WO2011152409A1 - 蒸気弁 - Google Patents

蒸気弁 Download PDF

Info

Publication number
WO2011152409A1
WO2011152409A1 PCT/JP2011/062510 JP2011062510W WO2011152409A1 WO 2011152409 A1 WO2011152409 A1 WO 2011152409A1 JP 2011062510 W JP2011062510 W JP 2011062510W WO 2011152409 A1 WO2011152409 A1 WO 2011152409A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
seat
steam
valve body
valve seat
Prior art date
Application number
PCT/JP2011/062510
Other languages
English (en)
French (fr)
Inventor
利也 西村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127028402A priority Critical patent/KR101456767B1/ko
Priority to EP11789812.2A priority patent/EP2578812B1/en
Priority to CN201180020732.1A priority patent/CN102869852B/zh
Publication of WO2011152409A1 publication Critical patent/WO2011152409A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical

Definitions

  • the present invention relates to a steam valve for adjusting the amount of steam supplied to, for example, a steam turbine of a thermal power plant or a nuclear power plant.
  • Steam turbines such as thermal power plants and nuclear power plants are provided with a number of steam valves in order to adjust the amount of steam according to load changes and to shut off the supply of steam in the event of an abnormality.
  • the steam valve can adjust the amount of steam by moving the valve rod with an actuator and changing the flow path area between the valve seat and the valve body.
  • Patent Documents 1 and 2 disclose steam valves in which the radius of curvature of the valve body is 0.52 to 0.6 times the seat diameter and the curvature radius of the valve seat is larger than 0.6 times the seat diameter.
  • FIG. 4 is a cross-sectional view schematically showing the steam valve described in Patent Documents 1 and 2.
  • the curvature radius r of the valve body 2 is 0.52 to 0.6 times the seat diameter D 0
  • the curvature radius R of the valve seat 4 is more than 0.6 times the seat diameter D 0. It is getting bigger.
  • the tangential direction of the valve seat 4 is relatively standing at the position where the valve seat 4 and the valve body 2 are in contact (seat position 3) (movement of the valve body 2). Since the flow path area between the valve seat 4 and the valve body 2 is small and the pressure loss tends to be large, the valve body 2 is required to secure a sufficient supply amount of steam. It is necessary to set a large lift amount or to enlarge the entire steam valve.
  • the steam valve is required to prevent the steam turbine from being damaged at an excessive speed by quickly shutting off the supply of steam to the steam turbine in an emergency. If set, it takes time to shift from the fully open state to the fully closed state, and it is difficult to quickly shut off the steam. In addition, when the entire steam valve is enlarged, the installation of the steam valve is restricted or the cost is significantly increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steam valve that can reduce vibration of each part of the steam valve, reduce pressure loss, and can quickly shut off steam.
  • the steam valve according to the present invention adjusts the amount of steam flowing through the flow path by changing the area of the flow path between the valve seat and the valve body by moving the valve body relative to the valve seat.
  • the valve body satisfies r> 0.6D 0 when the curvature radius of the valve head contacting the valve seat is r and the seat diameter of the valve seat is D 0 , It has a taper surface which inclines in the relative movement direction side to the valve seat of the valve body rather than the valve head on the upstream side of the valve head.
  • the curvature radius r of the valve head of the valve body satisfies r> 0.6D 0 (where D 0 is the seat diameter of the valve seat), the tangential direction of the valve seat at the seat position is Compared to the conventional technique, the patient is asleep, and the flow area between the valve seat and the valve body at the same lift amount is large, and the pressure loss tends to be small. Therefore, the lift amount of the valve body for securing the steam supply amount is relatively small, and the supply of steam to the steam turbine or the like can be quickly shut off.
  • the steam valve of the present invention is set larger than the conventional ratio with respect to the seat diameter D 0 of the radius of curvature r of the valve head, the tangential direction of the valve seat at the seat position sideway than before to reduce the pressure loss
  • a taper surface is provided on the upstream side of the valve head, and a virtual curvature radius including the valve head and the taper surface is made sufficiently small with respect to the seat diameter and the curvature radius of the valve seat.
  • the valve head preferably satisfies 0.61D 0 ⁇ r ⁇ 0.80D 0 .
  • the radius of curvature r of the valve head by a 0.61D 0 or more it is possible to cut off the supply of steam more quickly. Further, the curvature radius r of the valve head by a 0.80D 0 or less, it vapor stream is likely to form the annular flow adhering to the valve seat side (annular flow), the vibration of the steam valve each part more reliably Can be reduced.
  • the taper surface has an angle ⁇ 0 formed with respect to a tangential direction of the valve seat extending downstream from the seat position in a range of 150 degrees to 170 degrees.
  • angle ⁇ 0 formed by the taper surface with respect to the valve seat tangential direction at the seat position is too small, an angle is formed at a portion where the taper surface transitions from the taper surface to the valve head on the upstream side of the seat position. Flow separation occurs, and vibration of each part of the steam valve occurs.
  • the angle ⁇ 0 is too large, it is difficult to sufficiently rectify so that the streamline of the steam is caused by the tapered surface. Therefore, by setting the angle ⁇ 0 to 150 degrees or more and 170 degrees or less, it is possible to prevent the separation of the steam flow in the region where the taper surface transitions to the valve head, and to make the steam flow line stand by the taper surface. Rectification can be ensured.
