WO2011155291A1 - カンデサルタンシレキセチルの製造方法 - Google Patents

カンデサルタンシレキセチルの製造方法 Download PDF

Info

Publication number
WO2011155291A1
WO2011155291A1 PCT/JP2011/061174 JP2011061174W WO2011155291A1 WO 2011155291 A1 WO2011155291 A1 WO 2011155291A1 JP 2011061174 W JP2011061174 W JP 2011061174W WO 2011155291 A1 WO2011155291 A1 WO 2011155291A1
Authority
WO
WIPO (PCT)
Prior art keywords
candesartan cilexetil
water
acetonitrile
reaction
layer
Prior art date
Application number
PCT/JP2011/061174
Other languages
English (en)
French (fr)
Inventor
博志 森
健介 小林
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2012519318A priority Critical patent/JP5738288B2/ja
Publication of WO2011155291A1 publication Critical patent/WO2011155291A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to a method for producing candesartan cilexetil which is useful as an angiotensin II receptor antagonist, for example as a therapeutic drug for hypertension.
  • the chemical name of candesartan cilexetil is ( ⁇ ) -1- (cyclohexyloxycarbonyloxy) ethyl 2-ethoxy-1-[[2 ′-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl] Benzimidazole-7-carboxylate).
  • Candesartan cilexetil has the following formula (2)
  • Candesartan cilexetil exhibits an excellent action as an angiotensin II receptor antagonist and is useful as a therapeutic agent for hypertension.
  • Candesartan cilexetil is represented by the following formula (1)
  • trityl candesartan cilexetil represented by The chemical name of trityl candesartan cilexetil is ( ⁇ ) -1- (cyclohexyloxycarbonyloxy) ethyl 2-ethoxy-1-[[2 '-(1-triphenylmethyl-1H-tetrazol-5-yl) biphenyl -4-yl] methyl] benzimidazole-7-carboxylate.
  • Trityl candesartan cilexetil is detritylated in methanol using a 1N aqueous hydrochloric acid solution. The reaction product is purified by column chromatography to produce candesartan (see Patent Document 1).
  • a method of detritylating trityl candesartan cilexetil using an acid under anhydrous conditions is also known.
  • candesartan is isolated by detritylation of trityl candesartan cilexetil using anhydrous mineral acid in the presence of alcohol and then crystallizing the reaction product with an aliphatic hydrocarbon.
  • a method (refer patent document 4).
  • An object of the present invention is to provide a method for producing candesartan cilexetil in which trityl candesartan cilexetil is detritylated using a water-soluble organic solvent and water, and there is little decomposition product and high purity candesartan cilexetil. It is providing the manufacturing method of candesartan cilexetil which can manufacture.
  • a post-treatment method for a reaction solution obtained by performing a detritylation reaction using a water-soluble organic solvent and water was examined.
  • acetonitrile was used as a water-soluble organic solvent
  • detritylation of trityl candesartan cilexetil was performed in a mixed solvent of acetonitrile and water.
  • the obtained reaction solution and a water-soluble inorganic salt were mixed, and the reaction solution was separated into an acetonitrile layer and an aqueous layer.
  • the target substance candesartan cilexetil was contained in the acetonitrile layer which carried out layer separation. According to this method, most of the water present in the reaction solution can be easily separated. As a result, in the conventional method, decomposition of candesartan cilexetil that occurs when water is distilled off can be effectively suppressed in the present production method.
  • the present invention has been completed based on the above discovery.
  • the production method of the present invention comprises: In a mixed solvent containing acetonitrile and water, the following formula (1)
  • the method for producing candesartan cilexetil is characterized in that candesartan cilexetil shown in the above is taken out.
  • a reaction solution containing acetonitrile and water obtained by performing a detritylation reaction of trityl candesartan cilexetil can be separated into an acetonitrile layer containing candesartan cilexetil and an aqueous layer. .
  • acetonitrile layer containing candesartan cilexetil
  • aqueous layer containing candesartan cilexetil
  • detritylation of trityl candesartan cilexetil is performed in a mixed solvent of acetonitrile and water. Then, the reaction solution obtained and a water-soluble inorganic salt are mixed to obtain a layer separation solution separated into an acetonitrile layer and an aqueous layer. Subsequently, candesartan cilexetil is taken out from the separated acetonitrile layer.
  • this manufacturing method will be described.
  • Trityl candesartan cilexetil may be produced by any production method. Trityl candesartan cilexetil can be produced by a known method, for example, the method described in Patent Document 1. The method for producing trityl candesartan cilexetil described in Patent Document 1 is shown in the following formula (4).
  • trityl candesartan cilexetil can be produced by reacting trityl candesartan and halogenated cilexetil in dimethylformamide in the presence of a base.
  • the reaction temperature is 50 to 80 ° C., and the reaction time is 1 to 5 hours.
  • the obtained trityl candesartan cilexetil may be purified by a known method such as column chromatography or recrystallization.
  • the detritylation reaction of trityl candesartan cilexetil is carried out in a mixed solvent of acetonitrile and water.
  • the mixed solvent of acetonitrile and water used as the reaction solvent is not particularly limited as long as the detritylation reaction proceeds sufficiently.
  • the volume ratio of acetonitrile to water at 23 ° C. is preferably 20/1 to 1/1, more preferably 10/1 to 2/1. .
  • the amount of the mixed solvent used is not particularly limited as long as the detritylation reaction proceeds sufficiently.
  • the amount used is preferably 7 to 30 ml and more preferably 10 to 20 ml with respect to 1 g of trityl candesartan cilexetil at 23 ° C.
  • trityl candesartan cilexetil can be dispersed in the mixed solvent. Further, trityl candesartan cilexetil is dispersed in any one of the solvents (water or acetonitrile), and this dispersion is mixed with the other solvent, whereby trityl candesartan cilexetil is mixed in the mixed solvent. Can be dispersed. Furthermore, trityl candesartan cilexetil can be dispersed in the mixed solvent by separately adding and mixing acetonitrile and water to trityl candesartan cilexetil.
  • the detritylation reaction proceeds by dispersing trityl candesartan cilexetil in the above mixed solvent, and at this time, stirring is preferable.
  • stirring is preferable.
  • the reaction temperature at the time of performing a detritylation reaction is preferably 40 to 80 ° C, more preferably 60 to 75 ° C.
  • the reaction time may be appropriately determined according to the reaction temperature, the ratio of the mixed solvent, and the amount of the reactant.
  • the reaction time may be determined by confirming the consumption rate of trityl candesartan cilexetil and the production rate of candesartan cilexetil by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the reaction time is usually 3 to 20 hours.
  • the atmosphere for carrying out the detritylation reaction is not particularly limited, and can be carried out in a nitrogen atmosphere or an air atmosphere.
  • the reaction solution and a water-soluble inorganic salt are mixed.
  • the reaction solution becomes a layer separation solution which is separated into two layers of an acetonitrile layer and an aqueous layer.
  • the reaction solution becomes a layer separation solution which is separated into two layers of an acetonitrile layer and an aqueous layer.
  • aqueous layer By separating these two layers, most of the water can be easily removed from the reaction solution.
  • Candesartan cilexetil is present in the acetonitrile layer.
  • Candesartan cilexetil can be easily obtained by distilling off the acetonitrile layer, which is easier to distill than water. According to this production method, it is not necessary to distill off hardly any water that is difficult to be distilled off, and therefore the generation of decomposition products (desethyl body) can be suppressed.
  • the water-soluble inorganic salt used in this production method is not particularly limited as long as it is an inorganic salt that dissolves in water. Specifically, an inorganic salt having a solubility in 100 ml of water of 5 g or more at 23 ° C. is preferable, and an inorganic salt having a solubility of 10 to 30 g is more preferable.
  • alkali metal halides alkali metal sulfates and nitrates
  • alkaline earth metal halides alkaline earth metal sulfates, nitrates, phosphates, and the like.
  • alkali metal halides such as sodium chloride are preferred.
  • the amount of water-soluble inorganic salt used is appropriately determined according to the type, the mixing ratio of the mixed solvent used, the amount of the mixed solvent used, the temperature of the reaction solution, and the like. In consideration of operability, residual amount of water, etc., the amount of water-soluble inorganic salt used is preferably 3 to 50 g, more preferably 5 to 30 g, and more preferably 10 to 20 g with respect to 100 ml of water used for the detritylation reaction. Particularly preferred.
  • the amount of water used for the detritylation reaction is the amount of water converted to water at 23 ° C.
  • the reaction solution may contain a water-soluble inorganic salt in an amount exceeding the solubility. Even if the undissolved salt is dispersed in the aqueous layer, there is no problem as long as the layer is separated into an acetonitrile layer and an aqueous layer.
  • the amount of water-soluble inorganic salt used is that the entire amount is dissolved in the aqueous layer and the reaction solution is separated into the acetonitrile layer and the aqueous layer. It is preferable that the amount is sufficient. That is, the amount of water-soluble inorganic salt used is preferably within the above range.
  • a known mixing device When mixing the reaction solution and the water-soluble inorganic salt, a known mixing device can be used. For example, a reaction vessel equipped with a stirrer and a thermometer can be used. The mixing order is not particularly limited. In order to improve operability, it is preferable to add a water-soluble inorganic salt to the reaction solution and mix.
  • the temperature when mixing the reaction solution and the water-soluble inorganic salt is not particularly limited. Considering operability, clarity of the layer separation state, solubility of the water-soluble inorganic salt in the reaction solution, etc., the mixing temperature is preferably 5 to 60 ° C., more preferably 20 to 50 ° C. This temperature may not be a constant temperature during mixing, and the temperature may change as long as it is within the above range.
