive adhesive layer 2 provided on the separator.
  • a part of the pressure-sensitive adhesive layer 2 may be irradiated with ultraviolet rays so that the pressure-sensitive adhesive force of the portion 2a ⁇ the pressure-sensitive adhesive strength of the other portion 2b. That is, after forming the ultraviolet-curing pressure-sensitive adhesive layer 2 on the substrate 1, at least one side of the substrate 1 is shielded from all or part of the portion other than the portion corresponding to the semiconductor wafer pasting portion 3 a. By irradiating with ultraviolet rays, the portion corresponding to the semiconductor wafer pasting portion 3a can be cured to form the portion 2a with reduced adhesive strength.
  • the light shielding material a material that can be a photomask on a support film can be produced by printing or vapor deposition. Thereby, the dicing die-bonding film 10 of this invention can be manufactured efficiently.
  • the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, it is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive layer.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the die bond film 3 contains an adhesive composition and a filler composed of fine particles, and when the thickness is Y ( ⁇ m) and the maximum particle size of the filler is X ( ⁇ m). In addition, there is no particular limitation as long as the ratio X / Y ( ⁇ ) is 1 or less.
  • the filler includes an inorganic filler or an organic filler.
  • Inorganic fillers are preferred from the standpoints of improving handleability and thermal conductivity, adjusting melt viscosity, and imparting thixotropic properties.
  • the inorganic filler is not particularly limited, for example, silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, antimony trioxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide,
  • examples thereof include aluminum oxide, aluminum nitride, aluminum borate, boron nitride, crystalline silica, and amorphous silica. These can be used alone or in combination of two or more. From the viewpoint of improving thermal conductivity, aluminum oxide, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable. Further, from the viewpoint of balance with the adhesiveness of the die bond film 3, silica is preferable.
  • the organic filler include polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide, nylon, and silicone. These can be used alone or in combination of two or more.
  • the maximum particle size X ( ⁇ m) of the filler is preferably 0.05 to 5 ⁇ m, more preferably 0.05 to 3 ⁇ m.
  • the maximum particle size of the filler is, for example, a value obtained by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
  • the shape of the filler is not particularly limited, and for example, a spherical or ellipsoidal shape can be used.
  • the content of the filler is preferably in the range of 1 to 80 parts by weight and more preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the adhesive composition.
  • the content is preferably in the range of 1 to 80 parts by weight and more preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the adhesive composition.
  • the filler is preferably in the range of 1 to 40 parts by volume, more preferably in the range of 1 to 30 parts by volume with respect to 100 parts by volume of the adhesive composition.
  • the filler is preferably in the range of 1 to 40 parts by volume, more preferably in the range of 1 to 30 parts by volume with respect to 100 parts by volume of the adhesive composition.
  • the thickness Y ( ⁇ m) of the die bond film 3 (total thickness in the case of a laminate) is not particularly limited, but is preferably in the range of 1 to 5 ⁇ m, and more preferably in the range of 2 to 4 ⁇ m.
  • the thickness Y ( ⁇ m) is set to 1 ⁇ m or more, the wettability with respect to the adherend can be improved, and a decrease in adhesiveness can be suppressed.
  • the thickness Y ( ⁇ m) is possible to prevent the filler from protruding from the surface of the die bond film 3, and excessive local stress is applied to the semiconductor chip during die bonding. Addition can be reduced.
  • the maximum cross-sectional height Rt of the roughness curve in the die bond film 3 is preferably in the range of 0.1 to 2.3 ⁇ m, and more preferably in the range of 1 to 1.5 ⁇ m.
  • the maximum cross-sectional height Rt 0.1 ⁇ m or more the pickup property can be facilitated.
  • excessive application of local stress can be reduced by setting the maximum cross-sectional height to 2.3 ⁇ m or less.
  • the maximum cross-sectional height Rt of the roughness curve is a value measured after correcting the surface inclination using a non-contact surface roughness measuring device (manufactured by Nippon Beco Co., Ltd., WYKO) in accordance with JIS B0601. It is.
  • the adhesive composition is not particularly limited, but preferably contains an epoxy resin, a phenol resin, and an acrylic copolymer, for example.
  • the epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type.
  • an epoxy resin having an aromatic ring such as a benzene ring, a biphenyl ring, and a naphthalene ring is particularly preferable.
  • novolak type epoxy resin, xylylene skeleton-containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbiphenol type epoxy resin, triphenyl A methane type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.
  • the epoxy resin contains little ionic impurities that corrode semiconductor elements.
  • the weight average molecular weight of the epoxy resin is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 1000.
  • the weight average molecular weight is less than 300, the mechanical strength, heat resistance, and moisture resistance of the die-bonding film 3 after thermosetting may be lowered.
  • the die-bonded film after thermosetting may become rigid and brittle.
  • the weight average molecular weight in this invention means the polystyrene conversion value using the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC).
  • the phenol resin acts as a curing agent for the epoxy resin.
  • a novolak such as a phenol novolak resin, a phenol biphenyl resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, or a nonylphenol novolak resin.
  • polyoxystyrene such as polyphenol styrene, resol type phenol resin, and polyparaoxystyrene. These can be used alone or in combination of two or more.
  • phenol novolac resins and phenol aralkyl resins are preferred. This is because the connection reliability of the semiconductor device can be improved.
  • the weight average molecular weight of the phenol resin is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 1000.
  • the weight average molecular weight is less than 300, the epoxy resin is not sufficiently cured by heat and sufficient toughness may not be obtained.
  • the weight average molecular weight is larger than 1500, the viscosity becomes high, and workability at the time of producing the die bond film may be lowered.
  • the compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
  • the mixing amount of the epoxy resin and the phenol resin is preferably in the range of 10 to 200 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
  • the acrylic copolymer is not particularly limited, but in the present invention, a carboxyl group-containing acrylic copolymer and an epoxy group-containing acrylic copolymer are preferable.
  • the functional group monomer used in the carboxyl group-containing acrylic copolymer include acrylic acid and methacrylic acid. The content of acrylic acid or methacrylic acid is adjusted so that the acid value is in the range of 1 to 4.
  • a mixture of alkyl acrylate having 1 to 8 carbon atoms, such as methyl acrylate or methyl methacrylate, alkyl methacrylate, styrene, or acrylonitrile can be used.
  • ethyl (meth) acrylate and / or butyl (meth) acrylate are particularly preferable.
  • the mixing ratio is preferably adjusted in consideration of the glass transition point (Tg) of the acrylic copolymer described later.
  • Tg glass transition point
  • it does not specifically limit as a polymerization method, For example, conventionally well-known methods, such as a solution polymerization method, a cage-like polymerization method, a suspension polymerization method, and an emulsion polymerization method, are employable.
  • the other monomer component copolymerizable with the monomer component is not particularly limited, and examples thereof include acrylonitrile. These copolymerizable monomer components are preferably used in an amount of 1 to 20% by weight based on the total monomer components. By incorporating other monomer components within the numerical range, modification of cohesive force, adhesiveness, etc. can be achieved.
  • the polymerization method of the acrylic copolymer is not particularly limited, and conventionally known methods such as a solution polymerization method, a cage polymerization method, a suspension polymerization method, and an emulsion polymerization method can be employed.
  • the glass transition point (Tg) of the acrylic copolymer is preferably ⁇ 30 to 30 ° C., more preferably ⁇ 20 to 15 ° C. Heat resistance can be ensured by setting the glass transition point to ⁇ 30 ° C. or higher. On the other hand, when the temperature is 30 ° C. or less, the effect of preventing chip jump after dicing in a wafer having a rough surface state is improved.
  • the weight average molecular weight of the acrylic copolymer is preferably 100,000 to 1,000,000, and more preferably 350,000 to 900,000.
  • the weight average molecular weight is preferably 100,000 to 1,000,000, and more preferably 350,000 to 900,000.
  • additives can be appropriately blended in the die bond films 3 and 3 ′ as necessary.
  • additives include flame retardants, silane coupling agents, ion trapping agents, and the like.
  • flame retardant examples include antimony trioxide, antimony pentoxide, and brominated epoxy resin. These can be used alone or in combination of two or more.
  • silane coupling agent examples include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more.
  • Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
  • the heat curing accelerating catalyst for the epoxy resin and the phenol resin is not particularly limited, and for example, a salt composed of any one of a triphenylphosphine skeleton, an amine skeleton, a triphenylborane skeleton, a trihalogenborane skeleton, and the like is preferable.
  • the die bond film can be composed of only a single layer of an adhesive layer, for example.
  • a thermoplastic resin having a different glass transition temperature and a thermosetting resin having a different thermosetting temperature may be appropriately combined to form a multilayer structure having two or more layers.
  • the die-bonding film may absorb moisture and have a moisture content higher than that of the normal state. When bonded to a substrate or the like with such a high water content, water vapor may accumulate at the bonding interface at the stage of after-curing and float may occur.
  • the die bond film has a structure in which a core material having high moisture permeability is sandwiched between adhesive layers, so that water vapor diffuses through the film at the after-curing stage, and this problem can be avoided.
  • the die bond film may have a multilayer structure in which an adhesive layer is formed on one side or both sides of the core material.
  • the core material examples include films (for example, polyimide films, polyester films, polyethylene terephthalate films, polyethylene naphthalate films, polycarbonate films), resin substrates reinforced with glass fibers and plastic non-woven fibers, mirror silicon wafers, silicon substrates Or a glass substrate etc. are mentioned.
  • the die bond film 3 is preferably protected by a separator (not shown).
  • the separator has a function as a protective material for protecting the die bond film until it is put into practical use. Further, the separator can be used as a supporting substrate when transferring the die bond films 3 and 3 ′ to the dicing film. The separator is peeled off when the workpiece is stuck on the die bond film.
  • a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, or a long-chain alkyl acrylate release agent can be used.
  • the dicing die-bonding films 10 and 12 of the present invention are used as follows after appropriately separating the separator arbitrarily provided on the die-bonding films 3 and 3 ′.
  • the case where the dicing die-bonding film 10 is used will be described as an example with reference to the drawings.
  • the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer attaching portion 3a of the die bond film 3 in the dicing die bond film 10, and this is adhered and held and fixed (mounting step). This step is performed while pressing with a pressing means such as a pressure roll.
  • the semiconductor wafer 4 is diced. Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured. Dicing is performed according to a conventional method from the circuit surface side of the semiconductor wafer 4, for example. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the dicing die bond film 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer is bonded and fixed by the dicing die-bonding film 10, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
  • the semiconductor chip 5 is picked up in order to peel off the semiconductor chip adhered and fixed to the dicing die bond film 10.
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, a method of pushing up the individual semiconductor chips 5 from the dicing die bond film 10 side with a needle and picking up the pushed-up semiconductor chips 5 with a pickup device may be mentioned.
  • the pickup is performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays because the pressure-sensitive adhesive layer 2 is of an ultraviolet curable type.
  • the adhesive force with respect to the die-bonding film 3a of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy.
  • the pickup can be performed without damaging the semiconductor chip.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • the above-mentioned thing can be used as a light source used for ultraviolet irradiation.
  • the picked-up semiconductor chip 5 is bonded and fixed to the adherend 6 via a die bond film (die bond).
  • the die bonding temperature at this time is preferably in the range of 100 to 180 ° C., more preferably in the range of 100 to 160 ° C.
  • the bonding pressure is preferably in the range of 0.05 to 0.5 MPa, more preferably in the range of 0.05 to 0.2 MPa.
  • the die bond time is preferably in the range of 0.1 to 5 seconds, and more preferably in the range of 0.1 to 3 seconds. Even if die bonding is performed under such conditions, the present invention reduces the local concentration of stress on the semiconductor chip 5 due to the filler contained in the die bonding film, so that damage to the semiconductor chip 5 is effective. Can be prevented.
  • the adherend 6 examples include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip.
  • the adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform.
  • a conventionally well-known thing can be used as said board
  • a metal lead frame such as a Cu lead frame or 42 Alloy lead frame, or an organic substrate made of glass epoxy, BT (bismaleimide-triazine), polyimide, or the like can be used.
  • the present invention is not limited to this, and includes a circuit board that can be used by mounting a semiconductor element and electrically connecting the semiconductor element.
  • the die bond film 3 of the present invention is a thermosetting type
  • the heat resistance strength may be improved by bonding and fixing the semiconductor chip 5 to the adherend 6 by heat curing.
  • substrate etc. via the semiconductor wafer bonding part 3a can be used for a reflow process.
  • the above-described die bonding may be merely temporarily fixed to the adherend 6 without curing the die bonding film 3. Thereafter, wire bonding is performed without passing through a heating step, and the semiconductor chip is further sealed with a sealing resin, and the sealing resin can be after-cured.
  • the die bond film 3 a film having a shear adhesive force at the time of temporary fixing of 0.2 MPa or more with respect to the adherend 6 is used, more preferably a film having a range of 0.2 to 10 MPa. It is preferable to do this.
  • the shear bond strength of the die bond film 3 is at least 0.2 MPa or more, even if the wire bonding step is performed without passing through the heating step, the die bond film 3 and the semiconductor chip 5 are caused by ultrasonic vibration or heating in the step. Alternatively, shear deformation does not occur on the adhesion surface with the adherend 6. That is, the semiconductor element does not move due to ultrasonic vibration during wire bonding, thereby preventing the success rate of wire bonding from decreasing.
  • the wire bonding is a process of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip with a bonding wire 7 (see FIG. 3).
  • a bonding wire 7 for example, a gold wire, an aluminum wire, a copper wire or the like is used.
  • the temperature for wire bonding is 80 to 250 ° C., preferably 80 to 220 ° C.
  • the heating time is several seconds to several minutes.
  • the connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  • This step can be performed without completely thermosetting the die bond film 3a. Further, the semiconductor chip 5 and the adherend 6 are not fixed by the die bond film 3a in the course of this step.
  • the sealing step is a step of sealing the semiconductor chip 5 with the sealing resin 8 (see FIG. 3). This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6. This step is performed by molding a sealing resin with a mold.
  • a sealing resin for example, an epoxy resin is used as the sealing resin 8.
  • the heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin is cured, and the semiconductor chip 5 and the adherend 6 are fixed through the die bond film 3a.
  • the die-bonding film 3a can be fixed in this step, and the number of manufacturing steps can be reduced and the semiconductor device manufacturing period can be reduced. It can contribute to shortening.
  • the sealing resin 8 that is insufficiently cured in the sealing step is completely cured. Even if the die bonding film 3a is not fixed in the sealing step, the die bonding film 3a can be fixed together with the hardening of the sealing resin 8 in this step.
  • the heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
  • FIG. 4 is a schematic cross-sectional view showing an example in which a semiconductor chip is three-dimensionally mounted through a die bond film.
  • the three-dimensional mounting shown in FIG. 4 first, at least one die bond film 3a cut out to have the same size as the semiconductor chip is temporarily fixed on the adherend 6, and then the semiconductor chip 5 is attached via the die bond film 3a.
  • the wire bond surface is temporarily fixed so that the wire bond surface is on the upper side.
  • the die bond film 13 is temporarily fixed while avoiding the electrode pad portion of the semiconductor chip 5. Further, another semiconductor chip 15 is temporarily fixed on the die bond film 13 so that the wire bond surface is on the upper side.
  • the wire bonding process is performed without performing the heating process.
  • each electrode pad in the semiconductor chip 5 and the other semiconductor chip 15 and the adherend 6 are electrically connected by the bonding wire 7.
  • a sealing process for sealing the semiconductor chip 5 and the like with the sealing resin 8 is performed, and the sealing resin is cured.
  • the adherend 6 and the semiconductor chip 5 are fixed together by the die bond film 3a.
  • the semiconductor chip 5 and another semiconductor chip 15 are also fixed by the die bond film 13.
  • the manufacturing process can be simplified and the yield can be improved. Further, since the adherend 6 is not warped, and the semiconductor chip 5 and other semiconductor chips 15 are not cracked, the semiconductor chip 5 can be further reduced in thickness.
  • three-dimensional mounting in which spacers are stacked between semiconductor chips via a die bond film may be employed.
  • the die bond film 3a, the semiconductor chip 5 and the die bond film 21 are sequentially laminated on the adherend 6 and temporarily fixed.
  • the spacer 9, the die bond film 21, the die bond film 3 a and the semiconductor chip 5 are sequentially laminated and temporarily fixed on the die bond film 21.
  • a wire bonding process is performed as shown in FIG. 5 without performing a heating process. Thereby, the electrode pad in the semiconductor chip 5 and the adherend 6 are electrically connected by the bonding wire 7.
  • a sealing step of sealing the semiconductor chip 5 with the sealing resin 8 is performed to cure the sealing resin 8, and between the adherend 6 and the semiconductor chip 5 and the semiconductor with the die bond films 3 a and 21.
  • the chip 5 and the spacer 9 are fixed.
  • the sealing process is preferably a batch sealing method in which only the semiconductor chip 5 side is sealed on one side. Sealing is performed to protect the semiconductor chip 5 attached on the pressure-sensitive adhesive sheet, and the typical method is molding in a mold using the sealing resin 8. In that case, it is common to perform a sealing process simultaneously using the metal mold
  • the heating temperature at the time of resin sealing is preferably in the range of 170 to 180 ° C., for example.
  • a post-curing step may be performed after the sealing step.
  • the spacer 9 is not particularly limited, and a conventionally known silicon chip, polyimide film or the like can be used. Further, a core material such as a polyimide film or a resin substrate can be used as the spacer.
  • the semiconductor package is surface-mounted on a printed wiring board.
  • the surface mounting method include reflow soldering in which solder is supplied on a printed wiring board in advance and then heated and melted with hot air or the like to perform soldering.
  • the heating method include hot air reflow and infrared reflow. Moreover, any system of whole heating or local heating may be used.
  • the heating temperature is preferably 240 to 265 ° C., and the heating time is preferably in the range of 1 to 20 seconds.
  • a buffer coat film is formed on the surface side where the circuit of the semiconductor element is formed.
  • the buffer coat film include those made of a heat resistant resin such as a silicon nitride film or a polyimide resin.
  • the die-bonding film used at each stage when the semiconductor element is three-dimensionally mounted is not limited to the one having the same composition, and can be appropriately changed according to the manufacturing conditions and the application.
  • Example 1 12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 ⁇ m, 40 parts by weight of an average particle size of 0.5 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • EPPN-501HY trishydroxyphenylmethane type epoxy resin
  • xylylene novolac type phenol resin manufactured by Meiwa Kasei
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film A having a thickness of 5 ⁇ m was produced.
  • Example 2 4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 ⁇ m, 80 parts by weight of an average particle size of 0.5 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • thermosetting die bond film B having a thickness of 5 ⁇ m was produced.
  • Example 3 12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 ⁇ m, 40 parts by weight of an average particle size of 0.5 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • EPPN-501HY trishydroxyphenylmethane type epoxy resin
  • xylylene novolac type phenolic resin manufactured by Meiwa Kas
  • thermosetting die bond film C having a thickness of 3 ⁇ m was produced.
  • Example 4 4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 ⁇ m, 80 parts by weight of an average particle size of 0.5 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • EPPN-501HY trishydroxyphenylmethane type epoxy resin
  • xylylene novolac type phenol resin manufactured by
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film D having a thickness of 3 ⁇ m was produced.
  • Example 5 12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size: 5.0 ⁇ m, 40 parts by weight of an average particle size of 0.9 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • EPPN-501HY trishydroxyphenylmethane type epoxy resin
  • xylylene novolac type phenolic resin manufactured by Meiwa
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film E having a thickness of 5 ⁇ m was produced.
  • Example 6 4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size 5.0 ⁇ m, 80 parts by weight of an average particle size of 0.9 ⁇ m was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film F having a thickness of 5 ⁇ m was produced.
  • thermosetting die bond film G having a thickness of 3 ⁇ m was produced.
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film H having a thickness of 3 ⁇ m was produced.
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film I having a thickness of 5 ⁇ m was produced.
  • thermosetting die bond film J having a thickness of 5 ⁇ m was produced.
  • thermosetting die bond film K having a thickness of 3 ⁇ m was produced.
  • the solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film L having a thickness of 3 ⁇ m was produced.
  • the maximum cross-sectional height Rt of the roughness curve in the thermosetting die-bonding film produced in each example and comparative example is based on JIS B0601, using a non-contact surface roughness measuring device (manufactured by Nippon Beco, WYKO). The measurement was performed after correcting the surface inclination. The results are shown in Tables 1 and 2 below.
  • a dicing film was produced. That is, a solution of an acrylic pressure-sensitive adhesive composition was applied on a substrate made of polyolefin having a thickness of 100 ⁇ m and dried to form a pressure-sensitive adhesive layer having a thickness of 10 ⁇ m to produce a dicing film.
  • the acrylic adhesive solution was prepared as follows. That is, first, butyl acrylate, ethyl acrylate, 2-hydroxyacrylate, and acrylic acid were copolymerized at a weight ratio of 60/40/4/1 to obtain an acrylic polymer having a weight average molecular weight of 800,000. .
  • thermosetting die-bonding film on the release treatment film was bonded onto the pressure-sensitive adhesive layer of the dicing film.
  • the bonding conditions were a lamination temperature of 40 ° C. and a linear pressure of 5 kgf / cm.
  • thermosetting die bond film of each dicing die bond film was mounted on the thermosetting die bond film of each dicing die bond film.
  • the mounting conditions were as follows. [Paste condition] Pasting device: Nitto Seiki, MA-3000III Pasting speed: 10mm / sec Pasting pressure: 0.25 MPa Stage temperature at the time of pasting: 40 ° C
  • the semiconductor wafer was diced to form semiconductor chips each having a chip size of 5 mm.
  • the dicing conditions were as follows. [Dicing condition] Dicing machine: DFD-6361, manufactured by Disco Corporation Dicing ring: 2-8-1 (manufactured by Disco) Dicing speed: 80mm / sec Dicing blade: Disco 2050HEDD Dicing blade rotation speed: 40,000 rpm Blade height: 0.170 mm Cut method: A mode / step cut
  • each dicing die-bonding film was stretched to perform an expanding process in which each chip was set at a predetermined interval. Thereafter, a semiconductor chip was picked up together with the die bond film by a push-up method using a needle from the substrate side of each dicing die bond film.
  • the pickup conditions are as follows. [Pickup conditions] Needle: Total length 10mm, diameter 0.7mm, acute angle 15deg, tip R350 ⁇ m Number of needles: 5 Needle push-up amount: 350 ⁇ m Needle push-up speed: 5 mm / sec Collet holding time: 200msec Expand: 3mm
  • the die bonding conditions were as follows. [Die bond conditions] Die bond temperature: 120 ° C Bonding pressure: 0.1 MPa Bonding time: 1 sec After cure: 1 hour at 150 ° C
  • thermosetting die bond film As can be seen from Table 1 and Table 2 below, the ratio X / Y of the thickness Y ( ⁇ m) and the maximum particle size X ( ⁇ m) of the filler as in the thermosetting die bond film according to each example of the present invention. When ( ⁇ ) was 1 or less, die bonding could be performed on the lead frame without damaging the semiconductor chip. On the other hand, in the case of the thermosetting die-bonding film of each comparative example in which the ratio X / Y ( ⁇ ) exceeded 1, damage to the semiconductor chip was confirmed during die bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)