  • the taper surface has an angle formed by the taper surface with respect to a relative movement direction of the valve body with respect to the valve seat, and a tangential direction of the valve seat at a seat position is the valve of the valve body. It is preferable that the relationship of 0.3 ⁇ ⁇ / (90 ⁇ ) ⁇ 0.4 is satisfied, where ⁇ is an angle formed with respect to the relative movement direction with respect to the seat.
  • ⁇ / (90 ⁇ ) is proportional to the angle ⁇ formed by the tapered surface with respect to the moving direction of the valve body, and means the standing angle in the tangential direction of the valve seat at the seat position (90 ⁇ ). Is inversely proportional to Therefore, “ ⁇ / (90 ⁇ )” being small means that either the tapered surface is standing or the tangential direction of the valve seat is standing at the seat position (or both). Therefore, as described above, by setting ⁇ / (90 ⁇ ) to 0.4 or less, steam flow lines are set by the taper surface, or the tangential direction of the valve seat at the seat position is set and steam is set. An annular flow in which the flow adheres to the valve seat side can be reliably formed.
  • ⁇ / (90 ⁇ ) it is possible to prevent the taper surface from standing excessively and causing the separation of the vapor flow at the portion where the taper surface transitions to the valve head.
  • the valve head of the valve body has a circular recess at the top downstream of the seat position contacting the valve seat, and when the diameter of the circular recess is Dn, It is preferable that a relationship of 0.90D 0 ⁇ Dn ⁇ 0.98D 0 is established between the seat diameter D 0 of the valve seat.
  • the diameter Dn of the circular recess to 0.90 times the seat diameter D 0, by providing the circular recess in the downstream side immediately after the seat position, when the vapor flow is transonic condition It can prevent that a valve body vibrates under the influence of the emitted shock wave. Further, by making the diameter Dn of the circular recess below 0.98 times the seat diameter D 0, the edge of the circular recess fully closed steam valve of the valve body or the valve seat by being pressed against the valve seat machine Damage can be prevented.
  • a base portion on the upstream side of the tapered surface of the valve body is formed in a cylindrical shape, and when a diameter of the base portion of the valve body is Dv, a seat diameter D 0 of the valve seat and It is preferable that the relationship of 1.03D 0 ⁇ Dv ⁇ 1.10D 0 is satisfied.
  • the radius of curvature r of the valve head of the valve body is set to r> 0.6D 0 (where D 0 is the seat diameter of the valve seat), the flow between the valve seat and the valve body Since the road area is large and the pressure loss is small, the lift amount of the valve body for securing the steam supply amount can be reduced. Therefore, the supply of steam to the steam turbine or the like can be quickly shut off. Further, according to the present invention, since the tapered surface inclined to the valve body moving direction side from the valve head is provided on the upstream side of the valve head, the steam passes through the flow path between the valve seat and the valve body. Before passing, it rectifies
  • FIG. 1 is a cross-sectional view showing an example of the overall configuration of the steam valve according to the present embodiment.
  • the steam valve 1 is mainly composed of a valve body 2, a valve seat 4, a valve rod 6, and an actuator 8.
  • the valve body 2 is fixed to the valve stem 6 by a pin 5, and is moved up and down together with the valve stem 6 by moving the lever 10 in the arrow direction with the fulcrum 12 as a fulcrum by driving the actuator 8. Accordingly, the position of the valve body 2 with respect to the valve seat 4 is changed from a fully closed state in contact with the valve seat 4 at the seat position 3 to a fully opened state separated from the valve seat 4 by a maximum lift amount according to the amount of steam to be supplied. It is designed to be adjusted as needed.
  • the steam introduced into the steam valve 1 is indicated by an arrow A from the valve chamber 16 surrounded by the casing 14 of the steam valve 1 through an annular flow path formed between the valve body 2 and the valve seat 4. It flows out in the direction and is supplied to a steam turbine or the like (not shown) disposed in the rear stage of the steam valve 1.
  • FIG. 2 is an enlarged cross-sectional view showing the shapes of the valve body 2 and the valve seat 4 around the seat portion.
  • the valve body 2 has a valve head 2A having a radius of curvature r that contacts the valve seat 4 at the seat position 3, and a tapered surface 2B provided on the upstream side of the valve head 2A.
  • the curvature radius r of the valve head portion 2A satisfies r> 0.6D 0 when the seat diameter of the valve seat 4 (the diameter of the seat position 3) is D 0 . For this reason, since the tangential direction 20 of the valve seat 4 at the seat position 3 is lying more than before, the flow path area between the valve body 2 and the valve seat 4 is relatively large, and the pressure loss is relatively small. Therefore, the lift amount of the valve body 2 for securing the steam supply amount is relatively small, and the supply of steam to a steam turbine or the like (not shown) can be quickly shut off.
  • the radius of curvature r of the valve head 2A is set in a range of r> 0.6D 0, the radius of curvature R of the valve seat 4, for example, to satisfy 0.20D 0 ⁇ R ⁇ 0.50D 0 May be set.
  • the tapered surface 2B provided on the upstream side of the valve head 2A is inclined more toward the moving direction 22 side of the valve body 2 than the valve head 2A.
  • the tapered surface 2B may be formed by chamfering only the upstream side of the valve head 2A having the curvature radius r, for example.
  • the curvature radius r of the valve head 2A preferably satisfies 0.61D 0 ⁇ r ⁇ 0.80D 0 (where D 0 is the seat diameter).
  • D 0 is the seat diameter
  • the radius of curvature r of the valve head 2A With 0.61D 0 or more, it is possible to cut off the supply of steam more quickly.
  • the curvature radius r of the valve head 2A to 0.80D 0 or less, it becomes easy to form an annular flow in which the steam flow adheres to the valve seat 4 side, and vibrations of the respective parts of the steam valve 1 occur. Can be more reliably reduced.