  • the mixing time is not particularly limited. When the water-soluble inorganic salt is dissolved and mixing such as stirring is stopped and the mixture is allowed to stand still, mixing may be performed until a layer separation solution is obtained. A mixing time of 0.1 to 2 hours is usually sufficient. Moreover, the atmosphere at the time of mixing does not have a restriction
  • the mixed solution After mixing the reaction solution and the water-soluble inorganic salt under the above conditions, the mixed solution is allowed to stand (leave). By allowing to stand, a layer separation solution separated into an acetonitrile layer and an aqueous layer is obtained.
  • the standing time is not particularly limited, but usually 0.1 to 1 hour is preferable. The layer separation state can be confirmed visually.
  • the upper layer is an acetonitrile layer and the lower layer is an aqueous layer.
  • the upper acetonitrile layer contains the produced candesartan cilexetil and by-product trityl alcohol
  • the lower aqueous layer contains a water-soluble inorganic salt.
  • the present inventors consider that factors such as the presence of a water-soluble inorganic salt and the solubility of candesartan cilexetil in acetonitrile act to form a layer separation solution.
  • an acetonitrile layer from which water has been efficiently removed can be obtained.
  • the reaction solution was concentrated by distilling off the water and the solvent of the reaction solution as they were.
  • a method of forming an aqueous layer and separating the aqueous layer is employed, it is not necessary to perform a concentration operation as in the conventional method, and most of the water can be easily removed. As a result, it is possible to effectively suppress the formation of desethyl body (decomposition of candesartan cilexetil), which is considered to be mainly caused by water.
  • a preferred method for extracting candesartan cilexetil from the layer separation solution will be described below.
  • the acetonitrile layer and the aqueous layer are separated by a known method, for example, a method such as a liquid separation operation or decantation.
  • candesartan cilexetil is taken out from the separated acetonitrile layer.
  • the concentrate obtained by concentrating the acetonitrile layer, or the crystals precipitated in the acetonitrile layer, has candesartan cilexetil as the main component.
  • candesartan cilexetil is used as the drug substance, it is preferable to purify the concentrate or crystals.
  • a purification method Methods, such as a well-known purification method, for example, calm chromatography, recrystallization, are employable. Among these purification methods, recrystallization is preferable in consideration of operability. If it is necessary to remove a little remaining water before purification, water can be further removed by adding a solvent azeotropic with water to the concentrate or the crystal and subjecting it to an azeotropic treatment.
  • a known solvent for recrystallizing candesartan cilexetil can be used.
  • acetone or a mixture of acetone and water it is necessary to use acetone or a mixture of acetone and water as a recrystallization solvent. preferable. Recrystallization can be repeated until the resulting candesartan cilexetil has the desired purity.
  • Apparatus Model 2695-2489-996 manufactured by WATERS.
  • Detector UV absorption photometer (measurement wavelength: 254 nm).
  • Column Product name Inertsil ODS-3 manufactured by GL Sciences Inc. Inner diameter 4.6 mm, length 15 cm (particle diameter 5 ⁇ m, pore diameter 12 nm).
  • Column temperature 40 ° C constant temperature.
  • Sample temperature 25 ° C constant temperature.
  • Example 1 (Detritylation reaction) 30 g of trityl candesartan cilexetil, 300 ml of acetonitrile, and 75 ml of water were added to a 500 ml four-necked flask equipped with two stirring blades having a diameter of 5 cm. The reaction was terminated by stirring at 75 ° C. for 7 hours. (At the end of the reaction, the purity of candesartan cilexetil was 92.8%, and the content of desethyl body was 1.68%).
  • reaction solution (reaction solution containing candesartan cilexetil, acetonitrile, water, etc.) was allowed to cool while stirring. When the temperature of the reaction solution reached 50 ° C., 7.5 g of sodium chloride was added. Added. Stirring was continued and the reaction solution was cooled over 30 minutes until the temperature of the reaction solution reached 30 ° C. Then, when stirring was stopped and the mixture was allowed to stand for 10 minutes, a layer separation solution separated into two layers was obtained. The upper layer was an acetonitrile layer and the lower layer was an aqueous layer.
  • the obtained layer separation solution was separated, and the acetonitrile layer was recovered.
  • the acetonitrile layer thus obtained was concentrated by distillation under reduced pressure while maintaining the temperature range of 5 to 50 ° C. After completion of the concentration, 90 mL of acetone was added to the obtained concentrate, and the mixture was further concentrated under reduced pressure to obtain a concentrate (solid containing some water and residual solvent) (candesartan cilexetil after completion of the concentration).
  • the purity was 92.4% and the content of desethyl compound was 1.82%.
  • Example 2 (Detritylation reaction) 30 g of trityl candesartan cilexetil, 300 ml of acetonitrile, and 75 ml of water were added to a 500 ml four-necked flask equipped with two stirring blades having a diameter of 5 cm. The mixture was stirred at 75 ° C. for 7 hours to complete the reaction (at the end of the reaction, the purity of candesartan cilexetil was 93.0%, and the content of desethyl compound was 1.58%).
  • reaction solution (reaction solution containing candesartan cilexetil, acetonitrile, water, etc.) was allowed to cool while stirring, and 15 g of sodium chloride was added when the temperature of the reaction solution reached 50 ° C. . Stirring was continued and the reaction solution was cooled over 30 minutes until the temperature of the reaction solution reached 30 ° C. Then, when the stirring was stopped and the mixture was allowed to stand for 10 minutes, a layer separation solution separated into two tanks was obtained. The upper layer was an acetonitrile layer and the lower layer was an aqueous layer.
  • Example 3 (Detritylation reaction) 5 g of trityl candesartan cilexetil, 50 ml of acetonitrile, and 5 ml of water were added to a 100 ml four-necked flask equipped with two 2 cm diameter stirring blades. After stirring at 75 ° C. for 9 hours, the reaction was completed (at the end of the reaction, the purity of candesartan cilexetil was 90.6%, and the content of desethyl body was 1.31%).
  • reaction solution (reaction solution containing candesartan cilexetil, acetonitrile, water, etc.) was allowed to cool while stirring, and 1 g of sodium chloride was added when the temperature of the reaction solution reached 50 ° C. . Stirring was continued and the reaction solution was cooled over 30 minutes until the temperature of the reaction solution reached 30 ° C. Then, when stirring was stopped and the mixture was allowed to stand for 10 minutes, a layer separation solution separated into two layers was obtained. The upper layer was an acetonitrile layer and the lower layer was an aqueous layer.
  • the obtained layer separation solution was separated, and the acetonitrile layer was recovered.
  • the acetonitrile layer thus obtained was concentrated by distillation under reduced pressure while maintaining the temperature range of 5 to 50 ° C. After completion of the concentration, 15 ml of acetone was added to the obtained concentrate, and the mixture was further concentrated under reduced pressure to obtain a concentrate (solid containing some water and residual solvent) (candesartan cilexetil after completion of the concentration).
  • the purity of the product was 90.0% and the content of the desethyl compound was 1.50%.
  • Example 4 (Detritylation reaction) 5 g of trityl candesartan cilexetil, 50 ml of acetonitrile, and 5 ml of water were added to a 100 ml four-necked flask equipped with two stirring blades having a diameter of 2 cm. After stirring at 75 ° C. for 9 hours, the reaction was completed (the purity of candesartan cilexetil at the end of the reaction was 90.6%, and the content of desethyl body was 1.35%).
  • reaction solution (reaction solution containing candesartan cilexetil, acetonitrile, water, etc.) was allowed to cool while stirring, and 0.5 g of magnesium sulfate was added when the temperature of the reaction solution reached 50 ° C. Added. Stirring was continued and the reaction solution was cooled over 30 minutes until the temperature of the reaction solution reached 30 ° C. Thereafter, the stirring was stopped and the mixture was allowed to stand for 10 minutes to obtain a layer separation solution separated into two layers. The upper layer was an acetonitrile layer and the lower layer was an aqueous layer.
  • the obtained layer separation solution was separated, and the acetonitrile layer was recovered.
  • the obtained acetonitrile layer was distilled off under reduced pressure and concentrated while maintaining a temperature range of 5 to 50 ° C. After completion of concentration, 15 ml of acetone was added to the obtained concentrate, and further concentrated under reduced pressure to obtain a concentrate (solid containing some water and residual solvent) (candesartan cilexetil after completion of concentration under reduced pressure).
  • the purity of the product was 90.0% and the content of the desethyl compound was 1.55%.
  • Comparative Example 1 30 g of trityl candesartan cilexetil, 300 ml of acetonitrile, and 75 ml of water were added to a 500 ml four-necked flask equipped with two stirring blades having a diameter of 5 cm. The reaction was terminated by stirring at 75 ° C. for 7 hours (at the end of the reaction, the purity of candesartan cilexetil was 92.7%, and the content of desethyl body was 1.48%).
  • the resultant reaction solution was concentrated by distilling off acetonitrile and water under reduced pressure while maintaining the temperature range of 5 to 50 ° C. After the completion of concentration, 90 mL of acetone was added to the obtained concentrate, and the mixture was further concentrated under reduced pressure. there were.).
  • the maximum is 0.07% (Example 1).
  • the content of the desethyl body is 0.5%, which is a high value. That is, it can be seen that when the content of the desethyl body exceeds 1%, the content of the desethyl body cannot be sufficiently reduced by recrystallization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 アセトニトリル及び水を含む混合溶媒中でトリチルカンデサルタンシレキセチルの脱トリチル化反応を行った後、得られた反応溶液と水溶性無機塩とを混合することにより、アセトニトリル層と水層とに分離した層分離溶液を得、次いで、該アセトニトリル層からカンデサルタンシレキセチルを取り出すことを特徴とするカンデサルタンシレキセチルの製造方法。