Abstract

Disclosed are: a heat-curable die-bonding film which enables the prevention of the local application of a stress to a semiconductor chip through a filler during the die bonding of the semiconductor chip onto a material of interest through the heat-curable die-bonding film, thereby reducing the fracture of the semiconductor chip; and a dicing/die-bonding film comprising the heat-curable die-bonding film. The heat-curable die-bonding film contains a filler that comprises an adhesive agent composition and microparticles, wherein the X/Y(-) ratio is 1 or less wherein Y (μm) represents the thickness of the heat-curable die-bonding film and X (μm) represents the largest particle diameter of the filler.

Description

熱硬化型ダイボンドフィルムThermosetting die bond film
 本発明は、例えば半導体チップを基板やリードフレーム等の被着体上に接着固定する際に用いられる熱硬化型ダイボンドフィルムに関する。また本発明は、当該熱硬化型ダイボンドフィルムとダイシングフィルムとが積層されたダイシング・ダイボンドフィルムに関する。更に本発明は、前記ダイシング・ダイボンドフィルムを用いた半導体装置の製造方法に関する。 The present invention relates to a thermosetting die-bonding film used when, for example, a semiconductor chip is bonded and fixed onto an adherend such as a substrate or a lead frame. The present invention also relates to a dicing die bond film in which the thermosetting die bond film and the dicing film are laminated. Furthermore, this invention relates to the manufacturing method of the semiconductor device using the said dicing die-bonding film.
 従来、半導体装置の製造過程に於いてリードフレームや電極部材への半導体チップの固着には、銀ペーストが用いられている。かかる固着処理は、リードフレームのダイパッド等の上にペースト状接着剤を塗工し、それに半導体チップを搭載してペースト状接着剤層を硬化させて行う。 Conventionally, silver paste is used for fixing a semiconductor chip to a lead frame or an electrode member in a manufacturing process of a semiconductor device. The fixing process is performed by applying a paste adhesive on a die pad or the like of the lead frame, mounting a semiconductor chip on the lead adhesive, and curing the paste adhesive layer.
 しかしながら、ペースト状接着剤はその粘度挙動や劣化等により塗工量や塗工形状等に大きなバラツキを生じる。その結果、形成されるペースト状接着剤厚は不均一となるため半導体チップに係わる固着強度の信頼性が乏しい。即ち、ペースト状接着剤の塗工量が不足すると半導体チップと電極部材との間の固着強度が低くなり、後続のワイヤーボンディング工程で半導体チップが剥離する。一方、ペースト状接着剤の塗工量が多すぎると半導体チップの上までペースト状接着剤が流延して特性不良を生じ、歩留まりや信頼性が低下する。この様な固着処理に於ける問題は、半導体チップの大型化に伴って特に顕著なものとなっている。そのため、ペースト状接着剤の塗工量の制御を頻繁に行う必要があり、作業性や生産性に支障をきたす。 However, paste adhesives have large variations in coating amount and coating shape due to their viscosity behavior and deterioration. As a result, the thickness of the paste-like adhesive formed is not uniform, and the reliability of the fixing strength related to the semiconductor chip is poor. That is, when the application amount of the paste adhesive is insufficient, the bonding strength between the semiconductor chip and the electrode member is lowered, and the semiconductor chip is peeled off in the subsequent wire bonding process. On the other hand, when the application amount of the paste adhesive is too large, the paste adhesive is cast onto the semiconductor chip, resulting in poor characteristics, and the yield and reliability are lowered. Such a problem in the adhering process becomes particularly remarkable as the semiconductor chip becomes larger. Therefore, it is necessary to frequently control the amount of paste adhesive applied, which hinders workability and productivity.
 このペースト状接着剤の塗工工程に於いて、ペースト状接着剤をリードフレームや形成チップに別途塗布する方法がある。しかし、この方法では、ペースト状接着剤層の均一化が困難であり、またペースト状接着剤の塗布に特殊装置や長時間を必要とする。このため、ダイシング工程で半導体ウェハを接着保持するとともに、マウント工程に必要なチップ固着用の接着剤層をも付与するダイシング・ダイボンドフィルムが提案されている(例えば、特許文献1参照。)。 In this paste adhesive application process, there is a method in which the paste adhesive is separately applied to a lead frame or a formed chip. However, in this method, it is difficult to make the paste adhesive layer uniform, and a special apparatus and a long time are required for applying the paste adhesive. For this reason, a dicing die-bonding film has been proposed in which a semiconductor wafer is adhered and held in a dicing process, and an adhesive layer for chip fixation necessary for a mounting process is also provided (see, for example, Patent Document 1).
 このダイシング・ダイボンドフィルムは、支持基材上に接着剤層(ダイボンドフィルム)を剥離可能に設けてなるものであり、その接着剤層による保持下に半導体ウェハをダイシングしたのち、支持基材を延伸して半導体チップを接着剤層とともに剥離し、これを個々に回収してその接着剤層を介してリードフレーム等の被着体に固着させるようにしたものである。 This dicing die-bonding film has an adhesive layer (die-bonding film) that can be peeled off on a supporting substrate, and after the semiconductor wafer is diced while being held by the adhesive layer, the supporting substrate is stretched. Then, the semiconductor chip is peeled off together with the adhesive layer, which is individually collected and fixed to an adherend such as a lead frame through the adhesive layer.
 また、下記特許文献2には、熱伝導性、溶融粘度の調整、チキソトロピック性を付与する観点から、接着剤層中に無機フィラー等を添加したダイシング・ダイボンドフィルムが開示されている。 Further, Patent Document 2 below discloses a dicing die bond film in which an inorganic filler or the like is added to the adhesive layer from the viewpoint of imparting thermal conductivity, adjustment of melt viscosity, and thixotropic properties.
 しかし、前記特許文献2に記載のダイシング・ダイボンドフィルムであると次の様な問題点がある。即ち、メモリーに代表される半導体装置は高容量化に伴い、薄層化した半導体チップを多段状に積層する半導体パッケージが主流となっている。加えて、半導体パッケージ自体の厚さに対しても制限が加えられるため、ダイボンドフィルムの薄層化も進んでいる。この様な背景のもと、半導体ウェハやそれを個片化した半導体チップの機械的強度は極めて低下しており脆弱となっている。そのため、ダイボンドフィルムを介して半導体チップを被着体上にダイボンディングする際に、半導体チップが破損するという問題がある。 However, the dicing die-bonding film described in Patent Document 2 has the following problems. That is, a semiconductor package represented by a memory is mainly a semiconductor package in which thin semiconductor chips are stacked in a multistage manner as the capacity increases. In addition, since restrictions are imposed on the thickness of the semiconductor package itself, the die bond film is also becoming thinner. Under such a background, the mechanical strength of a semiconductor wafer or a semiconductor chip obtained by dividing the semiconductor wafer is extremely lowered and fragile. Therefore, there is a problem that the semiconductor chip is damaged when the semiconductor chip is die-bonded on the adherend via the die-bonding film.
 前記半導体チップが破損する原因としては、ダイボンドフィルム中に含有されている無機フィラー等の充填材の配合の不適切さが挙げられる。即ち、ダイボンドフィルム中の充填材が不適切な大きさであり、かつ、その含有量も不適切である場合、ダイボンディングの際に加わるダイボンド圧力により、充填材を介して半導体チップに局所的に応力が集中する結果、半導体チップの破損を招来する。 The reason why the semiconductor chip is damaged is improper mixing of a filler such as an inorganic filler contained in the die bond film. In other words, if the filler in the die bond film is of an inappropriate size and the content thereof is also inappropriate, the die bond pressure applied during die bonding causes local bonding to the semiconductor chip via the filler. As a result of stress concentration, the semiconductor chip is damaged.
特開昭60-57642号公報JP-A-60-57642 特開2008-88411号公報JP 2008-88411 A
 本発明は前記問題点に鑑みなされたものであり、その目的は、熱硬化型ダイボンドフィルムを介して半導体チップを被着体上にダイボンディングする際に、当該半導体チップに対し充填材を介して局所的な応力が加わるのを防止し、これにより半導体チップの破損を低減することが可能な熱硬化型ダイボンドフィルム及びそれを備えたダイシング・ダイボンドフィルムを提供することにある。また本発明は、前記ダイシング・ダイボンドフィルムを用いた半導体装置の製造方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a semiconductor chip with a filler via a thermosetting die-bonding film when the semiconductor chip is die-bonded on an adherend. An object of the present invention is to provide a thermosetting die-bonding film capable of preventing a local stress from being applied and thereby reducing breakage of a semiconductor chip, and a dicing die-bonding film including the thermosetting die-bonding film. Moreover, this invention is providing the manufacturing method of the semiconductor device using the said dicing die-bonding film.
 本願発明者等は、前記従来の課題を解決すべく、熱硬化型ダイボンドフィルム、それを備えたダイシング・ダイボンドフィルム及び半導体装置の製造方法について検討した。その結果、下記構成を採用することにより前記目的を達成できることを見出して、本発明を完成させるに至った。 The inventors of the present application have studied a thermosetting die-bonding film, a dicing die-bonding film including the thermosetting die-bonding film, and a method for manufacturing a semiconductor device in order to solve the conventional problems. As a result, the inventors have found that the object can be achieved by adopting the following configuration, and have completed the present invention.
 即ち、本発明に係る熱硬化型ダイボンドフィルムは、接着剤組成物及び微粒子からなる充填材を含む熱硬化型ダイボンドフィルムであって、前記熱硬化型ダイボンドフィルムの厚さをY(μm)とし、前記充填材の最大粒径をX(μm)としたときの比率X/Y(-)が1以下である。 That is, the thermosetting die-bonding film according to the present invention is a thermosetting die-bonding film including a filler composed of an adhesive composition and fine particles, and the thickness of the thermosetting die-bonding film is Y (μm), The ratio X / Y (−) is 1 or less when the maximum particle size of the filler is X (μm).
 前記の構成によれば、熱硬化型ダイボンドフィルムの厚さY(μm)と充填材の最大粒径X(μm)との関係をX/Y≦1にすることで、ダイボンドフィルムを介して半導体チップを被着体上にダイボンディングする際に、半導体チップに対し充填材を介して局所的な応力が集中するのを低減するものである。これにより、半導体チップが薄型化しても、その破損を低減して半導体装置の製造を可能になり、スループットの向上が図れる。 According to the above configuration, the relationship between the thickness Y (μm) of the thermosetting die-bonding film and the maximum particle size X (μm) of the filler is X / Y ≦ 1, thereby allowing the semiconductor through the die-bonding film. When the chip is die-bonded on the adherend, local stress is concentrated on the semiconductor chip via the filler. As a result, even when the semiconductor chip is thinned, the damage can be reduced, and the semiconductor device can be manufactured, and the throughput can be improved.
 前記構成に於いては、前記X(μm)が0.05~5μmの範囲内であることが好ましい。 In the above configuration, the X (μm) is preferably in the range of 0.05 to 5 μm.
 また、前記構成に於いては、前記Y(μm)が1~5μmの範囲内であることが好ましい。 Further, in the above configuration, the Y (μm) is preferably in the range of 1 to 5 μm.
 更に、前記構成に於いては、前記充填材の含有量が、前記接着剤組成物100重量部に対し1~80重量部の範囲内であることが好ましい。 Furthermore, in the above configuration, the content of the filler is preferably in the range of 1 to 80 parts by weight with respect to 100 parts by weight of the adhesive composition.
 また、前記構成に於いては、前記充填材の含有量が、前記接着剤組成物100体積部に対し1~40体積部の範囲内であることが好ましい。 Further, in the above configuration, it is preferable that the content of the filler is in the range of 1 to 40 parts by volume with respect to 100 parts by volume of the adhesive composition.
 また、前記構成に於いては、前記熱硬化型ダイボンドフィルムにおける粗さ曲線の最大断面高さRtが0.1~2.3μmの範囲内であることが好ましい。 Further, in the above configuration, it is preferable that the maximum cross-sectional height Rt of the roughness curve in the thermosetting die-bonding film is in the range of 0.1 to 2.3 μm.
 また、本発明に係るダイシング・ダイボンドフィルムは、前記の課題を解決する為に、前記に記載の熱硬化型ダイボンドフィルムが、ダイシングフィルム上に積層されている。 Further, in the dicing die-bonding film according to the present invention, in order to solve the above problems, the thermosetting die-bonding film described above is laminated on the dicing film.
 本発明に係る半導体装置の製造方法は、前記の課題を解決する為に、前記に記載のダイシング・ダイボンドフィルムを用いた半導体装置の製造方法であって、前記熱硬化型ダイボンドフィルムを貼り合わせ面として、半導体ウェハの裏面に前記ダイシング・ダイボンドフィルムを貼り合わせる貼り合わせ工程と、前記半導体ウェハを前記熱硬化型ダイボンドフィルムと共にダイシングして半導体チップを形成するダイシング工程と、前記半導体チップを、前記ダイシング・ダイボンドフィルムから前記熱硬化型ダイボンドフィルムと共にピックアップするピックアップ工程と、前記熱硬化型ダイボンドフィルムを介して、温度100~180℃、ボンディング圧力0.05~0.5MPa、ボンディング時間0.1~5秒の範囲内の条件下で、前記半導体チップを被着体上にダイボンディングするダイボンド工程とを有する。 In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device using the dicing die-bonding film described above, wherein the thermosetting die-bonding film is bonded to the surface. A bonding step of bonding the dicing die-bonding film to the back surface of the semiconductor wafer, a dicing step of dicing the semiconductor wafer together with the thermosetting die-bonding film to form a semiconductor chip, and the dicing of the semiconductor chip. -Pickup process for picking up from the die bond film together with the thermosetting die bond film, and through the thermosetting die bond film, the temperature is 100 to 180 ° C, the bonding pressure is 0.05 to 0.5 MPa, and the bonding time is 0.1 to 5 Condition in seconds , And a die bonding step of die-bonding the semiconductor chip onto an adherend.
 前記方法においては、半導体チップを被着体上にダイボンディングする際に、フィルム中に配合されている充填材により半導体チップに応力が集中するのを低減させる熱硬化型ダイボンドフィルムを使用する。この為、前記ダイボンド条件下で半導体チップのダイボンドを行っても、半導体チップの破損を低減することができる。即ち、前記方法であると半導体チップの破損を低減し、スループットを向上させて半導体装置を製造することが可能になる。 In the above method, a thermosetting die-bonding film that reduces the concentration of stress on the semiconductor chip due to the filler compounded in the film when the semiconductor chip is die-bonded on the adherend is used. For this reason, even if the die bonding of the semiconductor chip is performed under the die bonding conditions, the damage of the semiconductor chip can be reduced. That is, according to the above method, it is possible to reduce the damage to the semiconductor chip and improve the throughput to manufacture the semiconductor device.
 本発明は、前記に説明した手段により、以下に述べるような効果を奏する。
 即ち、本発明の熱硬化型ダイボンドフィルムは、熱硬化型ダイボンドフィルムの厚さY(μm)と充填材の最大粒径X(μm)との関係をX/Y≦1とするものである。これにより、熱硬化型ダイボンドフィルムを介して半導体チップを被着体上にダイボンディングする際に、フィルム中に含まれる充填材が半導体チップに局所的な応力を加えるのを低減することができる。その結果、半導体チップの破損を低減することができ、スループットを向上させて半導体装置の製造が図れるという効果を奏する。
The present invention has the following effects by the means described above.
That is, in the thermosetting die-bonding film of the present invention, the relationship between the thickness Y (μm) of the thermosetting die-bonding film and the maximum particle size X (μm) of the filler is X / Y ≦ 1. Thereby, when die-bonding a semiconductor chip on an adherend via a thermosetting die-bonding film, it is possible to reduce the filler contained in the film from applying local stress to the semiconductor chip. As a result, it is possible to reduce breakage of the semiconductor chip, and it is possible to improve the throughput and manufacture the semiconductor device.
本発明の実施の一形態に係るダイシング・ダイボンドフィルムを示す断面模式図である。It is a cross-sectional schematic diagram which shows the dicing die-bonding film which concerns on one Embodiment of this invention. 本発明の他の実施の形態に係るダイシング・ダイボンドフィルムを示す断面模式図である。It is a cross-sectional schematic diagram which shows the dicing die-bonding film which concerns on other embodiment of this invention. 本発明の実施の一形態に係るダイボンドフィルムを介して半導体チップを実装した例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example which mounted the semiconductor chip via the die-bonding film which concerns on one Embodiment of this invention. 前記ダイボンドフィルムを介して半導体チップを3次元実装した例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example which mounted the semiconductor chip three-dimensionally through the said die-bonding film. 前記ダイボンドフィルムを用いて、2つの半導体チップをスペーサを介して3次元実装した例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example which mounted two-dimensionally the semiconductor chip through the spacer using the said die-bonding film.
    1  基材
    2  粘着剤層
    3  ダイボンドフィルム(熱硬化型ダイボンドフィルム)
    4  半導体ウェハ
    5  半導体チップ
    6  被着体
    7  ボンディングワイヤー
    8  封止樹脂
    9  スペーサ
   10、11  ダイシング・ダイボンドフィルム
   13  ダイボンドフィルム(熱硬化型ダイボンドフィルム)
   15  半導体チップ
   21  ダイボンドフィルム(熱硬化型ダイボンドフィルム)
1 Base Material 2 Adhesive Layer 3 Die Bond Film (Thermosetting Die Bond Film)
4 semiconductor wafer 5 semiconductor chip 6 adherend 7 bonding wire 8 sealing resin 9 spacer 10, 11 dicing die bond film 13 die bond film (thermosetting die bond film)
15 Semiconductor Chip 21 Die Bond Film (Thermosetting Die Bond Film)
 (ダイシング・ダイボンドフィルム)
 本発明の熱硬化型ダイボンドフィルム(以下、「ダイボンドフィルム」と言う)について、ダイシングフィルム(粘着フィルム)と一体的に積層されたダイシング・ダイボンドフィルムを例にして以下に説明する。図1は、本実施の形態に係るダイシング・ダイボンドフィルムを示す断面模式図である。図2は、本実施の形態に係る他のダイシング・ダイボンドフィルムを示す断面模式図である。
(Dicing die bond film)