  • the angle ⁇ 0 formed with respect to the tangential direction 20 of the valve seat 4 extending from the seat position 3 to the downstream side of the tapered surface 2B is not less than 150 degrees and not more than 170 degrees. If the angle ⁇ 0 formed by the tapered surface 2B with respect to the tangential direction 20 of the valve seat 4 at the seat position 3 is too small, a portion (transition region) that transitions from the tapered surface 2B to the valve head 2A on the upstream side of the seat position 3 24) may have a corner, and the steam flow may be separated around the corner, and vibrations may occur in each part of the steam valve 1 instead.
  • the angle ⁇ 0 is too large, it is difficult to sufficiently rectify so that the streamline of the steam is raised by the tapered surface 2B (along the moving direction of the valve body 2). Therefore, by setting the angle ⁇ 0 to be not less than 150 degrees and not more than 170 degrees, the separation of the steam flow in the transition region 24 from the tapered surface 2B to the valve head 2A is prevented, and the flow of steam is prevented by the tapered surface 2B. Rectification can be ensured so that the line stands.
  • the taper surface 2B has an angle formed by the taper surface 2B with respect to the relative movement direction 22 of the valve body 2 with respect to the valve seat 4, and the tangential direction 20 of the valve seat 4 at the seat position 3 is the valve seat of the valve body 2. It is preferable that the relationship of 0.3 ⁇ ⁇ / (90 ⁇ ) ⁇ 0.4 is satisfied, where ⁇ is an angle formed with respect to the relative movement direction 22 with respect to 4.
  • ⁇ / (90 ⁇ ) is proportional to the angle ⁇ formed by the tapered surface 2B with respect to the moving direction 22 of the valve body 2, and the standing angle in the tangential direction 20 of the valve seat 4 at the seat position 3 is set. It is inversely proportional to the meaning (90- ⁇ ).
  • ⁇ / (90 ⁇ ) is small when either the tapered surface 2B is standing or the tangential direction 20 of the valve seat 4 at the seat position 3 is standing (or both). Means. Therefore, as described above, by setting ⁇ / (90 ⁇ ) to 0.4 or less, a streamline of steam is set by the tapered surface 2B, or the tangential direction 20 of the valve seat 4 at the seat position 3 is set. It is possible to reliably form an annular flow in which the steam flow adheres to the valve seat 4 side. Further, by setting ⁇ / (90 ⁇ ) to 0.3 or more, the taper surface 2B stands excessively, and vapor flow separation occurs in the transition region 24 where the taper surface 2B moves to the valve head 2A. Can be prevented.
  • the valve head 2 ⁇ / b> A of the valve body 2 has a circular recess 26 at the top of the head downstream of the seat position 3 that contacts the valve seat 4, and the diameter of the circular recess 26 is set to Dn. Then, it is preferable that the relationship of 0.90D 0 ⁇ Dn ⁇ 0.98D 0 is established between the seat diameter D 0 of the valve seat 4.
  • the diameter Dn of the circular recess 26 to 0.90 times the seat diameter D 0 by providing the circular recess 26 on the downstream side immediately after the seat position 3, the transonic condition vapor stream It can prevent that the valve body 2 vibrates under the influence of the shock wave emitted at the time. Further, by setting the diameter Dn of the circular recess 26 to 0.98 times or less of the seat diameter D 0 , the valve body 2 is formed by pressing the edge of the circular recess 26 against the valve seat 4 when the steam valve 1 is fully closed. Or the mechanical damage of the valve seat 4 can be prevented.
  • the base portion 28 upstream of the tapered surface 2B of the valve body 2 is formed in a cylindrical shape, and the seat diameter D of the valve seat 4 when the diameter of the base portion 28 of the valve body 2 is Dv. between 0, it is preferable to satisfy the relation of 1.03D 0 ⁇ Dv ⁇ 1.10D 0.
  • the tapered surface 2B is formed over a relatively wide area, and the annular flow in which the steam flow adheres to the valve seat 4 side. (Annular flow) can be more reliably realized.
  • the diameter Dv of the base 28 of the valve body 2 by a Dv ⁇ 1.10D 0, and the outer diameter of the valve body 2 to an appropriate size it is possible to prevent an increase in the size of the steam valve 1 In addition, it prevents peeling that occurs when the direction of the steam flow rectified by the tapered surface 2B formed over an excessively wide area is suddenly changed in the portion (transition region 24) from the tapered surface 2B to the valve head 2A. be able to.
  • the valve body 2 As described above, in the steam valve 1 according to this embodiment, the valve body 2, the curvature radius of the valve head 2A in contact with the valve seat 4 r, the seat diameter of the valve seat 4 when the D 0 r> 0.6D 0 is satisfied, and on the upstream side of the valve head 2B, the valve head 2B has a tapered surface 2B inclined toward the relative movement direction 22 side with respect to the valve seat 4 of the valve body 2B.
  • the virtual radius of curvature including the valve head 2A and the tapered surface 2B is, as shown in FIG. 3, the point P1 on the valve head 2A corresponding to the seat position 3 and the most upstream side of the tapered surface 2B.
  • the radius of curvature Rv is determined by defining the parameters such as r, D 0 , ⁇ 0 , ⁇ / (90 ⁇ ) described above, but is 0.10 D with respect to the seat diameter D 0 of the valve seat 4.
  • Rv ⁇ 0.45D 0 is preferably satisfied, and 0.2R ⁇ Rv ⁇ 0.9R is preferably satisfied with respect to the radius of curvature R of the valve seat 4.
  • the steam valve 1 having the overall configuration shown in FIG. 1 has been described.
  • the overall configuration of the steam valve 1 is such that the radius of curvature r of the valve head 2A is r> 0.6D 0 (provided that D 0 is a sheet diameter) and is not particularly limited as long as it has a tapered surface 2B on the upstream side of the valve head 2A that is inclined toward the relative movement direction 22 with respect to the valve head 2B, and various configurations can be adopted.
  • the tip of the valve rod 6 functions as a sub valve, and the sub valve is accommodated in the valve body (main valve) 2. After the sub valve is first opened, The structure which the valve body 2 opens may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Control Of Turbines (AREA)