Description

カンデサルタンシレキセチルの製造方法
 本発明は、アンジオテンシンII受容体拮抗薬として高血圧治療薬等に有用な、カンデサルタンシレキセチルの製造方法に関する。カンデサルタンシレキセチルの化学名称は、(±)-1-(シクロヘキシルオキシカルボニルオキシ)エチル 2―エトキシ-1-[[2’-(1H-テトラゾール-5-イル)ビフェニル-4-イル]メチル]ベンズイミダゾール-7-カルボキシラート)である。
 カンデサルタンシレキセチルは、下記式(2)
Figure JPOXMLDOC01-appb-C000003
   
で示される。カンデサルタンシレキセチルは、アンジオテンシンII受容体拮抗薬として優れた作用を示し、高血圧治療薬として有用である。
 カンデサルタンシレキセチルは、下記式(1)
Figure JPOXMLDOC01-appb-C000004
   
で示されるトリチルカンデサルタンシレキセチルの脱トリチル化反応で得られる。トリチルカンデサルタンシレキセチルの化学名称は、(±)-1-(シクロヘキシルオキシカルボニルオキシ)エチル 2―エトキシ-1-[[2’-(1-トリフェニルメチル-1H-テトラゾール-5-イル)ビフェニル-4-イル]メチル]ベンズイミダゾール-7-カルボキシラートである。
 トリチルカンデサルタンシレキセチルの脱トリチル化反応としては、酸、例えば、鉱酸、有機酸、またはアルカリの存在下、アルコール中でトリチルカンデサルタンシレキセチルを加水分解する方法が知られている。酸と水とを併用する加水分解方法としては、以下の方法がある。
(1)1規定塩酸水溶液を使用して、メタノール中でトリチルカンデサルタンシレキセチルの脱トリチル化を行う。反応生成物をカラムクロマトグラフィーで精製し、カンデサルタンを製造する(特許文献1参照)。
(2)ジクロロメタン中で、アルコール存在下に、有機酸、または鉱酸及び水を添加してトリチルカンデサルタンの脱トリチル化を行う。次いで、厳密にpH調整を行った後、晶析させることにより、カンデサルタンを製造する(特許文献2参照)。
(3)有機溶媒中で、水の存在下に、ルイス酸を使用してトリチルカンデサルタンシレキセチルの脱トリチル化を行う。次いで、晶析させることにより、カンデサルタンを製造する(特許文献3参照)。
 しかし、これらの方法においては、酸、および水を使用しているため、十分に反応の制御を行わない場合は、脱トリチル化反応において、分解物を生じ易い。この場合は、収率が低下する。さらに、後処理において、酸、および水を除去する必要がある。この水の除去のためには、煩雑な処理を行うか、カラムクロマトグラフィー等の処理が必要となる。従って、これらの方法は、改善の余地がある。
 上記欠点を改善するため、無水の条件下で、酸を使用してトリチルカンデサルタンシレキセチルの脱トリチル化を行う方法も知られている。例えば、アルコールの存在下、無水の鉱酸を使用してトリチルカンデサルタンシレキセチルの脱トリチル化を行い、次いで反応生成物を脂肪族炭化水素を用いて晶析することにより、カンデサルタンを単離する方法(特許文献4参照)がある。
  更に、無水の条件下で、有機酸を使用してトリチルカンデサルタンシレキセチルの脱トリチル化の反応を行い、次いで反応生成物を晶析することにより、カンデサルタンを単離する方法(特許文献5参照)がある。
 しかし、これらの方法においても、やはり酸を使用しているため、十分厳密に反応条件の制御を行わない場合は分解物を生じ、収率が低下するおそれがある。さらに、後処理において、酸を中和して、除去しなければならず、操作性に改善の余地がある。
 上記欠点を改善するため、酸を使用せずに、脱トリチル化を行う方法が検討されている。例えば、水溶性有機溶媒中で、反応系に水を加えて脱トリチル化を行い、その後、晶析してカンデサルタンシレキセチルを製造する方法(特許文献6参照)が知られている。この方法は、酸が存在しない状態で脱トリチル化反応を行うので、分解物が生成し難い。従って、厳密な反応制御を行う必要がない。さらに、後処理において、酸を除去する必要がない。このため、この方法は工業的に優れた方法である。
 しかし、上記酸を使用しない方法においては、以下の点で改善の余地がある。即ち、上記方法においては、脱トリチル化反応終了後、水溶性有機溶媒、および水を留去する。本発明者の検討によれば、この留去して濃縮する操作中に、カンデサルタンシレキセチルが分解する場合があることが分った。この場合は、カンデサルタンシレキセチルの収率、純度が低下する。水溶性有機溶媒、および水を留去するに従って、水が濃縮され、水とカンデサルタンシレキセチルとの接触確率が高くなる。その結果、カンデサルタンシレキセチルの分解物が生じ易くなると考えられる。
 更に、カンデサルタンシレキセチルの分解物が一定の限度を超えて多く生成する場合、晶析等の通常の手段では、カンデサルタンシレキセチルを精製し難くなることが分った。従って、カンデサルタンシレキセチルの製造においては、できる限りカンデサルタンシレキセチルの分解物の生成を避けることが重要であることも分った。
特許第2514282号公報 国際公開第2006/050922号パンフレット 国際公開第2007/042161号パンフレット 特許第2730501号公報 国際公開第2005/051928号パンフレット 国際公開第2007/048361号パンフレット
 本発明の目的は、水溶性有機溶媒と水とを用いてトリチルカンデサルタンシレキセチルを脱トリチル化するカンデサルタンシレキセチルの製造方法において、分解物が少なく、収率よく純度の高いカンデサルタンシレキセチルを製造することのできる、カンデサルタンシレキセチルの製造方法を提供することにある。
 本発明者等は、上記課題を解決するため、鋭意研究を行った。具体的には、水溶性有機溶媒と水とを用いて脱トリチル化反応を行うことにより得られる反応溶液の後処理方法について検討を行った。先ず、水溶性有機溶媒としてアセトニトリルを使用し、トリチルカンデサルタンシレキセチルの脱トリチル化をアセトニトリルと水との混合溶媒中で行った。次いで、得られる反応溶液と水溶性無機塩とを混合し、該反応溶液をアセトニトリル層と水層に層分離した。更に、層分離したアセトニトリル層に目的物であるカンデサルタンシレキセチルが含まれていることを見出した。
この方法によれば、反応溶液中に存在する水の大部分を簡単に分離できる。その結果、従来法において、水の留去の際に生じるカンデサルタンシレキセチルの分解を、本製造方法においては効果的に抑制できる。
本発明は、上記発見に基づいて完成するに至った。
 即ち、本発明の製造方法は、
 アセトニトリル、および水を含む混合溶媒中で下記式(1)
Figure JPOXMLDOC01-appb-C000005
   
で示されるトリチルカンデサルタンシレキセチルの脱トリチル化反応を行って得られる反応溶液と水溶性無機塩とを混合することにより、アセトニトリル層と水層とに分離した層分離溶液を得、次いで、該アセトニトリル層から下記式(2)
Figure JPOXMLDOC01-appb-C000006
   
で示されるカンデサルタンシレキセチルを取り出すことを特徴とするカンデサルタンシレキセチルの製造方法である。
 本発明によれば、トリチルカンデサルタンシレキセチルの脱トリチル化反応を行って得られるアセトニトリル、および水を含む反応溶液を、カンデサルタンシレキセチルを含むアセトニトリル層と、水層とに分離することができる。その結果、反応溶液から水の大部分を簡単に除去できる。そして、本発明においては、水の大部分を除去して得られるアセトニトリル層からカンデサルタンシレキセチルを取り出すため、従来法において水を濃縮する際に生成し易い下記式(3)
Figure JPOXMLDOC01-appb-C000007
   
で示されるデスエチル体(カンデサルタンシレキセチルの分解物)の生成を十分抑制できる。
 更に、デスエチル体の含有量が比較的多い場合は、晶析法による精製は非効率になる。しかし、本製造方法による場合はデスエチル体の含有量は低いので、晶析法により簡単に精製できる。
 その結果、高収率かつ副生成物の生成を最小限に止めたカンデサルタンシレキセチルを得ることができる。従って、本製造方法は工業的利用価値が高い。
 本発明の製造方法においては、先ず、アセトニトリルと水との混合溶媒中でトリチルカンデサルタンシレキセチルの脱トリチル化反応を行う。その後、得られる反応溶液と水溶性無機塩と混合することにより、アセトニトリル層と水層とに分離した層分離溶液を得る。次いで、分離した該アセトニトリル層から、カンデサルタンシレキセチルを取り出す。以下、本製造方法を説明する。
 先ず、式(1)で示されるトリチルカンデサルタンシレキセチルの製造方法について説明する。
 (トリチルカンデサルタンシレキセチルの製造方法)
 トリチルカンデサルタンシレキセチルは、何れの製造方法で製造したものであっても良い。トリチルカンデサルタンシレキセチルは、公知の方法、例えば、特許文献1に記載の方法で製造することができる。特許文献1に記載のトリチルカンデサルタンシレキセチルの製造方法を下記式(4)に示す。
Figure JPOXMLDOC01-appb-C000008
   