The thermosetting die-bonding film of the present invention (hereinafter referred to as “die-bonding film”) will be described below by taking a dicing die-bonding film integrally laminated with a dicing film (adhesive film) as an example. FIG. 1 is a schematic cross-sectional view showing a dicing die-bonding film according to the present embodiment. FIG. 2 is a schematic cross-sectional view showing another dicing die-bonding film according to the present embodiment.
 図1に示すように、ダイシング・ダイボンドフィルム10は、ダイシングフィルム上にダイボンドフィルム3が積層された構成を有する。ダイシングフィルムは基材1上に粘着剤層2を積層して構成されており、ダイボンドフィルム3はその粘着剤層2上に設けられている。また本発明は、図2に示すように、ワーク貼り付け部分にのみダイボンドフィルム3’を形成した構成であってもよい。 As shown in FIG. 1, the dicing die-bonding film 10 has a configuration in which the die-bonding film 3 is laminated on the dicing film. The dicing film is configured by laminating the pressure-sensitive adhesive layer 2 on the substrate 1, and the die-bonding film 3 is provided on the pressure-sensitive adhesive layer 2. Further, as shown in FIG. 2, the present invention may have a configuration in which a die bond film 3 'is formed only on a work pasting portion.
 前記基材1は紫外線透過性を有し、かつダイシング・ダイボンドフィルム10、11の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。 The base material 1 has ultraviolet transparency and becomes a strength matrix of the dicing die- bonding films 10 and 11. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
 また基材1の材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。延伸処理等により熱収縮性を付与した樹脂シートによれば、ダイシング後にその基材1を熱収縮させることにより粘着剤層2とダイボンドフィルム3、3’との接着面積を低下させて、半導体チップの回収の容易化を図ることができる。 Further, examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary. According to the resin sheet to which heat shrinkability is imparted by stretching treatment or the like, the adhesive area between the pressure-sensitive adhesive layer 2 and the die bond films 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, so that the semiconductor chip Can be easily recovered.
 基材1の表面は、隣接する層との密着性、保持性等を高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.
 前記基材1は、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。また、基材1には、帯電防止能を付与する為、前記の基材1上に金属、合金、これらの酸化物等からなる厚さが30~500Å程度の導電性物質の蒸着層を設けることができる。基材1は単層あるいは2種以上の複層でもよい。 The base material 1 can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary. In addition, the base material 1 is provided with a vapor-deposited layer of a conductive material having a thickness of about 30 to 500 mm made of a metal, an alloy, an oxide thereof, etc. on the base material 1 in order to impart an antistatic ability. be able to. The substrate 1 may be a single layer or two or more types.
 基材1の厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。 The thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 μm.
 前記粘着剤層2は紫外線硬化型粘着剤を含み構成されている。紫外線硬化型粘着剤は、紫外線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、図2に示す粘着剤層2の半導体ウェハ貼り付け部分に対応する部分2aのみを紫外線照射することにより他の部分2bとの粘着力の差を設けることができる。 The pressure-sensitive adhesive layer 2 includes an ultraviolet curable pressure-sensitive adhesive. The UV curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation of ultraviolet light, and only the portion 2a corresponding to the semiconductor wafer attachment portion of the pressure-sensitive adhesive layer 2 shown in FIG. By irradiating with ultraviolet rays, a difference in adhesive strength with the other portion 2b can be provided.
 また、図2に示すダイボンドフィルム3’に合わせて紫外線硬化型の粘着剤層2を硬化させることにより、粘着力が著しく低下した前記部分2aを容易に形成できる。硬化し、粘着力の低下した前記部分2aにダイボンドフィルム3’が貼付けられる為、粘着剤層2の前記部分2aとダイボンドフィルム3’との界面は、ピックアップ時に容易に剥がれる性質を有する。一方、紫外線を照射していない部分は十分な粘着力を有しており、前記部分2bを形成する。 Further, by curing the ultraviolet curable pressure-sensitive adhesive layer 2 in accordance with the die-bonding film 3 ′ shown in FIG. 2, the portion 2 a having a significantly reduced adhesive force can be easily formed. Since the die bond film 3 ′ is attached to the portion 2 a that has been cured and has reduced adhesive strength, the interface between the portion 2 a and the die bond film 3 ′ of the pressure-sensitive adhesive layer 2 has a property of being easily peeled off during pick-up. On the other hand, the portion not irradiated with ultraviolet rays has a sufficient adhesive force, and forms the portion 2b.
 前述の通り、図1に示すダイシング・ダイボンドフィルム10の粘着剤層2に於いて、未硬化の紫外線硬化型粘着剤により形成されている前記部分2bはダイボンドフィルム3と粘着し、ダイシングする際の保持力を確保できる。この様に紫外線硬化型粘着剤は、半導体チップを基板等の被着体に固着する為のダイボンドフィルム3を、接着・剥離のバランスよく支持することができる。図2に示すダイシング・ダイボンドフィルム11の粘着剤層2に於いては、前記部分2bがウェハリングを固定することができる。 As described above, in the pressure-sensitive adhesive layer 2 of the dicing die-bonding film 10 shown in FIG. 1, the portion 2b formed of the uncured ultraviolet-curing pressure-sensitive adhesive adheres to the die-bonding film 3 and is used when dicing. A holding force can be secured. Thus, the ultraviolet curable pressure-sensitive adhesive can support the die bond film 3 for fixing the semiconductor chip to an adherend such as a substrate with a good balance of adhesion and peeling. In the pressure-sensitive adhesive layer 2 of the dicing die-bonding film 11 shown in FIG. 2, the portion 2b can fix the wafer ring.
 前記紫外線硬化型粘着剤は、炭素-炭素二重結合等の紫外線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。紫外線硬化型粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、紫外線硬化性のモノマー成分やオリゴマー成分を配合した添加型の紫外線硬化型粘着剤を例示できる。 As the ultraviolet curable adhesive, those having an ultraviolet curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the ultraviolet curable pressure-sensitive adhesive include an additive-type ultraviolet curable pressure-sensitive adhesive in which an ultraviolet curable monomer component or an oligomer component is blended with a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive. Can be illustrated.
 前記感圧性粘着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。尚、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as linear or branched alkyl esters) (Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) acryl-based polymer such as one or more was used as a monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 更に、前記アクリル系ポリマーは、架橋させる為、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万~300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1~5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer. Furthermore, you may use additives, such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
 配合する前記紫外線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また紫外線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。紫外線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the ultraviolet curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and penta. Examples include erythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like. Examples of the ultraviolet curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable. The blending amount of the ultraviolet curable monomer component and oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、紫外線硬化型粘着剤としては、前記説明した添加型の紫外線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の紫外線硬化型粘着剤が挙げられる。内在型の紫外線硬化型粘着剤は、低分子量成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分等が粘着剤中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。 In addition to the additive-type UV-curable adhesive described above, the UV-curable adhesive has a carbon-carbon double bond in the polymer side chain or main chain or at the main chain end as a base polymer. Intrinsic ultraviolet curable pressure sensitive adhesives using Intrinsic UV curable pressure-sensitive adhesive does not need to contain an oligomer component or the like, which is a low molecular weight component, or does not contain much, so that the oligomer component or the like does not move through the pressure-sensitive adhesive over time and is stable. It is preferable because an adhesive layer having a layer structure can be formed.
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の紫外線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into an ultraviolet curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
 前記内在型の紫外線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記紫外線硬化性のモノマー成分やオリゴマー成分を配合することもできる。紫外線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic ultraviolet curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the ultraviolet curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The UV-curable oligomer component and the like are usually in the range of 30 parts by weight, preferably 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
 前記紫外線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The ultraviolet curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfonyl Black Aromatic sulfonyl chloride compounds such as 1; phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime and other photoactive oxime compounds; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate and the like. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また紫外線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシラン等の光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物等の光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤等が挙げられる。 Examples of the ultraviolet curable pressure-sensitive adhesive include photopolymerizable compounds such as addition polymerizable compounds having two or more unsaturated bonds and alkoxysilanes having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
 前記粘着剤層2の紫外線硬化後の粘着力は、ダイボンドフィルム3、3’に対して0.001~1N/10mm幅、好ましくは0.005~0.5N/10mm幅、より好ましくは0.01~0.1N/10mm幅(180度ピール剥離力、剥離速度300mm/mm)である。前記数値範囲内であると、ダイボンドフィルムの接着剤付き半導体チップをピックアップする際に、該半導体チップを必要以上に固定することなく、より良好なピックアップ性が図れる。 The pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer 2 after UV curing is 0.001 to 1 N / 10 mm width, preferably 0.005 to 0.5 N / 10 mm width, more preferably 0.001 to the die bond films 3 and 3 ′. The width is 01 to 0.1 N / 10 mm (180 degree peel force, peel speed 300 mm / mm). Within the above numerical range, when picking up a semiconductor chip with an adhesive of a die bond film, better pick-up property can be achieved without fixing the semiconductor chip more than necessary.
 前記粘着剤層2に前記部分2aを形成する方法としては、基材1に紫外線硬化型の粘着剤層2を形成した後、前記部分2aに部分的に紫外線を照射し硬化させる方法が挙げられる。部分的な紫外線照射は、半導体ウェハ貼り付け部分3a以外の部分3b等に対応するパターンを形成したフォトマスクを介して行うことができる。また、スポット的に紫外線を照射し硬化させる方法等が挙げられる。紫外線硬化型の粘着剤層2の形成は、セパレータ上に設けたものを基材1上に転写することにより行うことができる。部分的な紫外線硬化はセパレータ上に設けた紫外線硬化型の粘着剤層2に行うこともできる。 Examples of the method for forming the portion 2a on the pressure-sensitive adhesive layer 2 include a method in which after the ultraviolet curable pressure-sensitive adhesive layer 2 is formed on the substrate 1, the portion 2a is partially irradiated with ultraviolet rays to be cured. . The partial ultraviolet irradiation can be performed through a photomask on which a pattern corresponding to the portion 3b other than the semiconductor wafer bonding portion 3a is formed. Moreover, the method etc. of irradiating and hardening | curing an ultraviolet-ray spotly are mentioned. The ultraviolet curable pressure-sensitive adhesive layer 2 can be formed by transferring what is provided on the separator onto the substrate 1. Partial UV curing can also be performed on the UV curable pressure-sensitive adhesive layer 2 provided on the separator.
 ダイシング・ダイボンドフィルム10の粘着剤層2に於いては、前記部分2aの粘着力<その他の部分2bの粘着力、となるように粘着剤層2の一部を紫外線照射してもよい。即ち、基材1の少なくとも片面の、半導体ウェハ貼り付け部分3aに対応する部分以外の部分の全部又は一部が遮光されたものを用い、これに紫外線硬化型の粘着剤層2を形成した後に紫外線照射して、半導体ウェハ貼り付け部分3aに対応する部分を硬化させ、粘着力を低下させた前記部分2aを形成することができる。遮光材料としては、支持フィルム上でフォトマスクになりえるものを印刷や蒸着等で作製することができる。これにより、効率よく本発明のダイシング・ダイボンドフィルム10を製造可能である。 In the pressure-sensitive adhesive layer 2 of the dicing die-bonding film 10, a part of the pressure-sensitive adhesive layer 2 may be irradiated with ultraviolet rays so that the pressure-sensitive adhesive force of the portion 2a <the pressure-sensitive adhesive strength of the other portion 2b. That is, after forming the ultraviolet-curing pressure-sensitive adhesive layer 2 on the substrate 1, at least one side of the substrate 1 is shielded from all or part of the portion other than the portion corresponding to the semiconductor wafer pasting portion 3 a. By irradiating with ultraviolet rays, the portion corresponding to the semiconductor wafer pasting portion 3a can be cured to form the portion 2a with reduced adhesive strength. As the light shielding material, a material that can be a photomask on a support film can be produced by printing or vapor deposition. Thereby, the dicing die-bonding film 10 of this invention can be manufactured efficiently.
 粘着剤層2の厚さは、特に限定されないが、チップ切断面の欠け防止や接着層の固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、更には5~25μmが好ましい。 Although the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, it is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive layer. The thickness is preferably 2 to 30 μm, more preferably 5 to 25 μm.
 前記ダイボンドフィルム3は、接着剤組成物と微粒子からなる充填材とを含有するものであり、かつ、その厚さをY(μm)、前記充填材の最大粒径をX(μm)としたときに、比率X/Y(-)が1以下となるものであれば、特に限定されるものではない。 The die bond film 3 contains an adhesive composition and a filler composed of fine particles, and when the thickness is Y (μm) and the maximum particle size of the filler is X (μm). In addition, there is no particular limitation as long as the ratio X / Y (−) is 1 or less.
 前記充填材としては、無機フィラー又は有機フィラーが挙げられる。取り扱い性及び熱伝導性の向上、溶融粘度の調整、並びにチキソトロピック性の付与等の観点からは、無機フィラーが好ましい。 The filler includes an inorganic filler or an organic filler. Inorganic fillers are preferred from the standpoints of improving handleability and thermal conductivity, adjusting melt viscosity, and imparting thixotropic properties.
 前記無機フィラーとしては特に限定されず、例えば、シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミニウム、窒化ホウ素、結晶質シリカ、非晶質シリカ等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。熱伝導性の向上の観点からは、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶質シリカ等が好ましい。また、ダイボンドフィルム3の接着性とのバランスの観点からは、シリカが好ましい。また、前記有機フィラーとしては、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド、ナイロン、シリコーン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。 The inorganic filler is not particularly limited, for example, silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, antimony trioxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Examples thereof include aluminum oxide, aluminum nitride, aluminum borate, boron nitride, crystalline silica, and amorphous silica. These can be used alone or in combination of two or more. From the viewpoint of improving thermal conductivity, aluminum oxide, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable. Further, from the viewpoint of balance with the adhesiveness of the die bond film 3, silica is preferable. Examples of the organic filler include polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide, nylon, and silicone. These can be used alone or in combination of two or more.
 前記充填材の最大粒径X(μm)は、0.05~5μmが好ましく、0.05~3μmがより好ましい。充填材の最大粒径を0.05μm以上にすることにより、被着体に対する濡れ性を良好なものにし、接着性の低下を抑制することができる。その一方、前記最大粒径を5μm以下にすることにより、ダイボンドフィルム3の表面から充填材が突出するのを防止し、ダイボンディングの際に半導体チップに対し局所的に過度な応力が加わるのを低減することができる。尚、本発明に於いては、平均粒径が相互に異なる充填材同士を組み合わせて使用してもよい。また、充填材の最大粒径は、例えば、光度式の粒度分布計(HORIBA製、装置名;LA-910)により求めた値である。 The maximum particle size X (μm) of the filler is preferably 0.05 to 5 μm, more preferably 0.05 to 3 μm. By setting the maximum particle size of the filler to 0.05 μm or more, the wettability with respect to the adherend can be improved, and a decrease in adhesiveness can be suppressed. On the other hand, by making the maximum particle size 5 μm or less, it is possible to prevent the filler from protruding from the surface of the die bond film 3 and to apply excessive stress locally to the semiconductor chip during die bonding. Can be reduced. In the present invention, fillers having different average particle diameters may be used in combination. The maximum particle size of the filler is, for example, a value obtained by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
 前記充填材の形状は特に限定されず、例えば球状、楕円体状のものを使用することができる。 The shape of the filler is not particularly limited, and for example, a spherical or ellipsoidal shape can be used.
 前記充填材の含有量は、前記接着剤組成物の重量100重量部に対し、1~80重量部の範囲内が好ましく、1~50重量部の範囲内がより好ましい。前記含有量を1重量部以上にすることにより、被着体に対する濡れ性を良好なものにし、接着性の低下を抑制することができる。その一方、前記含有量を80重量部以下にすることにより、ダイボンドフィルム3の表面から充填材が突出するのを防止し、ダイボンディングの際に半導体チップに対し局所的に過度な応力が加わるのを低減することができる。 The content of the filler is preferably in the range of 1 to 80 parts by weight and more preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the adhesive composition. By setting the content to 1 part by weight or more, the wettability with respect to the adherend can be improved, and a decrease in adhesiveness can be suppressed. On the other hand, by making the content 80 parts by weight or less, the filler is prevented from protruding from the surface of the die bond film 3, and excessive stress is locally applied to the semiconductor chip during die bonding. Can be reduced.
 また、前記充填材は、前記接着剤組成物100体積部に対し、1~40体積部の範囲内が好ましく、1~30体積部の範囲内がより好ましい。充填材を1体積部以上にすることにより、被着体に対する濡れ性を良好なものにし、接着性の低下を抑制することができる。その一方、充填材を80体積部以下にすることにより、ダイボンドフィルム3の表面から充填材が突出するのを防止し、ダイボンディングの際に半導体チップに対し局所的に過度な応力が加わるのを低減することができる。 Further, the filler is preferably in the range of 1 to 40 parts by volume, more preferably in the range of 1 to 30 parts by volume with respect to 100 parts by volume of the adhesive composition. By making a filler into 1 volume part or more, the wettability with respect to a to-be-adhered body can be made favorable, and the fall of adhesiveness can be suppressed. On the other hand, by setting the filler to 80 parts by volume or less, the filler is prevented from protruding from the surface of the die bond film 3, and excessive stress is locally applied to the semiconductor chip during die bonding. Can be reduced.
 また、ダイボンドフィルム3の厚さY(μm)(積層体の場合は、総厚)は特に限定されないが、例えば、1~5μmの範囲内が好ましく、2~4μmの範囲内がより好ましい。前記厚さY(μm)を1μm以上にすることにより、被着体に対する濡れ性を良好なものにし、接着性の低下を抑制することができる。その一方、前記厚さY(μm)を5μm以下にすることにより、ダイボンドフィルム3の表面から充填材が突出するのを防止し、ダイボンディングの際に半導体チップに対し局所的な応力が過度に加わるのを低減することができる。 The thickness Y (μm) of the die bond film 3 (total thickness in the case of a laminate) is not particularly limited, but is preferably in the range of 1 to 5 μm, and more preferably in the range of 2 to 4 μm. By setting the thickness Y (μm) to 1 μm or more, the wettability with respect to the adherend can be improved, and a decrease in adhesiveness can be suppressed. On the other hand, by setting the thickness Y (μm) to 5 μm or less, it is possible to prevent the filler from protruding from the surface of the die bond film 3, and excessive local stress is applied to the semiconductor chip during die bonding. Addition can be reduced.
 ダイボンドフィルム3における粗さ曲線の最大断面高さRtは0.1~2.3μmの範囲内が好ましく、1~1.5μmの範囲内がより好ましい。前記最大断面高さRtを0.1μm以上にすることにより、ピックアップ性を容易とすることができる。その一方、前記最大断面高さを2.3μm以下にすることにより、局所的な応力が過度に加わるのを低減することができる。尚、前記粗さ曲線の最大断面高さRtは、JIS B0601に準拠して、非接触表面粗さ測定装置(日本ビーコ社製、WYKO)を用い、表面の傾き補正を行った後に測定した値である。 The maximum cross-sectional height Rt of the roughness curve in the die bond film 3 is preferably in the range of 0.1 to 2.3 μm, and more preferably in the range of 1 to 1.5 μm. By making the maximum cross-sectional height Rt 0.1 μm or more, the pickup property can be facilitated. On the other hand, excessive application of local stress can be reduced by setting the maximum cross-sectional height to 2.3 μm or less. In addition, the maximum cross-sectional height Rt of the roughness curve is a value measured after correcting the surface inclination using a non-contact surface roughness measuring device (manufactured by Nippon Beco Co., Ltd., WYKO) in accordance with JIS B0601. It is.
 前記接着剤組成物としては特に限定されないが、例えばエポキシ樹脂、フェノール樹脂、及びアクリル共重合体を含むものが好ましい。 The adhesive composition is not particularly limited, but preferably contains an epoxy resin, a phenol resin, and an acrylic copolymer, for example.
 前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。これらのエポキシ樹脂のうち本発明においては、ベンゼン環、ビフェニル環、ナフタレン環等の芳香族環を有するエポキシ樹脂が特に好ましい。具体的には、例えば、ノボラック型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性等に優れるからである。尚、エポキシ樹脂は、半導体素子を腐食させるイオン性不純物等の含有が少ない。 The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. Biphenyl type, naphthalene type, fluorene type, phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., bifunctional epoxy resin or polyfunctional epoxy resin, or hydantoin type, trisglycidyl isocyanurate Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more. Among these epoxy resins, in the present invention, an epoxy resin having an aromatic ring such as a benzene ring, a biphenyl ring, and a naphthalene ring is particularly preferable. Specifically, for example, novolak type epoxy resin, xylylene skeleton-containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbiphenol type epoxy resin, triphenyl A methane type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like. The epoxy resin contains little ionic impurities that corrode semiconductor elements.
 前記エポキシ樹脂の重量平均分子量が300~1500の範囲内であることが好ましく、350~1000の範囲内であることがより好ましい。重量平均分子量が300未満であると、熱硬化後のダイボンドフィルム3の機械的強度、耐熱性、耐湿性が低下する場合がある。その一方、1500より大きいと、熱硬化後のダイボンドフィルムが剛直になって脆弱になる場合がある。尚、本発明に於ける重量平均分子量とは、ゲルパーミエーションクロトマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値を意味する。 The weight average molecular weight of the epoxy resin is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 1000. When the weight average molecular weight is less than 300, the mechanical strength, heat resistance, and moisture resistance of the die-bonding film 3 after thermosetting may be lowered. On the other hand, if it is larger than 1500, the die-bonded film after thermosetting may become rigid and brittle. In addition, the weight average molecular weight in this invention means the polystyrene conversion value using the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC).
 更に、前記フェノール樹脂は、前記エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールビフェニル樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。これらのフェノール樹脂のうち、フェノールノボラック樹脂や、フェノールアラルキル樹脂が好ましい。半導体装置の接続信頼性を向上させることができるからである。 Further, the phenol resin acts as a curing agent for the epoxy resin. For example, a novolak such as a phenol novolak resin, a phenol biphenyl resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, or a nonylphenol novolak resin. And polyoxystyrene such as polyphenol styrene, resol type phenol resin, and polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are preferred. This is because the connection reliability of the semiconductor device can be improved.
 前記フェノール樹脂の重量平均分子量が300~1500の範囲内であることが好ましく、350~1000の範囲内であることがより好ましい。重量平均分子量が300未満であると、前記エポキシ樹脂の熱硬化が不十分となり十分な強靱性が得られない場合がある。その一方、重量平均分子量が1500より大きいと、高粘度となって、ダイボンドフィルムの作製時の作業性が低下する場合がある。 The weight average molecular weight of the phenol resin is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 1000. When the weight average molecular weight is less than 300, the epoxy resin is not sufficiently cured by heat and sufficient toughness may not be obtained. On the other hand, when the weight average molecular weight is larger than 1500, the viscosity becomes high, and workability at the time of producing the die bond film may be lowered.
 前記エポキシ樹脂とフェノール樹脂の配合割合は、例えば、前記エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは、0.8~1.2当量である。即ち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、エポキシ樹脂硬化物の特性が劣化し易くなるからである。 The compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
 また、前記エポキシ樹脂とフェノール樹脂の混合量は、アクリル共重合体100重量部に対し、10~200重量部の範囲内であることが好ましい。 The mixing amount of the epoxy resin and the phenol resin is preferably in the range of 10 to 200 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
 前記アクリル共重合体としては特に限定されないが、本発明においてはカルボキシル基含有アクリル共重合体、エポキシ基含有アクリル共重合体が好ましい。前記カルボキシル基含有アクリル共重合体に用いる官能基モノマーとしてはアクリル酸又はメタクリル酸が挙げられる。アクリル酸又はメタクリル酸の含有量は酸価が1~4の範囲内となる様に調節される。その残部は、メチルアクリレート、メチルメタクリレートなどの炭素数1~8のアルキル基を有するアルキルアクリレート、アルキルメタクリレート、スチレン、又はアクリロニトリル等の混合物を用いることができる。これらの中でも、エチル(メタ)アクリレート及び/又はブチル(メタ)アクリレートが特に好ましい。混合比率は、後述する前記アクリル共重合体のガラス転移点(Tg)を考慮して調整することが好ましい。また、重合方法としては特に限定されず、例えば、溶液重合法、隗状重合法、懸濁重合法、乳化重合法等の従来公知の方法を採用することができる。 The acrylic copolymer is not particularly limited, but in the present invention, a carboxyl group-containing acrylic copolymer and an epoxy group-containing acrylic copolymer are preferable. Examples of the functional group monomer used in the carboxyl group-containing acrylic copolymer include acrylic acid and methacrylic acid. The content of acrylic acid or methacrylic acid is adjusted so that the acid value is in the range of 1 to 4. As the balance, a mixture of alkyl acrylate having 1 to 8 carbon atoms, such as methyl acrylate or methyl methacrylate, alkyl methacrylate, styrene, or acrylonitrile can be used. Among these, ethyl (meth) acrylate and / or butyl (meth) acrylate are particularly preferable. The mixing ratio is preferably adjusted in consideration of the glass transition point (Tg) of the acrylic copolymer described later. Moreover, it does not specifically limit as a polymerization method, For example, conventionally well-known methods, such as a solution polymerization method, a cage-like polymerization method, a suspension polymerization method, and an emulsion polymerization method, are employable.
 また、前記モノマー成分と共重合可能な他のモノマー成分としては特に限定されず、例えば、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分の使用量は、全モノマー成分に対し1~20重量%の範囲内であることが好ましい。当該数値範囲内の他のモノマー成分を含有させることにより、凝集力、接着性などの改質が図れる。 The other monomer component copolymerizable with the monomer component is not particularly limited, and examples thereof include acrylonitrile. These copolymerizable monomer components are preferably used in an amount of 1 to 20% by weight based on the total monomer components. By incorporating other monomer components within the numerical range, modification of cohesive force, adhesiveness, etc. can be achieved.
 アクリル共重合体の重合方法としては特に限定されず、例えば、溶液重合法、隗状重合法、懸濁重合法、乳化重合法等の従来公知の方法を採用することができる。 The polymerization method of the acrylic copolymer is not particularly limited, and conventionally known methods such as a solution polymerization method, a cage polymerization method, a suspension polymerization method, and an emulsion polymerization method can be employed.
 前記アクリル共重合体のガラス転移点(Tg)は、-30~30℃であることが好ましく、-20~15℃であることがより好ましい。ガラス転移点が-30℃以上にすることにより耐熱性が確保され得る。その一方、30℃以下にすることにより、表面状態が粗いウェハにおけるダイシング後のチップ飛びの防止効果が向上する。 The glass transition point (Tg) of the acrylic copolymer is preferably −30 to 30 ° C., more preferably −20 to 15 ° C. Heat resistance can be ensured by setting the glass transition point to −30 ° C. or higher. On the other hand, when the temperature is 30 ° C. or less, the effect of preventing chip jump after dicing in a wafer having a rough surface state is improved.
 前記アクリル共重合体の重量平均分子量は、10万~100万であることが好ましく、35万~90万であることがより好ましい。重量平均分子量を10万以上にすることにより、被着体表面に対する高温時の接着性に優れ、かつ、耐熱性も向上させることができる。その一方、重量平均分子量を100万以下にすることにより、容易に有機溶剤への溶解することができる。 The weight average molecular weight of the acrylic copolymer is preferably 100,000 to 1,000,000, and more preferably 350,000 to 900,000. By setting the weight average molecular weight to 100,000 or more, it is excellent in adhesiveness at high temperature to the adherend surface, and heat resistance can also be improved. On the other hand, by making the weight average molecular weight 1 million or less, it can be easily dissolved in an organic solvent.
 また、ダイボンドフィルム3、3’には、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤又はイオントラップ剤等が挙げられる。 Further, other additives can be appropriately blended in the die bond films 3 and 3 ′ as necessary. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, and the like.
 前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。 Examples of the flame retardant include antimony trioxide, antimony pentoxide, and brominated epoxy resin. These can be used alone or in combination of two or more.
 前記シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。 Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more.
 前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。 Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
 前記エポキシ樹脂とフェノール樹脂の熱硬化促進触媒としては特に限定されず、例えば、トリフェニルフォスフィン骨格、アミン骨格、トリフェニルボラン骨格、トリハロゲンボラン骨格等の何れかからなる塩が好ましい。 The heat curing accelerating catalyst for the epoxy resin and the phenol resin is not particularly limited, and for example, a salt composed of any one of a triphenylphosphine skeleton, an amine skeleton, a triphenylborane skeleton, a trihalogenborane skeleton, and the like is preferable.
 尚、ダイボンドフィルムは、例えば接着剤層の単層のみからなる構成とすることができる。また、ガラス転移温度の異なる熱可塑性樹脂、熱硬化温度の異なる熱硬化性樹脂を適宜に組み合わせて、2層以上の多層構造にしてもよい。尚、半導体ウェハのダイシング工程では切削水を使用することから、ダイボンドフィルムが吸湿して、常態以上の含水率になる場合がある。この様な高含水率のまま、基板等に接着させると、アフターキュアの段階で接着界面に水蒸気が溜まり、浮きが発生する場合がある。従って、ダイボンドフィルムとしては、透湿性の高いコア材料を接着剤層で挟んだ構成とすることにより、アフターキュアの段階では、水蒸気がフィルムを通じて拡散して、かかる問題を回避することが可能となる。かかる観点から、ダイボンドフィルムはコア材料の片面又は両面に接着剤層を形成した多層構造にしてもよい。 Note that the die bond film can be composed of only a single layer of an adhesive layer, for example. Alternatively, a thermoplastic resin having a different glass transition temperature and a thermosetting resin having a different thermosetting temperature may be appropriately combined to form a multilayer structure having two or more layers. In addition, since cutting water is used in the dicing process of the semiconductor wafer, the die-bonding film may absorb moisture and have a moisture content higher than that of the normal state. When bonded to a substrate or the like with such a high water content, water vapor may accumulate at the bonding interface at the stage of after-curing and float may occur. Therefore, the die bond film has a structure in which a core material having high moisture permeability is sandwiched between adhesive layers, so that water vapor diffuses through the film at the after-curing stage, and this problem can be avoided. . From this viewpoint, the die bond film may have a multilayer structure in which an adhesive layer is formed on one side or both sides of the core material.
 前記コア材料としては、フィルム(例えばポリイミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム等)、ガラス繊維やプラスチック製不織繊維で強化された樹脂基板、ミラーシリコンウェハ、シリコン基板又はガラス基板等が挙げられる。 Examples of the core material include films (for example, polyimide films, polyester films, polyethylene terephthalate films, polyethylene naphthalate films, polycarbonate films), resin substrates reinforced with glass fibers and plastic non-woven fibers, mirror silicon wafers, silicon substrates Or a glass substrate etc. are mentioned.
 また、ダイボンドフィルム3は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまでダイボンドフィルムを保護する保護材としての機能を有している。また、セパレータは、更に、ダイシングフィルムにダイボンドフィルム3、3’を転写する際の支持基材として用いることができる。セパレータはダイボンドフィルム上にワークを貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等も使用可能である。 The die bond film 3 is preferably protected by a separator (not shown). The separator has a function as a protective material for protecting the die bond film until it is put into practical use. Further, the separator can be used as a supporting substrate when transferring the die bond films 3 and 3 ′ to the dicing film. The separator is peeled off when the workpiece is stuck on the die bond film. As the separator, a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, or a long-chain alkyl acrylate release agent can be used.
 (半導体装置の製造方法)
 本発明のダイシング・ダイボンドフィルム10、12は、ダイボンドフィルム3、3’上に任意に設けられたセパレータを適宜に剥離して、次の様に使用される。以下では、図を参照しながらダイシング・ダイボンドフィルム10を用いた場合を例にして説明する。
(Method for manufacturing semiconductor device)
The dicing die-bonding films 10 and 12 of the present invention are used as follows after appropriately separating the separator arbitrarily provided on the die- bonding films 3 and 3 ′. Hereinafter, the case where the dicing die-bonding film 10 is used will be described as an example with reference to the drawings.
 先ず、図1に示すように、ダイシング・ダイボンドフィルム10に於けるダイボンドフィルム3の半導体ウェハ貼り付け部分3a上に半導体ウェハ4を圧着し、これを接着保持させて固定する(マウント工程)。本工程は、圧着ロール等の押圧手段により押圧しながら行う。 First, as shown in FIG. 1, the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer attaching portion 3a of the die bond film 3 in the dicing die bond film 10, and this is adhered and held and fixed (mounting step). This step is performed while pressing with a pressing means such as a pressure roll.
 次に、半導体ウェハ4のダイシングを行う。これにより、半導体ウェハ4を所定のサイズに切断して個片化し、半導体チップ5を製造する。ダイシングは、例えば半導体ウェハ4の回路面側から常法に従い行われる。また、本工程では、例えばダイシング・ダイボンドフィルム10まで切込みを行なうフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウェハは、ダイシング・ダイボンドフィルム10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウェハ4の破損も抑制できる。 Next, the semiconductor wafer 4 is diced. Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured. Dicing is performed according to a conventional method from the circuit surface side of the semiconductor wafer 4, for example. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the dicing die bond film 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer is bonded and fixed by the dicing die-bonding film 10, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
 ダイシング・ダイボンドフィルム10に接着固定された半導体チップを剥離する為に、半導体チップ5のピックアップを行う。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をダイシング・ダイボンドフィルム10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法等が挙げられる。 The semiconductor chip 5 is picked up in order to peel off the semiconductor chip adhered and fixed to the dicing die bond film 10. The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, a method of pushing up the individual semiconductor chips 5 from the dicing die bond film 10 side with a needle and picking up the pushed-up semiconductor chips 5 with a pickup device may be mentioned.
 ここでピックアップは、粘着剤層2は紫外線硬化型である為、該粘着剤層2に紫外線を照射した後に行う。これにより、粘着剤層2のダイボンドフィルム3aに対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップを損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、前述のものを使用することができる。 Here, the pickup is performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays because the pressure-sensitive adhesive layer 2 is of an ultraviolet curable type. Thereby, the adhesive force with respect to the die-bonding film 3a of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary. Moreover, the above-mentioned thing can be used as a light source used for ultraviolet irradiation.
 ピックアップした半導体チップ5は、ダイボンドフィルムを介して被着体6に接着固定する(ダイボンド)。このときのダイボンド温度としては、100~180℃の範囲内が好ましく、100~160℃の範囲内がより好ましい。また、ボンディング圧力としては、0.05~0.5MPaの範囲内が好ましく、0.05~0.2MPaの範囲内がより好ましい。更に、ダイボンド時間としては、0.1~5秒の範囲内が好ましく、0.1~3秒の範囲内がより好ましい。この様な条件下でダイボンドを行っても、本願発明では、ダイボンドフィルム中に含まれる充填材により半導体チップ5に局所的に応力が集中するのを低減するので、半導体チップ5の破損を効果的に防止することができる。 The picked-up semiconductor chip 5 is bonded and fixed to the adherend 6 via a die bond film (die bond). The die bonding temperature at this time is preferably in the range of 100 to 180 ° C., more preferably in the range of 100 to 160 ° C. The bonding pressure is preferably in the range of 0.05 to 0.5 MPa, more preferably in the range of 0.05 to 0.2 MPa. Further, the die bond time is preferably in the range of 0.1 to 5 seconds, and more preferably in the range of 0.1 to 3 seconds. Even if die bonding is performed under such conditions, the present invention reduces the local concentration of stress on the semiconductor chip 5 due to the filler contained in the die bonding film, so that damage to the semiconductor chip 5 is effective. Can be prevented.
 被着体6としては、リードフレーム、TABフィルム、基板又は別途作製した半導体チップ等が挙げられる。被着体6は、例えば、容易に変形されるような変形型被着体であってもよく、変形することが困難である非変形型被着体(半導体ウェハ等)であってもよい。前記基板としては、従来公知のものを使用することができる。また、前記リードフレームとしては、Cuリードフレーム、42Alloyリードフレーム等の金属リードフレームやガラスエポキシ、BT(ビスマレイミド-トリアジン)、ポリイミド等からなる有機基板を使用することができる。しかし、本発明はこれに限定されるものではなく、半導体素子をマウントし、半導体素子と電気的に接続して使用可能な回路基板も含まれる。 Examples of the adherend 6 include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip. The adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform. A conventionally well-known thing can be used as said board | substrate. As the lead frame, a metal lead frame such as a Cu lead frame or 42 Alloy lead frame, or an organic substrate made of glass epoxy, BT (bismaleimide-triazine), polyimide, or the like can be used. However, the present invention is not limited to this, and includes a circuit board that can be used by mounting a semiconductor element and electrically connecting the semiconductor element.
 本発明のダイボンドフィルム3は熱硬化型であるので、加熱硬化により半導体チップ5を被着体6に接着固定し、耐熱強度を向上させてもよい。尚、半導体ウェハ貼り付け部分3aを介して半導体チップ5が基板等に接着固定されたものは、リフロー工程に供することができる。 Since the die bond film 3 of the present invention is a thermosetting type, the heat resistance strength may be improved by bonding and fixing the semiconductor chip 5 to the adherend 6 by heat curing. In addition, what the semiconductor chip 5 adhere | attached and fixed to the board | substrate etc. via the semiconductor wafer bonding part 3a can be used for a reflow process.
 また前記のダイボンドは、ダイボンドフィルム3を硬化させず、単に被着体6に仮固着させてもよい。その後、加熱工程を経ることなくワイヤーボンディングを行い、更に半導体チップを封止樹脂で封止して、当該封止樹脂をアフターキュアすることもできる。 Further, the above-described die bonding may be merely temporarily fixed to the adherend 6 without curing the die bonding film 3. Thereafter, wire bonding is performed without passing through a heating step, and the semiconductor chip is further sealed with a sealing resin, and the sealing resin can be after-cured.
 この場合、ダイボンドフィルム3としては、仮固着時の剪断接着力が、被着体6に対して0.2MPa以上のものを使用し、より好ましくは0.2~10MPaの範囲内のものを使用するのが好ましい。ダイボンドフィルム3の剪断接着力が少なくとも0.2MPa以上であると、加熱工程を経ることなくワイヤーボンディング工程を行っても、当該工程に於ける超音波振動や加熱により、ダイボンドフィルム3と半導体チップ5又は被着体6との接着面でずり変形を生じることがない。即ち、ワイヤーボンディングの際の超音波振動により半導体素子が動くことがなく、これによりワイヤーボンディングの成功率が低下するのを防止する。 In this case, as the die bond film 3, a film having a shear adhesive force at the time of temporary fixing of 0.2 MPa or more with respect to the adherend 6 is used, more preferably a film having a range of 0.2 to 10 MPa. It is preferable to do this. When the shear bond strength of the die bond film 3 is at least 0.2 MPa or more, even if the wire bonding step is performed without passing through the heating step, the die bond film 3 and the semiconductor chip 5 are caused by ultrasonic vibration or heating in the step. Alternatively, shear deformation does not occur on the adhesion surface with the adherend 6. That is, the semiconductor element does not move due to ultrasonic vibration during wire bonding, thereby preventing the success rate of wire bonding from decreasing.
 前記のワイヤーボンディングは、被着体6の端子部(インナーリード)の先端と半導体チップ上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続する工程である(図3参照)。前記ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線等が用いられる。ワイヤーボンディングを行う際の温度は、80~250℃、好ましくは80~220℃の範囲内で行われる。また、その加熱時間は数秒~数分間行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着工ネルギーの併用により行われる。 The wire bonding is a process of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip with a bonding wire 7 (see FIG. 3). As the bonding wire 7, for example, a gold wire, an aluminum wire, a copper wire or the like is used. The temperature for wire bonding is 80 to 250 ° C., preferably 80 to 220 ° C. The heating time is several seconds to several minutes. The connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
 本工程は、ダイボンドフィルム3aを完全に熱硬化させることなく行うことができる。また、本工程の過程でダイボンドフィルム3aにより半導体チップ5と被着体6とが固着することはない。 This step can be performed without completely thermosetting the die bond film 3a. Further, the semiconductor chip 5 and the adherend 6 are not fixed by the die bond film 3a in the course of this step.
 前記封止工程は、封止樹脂8により半導体チップ5を封止する工程である(図3参照)。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護する為に行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、通常175℃で60~90秒間行われるが、本発明はこれに限定されず、例えば165~185℃で、数分間キュアすることができる。これにより、封止樹脂を硬化させると共に、ダイボンドフィルム3aを介して半導体チップ5と被着体6とを固着させる。即ち、本発明に於いては、後述する後硬化工程が行われない場合に於いても、本工程に於いてダイボンドフィルム3aによる固着が可能であり、製造工程数の減少及び半導体装置の製造期間の短縮に寄与することができる。 The sealing step is a step of sealing the semiconductor chip 5 with the sealing resin 8 (see FIG. 3). This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6. This step is performed by molding a sealing resin with a mold. For example, an epoxy resin is used as the sealing resin 8. The heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin is cured, and the semiconductor chip 5 and the adherend 6 are fixed through the die bond film 3a. That is, in the present invention, even when the post-curing step described later is not performed, the die-bonding film 3a can be fixed in this step, and the number of manufacturing steps can be reduced and the semiconductor device manufacturing period can be reduced. It can contribute to shortening.
 前記後硬化工程に於いては、前記封止工程で硬化不足の封止樹脂8を完全に硬化させる。封止工程に於いてダイボンドフィルム3aにより固着がされない場合でも、本工程に於いて封止樹脂8の硬化と共にダイボンドフィルム3aによる固着が可能となる。本工程に於ける加熱温度は、封止樹脂の種類により異なるが、例えば165~185℃の範囲内であり、加熱時間は0.5~8時間程度である。 In the post-curing step, the sealing resin 8 that is insufficiently cured in the sealing step is completely cured. Even if the die bonding film 3a is not fixed in the sealing step, the die bonding film 3a can be fixed together with the hardening of the sealing resin 8 in this step. The heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
 また、本発明のダイシング・ダイボンドフィルムは、図4に示すように、複数の半導体チップを積層して3次元実装をする場合にも好適に用いることができる。図4は、ダイボンドフィルムを介して半導体チップを3次元実装した例を示す断面模式図である。図4に示す3次元実装の場合、先ず半導体チップと同サイズとなる様に切り出した少なくとも1つのダイボンドフィルム3aを被着体6上に仮固着した後、ダイボンドフィルム3aを介して半導体チップ5を、そのワイヤーボンド面が上側となる様にして仮固着する。次に、ダイボンドフィルム13を半導体チップ5の電極パッド部分を避けて仮固着する。更に、他の半導体チップ15をダイボンドフィルム13上に、そのワイヤーボンド面が上側となる様にして仮固着する。 Further, as shown in FIG. 4, the dicing die-bonding film of the present invention can also be suitably used when a plurality of semiconductor chips are stacked and three-dimensionally mounted. FIG. 4 is a schematic cross-sectional view showing an example in which a semiconductor chip is three-dimensionally mounted through a die bond film. In the case of the three-dimensional mounting shown in FIG. 4, first, at least one die bond film 3a cut out to have the same size as the semiconductor chip is temporarily fixed on the adherend 6, and then the semiconductor chip 5 is attached via the die bond film 3a. The wire bond surface is temporarily fixed so that the wire bond surface is on the upper side. Next, the die bond film 13 is temporarily fixed while avoiding the electrode pad portion of the semiconductor chip 5. Further, another semiconductor chip 15 is temporarily fixed on the die bond film 13 so that the wire bond surface is on the upper side.
 次に、加熱工程を行うことなく、ワイヤーボンディング工程を行う。これにより、半導体チップ5及び他の半導体チップ15に於けるそれぞれの電極パッドと、被着体6とをボンディングワイヤー7で電気的に接続する。続いて、封止樹脂8により半導体チップ5等を封止する封止工程を行い、封止樹脂を硬化させる。それと共に、ダイボンドフィルム3aにより被着体6と半導体チップ5との間を固着する。また、ダイボンドフィルム13により半導体チップ5と他の半導体チップ15との間も固着させる。尚、封止工程の後、後硬化工程を行ってもよい。 Next, the wire bonding process is performed without performing the heating process. Thereby, each electrode pad in the semiconductor chip 5 and the other semiconductor chip 15 and the adherend 6 are electrically connected by the bonding wire 7. Subsequently, a sealing process for sealing the semiconductor chip 5 and the like with the sealing resin 8 is performed, and the sealing resin is cured. At the same time, the adherend 6 and the semiconductor chip 5 are fixed together by the die bond film 3a. Further, the semiconductor chip 5 and another semiconductor chip 15 are also fixed by the die bond film 13. In addition, you may perform a postcure process after a sealing process.
 半導体チップの3次元実装の場合に於いても、ダイボンドフィルム3a、13の加熱による加熱処理を行わないので、製造工程の簡素化及び歩留まりの向上が図れる。また、被着体6に反りが生じたり、半導体チップ5及び他の半導体チップ15にクラックが発生したりすることもないので、半導体チップ5の一層の薄型化が可能になる。 Even in the case of three-dimensional mounting of a semiconductor chip, since the heat treatment by heating the die bond films 3a and 13 is not performed, the manufacturing process can be simplified and the yield can be improved. Further, since the adherend 6 is not warped, and the semiconductor chip 5 and other semiconductor chips 15 are not cracked, the semiconductor chip 5 can be further reduced in thickness.
 また、図5に示すように、半導体チップ間にダイボンドフィルムを介してスペーサを積層させた3次元実装としてもよい。この場合、先ず被着体6上にダイボンドフィルム3a、半導体チップ5及びダイボンドフィルム21を順次積層して仮固着する。更に、ダイボンドフィルム21上に、スペーサ9、ダイボンドフィルム21、ダイボンドフィルム3a及び半導体チップ5を順次積層して仮固着する。次に、加熱工程を行うことなく、図5に示すように、ワイヤーボンディング工程を行う。これにより、半導体チップ5に於ける電極パッドと被着体6とをボンディングワイヤー7で電気的に接続する。 Further, as shown in FIG. 5, three-dimensional mounting in which spacers are stacked between semiconductor chips via a die bond film may be employed. In this case, first, the die bond film 3a, the semiconductor chip 5 and the die bond film 21 are sequentially laminated on the adherend 6 and temporarily fixed. Further, the spacer 9, the die bond film 21, the die bond film 3 a and the semiconductor chip 5 are sequentially laminated and temporarily fixed on the die bond film 21. Next, a wire bonding process is performed as shown in FIG. 5 without performing a heating process. Thereby, the electrode pad in the semiconductor chip 5 and the adherend 6 are electrically connected by the bonding wire 7.
 続いて、封止樹脂8により半導体チップ5を封止する封止工程を行い、封止樹脂8を硬化させると共に、ダイボンドフィルム3a、21により被着体6と半導体チップ5との間、及び半導体チップ5とスペーサ9との間を固着させる。これにより、半導体パッケージが得られる。封止工程は、半導体チップ5側のみを片面封止する一括封止法が好ましい。封止は粘着シート上に貼り付けられた半導体チップ5を保護するために行われ、その方法としては封止樹脂8を用いて金型中で成型されるのが代表的である。その際、複数のキャビティを有する上金型と下金型からなる金型を用いて、同時に封止工程を行うのが一般的である。樹脂封止時の加熱温度は、例えば170~180℃の範囲内であることが好ましい。封止工程の後に、後硬化工程を行ってもよい。尚、前記スペーサ9としては特に限定されず、従来公知のシリコンチップ、ポリイミドフィルム等を使用できる。また、前記スペーサとしてポリイミドフィルムや樹脂基板等のコア材料を使用できる。 Subsequently, a sealing step of sealing the semiconductor chip 5 with the sealing resin 8 is performed to cure the sealing resin 8, and between the adherend 6 and the semiconductor chip 5 and the semiconductor with the die bond films 3 a and 21. The chip 5 and the spacer 9 are fixed. Thereby, a semiconductor package is obtained. The sealing process is preferably a batch sealing method in which only the semiconductor chip 5 side is sealed on one side. Sealing is performed to protect the semiconductor chip 5 attached on the pressure-sensitive adhesive sheet, and the typical method is molding in a mold using the sealing resin 8. In that case, it is common to perform a sealing process simultaneously using the metal mold | die which consists of an upper metal mold | die and a lower metal mold | die which have a some cavity. The heating temperature at the time of resin sealing is preferably in the range of 170 to 180 ° C., for example. A post-curing step may be performed after the sealing step. The spacer 9 is not particularly limited, and a conventionally known silicon chip, polyimide film or the like can be used. Further, a core material such as a polyimide film or a resin substrate can be used as the spacer.
 次に、プリント配線板上に、前記の半導体パッケージを表面実装する。表面実装の方法としては、例えば、プリント配線板上に予めハンダを供給した後、温風等により加熱溶融しハンダ付けを行うリフローはんだ付けが挙げられる。加熱方法としては、熱風リフロー、赤外線リフロー等が挙げられる。また、全体加熱、局部加熱の何れの方式でもよい。加熱温度は240~265℃、加熱時間は1~20秒の範囲内であることが好ましい。 Next, the semiconductor package is surface-mounted on a printed wiring board. Examples of the surface mounting method include reflow soldering in which solder is supplied on a printed wiring board in advance and then heated and melted with hot air or the like to perform soldering. Examples of the heating method include hot air reflow and infrared reflow. Moreover, any system of whole heating or local heating may be used. The heating temperature is preferably 240 to 265 ° C., and the heating time is preferably in the range of 1 to 20 seconds.
 (その他の事項)
 前記基板等上に半導体素子を3次元実装する場合、半導体素子の回路が形成される面側には、バッファーコート膜が形成されている。当該バッファーコート膜としては、例えば窒化珪素膜やポリイミド樹脂等の耐熱樹脂からなるものが挙げられる。
(Other matters)
When a semiconductor element is three-dimensionally mounted on the substrate or the like, a buffer coat film is formed on the surface side where the circuit of the semiconductor element is formed. Examples of the buffer coat film include those made of a heat resistant resin such as a silicon nitride film or a polyimide resin.
 また、半導体素子の3次元実装の際に、各段で使用されるダイボンドフィルムは同一組成からなるものに限定されるものではなく、製造条件や用途等に応じて適宜変更可能である。 Moreover, the die-bonding film used at each stage when the semiconductor element is three-dimensionally mounted is not limited to the one having the same composition, and can be appropriately changed according to the manufacturing conditions and the application.
 また、前記実施の形態に於いては、基板等に複数の半導体素子を積層させた後に、一括してワイヤーボンディング工程を行う態様について述べたが、本発明はこれに限定されるものではない。例えば、半導体素子を基板等の上に積層する度にワイヤーボンディング工程を行うことも可能である。 Further, in the above-described embodiment, a mode in which a wire bonding process is performed collectively after laminating a plurality of semiconductor elements on a substrate or the like has been described, but the present invention is not limited to this. For example, it is possible to perform a wire bonding process every time a semiconductor element is stacked on a substrate or the like.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.
 (実施例1)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E2、最大粒径1.4μm、平均粒径0.5μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
Example 1
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 μm, 40 parts by weight of an average particle size of 0.5 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムAを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film A having a thickness of 5 μm was produced.
 (実施例2)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E2、最大粒径1.4μm、平均粒径0.5μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Example 2)
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 μm, 80 parts by weight of an average particle size of 0.5 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムBを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thus, a thermosetting die bond film B having a thickness of 5 μm was produced.
 (実施例3)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)12重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E2、最大粒径1.4μm、平均粒径0.5μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Example 3)
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 μm, 40 parts by weight of an average particle size of 0.5 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムCを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thus, a thermosetting die bond film C having a thickness of 3 μm was produced.
 (実施例4)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E2、最大粒径1.4μm、平均粒径0.5μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
Example 4
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E2, maximum particle size 1.4 μm, 80 parts by weight of an average particle size of 0.5 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムDを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film D having a thickness of 3 μm was produced.
 (実施例5)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)12重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E3、最大粒径5.0μm、平均粒径0.9μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Example 5)
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size: 5.0 μm, 40 parts by weight of an average particle size of 0.9 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムEを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film E having a thickness of 5 μm was produced.
 (実施例6)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E3、最大粒径5.0μm、平均粒径0.9μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Example 6)
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size 5.0 μm, 80 parts by weight of an average particle size of 0.9 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムFを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film F having a thickness of 5 μm was produced.
 (比較例1)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)12重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E3、最大粒径5.0μm、平均粒径0.9μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 1)
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size: 5.0 μm, 40 parts by weight of an average particle size of 0.9 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムGを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thus, a thermosetting die bond film G having a thickness of 3 μm was produced.
 (比較例2)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E3、最大粒径5.0μm、平均粒径0.9μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 2)
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E3, maximum particle size 5.0 μm, 80 parts by weight of an average particle size of 0.9 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムHを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film H having a thickness of 3 μm was produced.
 (比較例3)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)12重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E5、最大粒径8.0μm、平均粒径1.3μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 3)
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E5, maximum particle size 8.0 μm, 40 parts by weight of an average particle size of 1.3 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムIを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film I having a thickness of 5 μm was produced.
 (比較例4)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E5、最大粒径8.0μm、平均粒径1.3μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 4)
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E5, maximum particle size 8.0 μm, 80 parts by weight of an average particle size of 1.3 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ5μmの熱硬化型ダイボンドフィルムJを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thus, a thermosetting die bond film J having a thickness of 5 μm was produced.
 (比較例5)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)12重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)12重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)36重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E5、最大粒径8.0μm、平均粒径1.3μm)40重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 5)
12 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 12 parts by weight of xylylene novolac type phenolic resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H 36 parts by weight of an acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31), spherical silica (manufactured by Admatechs Co., Ltd., trade name: SO-E5, maximum particle size 8.0 μm, 40 parts by weight of an average particle size of 1.3 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムKを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thus, a thermosetting die bond film K having a thickness of 3 μm was produced.
 (比較例6)
 トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬(株)製、商品名;EPPN-501HY)4重量部、キシリレンノボラック型フェノール樹脂(明和化成(株)製)、商品名;MEH7800H)4重量部、アクリル共重合体(ノガワケミカル(株)製、商品名;レビタルAR31)12重量部、充填材として球状シリカ(アドマテックス(株)製、商品名;SO-E5、最大粒径8.0μm、平均粒径1.3μm)80重量部を、メチルエチルケトンに溶解させ、濃度15.0重量%の接着剤組成物を調製した。
(Comparative Example 6)
4 parts by weight of trishydroxyphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN-501HY), 4 parts by weight of xylylene novolac type phenol resin (manufactured by Meiwa Kasei Co., Ltd.), trade name: MEH7800H) , Acrylic copolymer (manufactured by Nogawa Chemical Co., Ltd., trade name: Levital AR31) 12 parts by weight, spherical silica as a filler (manufactured by Admatechs Co., Ltd., trade name: SO-E5, maximum particle size 8.0 μm, 80 parts by weight of an average particle size of 1.3 μm was dissolved in methyl ethyl ketone to prepare an adhesive composition having a concentration of 15.0% by weight.
 この接着剤組成物の溶液を、剥離ライナとしてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させた。これにより、厚さ3μmの熱硬化型ダイボンドフィルムLを作製した。 The solution of the adhesive composition was applied as a release liner on a release film made of a polyethylene terephthalate film having a thickness of 38 μm, which was subjected to a silicone release treatment, and then dried at 130 ° C. for 2 minutes. Thereby, a thermosetting die-bonding film L having a thickness of 3 μm was produced.
 (充填材の平均粒径、及び、最大粒径の測定)
 充填材の平均粒径、及び、最大粒径の測定は、光度式の粒度分布計(HORIBA製、装置名;LA-910)を用いて行った。結果を下記表1及び表2に示す。なお、最大粒径は、横軸を粒径、縦軸を相対粒子量とした2次元のグラフにおいて、ベースラインと当該曲線とで囲まれた面積を100%としたとき、粒径が小さい側から当該面積を積算した累計面積が100%となる粒径を最大粒径とした。
(Measurement of average particle size and maximum particle size of filler)
The average particle size and maximum particle size of the filler were measured using a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910). The results are shown in Tables 1 and 2 below. In the two-dimensional graph with the horizontal axis representing the particle diameter and the vertical axis representing the relative particle amount, the maximum particle diameter is defined as 100% of the area surrounded by the baseline and the curve. Therefore, the maximum particle size is defined as the particle size at which the cumulative area obtained by integrating the areas becomes 100%.
 (粗さ曲線の最大断面高さRt)
 各実施例及び比較例で作製した熱硬化型ダイボンドフィルムにおける粗さ曲線の最大断面高さRtは、JIS B0601に準拠して、非接触表面粗さ測定装置(日本ビーコ社製、WYKO)を用い、表面の傾き補正を行った後に測定した。結果を下記表1及び表2に示す。
(Maximum section height Rt of roughness curve)
The maximum cross-sectional height Rt of the roughness curve in the thermosetting die-bonding film produced in each example and comparative example is based on JIS B0601, using a non-contact surface roughness measuring device (manufactured by Nippon Beco, WYKO). The measurement was performed after correcting the surface inclination. The results are shown in Tables 1 and 2 below.
 (半導体ウェハの破損の有無の確認)
 先ず、ダイシングフィルムを作製した。即ち、厚さが100μmのポリオレフィンからなる基材上に、アクリル系粘着剤組成物の溶液を塗布、乾燥して、厚さが10μmの粘着剤層を形成してダイシングフィルムを作製した。
(Confirmation of semiconductor wafer damage)
First, a dicing film was produced. That is, a solution of an acrylic pressure-sensitive adhesive composition was applied on a substrate made of polyolefin having a thickness of 100 μm and dried to form a pressure-sensitive adhesive layer having a thickness of 10 μm to produce a dicing film.
 尚、前記アクリル系粘着剤の溶液は、次の様にして調製した。即ち、先ずアクリル酸ブチルとアクリル酸エチルと2-ヒドロキシアクリレートとアクリル酸とを重量比60/40/4/1の割合で共重合させ、重量平均分子量が800,000のアクリル系ポリマーを得た。次に、このアクリル系ポリマー100重量部に、架橋剤として多官能エポキシ系架橋剤を0.5重量部、光重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアクリレートを90重量部、光重合開始剤としてα-ヒドロキシシクロヘキシルフェニルケトンを5重量部配合し、これらを有機溶剤としてのトルエンに均一に溶解させた。これにより、前記アクリル系粘着剤の溶液を作成した。 The acrylic adhesive solution was prepared as follows. That is, first, butyl acrylate, ethyl acrylate, 2-hydroxyacrylate, and acrylic acid were copolymerized at a weight ratio of 60/40/4/1 to obtain an acrylic polymer having a weight average molecular weight of 800,000. . Next, 100 parts by weight of the acrylic polymer, 0.5 parts by weight of a polyfunctional epoxy-based crosslinking agent as a crosslinking agent, 90 parts by weight of dipentaerythritol monohydroxypentaacrylate as a photopolymerizable compound, and a photopolymerization initiator 5 parts by weight of α-hydroxycyclohexyl phenyl ketone was blended, and these were uniformly dissolved in toluene as an organic solvent. Thereby, the solution of the said acrylic adhesive was created.
 続いて、離型処理フィルム上の熱硬化型ダイボンドフィルムを前記ダイシングフィルムの粘着剤層上に貼り合わせた。貼り合わせ条件は、ラミネート温度40℃、線圧5kgf/cmとした。これにより、各実施例及び比較例に係る熱硬化型ダイボンドフィルムを備えたダイシング・ダイボンドフィルムを作製した。 Subsequently, the thermosetting die-bonding film on the release treatment film was bonded onto the pressure-sensitive adhesive layer of the dicing film. The bonding conditions were a lamination temperature of 40 ° C. and a linear pressure of 5 kgf / cm. Thereby, the dicing die-bonding film provided with the thermosetting die-bonding film which concerns on each Example and a comparative example was produced.
 次に、各ダイシング・ダイボンドフィルムの熱硬化型ダイボンドフィルム上に半導体ウェハ(直径12インチ、厚さ50μm)をマウントした。マウント条件は、下記の通りにした。
 [貼り合わせ条件]
 貼り付け装置:日東精機製、MA-3000III
 貼り付け速度:10mm/sec
 貼り付け圧力:0.25MPa
 貼り付け時のステージ温度:40℃
Next, a semiconductor wafer (diameter 12 inches, thickness 50 μm) was mounted on the thermosetting die bond film of each dicing die bond film. The mounting conditions were as follows.
[Paste condition]
Pasting device: Nitto Seiki, MA-3000III
Pasting speed: 10mm / sec
Pasting pressure: 0.25 MPa
Stage temperature at the time of pasting: 40 ° C
 次に、半導体ウェハのダイシングを行い、5mm各のチップサイズの半導体チップを形成した。ダイシング条件は、下記の通りにした。
 [ダイシング条件]
 ダイシング装置:ディスコ社製、DFD-6361
 ダイシングリング:2-8-1(ディスコ社製)
 ダイシング速度:80mm/sec
 ダイシングブレード:ディスコ社製2050HEDD
 ダイシングブレード回転数:40,000rpm
 ブレード高さ:0.170mm
 カット方式:Aモード/ステップカット
Next, the semiconductor wafer was diced to form semiconductor chips each having a chip size of 5 mm. The dicing conditions were as follows.
[Dicing condition]
Dicing machine: DFD-6361, manufactured by Disco Corporation
Dicing ring: 2-8-1 (manufactured by Disco)
Dicing speed: 80mm / sec
Dicing blade: Disco 2050HEDD
Dicing blade rotation speed: 40,000 rpm
Blade height: 0.170 mm
Cut method: A mode / step cut
 更に、各ダイシング・ダイボンドフィルムを引き伸ばして、各チップ間を所定の間隔とするエキスパンド工程を行った。その後、各ダイシング・ダイボンドフィルムの基材側からニードルによる突き上げ方式で、ダイボンドフィルムと共に半導体チップをピックアップした。ピックアップ条件は下記の通りである。
 [ピックアップ条件]
 ニードル:全長10mm、直径0.7mm、鋭角度15deg、先端R350μm
 ニードル本数:5本
 ニードル突き上げ量:350μm
 ニードル突き上げ速度:5mm/sec
 コレット保持時間:200msec
 エキスパンド:3mm
Furthermore, each dicing die-bonding film was stretched to perform an expanding process in which each chip was set at a predetermined interval. Thereafter, a semiconductor chip was picked up together with the die bond film by a push-up method using a needle from the substrate side of each dicing die bond film. The pickup conditions are as follows.
[Pickup conditions]
Needle: Total length 10mm, diameter 0.7mm, acute angle 15deg, tip R350μm
Number of needles: 5 Needle push-up amount: 350 μm
Needle push-up speed: 5 mm / sec
Collet holding time: 200msec
Expand: 3mm
 続いて、ピックアップした半導体チップをリードフレーム上にダイボンディングした。このときの半導体チップの破損を確認した。結果を下記表1及び表2に示す。尚、ダイボンド条件は下記の通りとした。
 [ダイボンド条件]
 ダイボンド温度:120℃
 ボンディング圧力:0.1MPa
 ボンディング時間:1sec
 アフターキュア:150℃で1時間
Subsequently, the picked-up semiconductor chip was die-bonded on the lead frame. The damage of the semiconductor chip at this time was confirmed. The results are shown in Tables 1 and 2 below. The die bonding conditions were as follows.
[Die bond conditions]
Die bond temperature: 120 ° C
Bonding pressure: 0.1 MPa
Bonding time: 1 sec
After cure: 1 hour at 150 ° C
 (結果)
 下記表1及び表2から分かる通り、本発明の各実施例に係る熱硬化型ダイボンドフィルムの様に、その厚さY(μm)と充填材の最大粒径X(μm)の比率X/Y(-)が1以下であると、半導体チップを破損させることなくリードフレーム上にダイボンディングをすることができた。その一方、比率X/Y(-)が1を超える各比較例の熱硬化型ダイボンドフィルムであると、ダイボンディングの際に半導体チップに破損が確認された。
(result)
As can be seen from Table 1 and Table 2 below, the ratio X / Y of the thickness Y (μm) and the maximum particle size X (μm) of the filler as in the thermosetting die bond film according to each example of the present invention. When (−) was 1 or less, die bonding could be performed on the lead frame without damaging the semiconductor chip. On the other hand, in the case of the thermosetting die-bonding film of each comparative example in which the ratio X / Y (−) exceeded 1, damage to the semiconductor chip was confirmed during die bonding.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 
 

Claims (8)

  1.  接着剤組成物及び微粒子からなる充填材を含む熱硬化型ダイボンドフィルムであって、
     前記熱硬化型ダイボンドフィルムの厚さをY(μm)とし、前記充填材の最大粒径をX(μm)としたときの比率X/Y(-)が1以下である熱硬化型ダイボンドフィルム。
    A thermosetting die-bonding film comprising an adhesive composition and a filler comprising fine particles,
    A thermosetting die-bonding film having a ratio X / Y (−) of 1 or less when the thickness of the thermosetting die-bonding film is Y (μm) and the maximum particle size of the filler is X (μm).
  2.  前記X(μm)が0.05~5μmの範囲内である請求項1に記載の熱硬化型ダイボンドフィルム。 The thermosetting die-bonding film according to claim 1, wherein the X (μm) is in the range of 0.05 to 5 μm.
  3.  前記Y(μm)が1~5μmの範囲内である請求項1又は2に記載の熱硬化型ダイボンドフィルム。 The thermosetting die-bonding film according to claim 1 or 2, wherein Y (μm) is in the range of 1 to 5 μm.
  4.  前記充填材の含有量が、前記接着剤組成物100重量部に対し1~80重量部の範囲内である請求項1~3の何れか1項に記載の熱硬化型ダイボンドフィルム。 The thermosetting die-bonding film according to any one of claims 1 to 3, wherein a content of the filler is in a range of 1 to 80 parts by weight with respect to 100 parts by weight of the adhesive composition.
  5.  前記充填材の含有量が、前記接着剤組成物100体積部に対し1~40体積部の範囲内である請求項1~4の何れか1項に記載の熱硬化型ダイボンドフィルム。 The thermosetting die-bonding film according to any one of claims 1 to 4, wherein a content of the filler is in a range of 1 to 40 parts by volume with respect to 100 parts by volume of the adhesive composition.
  6.  前記熱硬化型ダイボンドフィルムにおける粗さ曲線の最大断面高さRtが0.1~2.3μmの範囲内である請求項1~5の何れか1項に記載の熱硬化型ダイボンドフィルム。 The thermosetting die-bonding film according to any one of claims 1 to 5, wherein the maximum cross-sectional height Rt of the roughness curve in the thermosetting die-bonding film is in the range of 0.1 to 2.3 µm.
  7.  請求項1~6の何れか1項に記載の熱硬化型ダイボンドフィルムが、ダイシングフィルム上に積層されていることを特徴とするダイシング・ダイボンドフィルム。 A dicing die-bonding film, wherein the thermosetting die-bonding film according to any one of claims 1 to 6 is laminated on the dicing film.
  8.  請求項7に記載のダイシング・ダイボンドフィルムを用いた半導体装置の製造方法であって、
     前記熱硬化型ダイボンドフィルムを貼り合わせ面として、半導体ウェハの裏面に前記ダイシング・ダイボンドフィルムを貼り合わせる貼り合わせ工程と、
     前記半導体ウェハを前記熱硬化型ダイボンドフィルムと共にダイシングして半導体チップを形成するダイシング工程と、
     前記半導体チップを、前記ダイシング・ダイボンドフィルムから前記熱硬化型ダイボンドフィルムと共にピックアップするピックアップ工程と、
     前記熱硬化型ダイボンドフィルムを介して、温度100~180℃、ボンディング圧力0.05~0.5MPa、ボンディング時間0.1~5秒の範囲内の条件下で、前記半導体チップを被着体上にダイボンディングするダイボンド工程とを有する半導体装置の製造方法。
     
     
    A method for manufacturing a semiconductor device using the dicing die-bonding film according to claim 7,
    As the bonding surface of the thermosetting die bond film, a bonding step of bonding the dicing die bond film to the back surface of the semiconductor wafer;
    A dicing step of dicing the semiconductor wafer together with the thermosetting die bond film to form a semiconductor chip;
    Pickup process for picking up the semiconductor chip together with the thermosetting die bond film from the dicing die bond film;
    The semiconductor chip is placed on the adherend through the thermosetting die-bonding film under the conditions of a temperature of 100 to 180 ° C., a bonding pressure of 0.05 to 0.5 MPa, and a bonding time of 0.1 to 5 seconds. A method of manufacturing a semiconductor device, comprising: a die bonding step of die bonding to the substrate.

PCT/JP2011/062795 2010-06-08 2011-06-03 Heat-curable die-bonding film WO2011155406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180026558.1A CN102934211B (en) 2010-06-08 2011-06-03 Thermosetting die bonding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131329 2010-06-08
JP2010-131329 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155406A1 true WO2011155406A1 (en) 2011-12-15

Family

ID=45098013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062795 WO2011155406A1 (en) 2010-06-08 2011-06-03 Heat-curable die-bonding film

Country Status (4)

Country Link
JP (1) JP6013709B2 (en)
CN (1) CN102934211B (en)
TW (1) TWI439530B (en)
WO (1) WO2011155406A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166835A1 (en) 2015-04-15 2016-10-20 三菱電機株式会社 Semiconductor device
JP6787900B2 (en) * 2015-09-01 2020-11-18 リンテック株式会社 Adhesive sheet
JP6905579B1 (en) * 2019-12-27 2021-07-21 株式会社有沢製作所 Adhesive tape

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035841A (en) * 2002-07-08 2004-02-05 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and its production method
JP2010028087A (en) * 2008-06-18 2010-02-04 Sekisui Chem Co Ltd Bonding film, dicing-diebonding tape, and method of manufacturing semiconductor device
JP2010062205A (en) * 2008-09-01 2010-03-18 Nitto Denko Corp Method for manufacturing dicing die bonding film
JP2010080921A (en) * 2008-08-28 2010-04-08 Nitto Denko Corp Thermosetting die-bonding film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241823B2 (en) * 2002-12-11 2007-07-10 Shin-Etsu Chemical Co., Ltd. Radiation curing silicone rubber composition, adhesive silicone elastomer film formed from same, semiconductor device using same, and method of producing semiconductor device
MY138566A (en) * 2004-03-15 2009-06-30 Hitachi Chemical Co Ltd Dicing/die bonding sheet
JP4443962B2 (en) * 2004-03-17 2010-03-31 日東電工株式会社 Dicing die bond film
JP2006303472A (en) * 2005-03-23 2006-11-02 Nitto Denko Corp Dicing die bond film
JP2007048958A (en) * 2005-08-10 2007-02-22 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP2007145954A (en) * 2005-11-25 2007-06-14 Toray Ind Inc Thermoplastic resin composition and its molded article
JP2007294767A (en) * 2006-04-26 2007-11-08 Renesas Technology Corp Method for manufacturing semiconductor device
JP5090241B2 (en) * 2008-04-17 2012-12-05 リンテック株式会社 Die sort sheet
JP4888479B2 (en) * 2008-12-01 2012-02-29 日立化成工業株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035841A (en) * 2002-07-08 2004-02-05 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and its production method
JP2010028087A (en) * 2008-06-18 2010-02-04 Sekisui Chem Co Ltd Bonding film, dicing-diebonding tape, and method of manufacturing semiconductor device
JP2010080921A (en) * 2008-08-28 2010-04-08 Nitto Denko Corp Thermosetting die-bonding film
JP2010062205A (en) * 2008-09-01 2010-03-18 Nitto Denko Corp Method for manufacturing dicing die bonding film

Also Published As

Publication number Publication date
CN102934211A (en) 2013-02-13
JP6013709B2 (en) 2016-10-25
TWI439530B (en) 2014-06-01
JP2012019204A (en) 2012-01-26
CN102934211B (en) 2016-01-20
TW201200575A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
JP5305501B2 (en) Thermosetting die bond film
JP4430085B2 (en) Dicing die bond film
JP4801127B2 (en) Manufacturing method of dicing die-bonding film
JP4939574B2 (en) Thermosetting die bond film
WO2010074060A1 (en) Thermosetting die-bonding film
JP5398083B2 (en) Die bond film and its use
JP4976481B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device
JP2011187571A (en) Dicing die-bonding film
JP2011060848A (en) Thermosetting type die bond film, dicing-die bond film and semiconductor device
JP2009049400A (en) Thermoset die bond film
JP2011228399A (en) Thermo-setting die-bonding film, dicing/die-bonding film, and method of manufacturing semiconductor device
JP2011023607A (en) Exoergic die-bonding film
JP2006303472A (en) Dicing die bond film
KR20150113878A (en) Dicing film, dicing·die bond film and manufacturing method for semiconductor device
JP2017183705A (en) Dicing die bonding film, and method of manufacturing semiconductor device
JP2008135448A (en) Dicing die bond film
JP2014082498A (en) Manufacturing method of dicing die-bonding film
JP2013038181A (en) Dicing die-bonding film
JP5908543B2 (en) Manufacturing method of semiconductor device
JP5219302B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device
JP5749314B2 (en) Heat dissipation die bond film
JP5976716B2 (en) Thermosetting die bond film
JP5656741B2 (en) Manufacturing method of dicing die-bonding film
JP6013709B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device manufacturing method
JP6328467B2 (en) Thermosetting die-bonding film, die-bonding film with dicing sheet, method for manufacturing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026558.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792363

Country of ref document: EP

Kind code of ref document: A1