Abstract

蒸気弁1は、弁体2を弁座4に対して相対移動させることで、弁座4と弁体2との間の流路の面積を変化させて該流路を流れる蒸気量を調節するようになっている。弁体2は、弁座4と接触する弁頭部2Aの曲率半径をr、弁座4のシート径をDとしたときにr>0.6Dを満たし、弁頭部2Aの上流側において、弁頭部2Aよりも弁体2の弁座4に対する相対移動方向22側に傾斜したテーパ面2Bを有する。

Description

蒸気弁
 本発明は、例えば、火力発電所や原子力発電所の蒸気タービン等に供給する蒸気量を調節するための蒸気弁に関する。
 火力発電所や原子力発電所等の蒸気タービンは、負荷変化に応じて蒸気量を調節したり、異常時に蒸気の供給を遮断したりするために、多数の蒸気弁が設けられている。蒸気弁は、アクチュエータで弁棒を動かし、弁座と弁体との間の流路面積を変化させることで、蒸気量を調節可能としたものが一般的である。
 この種の蒸気弁は、高圧の蒸気が流れるため、蒸気流れの偏流や渦流等によって振動が発生し、蒸気弁の弁体やこれに連結された弁棒に亀裂が生じてしまうことがある。特に、蒸気タービンの高圧室の上流に配置される蒸気加減弁や、中圧室の上流に配置されるインターセプト弁は、高圧かつ大流量の蒸気を扱うため、弁体と弁座との間隙を流れる蒸気が遷音速状態となる際に発する衝撃波に伴う流れの乱れが、蒸気弁各部の振動を引き起こすことが問題になっていた。そこで、従来から、弁体及び弁座の形状を工夫することで、蒸気弁各部の振動を低減する試みがなされている。
 例えば、特許文献1及び2には、弁体の曲率半径をシート径の0.52~0.6倍とし、弁座の曲率半径をシート径の0.6倍よりも大きくした蒸気弁が開示されている。
 図4は、特許文献1及び2に記載された蒸気弁を模式的に示す断面図である。図4に示すように、弁体2の曲率半径rはシート径Dの0.52~0.6倍であり、弁座4の曲率半径Rはシート径Dの0.6倍よりも大きくなっている。よって、蒸気弁が微小開されたときの蒸気の流線100は、弁体の移動方向Yに比較的沿った状態(いわゆる、流線100が立った状態)となるので、蒸気流が弁座4側に付着したアニュラーフロー(環状流れ)が形成され、蒸気流が安定化し、蒸気弁各部の振動を低減することができる。
特公昭58-44909号公報 特許第4185029号公報
 しかしながら、特許文献1及び2に記載の蒸気弁では、弁座4と弁体2とが接触する位置(シート位置3)における弁座4の接線方向が比較的立っている(弁体2の移動方向Yに比較的沿っている)ため、弁座4と弁体2との間の流路面積が小さく、圧力損失が大きい傾向にあり、十分な蒸気供給量を確保するためには弁体2のリフト量を大きく設定するか、蒸気弁全体を大きくする必要がある。ここで、蒸気弁には、緊急時に蒸気タービンへの蒸気の供給を迅速に遮断することで蒸気タービンが過速度で損傷することを防止することが求められるが、弁体2のリフト量を大きく設定すると、全開状態から全閉状態に移行するまでに時間を要し、蒸気を迅速に遮断することが難しい。また、蒸気弁全体を大きくした場合は、その設置に制約が生じたり、大幅なコスト上昇につながる。
 本発明は、上述の事情に鑑みてなされたものであり、蒸気弁各部の振動を低減するとともに、圧力損失が小さく、蒸気を迅速に遮断可能な蒸気弁を提供することを目的とする。
 本発明に係る蒸気弁は、弁体を弁座に対して相対移動させることで、前記弁座と前記弁体との間の流路の面積を変化させて該流路を流れる蒸気量を調節する蒸気弁であって、前記弁体は、前記弁座と接触する弁頭部の曲率半径をr、前記弁座のシート径をDとしたときにr>0.6Dを満たし、前記弁頭部の上流側において、前記弁頭部よりも前記弁体の前記弁座に対する相対移動方向側に傾斜したテーパ面を有することを特徴とする。
 以下、蒸気の流線、弁座の接線方向、テーパ面等が、弁体の弁座に対する相対移動方向に比較的沿っていることを「立っている」と表現し、蒸気の流線、弁座の接線方向、テーパ面等が、弁体の弁座に対する相対移動方向に直交する方向に比較的沿っていることを「寝ている」と表現することがある。シート位置における弁座の接線方向は、幾何学的関係により、弁体の弁頭部の曲率半径rと、弁座のシート径Dの比によって決定される。
 本発明に係る蒸気弁では、弁体の弁頭部の曲率半径rがr>0.6D(ただし、Dは弁座のシート径)を満たすので、シート位置における弁座の接線方向は、従来に比べて寝ており、同一リフト量における弁座と弁体との間の流路面積が大きく、圧力損失が小さい傾向を有する。よって、蒸気供給量を確保するための弁体のリフト量は比較的小さく、蒸気タービン等への蒸気の供給を迅速に遮断することができる。
 一方、この蒸気弁では、弁頭部よりも弁体移動方向側(弁体の弁座に対する相対移動方向側)に傾斜したテーパ面が弁頭部の上流側に設けられているので、蒸気は、弁座と弁体との間の流路を通過する前に、テーパ面によって弁座移動方向に向かうように整流される。よって、弁頭部の曲率半径rとシート径Dとがr>0.6Dの関係を満たし、シート位置における弁座の接線方向が比較的寝ているにもかかわらず、弁座と弁体との間における蒸気の流線が立った状態をテーパ面によって実現することができる。したがって、蒸気流が弁座側に付着したアニュラーフロー(環状流れ)を形成し、蒸気弁各部の振動を低減することができる。
 すなわち、本発明の蒸気弁では、弁頭部の曲率半径rのシート径Dに対する比を従来よりも大きく設定し、シート位置における弁座の接線方向を従来よりも寝かせて圧力損失を小さくするとともに、テーパ面を弁頭部の上流側に設け、弁頭部とテーパ面とを含めた仮想的な曲率半径をシート径及び弁座の曲率半径に対して十分に小さくすることで、弁座と弁体との間における蒸気の流線が立った状態を実現し、蒸気流れを弁座側に付着させることで蒸気弁各部の振動を低減するようになっている。
 上記蒸気弁において、前記弁頭部は、0.61D≦r≦0.80Dを満たすことが好ましい。
 このように、弁頭部の曲率半径rを0.61D以上とすることで、蒸気の供給をより迅速に遮断することができる。また、弁頭部の曲率半径rを0.80D以下とすることで、蒸気流が弁座側に付着したアニュラーフロー(環状流れ)を形成しやすくなり、蒸気弁各部の振動をより確実に低減することができる。
 上記蒸気弁において、前記テーパ面は、シート位置から下流側に延ばした前記弁座の接線方向に対してなす角度θが150度以上170度以下であることが好ましい。
 テーパ面がシート位置における弁座接線方向に対してなす角度θが小さすぎると、シート位置の上流側において、テーパ面から弁頭部に移行する部分に角が立ち、該角の周辺で蒸気流の剥離が発生してしまい、蒸気弁各部の振動が生じてしまう。一方、角度θが大きすぎると、テーパ面によって蒸気の流線が立つように十分に整流することが難しい。