 具体的には、ジメチルホルムアミド中で、塩基の存在下、トリチルカンデサルタンとハロゲン化シレキセチルとを反応させることにより、トリチルカンデサルタンシレキセチルを製造することができる。反応温度は、50~80℃、反応時間は1~5時間である。
 得られるトリチルカンデサルタンシレキセチルは、公知の方法、例えば、カラムクロマトグラフィー、再結晶等の方法により精製したものであっても良い。
 次に、式(1)で示されるトリチルカンデサルタンシレキセチルの脱トリチル化反応について説明する。
 (脱トリチル化反応)
 この脱トリチル化反応は、アセトニトリルと水との混合溶媒中で実施する。先ず、使用する混合溶媒について説明する。
 (混合溶媒)
 本発明においては、アセトニトリルと水との混合溶媒中でトリチルカンデサルタンシレキセチルの脱トリチル化反応を実施する。
 反応溶媒として用いるアセトニトリルと水との混合溶媒は、脱トリチル化反応が十分に進む限り、特に制限がない。操作性を考慮すると、23℃におけるアセトニトリルと水との容量比率(アセトニトリルの容量/水の容量)が、20/1~1/1であることが好ましく、10/1~2/1がより好ましい。
 混合溶媒の使用量は、脱トリチル化反応が十分に進む限り、特に制限はない。前記容量比率の混合溶媒を使用する場合、その使用量は、23℃において、トリチルカンデサルタンシレキセチル1gに対して、混合溶媒が7~30mlが好ましく、10~20mlがより好ましい。混合溶媒をこの範囲内で使用することにより、後述する水溶性無機塩の使用量を低減でき、効率よく層分離溶液を得ることができる。更に、反応時間の短縮化、反応転化率の効率化が図れる。
 次に、脱トリチル化反応の反応条件について説明する。
 (脱トリチル化反応の反応条件)
 上記の混合溶媒を用いる脱トリチル化反応の詳細について説明する。アセトニトリルと水との混合溶媒を用いる脱トリチル化反応は、特許文献6等に記載されている。具体的には、トリチルカンデサルタンシレキセチルを上記混合溶媒に分散させることにより、脱トリチル化反応は進行する。その際、トリチルカンデサルタンシレキセチル、各溶媒(アセトニトリル、および水)の添加順序、混合順序等には、特に制限が無い。
 例えば、予め混合溶媒を調製し、該混合溶媒とトリチルカンデサルタンシレキセチルとを混合することにより、該混合溶媒中にトリチルカンデサルタンシレキセチルを分散させることができる。また、いずれか一方の溶媒(水、又はアセトニトリル)にトリチルカンデサルタンシレキセチルを分散させておき、この分散液と他方の溶媒とを混合することにより、該混合溶媒中にトリチルカンデサルタンシレキセチルを分散させることができる。さらに、トリチルカンデサルタンシレキセチルに、アセトニトリル、および水を別々に加え、混合することにより、該混合溶媒中にトリチルカンデサルタンシレキセチルを分散させることができる。
 脱トリチル化反応は、トリチルカンデサルタンシレキセチルを上記混合溶媒に分散させることにより進行するが、この際、撹拌することが好ましい。脱トリチル化反応を行う際の反応温度は、特に制限がない。反応時間を短縮させ、分解物の生成をより低減させるためには、反応温度は、40~80℃が好ましく、60~75℃がより好ましい。
 反応時間は、反応温度、混合溶媒の比率、反応物質の量に応じて適宜決定すればよい。高速液体クロマトグラフィー(HPLC)により、トリチルカンデサルタンシレキセチルの消費率、カンデサルタンシレキセチルの生成率を確認して、反応時間を決定すればよい。上記の好ましい条件を採用する場合は、反応時間は、通常、3~20時間である。また、脱トリチル化反応を実施する際の雰囲気も、特に制限が無く、窒素雰囲気下、または大気雰囲気下で実施できる。
 上記のように、トリチルカンデサルタンシレキセチルを混合溶媒中に分散させることにより、脱トリチル化反応は進行し、カンデサルタンシレキセチルを製造することができる。
 次に、本発明の最大の特徴である、得られる反応溶液を層分離溶液に誘導する方法について説明する。
 (層分離溶液の製造)
 本発明の製造方法においては、先ず、前述のようにアセトニトリル、および水との混合溶媒中でトリチルカンデサルタンシレキセチルの脱トリチル化反応を行う。次いで、該混合溶媒、およびカンデサルタンシレキセチルを含む反応溶液から、大部分の水を除去する。水を除去する際には、アセトニトリル及び水を留去する濃縮操作を採用しない。
 本製造方法においては、該反応溶液と水溶性無機塩とを混合する。この混合により、該反応溶液は、アセトニトリル層と水層との2層に分離している層分離溶液になる。この2層を分液することにより、反応溶液から水の大部分を簡単に除去できる。カンデサルタンシレキセチルは、アセトニトリル層に存在する。水と比較して留去し易いアセトニトリル層を留去することにより、カンデサルタンシレキセチルが簡単に得られる。本製造方法によれば、留去し難い水を殆ど留去する必要がないので、分解物(デスエチル体)の生成を抑制できる。
 先ず、反応溶液と混合する水溶性無機塩について説明する。
 (水溶性無機塩)
 本製造方法において使用する水溶性無機塩は、水に溶解する無機塩であれば特に制限がない。具体的には、23℃において、水100mlに対する溶解度が5g以上である無機塩が好ましく、溶解度が10~30gの無機塩がより好ましい。
 水溶性無機塩の種類は、特に制限がないが、入手の容易さ、後処理のし易さ、その溶解性、反応性等を考慮すると、アルカリ金属のハロゲン化物;アルカリ金属の硫酸塩、硝酸塩、リン酸塩;アルカリ土類金属のハロゲン化物;アルカリ土類金属の硫酸塩、硝酸塩、リン酸塩等が好ましい。特に、塩化ナトリウムのようなアルカリ金属のハロゲン化物が好ましい。
 水溶性無機塩の使用量は、その種類、使用する混合溶媒の混合比率、および混合溶媒の使用量、反応溶液の温度等に応じて適宜決定する。操作性、水分残留量などを考慮すると、脱トリチル化の反応に使用する水100mlに対して、水溶性無機塩の使用量は3~50gが好ましく、5~30gが更に好ましく、10~20gが特に好ましい。上記脱トリチル化反応に使用する水の量は、23℃における水に換算した水の量である。
 反応溶液には、溶解度を超える量の水溶性無機塩を配合しても良い。溶解していない該塩が水層に分散した状態であっても、アセトニトリル層と水層とに層分離する限り、問題はない。ただし、アセトニトリル層の分液の際の操作性を考慮すると、水溶性無機塩の使用量は、その全量が水層に溶解しており、かつ反応溶液がアセトニトリル層と水層とに分離するのに十分な量であることが好ましい。即ち、水溶性無機塩の使用量は、上記範囲内とすることが好ましい。水溶性無機塩の使用量が上記範囲内にある場合、アセトニトリル層と水層とを分離し易くなり、さらに、アセトニトリル層には水溶性無機塩が混入し難くなる。
 (混合条件)
 反応溶液と水溶性無機塩とを混合する際には、公知の混合装置が使用できる。例えば、攪拌機、温度計を装着する反応容器等を使用できる。混合する順序は、特に制限がない。操作性を向上させるためには、反応溶液に水溶性無機塩を加えて混合することが好ましい。
 反応溶液と水溶性無機塩とを混合する際の温度は、特に制限がない。操作性、層分離状態の明確さ、反応溶液に対する水溶性無機塩の溶解性等を考慮すると、混合する際の温度は、5~60℃が好ましく、20~50℃がより好ましい。この温度は、混合中、一定の温度でなくともよく、上記範囲内であれば温度が変化しても構わない。