 そこで、角度θが150度以上170度以下に設定することで、テーパ面から弁頭部に移行する領域における蒸気流の剥離を防止し、かつ、テーパ面によって蒸気の流線が立つように確実に整流することができる。
 上記蒸気弁において、前記テーパ面は、前記弁体の前記弁座に対する相対移動方向に対して前記テーパ面がなす角度をθとし、シート位置における前記弁座の接線方向が前記弁体の前記弁座に対する相対移動方向に対してなす角度をδとしたときに、0.3≦θ/(90-δ)≦0.4の関係を満たすことが好ましい。
 ここで、「θ/(90-δ)」は、弁体の移動方向に対してテーパ面がなす角度θに比例し、シート位置における弁座の接線方向の立ち角を意味する(90-δ)に反比例する。よって、「θ/(90-δ)」が小さいということは、テーパ面が立っているか、シート位置における弁座の接線方向が立っているかのいずれか(あるいはその両方)の場合を意味する。
 したがって、上述のように、θ/(90-δ)を0.4以下とすることで、テーパ面によって蒸気の流線を立てるか、あるいは、シート位置における弁座の接線方向を立てて、蒸気流が弁座側に付着したアニュラーフロー(環状流れ)を確実に形成することができる。また、θ/(90-δ)を0.3以上とすることで、テーパ面が過度に立ってしまい、テーパ面から弁頭部に移行する部分において蒸気流の剥離が生じてしまうことを防止できる(なお、本発明では、弁頭部の曲率半径rとシート径Dとの間にr>0.6Dの関係が成立するため、シート位置における弁座の接線方向が過度に立ってしまう場合は考慮しなくてもよい)。
 上記蒸気弁において、前記弁体の前記弁頭部は、前記弁座に接触するシート位置よりも下流側の頭頂に円状凹部を有し、前記円状凹部の直径をDnとしたとき、前記弁座のシート径Dとの間に、0.90D≦Dn≦0.98Dの関係が成立することが好ましい。
 このように、円状凹部の直径Dnをシート径Dの0.90倍以上にして、シート位置の直後の下流側に円状凹部を設けることで、蒸気流が遷音速状態となる際に発する衝撃波の影響を受けて弁体が振動してしまうことを防止できる。また、円状凹部の直径Dnをシート径Dの0.98倍以下にすることで、蒸気弁の全閉時に円状凹部のエッジが弁座に押し付けられることによる弁体又は弁座の機械的損傷を防止できる。
 上記蒸気弁において、前記弁体の前記テーパ面よりも上流側の基部は円筒状に形成されており、前記弁体の前記基部の直径をDvとしたとき、前記弁座のシート径Dとの間で、1.03D≦Dv≦1.10Dの関係を満たすことが好ましい。
 このように、弁体の基部の直径Dvを1.03D≦Dvとすることで、テーパ面を比較的広域に亘って形成し、蒸気流が弁座側に付着したアニュラーフロー(環状流れ)をより確実に実現することができる。また、弁体の基部の直径DvをDv≦1.10Dとすることで、弁体の外径を適度な大きさにして、蒸気弁の大型化を防止することができるとともに、過度に広域に亘って形成されたテーパ面で整流された蒸気流がテーパ面から弁頭部に移行する部分において急激に向きを変える際に生じる剥離を防止することができる。
 本発明によれば、弁体の弁頭部の曲率半径rをr>0.6D(ただし、Dは弁座のシート径)に設定したので、弁座と弁体との間の流路面積が大きく、圧力損失が小さいことから、蒸気供給量を確保するための弁体のリフト量を小さくすることができる。よって、蒸気タービン等への蒸気の供給を迅速に遮断することができる。
 また、本発明によれば、弁頭部よりも弁体移動方向側に傾斜したテーパ面を弁頭部の上流側に設けたので、蒸気は、弁座と弁体との間の流路を通過する前に、テーパ面によって弁座移動方向に向かうように整流される。よって、弁座と弁体との間における蒸気の流線が立った状態をテーパ面によって実現可能であり、蒸気流が弁座側に付着したアニュラーフロー(環状流れ)を形成し、蒸気弁各部の振動を低減することができる。
本実施形態に係る蒸気弁の全体構成の一例を示す断面図である。 シート部周辺の弁体及び弁座の形状を示す拡大断面図である。 弁頭部とテーパ面とを含めた仮想的な曲率半径を示す断面図である。 従来の蒸気弁を模式的に示す断面図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 まず、本発明に係る蒸気弁の全体構成について説明する。図1は、本実施形態に係る蒸気弁の全体構成の一例を示す断面図である。
 図1に示すように、蒸気弁1は、主として、弁体2、弁座4、弁棒6、アクチュエータ8により構成されている。
 弁体2は、ピン5により弁棒6に固定されており、アクチュエータ8の駆動によって支点12を支点としてレバー10を矢印方向に動かすことで、弁棒6とともに上下移動するようになっている。これにより、弁座4に対する弁体2の位置は、供給すべき蒸気量に応じて、弁座4とシート位置3において接する全閉状態から、弁座4から最大リフト量だけ離れた全開状態の間で適宜調節されるようになっている。
 蒸気弁1に導入された蒸気は、蒸気弁1のケーシング14で囲まれた弁室16から、弁体2と弁座4との間に形成される環状流路を通って、矢印Aで示す方向に流れ出て、蒸気弁1の後段に配設された蒸気タービン等(不図示)に供給される。
 次に、本実施形態に係る蒸気弁1の弁体2及び弁座4の形状について説明する。図2は、シート部周辺の弁体2及び弁座4の形状を示す拡大断面図である。同図に示すように、弁体2は、シート位置3において弁座4と接触する曲率半径rの弁頭部2Aと、弁頭部2Aの上流側に設けられたテーパ面2Bとを有する。
 弁頭部2Aの曲率半径rは、弁座4のシート径(シート位置3の直径)をDとしたときにr>0.6Dを満たす。このため、シート位置3における弁座4の接線方向20は従来よりも寝ているので、弁体2と弁座4との間の流路面積が比較的大きく、圧力損失は比較的小さい。よって、蒸気供給量を確保するための弁体2のリフト量は比較的小さく、蒸気タービン等(不図示)への蒸気の供給を迅速に遮断することができる。
 なお、弁頭部2Aの曲率半径rがr>0.6Dの範囲内に設定する場合、弁座4の曲率半径Rは、例えば、0.20D≦R≦0.50Dを満たすように設定してもよい。
 一方、弁頭部2Aの上流側に設けられたテーパ面2Bは、弁頭部2Aよりも弁体2の移動方向22側に傾斜している。テーパ面2Bは、例えば、曲率半径rを有する弁頭部2Aの上流側のみを面取り加工することで形成してもよい。
 このテーパ面2Bを設けることによって、弁室16に導入された蒸気は、シート位置3を通過する前に弁座2の移動方向22に向かうように整流される。よって、弁頭部2Aの曲率半径rとシート径Dとがr>0.6Dの関係を満たし、シート位置3における弁座4の接線方向20が比較的寝ているにもかかわらず、弁体2と弁座4との間における蒸気の流線が立った状態をテーパ面2Bによって実現することができる。したがって、蒸気流が弁座4側に付着したアニュラーフロー(環状流れ)を形成し、蒸気弁1の各部の振動を低減することができる。
 また、図2に示す蒸気弁1において、弁頭部2Aの曲率半径rは、0.61D≦r≦0.80D(ただし、Dはシート径)を満たすことが好ましい。
 このように、弁頭部2Aの曲率半径rを0.61D以上とすることで、蒸気の供給をより迅速に遮断することができる。また、弁頭部2Aの曲率半径rを0.80D以下とすることで、蒸気流が弁座4側に付着したアニュラーフロー(環状流れ)を形成しやすくなり、蒸気弁1の各部の振動をより確実に低減することができる。
 また、テーパ面2Bは、シート位置3から下流側に延ばした弁座4の接線方向20に対してなす角度θが150度以上170度以下であることが好ましい。
 テーパ面2Bがシート位置3における弁座4の接線方向20に対してなす角度θが小さすぎると、シート位置3の上流側において、テーパ面2Bから弁頭部2Aに移行する部分(移行領域24)に角が立ち、該角の周辺で蒸気流の剥離が発生してしまい、かえって蒸気弁1の各部に振動が生じてしまうことがある。一方、角度θが大きすぎると、テーパ面2Bによって蒸気の流線が立つ(弁体2の移動方向に沿う)ように十分に整流することが難しい。
 そこで、角度θが150度以上170度以下に設定することで、テーパ面2Bから弁頭部2Aに移行する移行領域24における蒸気流の剥離を防止し、かつ、テーパ面2Bによって蒸気の流線が立つように確実に整流することができる。
 また、テーパ面2Bは、弁体2の弁座4に対する相対移動方向22に対してテーパ面2Bがなす角度をθとし、シート位置3における弁座4の接線方向20が弁体2の弁座4に対する相対移動方向22に対してなす角度をδとしたときに、0.3≦θ/(90-δ)≦0.4の関係を満たすことが好ましい。
 ここで、「θ/(90-δ)」は、弁体2の移動方向22に対してテーパ面2Bがなす角度θに比例し、シート位置3における弁座4の接線方向20の立ち角を意味する(90-δ)に反比例する。よって、「θ/(90-δ)」が小さいということは、テーパ面2Bが立っているか、シート位置3における弁座4の接線方向20が立っているかのいずれか(あるいはその両方)の場合を意味する。
 したがって、上述のように、θ/(90-δ)を0.4以下とすることで、テーパ面2Bによって蒸気の流線を立てるか、あるいは、シート位置3における弁座4の接線方向20を立てて、蒸気流が弁座4側に付着したアニュラーフロー(環状流れ)を確実に形成することができる。また、θ/(90-δ)を0.3以上とすることで、テーパ面2Bが過度に立ってしまい、テーパ面2Bから弁頭部2Aに移行する移行領域24において蒸気流の剥離が生じてしまうことを防止できる。なお、本実施形態では、弁頭部2Aの曲率半径rとシート径Dとの間にr>0.6Dの関係が成立するため、シート位置3における弁座4の接線方向20が過度に立ってしまう場合は考慮しなくてもよい。
 また、蒸気弁1において、弁体2の弁頭部2Aは、弁座4に接触するシート位置3よりも下流側の頭頂に円状凹部26を有し、この円状凹部26の直径をDnとしたとき、弁座4のシート径Dとの間に、0.90D≦Dn≦0.98Dの関係が成立することが好ましい。
 このように、円状凹部26の直径Dnをシート径Dの0.90倍以上にして、シート位置3の直後の下流側に円状凹部26を設けることで、蒸気流が遷音速状態となる際に発する衝撃波の影響を受けて弁体2が振動してしまうことを防止できる。また、円状凹部26の直径Dnをシート径Dの0.98倍以下にすることで、蒸気弁1の全閉時に円状凹部26のエッジが弁座4に押し付けられることによる弁体2又は弁座4の機械的損傷を防止できる。
 さらに蒸気弁1において、弁体2のテーパ面2Bよりも上流側の基部28は円筒状に形成されており、弁体2の基部28の直径をDvとしたとき、弁座4のシート径Dとの間で、1.03D≦Dv≦1.10Dの関係を満たすことが好ましい。
 このように、弁体2の基部28の直径Dvを1.03D≦Dvとすることで、テーパ面2Bを比較的広域に亘って形成し、蒸気流が弁座4側に付着したアニュラーフロー(環状流れ)をより確実に実現することができる。また、弁体2の基部28の直径DvをDv≦1.10Dとすることで、弁体2の外径を適度な大きさにして、蒸気弁1の大型化を防止することができるとともに、過度に広域に亘って形成されたテーパ面2Bで整流された蒸気流がテーパ面2Bから弁頭部2Aに移行する部分(移行領域24)において急激に向きを変える際に生じる剥離を防止することができる。
 以上説明したように、本実施形態に係る蒸気弁1では、弁体2は、弁座4と接触する弁頭部2Aの曲率半径をr、弁座4のシート径をDとしたときにr>0.6Dを満たし、弁頭部2Bの上流側において、弁頭部2Bよりも弁体2の弁座4に対する相対移動方向22側に傾斜したテーパ面2Bを有する。
 すなわち、本実施形態では、弁頭部2Aの曲率半径rのシート径Dに対する比を従来よりも大きく設定し、シート位置3における弁座4の接線方向20を従来よりも寝かせて圧力損失を小さくするとともに、テーパ面2Bを弁頭部2Aの上流側に設け、弁頭部2Aとテーパ面2Bとを含めた仮想的な曲率半径をシート径D及び弁座4の曲率半径Rに対して十分に小さくすることで、弁座4と弁体2との間における蒸気の流線が立った状態を実現し、蒸気流れを弁座側に付着させることで蒸気弁1の各部の振動を低減するようになっている。
 なお、弁頭部2Aとテーパ面2Bとを含めた仮想的な曲率半径は、図3に示すように、シート位置3に対応する弁頭部2A上の点P1、テーパ面2Bの最も上流側の点P2、弁頭部2Aの曲面の下流側終端に当たる点P3を通る仮想円の曲率半径Rvを意味する。曲率半径Rvは、上述のr、D、θ、θ/(90-δ)等のパラメータを規定することで決定されるが、弁座4のシート径Dとの間で0.10D≦Rv≦0.45Dを満たすことが好ましく、弁座4の曲率半径Rとの間で0.2R≦Rv≦0.9Rを満たすことが好ましい。このようにRvをRよりも小さくすることで、弁座に付着した安定な蒸気流を実現することができる。
 以上、本発明の一例について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、上述の実施形態では、図1に示す全体構成を有する蒸気弁1について説明したが、蒸気弁1の全体構成は、弁頭部2Aの曲率半径rがr>0.6D(ただし、Dはシート径)を満たし、弁頭部2Bよりも相対移動方向22側に傾斜したテーパ面2Bを弁頭部2Aの上流側に有する限り特に限定されず、種々の構成を採り得る。例えば、蒸気弁1は、弁棒6の先端が副弁として機能し、該副弁が弁体(主弁)2内に収納されており、最初に副弁が開いた後、主弁としての弁体2が開くような構成であってもよい。