 混合時間も、特に制限がない。水溶性無機塩が溶解し、攪拌等の混合を止めて静止した際に層分離溶液が得られるまで混合すればよい。混合時間は、通常、0.1~2時間で十分である。また、混合時の雰囲気は、特に制限がなく、窒素雰囲気下、又は大気雰囲気下で混合することができる。
 上記条件で、反応溶液と水溶性無機塩とを混合した後、混合溶液を静置(放置)する。静置することにより、アセトニトリル層と水層とに層分離した層分離溶液が得られる。静置時間は、特に制限がないが、通常、0.1~1時間が好ましい。層分離状態は、目視により確認できる。
 (層分離溶液)
 アセトニトリルと水とは互いに相溶性がある。しかしながら、本発明者等の検討によると、上記反応溶液と水溶性無機塩とを混合する場合、アセトニトリル層と水層とに層分離した層分離溶液が得られることが判明した。
 得られる層分離溶液は、上層がアセトニトリル層であり、下層が水層である。上層のアセトニトリル層に、生成したカンデサルタンシレキセチル、および副生するトリチルアルコールが含まれ、下層の水層に水溶性無機塩が含まれる。本発明においては、水溶性無機塩の存在、カンデサルタンシレキセチルのアセトニトリルに対する溶解性等の因子が作用し、層分離溶液が形成されると本発明者らは考えている。
 この層分離溶液におけるアセトニトリル層から、カンデサルタンシレキセチルを取り出す方法によれば、効率よく水を除去したアセトニトリル層が得られる。従来の方法によれば、カンデサルタンシレキセチルを取出すために、反応溶液の水及び溶媒をそのまま留去することにより、反応溶液を濃縮していた。本方法によれば、水層を形成させ、この水層を分離する方法を採用しているので、従来の方法のように濃縮操作を行なう必要が無く、大部分の水を簡単に除去できる。その結果、水が主原因になると考えられるデスエチル体の生成(カンデサルタンシレキセチルの分解)を効果的に抑制できる。
 層分離溶液からカンデサルタンシレキセチルを取り出す好ましい方法を、以下、説明する。先ず、公知の方法、例えば、分液操作、デカンテーション等の方法により、アセトニトリル層と水層とを分離する。その後、分離したアセトニトリル層からカンデサルタンシレキセチルを取り出す。
 (カンデサルタンシレキセチルの取り出し方法、精製方法)
 上記方法によって得られるアセトニトリル層からカンデサルタンシレキセチルを取り出す方法について説明する。具体的には、水層と分離したアセトニトリル層を濃縮してカンデサルタンシレキセチルを取り出す方法、アセトニトリル層中にカンデサルタンシレキセチルの結晶を析出させて、結晶を取り出す方法等が採用できる。アセトニトリル層を濃縮してカンデサルタンシレキセチルを取出す方法の場合においても、本発明の方法によれば、既に大部分の水を除去しているため、濃縮の際の分解物(デスエチル体)の生成を抑制することができる。
 アセトニトリル層を濃縮して得られる濃縮物、または該アセトニトリル層中に析出する結晶は、主成分がカンデサルタンシレキセチルである。カンデサルタンシレキセチルを原薬として使用する場合には、上記濃縮物、または結晶を精製することが好ましい。精製方法としては、特に制限がなく、公知の精製方法、例えば、カルムクロマトグラフィー、再結晶等の方法を採用できる。これらの精製方法の中でも、操作性を考慮すると、再結晶が好ましい。精製をする前に、僅かに残存する水を除去する必要がある場合は、前記濃縮物又は結晶に水と共沸する溶媒を加え、共沸処理することにより、水を更に除去できる。
 上記濃縮物、または結晶を再結晶により精製する場合、公知のカンデサルタンシレキセチルを再結晶する溶媒が使用できる。副生物であるトリチルアルコール、およびデスエチル体を効率よく除去し、汎用のカンデサルタンシレキセチルの結晶を得るためには、アセトン、または、アセトンと水との混合液を再結晶溶媒として使用することが好ましい。再結晶は、得られるカンデサルタンシレキセチルが所望の純度となるまで繰り返し行うことも可能である。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 先ず、カンデサルタンシレキセチルの純度、デスエチル体の生成割合の測定方法について説明する。
 (カンデサルタンシレキセチル等の純度の評価)
 下記の実施例、比較例において、カンデサルタンシレキセチルの純度、デスエチル体の含有量は、高速液体クロマトグラフィー(HPLC)を用いて求めた。得られたクロマトグラムを用いて、各成分ピークの面積百分率を求め、これらの値をカンデサルタンシレキセチルの純度、デスエチル体の含有量として示した。
 高速液体クロマトグラフの構成、及び分析条件を以下に記載する。
装置:WATERS社製 型式2695-2489-996。
検出器:紫外吸光光度計(測定波長:254nm)。
カラム:株式会社ジーエルサイエンス社製 商品名 Inertsil ODS-3。
内径4.6mm、長さ15cm(粒子径5μm、細孔径12nm)。
カラム温度:40℃ 一定温度。
サンプル温度:25℃ 一定温度。
移動相:アセトニトリル/1%酢酸水溶液=80/20。
流量:1.5ml/分。
 上記分離条件において、カンデサルタンシレキセチルは約4.9分にピークが確認され、デスエチル体は、約3.0分にピークが確認される。
 実施例1
 (脱トリチル化反応)
直径5cmの2枚撹拌翼を備えた500mlの4つ口フラスコに、トリチルカンデサルタンシレキセチル30g、アセトニトリル300ml、水75mlを加えた。75℃で7時間攪拌して、反応を終了した。(反応終了時、カンデサルタンシレキセチルの純度は92.8%、デスエチル体の含有量は1.68%であった。)。
 (層分離溶液の製造)
反応後、得られた反応溶液(カンデサルタンシレキセチル、アセトニトリル、水等を含む反応溶液)を攪拌しながら放冷し、該反応溶液の温度が50℃になった時点で塩化ナトリウム7.5gを添加した。攪拌を続け、反応溶液の温度が30℃になるまで30分間かけて冷却した。その後、攪拌を止めて10分間静置すると、2層に分離した層分離溶液が得られた。上層がアセトニトリル層、下層が水層であった。
 (カンデサルタンシレキセチルの取り出し)
 得られた層分離溶液を分液し、アセトニトリル層を回収した。得られたアセトニトリル層を、5~50℃の温度範囲に保ちながら、減圧下で留去して濃縮した。濃縮終了後、得られた濃縮物にアセトン90mLを加え、さらに減圧下で濃縮し、濃縮物(若干の水、及び残留溶媒を含む固形物)を得た(濃縮終了後のカンデサルタンシレキセチルの純度92.4%、デスエチル体の含有量1.82%であった。)。
 (カンデサルタンシレキセチルの再結晶)
 濃縮終了後、得られた濃縮物にアセトン180mlを追加し、55℃に加温した。濃縮物が溶解したのを確認した後、30分間かけて30℃まで冷却し、水60ml、種晶30mgを追加した。その後、このアセトン溶液を10~30℃の温度範囲に保持しながら、11時間攪拌した。次いで、-5~5℃の温度範囲に保持しながら2時間撹拌した。遠心分離して析出した結晶を分取することにより、湿体のカンデサルタンシレキセチルを得た(このカンデサルタンシレキセチルの純度は96.6%であり、デスエチル体の含有量は0.07%であった。)。
 実施例2
 (脱トリチル化反応)
 直径5cmの2枚撹拌翼を供えた500mlの4つ口フラスコに、トリチルカンデサルタンシレキセチル30g、アセトニトリル300ml、水75mlを加えた。75℃で7時間撹拌して反応を終了した(反応終了時、カンデサルタンシレキセチルの純度93.0%、デスエチル体の含有量1.58%であった。)。
 (層分離溶液の製造)
 反応後、得られた反応溶液(カンデサルタンシレキセチル、アセトニトリル、水等を含む反応溶液)を攪拌しながら放冷し、該反応溶液の温度が50℃になった時点で塩化ナトリウム15gを添加した。攪拌を続け、反応溶液の温度が30℃になるまで30分間かけて冷却した。その後、攪拌を止めて10分間静置すると、2槽に分離した層分離溶液が得られた。上層がアセトニトリル層、下層が水層であった。
 (カンデサルタンシレキセチルの取り出し)
 得られた層分離溶液を分液し、アセトニトリル層を回収した。得られたアセトニトリル層を5~50℃の温度範囲に保ちながら減圧下で留去して濃縮した。濃縮終了後、得られた濃縮物にアセトン90mLを加え、さらに減圧下で濃縮し、濃縮物(若干の水、及び残留溶媒を含む固形物)を得た(濃縮終了後のカンデサルタンシレキセチルの純度は92.6%、デスエチル体の含有量は1.80%であった。)。
 (カンデサルタンシレキセチルの再結晶)
 減圧濃縮終了後、得られた濃縮物にアセトン180mlを追加し、実施例1に記載したカンデサルタンシレキセチルの再結晶と同様の方法で再結晶を行い、湿体のカンデサルタンシレキセチルを得た。カンデサルタンシレキセチルの純度は96.7%であり、デスエチル体の含有量は0.05%であった。
 実施例3
 (脱トリチル化反応)
 直径2cmの2枚撹拌翼を供えた100mlの4つ口フラスコに、トリチルカンデサルタンシレキセチル5g、アセトニトリル50ml、水5mlを加えた。75℃で9時間撹拌した後、反応を終了した(反応終了時、カンデサルタンシレキセチルの純度は90.6%、デスエチル体の含有量は1.31%であった。)。
 (層分離溶液の製造)
 反応後、得られた反応溶液(カンデサルタンシレキセチル、アセトニトリル、水等を含む反応溶液)を攪拌しながら放冷し、該反応溶液の温度が50℃になった時点で塩化ナトリウム1gを添加した。攪拌を続け、反応溶液の温度が30℃になるまで30分間かけて冷却した。その後、攪拌を止めて10分間静置すると、2層に分離した層分離溶液が得られた。上層がアセトニトリル層、下層が水層であった。
 (カンデサルタンシレキセチルの取り出し)
 得られた層分離溶液を分液し、アセトニトリル層を回収した。得られたアセトニトリル層を、5~50℃の温度範囲に保ちながら、減圧下で留去して濃縮した。濃縮終了後、得られた濃縮物にアセトン15mlを加え、さらに減圧下で濃縮し、濃縮物(若干の水、及び残留溶媒を含む固形物)を得た(濃縮終了後の、カンデサルタンシレキセチルの純度は90.0%、デスエチル体の含有量は1.50%であった。)。
 (カンデサルタンシレキセチルの再結晶)
 濃縮終了後、得られた濃縮物にアセトン30mlを追加し、55℃に加温した。濃縮物が溶解したことを確認した後、30分間かけて30℃まで冷却し、水10ml、種晶5mgを追加した。その後、このアセトン溶液を10~30℃の温度範囲に保持しながら、11時間攪拌した。次いで、-5~5℃の温度範囲で2時間撹拌した。遠心分離して析出した結晶を分取することにより、湿体のカンデサルタンシレキセチルを得た。このカンデサルタンシレキセチルの純度は96.3%であり、デスエチル体の含有量は0.05%であった。
 実施例4
 (脱トリチル化反応)
 直径2cmの2枚撹拌翼を備えた100mlの4つ口フラスコに、トリチルカンデサルタンシレキセチル5g、アセトニトリル50ml、水5mlを加えた。75℃で9時間撹拌した後、反応を終了した(反応終了時のカンデサルタンシレキセチルの純度は90.6%、デスエチル体の含有量は1.35%であった。)。
 (層分離溶液の製造)
 反応後、得られた反応溶液(カンデサルタンシレキセチル、アセトニトリル、水等を含む反応溶液)を攪拌しながら放冷し、該反応溶液の温度が50℃になった時点で硫酸マグネシウム0.5gを添加した。攪拌を続け、反応溶液の温度が30℃になるまで30分間かけて冷却した。その後、攪拌を止めて10分間静置すると、2層に分離した層分離溶液が得られた。上層がアセトニトリル層、下層が水層であった。
 (カンデサルタンシレキセチルの取り出し)
 得られた層分離溶液を分液し、アセトニトリル層を回収した。得られたアセトニトリル層を5~50℃の温度範囲に保ちながら減圧下で留去して濃縮した。濃縮終了後、得られた濃縮物にアセトン15mlを加え、さらに減圧下で濃縮し、濃縮物(若干の水、及び残留溶媒を含む固形物)を得た(減圧濃縮終了後のカンデサルタンシレキセチルの純度は90.0%、デスエチル体の含有量は1.55%であった。)。
 (カンデサルタンシレキセチルの再結晶)
 減圧濃縮終了後、得られた濃縮物にアセトン30mlを追加し、実施例3に記載したカンデサルタンシレキセチルの再結晶と同様の方法で再結晶を行った。得られた湿体のカンデサルタンシレキセチルは、純度96.3%であり、デスエチル体の含有量は0.06%であった。
 比較例1
 直径5cmの2枚撹拌翼を備えた500mlの4つ口フラスコに、トリチルカンデサルタンシレキセチル30g、アセトニトリル300ml、水75mlを加えた。75℃で7時間撹拌して反応を終了した(反応終了時、カンデサルタンシレキセチルの純度は92.7%、デスエチル体の含有量は1.48%であった。)。
 反応後、得られた反応溶液を5~50℃の温度範囲に保ちながら減圧下でアセトニトリル及び水を留去して濃縮した。濃縮終了後、得られた濃縮物にアセトン90mLを加え、さらに減圧下で濃縮した(濃縮終了後の、カンデサルタンシレキセチルの純度は92.0%、デスエチル体の含有量は2.92%であった。)。
 (カンデサルタンシレキセチルの再結晶)
 濃縮終了後、得られた濃縮物にアセトン180mlを追加し、55℃に加温した。濃縮物が溶解したことを確認した後、30分間かけて30℃まで冷却し、水60mL、種晶30mgを追加した。その後、このアセトン溶液を10~30℃の範囲に保持しながら、11時間攪拌した。次いで、-5~5℃の温度範囲に保持しながら2時間撹拌した。遠心分離して析出した結晶を分取することにより、湿体のカンデサルタンシレキセチルを得た(カンデサルタンシレキセチルの純度は96.4%、デスエチル体の含有量は0.50%であった。)。
実施例1~4、比較例1の結果を表1にまとめた。
 表1のデータから以下のことが分る。反応溶液に水溶性無機塩を添加して、分離するアセトニトリル層から式(2)で示されるカンデサルタンシレキセチルを取出す実施例1~4の本製造方法によれば、脱トリチル化反応後の取出し操作により、デスエチル体の含有量の増加量(%)は、最大が0.22%(実施例2)である。即ち、本方法を採用する場合は、デスエチル体の副生を最小限に抑制できる。
 これに対して、反応溶液を留去する従来方法を採用する比較例1の場合は、デスエチル体の含有量の増加%は、1.44%で、これは高い値である。このことは、反応溶液を留去する従来法の場合は、副反応であるデスエチル体の生成反応が起きることを示している。
 さらに、再結晶後のデスエチル体の含有量を検討すると、実施例1~4の場合は、最大0.07%(実施例1)である。これに対して比較例1の場合は、デスエチル体の含有量は0.5%で、高い値である。即ち、デスエチル体の含有量が1%を超えるような場合は、再結晶によっては十分にデスエチル体の含有量を低下させることができないことが分る。
Figure JPOXMLDOC01-appb-T000009

Claims (5)

  1.  アセトニトリル、および水を含む混合溶媒中で下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    で示されるトリチルカンデサルタンシレキセチルの脱トリチル化反応を行って得られる反応溶液と、水溶性無機塩と、を混合することにより、アセトニトリル層と水層とに分離した層分離溶液を得、次いで、該アセトニトリル層から下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    で示されるカンデサルタンシレキセチルを取り出すことを特徴とするカンデサルタンシレキセチルの製造方法。
  2. 混合溶媒中のアセトニトリルと水との容量比率(アセトニトリルの容量/水の容量)が、20/1~1/1である請求項1に記載のカンデサルタンシレキセチルの製造方法。
  3.  混合溶媒の使用量が、トリチルカンデサルタンシレキセチル1gに対して7~30mlである請求項1に記載のカンデサルタンシレキセチルの製造方法。
  4. 水溶性無機塩が、アルカリ金属のハロゲン化物;アルカリ金属の硫酸塩、硝酸塩、リン酸塩;アルカリ土類金属のハロゲン化物;アルカリ土類金属の硫酸塩、硝酸塩、リン酸塩からなる群から選ばれる無機塩又はこれらの混合物である請求項1に記載のカンデサルタンシレキセチルの製造方法。
  5. 水溶性無機塩の使用量が、脱トリチル化の反応に使用する水100mlに対して、3~50gである請求項1に記載のカンデサルタンシレキセチルの製造方法。
PCT/JP2011/061174 2010-06-09 2011-05-16 カンデサルタンシレキセチルの製造方法 WO2011155291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519318A JP5738288B2 (ja) 2010-06-09 2011-05-16 カンデサルタンシレキセチルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131661 2010-06-09
JP2010-131661 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155291A1 true WO2011155291A1 (ja) 2011-12-15

Family

ID=45097903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061174 WO2011155291A1 (ja) 2010-06-09 2011-05-16 カンデサルタンシレキセチルの製造方法

Country Status (2)

Country Link
JP (1) JP5738288B2 (ja)
WO (1) WO2011155291A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252251A (ja) * 1994-01-28 1995-10-03 Takeda Chem Ind Ltd テトラゾリル化合物の製造法
WO2003027049A1 (en) * 2001-09-20 2003-04-03 Ezaki Glico Co., Ltd. Method of extracting and method of purifying an effective substance
WO2005051928A1 (en) * 2003-11-28 2005-06-09 Ranbaxy Laboratories Limited Process for production of tetrazolyl compounds
JP2006047044A (ja) * 2004-08-03 2006-02-16 Shimadzu Corp 絶縁油中pcbの分析法
WO2007048361A1 (en) * 2005-10-27 2007-05-03 Zentiva, A.S. A method of removing the triphenylmethane protecting group from precursors of antihypertensive drugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252251A (ja) * 1994-01-28 1995-10-03 Takeda Chem Ind Ltd テトラゾリル化合物の製造法
WO2003027049A1 (en) * 2001-09-20 2003-04-03 Ezaki Glico Co., Ltd. Method of extracting and method of purifying an effective substance
WO2005051928A1 (en) * 2003-11-28 2005-06-09 Ranbaxy Laboratories Limited Process for production of tetrazolyl compounds
JP2006047044A (ja) * 2004-08-03 2006-02-16 Shimadzu Corp 絶縁油中pcbの分析法
WO2007048361A1 (en) * 2005-10-27 2007-05-03 Zentiva, A.S. A method of removing the triphenylmethane protecting group from precursors of antihypertensive drugs

Also Published As

Publication number Publication date
JP5738288B2 (ja) 2015-06-24
JPWO2011155291A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5594743B2 (ja) ボセンタンカリウム塩の製造方法
KR101090325B1 (ko) 고순도 올메사탄 메독소밀의 제조방법
US10875835B2 (en) Method for producing 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione
WO2018008219A1 (ja) アジルサルタン中間体、アジルサルタン、及びこれらの製造方法
TWI464162B (zh) 新穎溶劑合物結晶
JP4933253B2 (ja) イオヘキソールの製造方法
US9573881B2 (en) Halogenated aniline and method for producing same
WO2017131218A1 (ja) アジルサルタン及びその製造方法
JP5738288B2 (ja) カンデサルタンシレキセチルの製造方法
JP2011006379A (ja) {2−アミノ−1,4−ジヒドロ−6−メチル−4−(3−ニトロフェニル)−3,5−ピリジンジカルボン酸3−(1−ジフェニルメチルアゼチジン−3−イル)エステル5−イソプロピルエステル}(アゼルニジピン)の再結晶方法、アゼルニジピンのイソプロピルアルコール付加体、およびアゼルニジピンの製造方法
JP6091339B2 (ja) オルメサルタンメドキソミルの製造方法
JP2006265129A (ja) 3,3’−ビス(トリフルオロメチル)ヒドラゾベンゼンの製造方法
JP6275596B2 (ja) テルミサルタンのアンモニウム塩の製造方法
JP2012020970A (ja) {2−アミノ−1,4−ジヒドロ−6−メチル−4−(3−ニトロフェニル)−3,5−ピリジンジカルボン酸3−(1−ジフェニルメチルアゼチジン−3−イル)エステル5−イソプロピルエステル}の製造方法
JP4537678B2 (ja) 2’−(1h−テトラゾール−5−イル)ビフェニル−4−カルボアルデヒド結晶およびその製造方法
JP5166747B2 (ja) アルキルアミノピリジン類の精製方法
JP6382736B2 (ja) バルサルタンの製造方法
JP6382660B2 (ja) オルメサルタンメドキソミルの製造方法
JP2010077070A (ja) イミダゾール誘導体の精製方法
JP7177796B2 (ja) アジルサルタンa型結晶の製造方法
JP5614153B2 (ja) カンデサルタンシレキセチルの製造法
JP5448588B2 (ja) L−カルノシンの精製方法
JP2014152127A (ja) オルメサルタンメドキソミルの製造方法
WO2017209035A1 (ja) ビフェニルベンズイミダゾール誘導体の製造方法
KR101266224B1 (ko) 트리틸 올메사르탄 메독소밀의 개선된 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519318

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792249

Country of ref document: EP

Kind code of ref document: A1