Claims (6)

  1.  弁体を弁座に対して相対移動させることで、前記弁座と前記弁体との間の流路の面積を変化させて該流路を流れる蒸気量を調節する蒸気弁であって、
     前記弁体は、前記弁座と接触する弁頭部の曲率半径をr、前記弁座のシート径をDとしたときにr>0.6Dを満たし、前記弁頭部の上流側において、前記弁頭部よりも前記弁体の前記弁座に対する相対移動方向側に傾斜したテーパ面を有することを特徴とする蒸気弁。
  2.  前記弁頭部は、0.61D≦r≦0.80Dを満たすことを特徴とする請求項1に記載の蒸気弁。
  3.  前記テーパ面は、シート位置から下流側に延ばした前記弁座の接線方向に対してなす角度θが150度以上170度以下であることを特徴とする請求項1又は2に記載の蒸気弁。
  4.  前記テーパ面は、前記弁体の前記弁座に対する相対移動方向に対して前記テーパ面がなす角度をθとし、シート位置における前記弁座の接線方向が前記弁体の前記弁座に対する相対移動方向に対してなす角度をδとしたときに、0.3≦θ/(90-δ)≦0.4の関係を満たすことを特徴とする請求項1乃至3のいずれか一項に記載の蒸気弁。
  5.  前記弁体の前記弁頭部は、前記弁座に接触するシート位置よりも下流側の頭頂に円状凹部を有し、
     前記円状凹部の直径をDnとしたとき、前記弁座のシート径Dとの間に、0.90D≦Dn≦0.98Dの関係が成立することを特徴とする請求項1乃至4のいずれか一項に記載の蒸気弁。
  6.  前記弁体の前記テーパ面よりも上流側の基部は円筒状に形成されており、
     前記弁体の前記基部の直径をDvとしたとき、前記弁座のシート径Dとの間で、1.03D≦Dv≦1.10Dの関係を満たすことを特徴とする請求項1乃至5のいずれか一項に記載の蒸気弁。
PCT/JP2011/062510 2010-06-02 2011-05-31 蒸気弁 WO2011152409A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127028402A KR101456767B1 (ko) 2010-06-02 2011-05-31 증기 밸브
EP11789812.2A EP2578812B1 (en) 2010-06-02 2011-05-31 Steam valve
CN201180020732.1A CN102869852B (zh) 2010-06-02 2011-05-31 蒸气阀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126845 2010-06-02
JP2010126845A JP5535770B2 (ja) 2010-06-02 2010-06-02 蒸気弁

Publications (1)

Publication Number Publication Date
WO2011152409A1 true WO2011152409A1 (ja) 2011-12-08

Family

ID=45063766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062510 WO2011152409A1 (ja) 2010-06-02 2011-05-31 蒸気弁

Country Status (6)

Country Link
US (1) US20110297868A1 (ja)
EP (1) EP2578812B1 (ja)
JP (1) JP5535770B2 (ja)
KR (1) KR101456767B1 (ja)
CN (1) CN102869852B (ja)
WO (1) WO2011152409A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8827242B2 (en) 2008-10-16 2014-09-09 National Oilwell Varco, L.P. Valve cartridge for pump systems
EP2703697A1 (de) * 2012-09-04 2014-03-05 Siemens Aktiengesellschaft Kombiniertes Stell- und Schnellschlussventil für eine Strömungsmaschine
JP5951557B2 (ja) * 2013-06-13 2016-07-13 三菱日立パワーシステムズ株式会社 蒸気弁
JP6434749B2 (ja) 2013-12-27 2018-12-05 三菱重工業株式会社 排ガス還流装置及び該排ガス還流装置を備えるエンジンシステム
JP6173960B2 (ja) * 2014-03-31 2017-08-02 株式会社東芝 蒸気弁
WO2017034422A1 (es) * 2015-08-24 2017-03-02 Hernandez Leonardo Jorge Dispositivo interno para válvulas, con movimientos libres y articulados: longitudinal, circular, angular, compresión y expansión
JP6821523B2 (ja) * 2017-06-29 2021-01-27 愛三工業株式会社 内燃機関のバイパス空気量制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844909B2 (ja) 1980-02-06 1983-10-06 株式会社東芝 蒸気加減弁
JPS61248968A (ja) * 1985-04-25 1986-11-06 ウエスチングハウス エレクトリック コ−ポレ−ション 蒸気タ−ビンに用いる弁及びその製造方法
JPS62209275A (ja) * 1986-03-06 1987-09-14 Mitsubishi Heavy Ind Ltd 蒸気加減弁
JPH0287178U (ja) * 1988-12-26 1990-07-10
JPH08320074A (ja) * 1995-05-18 1996-12-03 Caterpillar Inc ポペット弁用弁境界部構造
JPH10299909A (ja) * 1997-04-25 1998-11-13 Hitachi Ltd 蒸気加減弁
JP2006063957A (ja) * 2004-08-30 2006-03-09 Toshiba Corp 蒸気弁装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297535A (en) * 1941-04-11 1942-09-29 Westinghouse Electric & Mfg Co Governing valve for prime movers
US2927737A (en) * 1952-04-12 1960-03-08 Bosch Gmbh Robert Fuel injection valves
US3415427A (en) * 1966-08-30 1968-12-10 United Steel Companies Ltd Nozzle and stopper assemblies for teeming liquid metal
JPS5454333A (en) * 1977-10-08 1979-04-28 Tokyo Shibaura Electric Co Governing valve
US4275844A (en) * 1979-11-30 1981-06-30 Caterpillar Tractor Co. Fuel injection nozzle
JPH0196466A (ja) * 1987-10-07 1989-04-14 Honda Motor Co Ltd 内燃機関用燃料噴射ノズル
US5211198A (en) * 1992-10-15 1993-05-18 Humphrey Products Company Poppet construction for valve
US5277403A (en) * 1993-05-12 1994-01-11 Dresser-Rand Company Balanced, steam control valve assembly, and a plug-type valving element therefor
JP3394661B2 (ja) * 1996-09-19 2003-04-07 株式会社日立製作所 蒸気加減弁
DE10040763A1 (de) * 2000-08-19 2002-02-28 Bosch Gmbh Robert Elektromagnetisch betätigtes Ventil, insbesondere für hydraulische Bremsanlagen in Kraftfahrzeugen
US7108244B2 (en) * 2000-11-01 2006-09-19 Elliott Turbomachinery Co., Inc. High-stability valve arrangement for a governor valve
JP4609687B2 (ja) * 2001-04-26 2011-01-12 株式会社デンソー 逆止弁およびそれを備えた燃料噴射ポンプ
JP4512428B2 (ja) * 2004-06-23 2010-07-28 財団法人電力中央研究所 圧力脈動抑制弁の交換方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844909B2 (ja) 1980-02-06 1983-10-06 株式会社東芝 蒸気加減弁
JPS61248968A (ja) * 1985-04-25 1986-11-06 ウエスチングハウス エレクトリック コ−ポレ−ション 蒸気タ−ビンに用いる弁及びその製造方法
JPS62209275A (ja) * 1986-03-06 1987-09-14 Mitsubishi Heavy Ind Ltd 蒸気加減弁
JPH0287178U (ja) * 1988-12-26 1990-07-10
JPH08320074A (ja) * 1995-05-18 1996-12-03 Caterpillar Inc ポペット弁用弁境界部構造
JPH10299909A (ja) * 1997-04-25 1998-11-13 Hitachi Ltd 蒸気加減弁
JP2006063957A (ja) * 2004-08-30 2006-03-09 Toshiba Corp 蒸気弁装置
JP4185029B2 (ja) 2004-08-30 2008-11-19 株式会社東芝 蒸気弁装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578812A4

Also Published As

Publication number Publication date
EP2578812B1 (en) 2014-06-04
CN102869852B (zh) 2015-07-22
CN102869852A (zh) 2013-01-09
US20110297868A1 (en) 2011-12-08
JP5535770B2 (ja) 2014-07-02
KR20130004349A (ko) 2013-01-09
EP2578812A1 (en) 2013-04-10
EP2578812A4 (en) 2013-10-16
KR101456767B1 (ko) 2014-10-31
JP2011252437A (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5535770B2 (ja) 蒸気弁
US8020383B2 (en) Steam valve and generator set
JP2008069779A (ja) 可変タービン
JP5951557B2 (ja) 蒸気弁
WO2018079805A1 (ja) 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン
CN1952353B (zh) 优化的喷嘴箱蒸汽通路
JPS5918588B2 (ja) 耐振動バルブ
WO2016194677A1 (ja) シール装置および回転機械
JP5535524B2 (ja) 弁装置
JP2013535615A (ja) 排気ガスターボチャージャ
CA2882237C (en) Flapper valve assembly and method of flowing air therethrough
JP5701360B2 (ja) 弁装置
JP6269855B2 (ja) 主蒸気弁、及び蒸気タービン
JP2011137462A (ja) 蒸気タービン弁の流れ案内蒸気ストレーナ
JP5611005B2 (ja) 蒸気タービン用加減弁および組合せ蒸気弁
JP5535768B2 (ja) 蒸気弁
US20170356300A1 (en) Regulating valve and turbine
JP4850736B2 (ja) エンジンの吸気ポート構造
US20180258778A1 (en) Non-axially symmetric transition ducts for combustors
JP2007154786A (ja) フランシス形水車ランナ及び水力機械
JP2018141481A (ja) バタフライ弁の弁体
JP2016061140A (ja) 蒸気弁装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020732.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2273/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011789812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE