WO2011152221A1 - 電解液供給装置 - Google Patents

電解液供給装置 Download PDF

Info

Publication number
WO2011152221A1
WO2011152221A1 PCT/JP2011/061520 JP2011061520W WO2011152221A1 WO 2011152221 A1 WO2011152221 A1 WO 2011152221A1 JP 2011061520 W JP2011061520 W JP 2011061520W WO 2011152221 A1 WO2011152221 A1 WO 2011152221A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
electrolyte
pipe
electrolytic solution
mass flow
Prior art date
Application number
PCT/JP2011/061520
Other languages
English (en)
French (fr)
Inventor
山田 誠
杉山 雅彦
邦賢 若松
聡紀 三浦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2012518325A priority Critical patent/JP5482895B2/ja
Priority to KR1020127034053A priority patent/KR101433502B1/ko
Priority to US13/701,128 priority patent/US20130068327A1/en
Priority to EP11789630.8A priority patent/EP2579361A4/en
Priority to CN201180027240.5A priority patent/CN102918682B/zh
Publication of WO2011152221A1 publication Critical patent/WO2011152221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86035Combined with fluid receiver

Definitions

  • the present invention relates to an electrolyte supply device.
  • JPH8-236144A describes a conventional electrolyte supply device that supplies an electrolyte stored in a main tank to a battery tank of a lead storage battery via a sub tank.
  • a liquid level sensor is provided inside the sub tank, and the remaining amount of the electrolyte in the sub tank is detected by the liquid level sensor.
  • the present invention has been made paying attention to such problems, and an object thereof is to suppress impurities such as moisture and dust in the air from being mixed into the electrolytic solution during tank replacement.
  • the present invention provides an electrolytic solution supply apparatus comprising: a tank for storing an electrolytic solution; a supplied portion to which an electrolytic solution in the tank is supplied; a pipe connecting the tank and the supplied portion; A gas pumping unit that pumps an inert gas into the tank and a pipe so that the tank electrolyte is supplied to the supplied part through the pipe by increasing the internal pressure of the tank. And a mass flow meter for detecting a mass flow rate of the flowing fluid.
  • FIG. 1 is a schematic configuration diagram of an electrolytic solution supply apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an electrolytic solution supply apparatus 1 according to an embodiment of the present invention that supplies an electrolytic solution to a battery case of a lithium ion secondary battery.
  • Examples of the battery case of the lithium ion secondary battery include a laminate film package.
  • the electrolyte supply apparatus 1 includes a main tank 2, a high pressure gas tank 3, a sub tank 4, an electrolyte injector 5, a gas supply pipe 6 connecting the main tank 2 and the high pressure gas tank 3, a main tank 2 and a sub tank. 4, an electrolyte pressure feeding pipe 7, a mass flow meter 8, a vacuum chamber 9, and a controller 10 are provided.
  • the main tank 2 is provided with a removable upper lid 21 and stores the electrolyte supplied to the battery case of the lithium ion secondary battery.
  • the bottom wall 22 of the main tank 2 has a conical shape so that contaminants such as dust, dust, and dust mixed in the electrolyte settle together in the center of the bottom wall 22.
  • the electrolytic solution is obtained by dissolving a lithium salt in a volatile combustible organic solvent that does not contain moisture. If moisture as an impurity is mixed in the electrolytic solution, the moisture may react with the current collector metal of the lithium ion secondary battery, which may accelerate deterioration of the lithium ion secondary battery. Therefore, the main tank 2 is prefilled with an inert gas that does not easily contain moisture so that air (oxygen) containing moisture does not enter the main tank 2. In this embodiment, nitrogen is used as the inert gas.
  • the high-pressure gas tank 3 stores high-pressure nitrogen gas to be supplied into the main tank 2 through the gas supply pipe 6. Nitrogen gas is supplied to the inside of the main tank 2 using the pressure difference with the main tank 2 to increase the internal pressure of the main tank 2, and the electrolyte stored in the main tank 2 passes through the electrolyte feeding pipe 7. To the sub-tank 4.
  • the sub tank 4 and the electrolyte injector 5 are installed inside a chamber 9 whose interior is kept in a vacuum.
  • a vacuum pump 91 is connected to the chamber 9 for reducing the pressure inside the chamber 9 and keeping the inside vacuum.
  • the sub-tank 4 temporarily stores the electrolyte that has been pumped through the electrolyte pumping pipe 7 in order to supply it to the electrolyte injector 5. Even if a gas such as nitrogen is pumped by temporarily storing the electrolyte solution in the sub tank 4, the gas is directed upward of the sub tank 4 and the electrolyte solution is directed downward of the sub tank 4.
  • the electrolytic solution can be separated.
  • a gas such as nitrogen in the electrolytic solution temporarily stored in the sub tank 4 is actively sent into the chamber 9 having a low atmospheric pressure. Can be discharged. Therefore, a gas such as nitrogen in the electrolyte temporarily stored in the sub tank 4 can be more effectively separated from the electrolyte.
  • the electrolytic solution injector 5 injects the electrolytic solution supplied from the sub tank 4 into a battery case of a lithium ion secondary battery fixed to a jig.
  • the main tank 2 is replenished with the electrolytic solution, or the main tank 2 is filled with the electrolytic solution. Need to be replaced.
  • the electrolyte solution comes into contact with air during the replenishment, and there is a possibility that moisture and contamination in the air may be mixed as impurities. If moisture is mixed in the electrolytic solution, the lithium ion secondary battery may be quickly deteriorated as described above. If the contamination is mixed, the contaminated portion may be swollen and the appearance may be deteriorated. Therefore, it is preferable to replace the main tank 2 with another main tank 2 that has been filled with the electrolyte in advance when the remaining amount is low.
  • the liquid level sensor is removed from the old main tank 2 when the main tank 2 is replaced. It is necessary to attach the surface sensor to the new main tank 2. As a result, when the liquid level sensor is attached, the electrolytic solution comes into contact with air, and there is a possibility that moisture and contamination in the air may be mixed as impurities.
  • the remaining amount of the electrolytic solution in the main tank 2 is detected by providing the mass flow meter 8 in the electrolytic solution feeding pipe 7.
  • An electrolyte suction portion 71 formed at one end of the electrolyte solution feeding pipe 7 is disposed inside the main tank 2 and is not bottomed so as not to pump the electrolyte solution together with contaminants precipitated on the bottom wall 22 of the main tank 2. It is arranged slightly above the wall 22.
  • the mass flow meter 8 is provided in the electrolyte feeding pipe 7 and detects the mass of the fluid per unit time flowing through the electrolyte feeding pipe 7 (hereinafter referred to as “mass flow rate”) [kg / s].
  • mass flow rate the mass of the fluid per unit time flowing through the electrolyte feeding pipe 7
  • a control valve 72 is provided in the electrolyte pressure feeding pipe 7 before and after the mass flow meter 8.
  • the control valve 72 is opened and closed based on the detection value of the mass flow meter 8. Specifically, when it is determined that nitrogen is flowing through the electrolytic solution feeding pipe 7 based on the detection value of the mass flow meter 8, that is, when the detection value of the mass flow meter 8 is smaller than a predetermined value. At the same time, both control valves 72 are closed. Thereby, it is possible to suppress a gas such as nitrogen from being pumped to the sub tank 4.
  • the controller 10 includes a microcomputer having a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the mass flow rate detected by the mass flow meter 8 is input to the controller 10.
  • the controller 10 opens and closes the control valve 72 based on the input mass flow rate. Specifically, as described above, when the detected value of the mass flow meter 8 becomes smaller than a predetermined value, the control valve 72 is closed.
  • the electrolytic solution in the main tank 2 is pumped to the supplied part such as the sub tank 4, and the electrolysis in the main tank 2 is performed.
  • the remaining amount of the liquid was detected by a mass flow meter 8 provided in the electrolyte pressure feeding pipe 7.
  • the remaining amount of the electrolytic solution in the main tank 2 can be detected simply by replacing the old main tank 2 with the new main tank 2. Therefore, unlike the case where the remaining amount of the electrolytic solution in the main tank 2 is detected by the liquid level sensor, the mounting operation of the liquid level sensor becomes unnecessary, and the electrolytic solution does not come into contact with air. Therefore, since it can suppress that the water
  • the gas in the electrolyte can be actively discharged into the chamber 9 having a low atmospheric pressure, so that the electrolysis can be performed more effectively. Gas can be separated from the liquid.
  • the detected value of the mass flow meter 8 becomes smaller than a predetermined value at which it can be determined that nitrogen is flowing in the electrolyte solution feeding pipe 7, it is provided in the electrolyte solution feeding pipe 7 before and after the mass flow meter 8.
  • the control valve 72 was closed. Thereby, it is possible to suppress a gas such as nitrogen from being pumped to the sub tank 4.
  • a Coriolis type mass flow meter 8 was used as the mass flow meter 8.
  • a hot-wire mass flow meter 8 can be used, but it is more preferable to use a Coriolis type mass flow meter for the following reason.
  • the mass flow rate is detected by inserting a metal thermocouple into the electrolyte feeding pipe 7, so that the thermocouple is corroded by the acidic electrolyte and the mass flow rate can be measured. This is because it may disappear.
  • the volume flow rate does not change even when liquid electrolyte passes through or nitrogen passes through, so the effect of this embodiment cannot be obtained.
  • the bottom wall 22 of the main tank 2 has a conical shape. Thereby, contaminants such as dust, dust, and dust mixed in the electrolytic solution can be collected and settled in the center of the bottom wall 22.
  • the electrolyte suction portion 71 of the electrolyte solution feeding pipe 7 was arranged slightly above the bottom wall 22 of the main tank 2 so as not to pump the electrolyte solution together with the contamination precipitated on the bottom wall 22 of the main tank 2. Thereby, since contamination can be prevented from being mixed into the electrolyte solution pumped to the supplied part such as the sub tank 4, the appearance defect of the lithium ion battery can be further suppressed.
  • high-pressure nitrogen gas is pumped to the main tank 2 using the differential pressure between the high-pressure gas tank 3 and the main tank 2, but may be pumped using a pump or the like.
  • the shape of the bottom wall 22 of the main tank 2 is not restricted to this,
  • the dust mixed with electrolyte solution, dust, dust, etc. It is only necessary to incline at a predetermined angle so that the contaminants are settled together at the bottom of the main tank 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Hybrid Cells (AREA)

Abstract

 本発明は電解液供給装置であって、電解液を貯蔵するタンクと、タンクの電解液が供給される被供給部と、タンクと被供給部とを接続する配管と、タンクの内部圧力を高めることでタンクの電解液が配管を介して被供給部に供給されるように、タンクの内部に不活性ガスを圧送するガス圧送部と、配管に設けられ、その配管を流れる流体の質量流量を検出する質量流量計と、を備えることを特徴とする。

Description

電解液供給装置
  本発明は電解液供給装置に関する。
 JPH8-236144Aには、従来の電解液供給装置として、メインタンクに貯蔵した電解液を、サブタンクを経由させて鉛蓄電池の電槽に供給するものが記載されている。この従来の電解液供給装置では、サブタンクの内部に液面センサを設け、サブタンク内の電解液の残量を液面センサによって検出していた。
 電解液を貯蔵するタンク内の底には、電解液中の固体不純物が沈殿している可能性がある。そのため、不純物を含んだ電解液を供給しないように、タンク内の電解液の残量が所定量より少なくなったら古いタンクを新しいタンクに交換して電解液の補充を行うことが好ましく、それにはタンク内の電解液の残量を検出する必要がある。
 しかしながら、従来のように液面センサによってタンク内の電解液の残量を検出しようとすると、タンク交換時に古いタンクに取り付けられていた液面センサを新しいタンクに取り付ける作業が必要になる。そうすると、この交換作業時にタンク内の電解液が空気と接してしまい、空気中の水分やゴミなどの不純物が電解液に混入し、電池の性能を悪化させるという問題点がある。
  本発明はこのような問題点に着目してなされたものであり、タンク交換時に空気中の水分やゴミなどの不純物が電解液に混入するのを抑制することを目的とする。
 上記目的を達成するため、本発明は、電解液供給装置が、電解液を貯蔵するタンクと、タンクの電解液が供給される被供給部と、タンクと被供給部とを接続する配管と、タンクの内部圧力を高めることでタンクの電解液が配管を介して被供給部に供給されるように、タンクの内部に不活性ガスを圧送するガス圧送部と、配管に設けられ、その配管を流れる流体の質量流量を検出する質量流量計と、を備えることを特徴とする。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の一実施形態による電解液供給装置の概略構成図である。
 以下、図面等を参照して本発明の一実施形態について説明する。
 図1は、リチウムイオン二次電池の電槽に電解液を供給する本発明の一実施形態による電解液供給装置1の概略構成図である。リチウムイオン二次電池の電槽としては、例えばラミネートフィルムパッケージなどが挙げられる。
 電解液供給装置1は、メインタンク2と、高圧ガスタンク3と、サブタンク4と、電解液注入器5と、メインタンク2と高圧ガスタンク3とを接続するガス供給配管6と、メインタンク2とサブタンク4とを接続する電解液圧送配管7と、質量流量計8と、真空チャンバ9と、コントローラ10と、を備える。
 メインタンク2は取り外し可能な上蓋21を備え、リチウムイオン二次電池の電槽に供給する電解液を貯蔵する。メインタンク2の底壁22は、電解液に混入したゴミやチリ、埃などのコンタミが底壁22の中央にまとまって沈殿するように、円錐状となっている。
 電解液は、水分を含まない揮発性がある可燃性の有機溶媒にリチウム塩を溶解させたものである。電解液に不純物としての水分が混入すると、その水分がリチウムイオン二次電池の集電体金属と反応を起こすなどしてリチウムイオン二次電池の劣化を早めるおそれがある。そのため、メインタンク2には、メインタンク2に水分を含む空気(酸素)が混入しないように、水分を含みにくい不活性ガスが予め充填されている。本実施形態では不活性ガスとして窒素を使用している。
 高圧ガスタンク3は、ガス供給配管6を介してメインタンク2の内部に供給するための高圧の窒素ガスを貯蔵する。メインタンク2との差圧を利用してメインタンク2の内部に窒素ガスが供給されることでメインタンク2の内部圧力が高まり、メインタンク2に貯蔵された電解液が電解液圧送配管7を介してサブタンク4に圧送される。
 サブタンク4及び電解液注入器5は、内部が真空に保たれたチャンバ9の内部に設置される。チャンバ9には、チャンバ9内を減圧して内部を真空に保つための真空ポンプ91が接続される。
 サブタンク4は、電解液圧送配管7を介して圧送されてきた電解液を、電解液注入器5に供給するために一時的に貯蔵する。サブタンク4によって一時的に電解液を貯蔵することで、窒素等の気体が圧送されてきた場合であっても、気体はサブタンク4の上方へ、電解液はサブタンク4の下方に向かうので、気体と電解液とを分離することができる。
 また、サブタンク4を内部が真空に保たれたチャンバ9の内部に設置することで、サブタンク4に一時的に貯蔵された電解液中の窒素等の気体を、気圧の低いチャンバ9内に積極的に排出させることができる。そのため、サブタンク4に一時的に貯蔵された電解液中の窒素等の気体を、より効果的に電解液から分離することができる。
 電解液注入器5は、サブタンク4から供給された電解液を、治具に固定されたリチウムイオン二次電池の電槽に注入する。
 ところで、メインタンク2に貯蔵された電解液の量が少なくなったら、そのメインタンク2に電解液を補充するか、又は、そのメインタンク2を電解液が満タンにされた別のメインタンク2に交換する必要がある。
 しかしながら、メインタンク2の上蓋21を取り外してメインタンク2に電解液を補充する方法では、補充中に電解液が空気と接してしまい、空気中の水分やコンタミが不純物として混入するおそれがある。電解液に水分が混入すると、前述したようにリチウムイオン二次電池の劣化を早めるおそれがあり、コンタミが混入すると、コンタミが混入した部分が膨れて見えるなどして外観不良となるおそれがある。そのため、残量が少なくなったらメインタンク2を予め電解液を満タンにした別のメインタンク2に交換する方法のほうが望ましい。
 メインタンク2を交換するときは、メインタンク2の電解液をできるだけ使い切った後に交換したい。しかしながら、メインタンク2の底壁22の近傍には、電解液に混入したコンタミが沈殿しているおそれがある。そのため、コンタミが混入した電解液を圧送しないように、残量が所定量を切ったら交換するのが望ましく、それにはメインタンク2の電解液の残量を検出する必要がある。
 ここで、例えばメインタンク2の内部に液面センサを設けて電解液の残量を検出しようとすると、メインタンク2を交換するときに、古いメインタンク2から液面センサを取り外し、取り外した液面センサを新しいメインタンク2に取り付ける必要がある。そうすると、結局液面センサの取り付け時に電解液が空気と接してしまい、空気中の水分やコンタミが不純物として混入するおそれがある。
 そこで本実施形態では、電解液圧送配管7に質量流量計8を設けることで、メインタンク2の電解液の残量を検出することにしたのである。
 電解液圧送配管7の一端に形成される電解液吸込部71は、メインタンク2の内部に配置されるとともに、メインタンク2の底壁22に沈殿したコンタミごと電解液を圧送しないように、底壁22よりもやや上方に配置される。
 質量流量計8は、電解液圧送配管7に設けられ、電解液圧送配管7を流れる単位時間あたりの流体の質量(以下「質量流量」という。)[kg/s]を検出する。メインタンク2の電解液の残量が減って液面が電解液圧送配管7の電解液吸込部71よりも低くなると、電解液圧送配管7に窒素が圧送されることになるので、質量流量計8の検出値が小さくなる。したがって、質量流量計8の検出値に基づいて、電解液の残量が所定量より少なくなったか否かを判断することができる。なお、本実施形態では質量流量計8としてコリオリ式の質量流量計8を使用している。
 質量流量計8の前後の電解液圧送配管7には制御弁72が設けられる。制御弁72は、質量流量計8の検出値に基づいて開閉される。具体的には、質量流量計8の検出値に基づいて電解液圧送配管7に窒素が流れていると判断されたとき、すなわち、質量流量計8の検出値が所定値よりも小さくなったときに、両制御弁72が閉じられる。これにより、サブタンク4に窒素等の気体が圧送されるのを抑制することができる。
 コントローラ10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ10には、質量流量計8で検出した質量流量が入力される。コントローラ10は、入力された質量流量に基づいて制御弁72を開閉する。具体的には、前述したように、質量流量計8の検出値が所定値よりも小さくなったときに制御弁72を閉じる。
 以上説明した本実施形態によれば、メインタンク2に窒素などの不活性ガスを供給することによって、メインタンク2の電解液をサブタンク4などの被供給部に圧送するとともに、メインタンク2の電解液の残量を電解液圧送配管7に設けた質量流量計8によって検出することにした。
 これにより、電解液圧送配管7を流れる流体が電解液から窒素ガスに変わったことを質量流量計8によって検出することができる。メインタンク内の電解液の液面が電解液吸込部71よりも低くなると、電解液圧送配管7には窒素ガスが流れる。そのため、電解液圧送配管7に窒素ガスが流れればタンク内の電解液の液面が電解液吸込部71の位置よりも低くなったと判断でき、タンク内の電解液の残量が所定量以下になったと判断できる。
 そのため、メインタンク2を交換するときに、単純に古いメインタンク2を新しいメインタンク2に交換するだけで、メインタンク2内の電解液の残量を検出することができる。したがって、液面センサによってメインタンク2内の電解液の残量を検出するものと異なり、液面センサの取り付け作業が不要になるので、電解液が空気と接することもない。よって、メインタンク2内の電解液に空気中の水分やコンタミが混入するのを抑制できるので、リチウムイオン電池の劣化(出力低下や容量低下)や外観不良を抑制することができる。
 また、メインタンク2の電解液をサブタンク4などの被供給部に一時的に貯蔵することで、窒素等の気体が圧送されてきた場合であっても、気体はサブタンク4の上方へ、電解液はサブタンク4の下方に向かうので、気体と電解液とを分離することができる。
 また、サブタンク4を内部が真空に保たれたチャンバ9の内部に設置することで、電解液中の気体を気圧の低いチャンバ9内へ積極的に排出することができるので、より効果的に電解液から気体を分離することができる。
 また、質量流量計8の検出値が、電解液圧送配管7に窒素が流れていると判断できる所定値よりも小さくなったときは、質量流量計8の前後の電解液圧送配管7に設けられた制御弁72を閉じることとした。これにより、サブタンク4に窒素等の気体が圧送されるのを抑制することができる。
 また、質量流量計8としてコリオリ式の質量流量計8を使用した。質量流量計8としては、熱線式の質量流量計8を使用することも可能であるが、以下の理由によりコリオリ式の質量両流計を使用したほうがより好ましい。
 すなわち、熱線式の場合は、電解液圧送配管7の内部に金属製の熱電対を挿入することによって質量流量を検出するので、酸性の電解液によって熱電対が腐食し、質量流量の測定ができなくなる可能性があるからである。なお、体積流量計では、液体である電解液が通過しても、気体である窒素が通過しても体積流量に変化はないので、本実施形態の効果は得られない。
 また、メインタンク2の底壁22を円錐状とした。これにより、電解液に混入したゴミやチリ、埃などのコンタミが底壁22の中央にまとまって沈殿させることができる。
 また、電解液圧送配管7の電解液吸込部71を、メインタンク2の底壁22に沈殿したコンタミごと電解液を圧送しないように、メインタンク2の底壁22よりもやや上方に配置した。これにより、サブタンク4などの被供給部に圧送される電解液にコンタミが混入するのを抑制できるので、リチウムイオン電池の外観不良をより一層抑制することができる
 以上、この発明を特定の実施形態を通じて説明してきたが、この発明は上記実施形態に限定されるものではない。当業者にとっては、本発明の技術的範囲で上記実施形態にさまざまな修正あるいは変更を加えることが可能である。
 例えば、上記実施形態では高圧ガスタンク3とメインタンク2との差圧を利用して高圧の窒素ガスをメインタンク2に圧送していたが、ポンプ等を用いて圧送しても良い。
 また、上記実施形態では、メインタンク2の底壁22を円錐状としたが、メインタンク2の底壁22の形状はこれに限られるものではなく、電解液に混入したゴミやチリ、埃などのコンタミがメインタンク2の底にまとまって沈殿するように、所定の角度で傾斜していれば良い。
 以上の説明に関して2010年6月2日を出願日とする日本国における特願2010-126783号の内容をここに引用により組み込む。

Claims (5)

  1.  電解液を貯蔵するタンク(2)と、
     前記タンク(2)の電解液が供給される被供給部(4)と、
     前記タンク(2)と前記被供給部(4)とを接続する配管(7)と、
     前記タンク(2)の内部圧力を高めることで前記タンク(2)の電解液が前記配管(7)を介して前記被供給部(4)に供給されるように、前記タンク(2)の内部に不活性ガスを圧送するガス圧送部(3)と、
     前記配管(7)に設けられ、その配管(7)を流れる流体の質量流量を検出する質量流量計(8)と、
    を備える電解液供給装置。
  2.  前記被供給部(4)は、減圧された容器(9)の内部に設置される、請求項1に記載の電解液供給装置。
  3.  前記配管(7)に設けられ、前記質量流量計(8)の検出値が、その配管(7)に不活性ガスが流れていると判断できる所定値よりも小さくなったときに閉じられる制御弁(72)を備える、請求項1に記載の電解液供給装置。
  4.  前記質量流量計(8)は、コリオリ式の質量流量計である、請求項1に記載の電解液供給装置。
  5.  前記タンク(2)は、そのタンク(2)の底に電解液中の固体不純物がまとまって沈殿するように、所定の角度で傾斜する底壁(22)を備え、
     前記配管(7)の一端(71)は、前記固体不純物を前記被供給部(4)に供給しないように、前記底壁(22)よりも上方の前記タンク(2)内に配置される、請求項1に記載の電解液供給装置。
PCT/JP2011/061520 2010-06-02 2011-05-19 電解液供給装置 WO2011152221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012518325A JP5482895B2 (ja) 2010-06-02 2011-05-19 電解液供給装置
KR1020127034053A KR101433502B1 (ko) 2010-06-02 2011-05-19 전해액 공급 장치
US13/701,128 US20130068327A1 (en) 2010-06-02 2011-05-19 Electrolyte supplying apparatus
EP11789630.8A EP2579361A4 (en) 2010-06-02 2011-05-19 DEVICE FOR PROVIDING AN ELECTROLYTIC SOLUTION
CN201180027240.5A CN102918682B (zh) 2010-06-02 2011-05-19 电解液供给装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126783 2010-06-02
JP2010126783 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152221A1 true WO2011152221A1 (ja) 2011-12-08

Family

ID=45066600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061520 WO2011152221A1 (ja) 2010-06-02 2011-05-19 電解液供給装置

Country Status (6)

Country Link
US (1) US20130068327A1 (ja)
EP (1) EP2579361A4 (ja)
JP (1) JP5482895B2 (ja)
KR (1) KR101433502B1 (ja)
CN (1) CN102918682B (ja)
WO (1) WO2011152221A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751467A (zh) * 2012-07-11 2012-10-24 奇瑞汽车股份有限公司 一种动力电池的自动称重真空注液系统及其注液方法
JP2014216285A (ja) * 2013-04-30 2014-11-17 日産自動車株式会社 注液システム
CN109307156A (zh) * 2017-07-27 2019-02-05 天津金牛电源材料有限责任公司 一种电解液自动输送系统
WO2021039998A1 (ja) * 2019-08-30 2021-03-04 京セラ株式会社 二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037760A (zh) * 2018-06-22 2018-12-18 王振波 一种可维护锂离子电池及其维护方法
KR20240017698A (ko) * 2022-08-01 2024-02-08 주식회사 엘지에너지솔루션 액체보관용기 내 액체의 잔량 측정방법 및 측정장치
CN117445757B (zh) * 2023-10-23 2024-05-14 安徽能通新能源科技有限公司 一种基于能量测量技术的锂电池容量管理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236144A (ja) 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd 鉛蓄電池の製造方法
JPH1196992A (ja) * 1997-09-22 1999-04-09 Toshiba Corp 電解液注入装置、電解液注入方法及び電池
JPH11126598A (ja) * 1997-10-22 1999-05-11 Enakkusu Kk 電解液注入装置
JP2001110400A (ja) * 1999-10-04 2001-04-20 Nec Mobile Energy Kk 電解液注入装置および電解液注入方法
JP2002340632A (ja) * 2001-05-15 2002-11-27 Tlv Co Ltd 流量計
JP2007173063A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd 扁平形電池の製造方法およびその製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676404A (en) * 1983-10-17 1987-06-30 Nippon Zeon Co., Ltd. Method and apparatus for feeding drug liquid from hermetic returnable can
CA2017588C (en) * 1991-08-16 1997-03-18 Hans Stedfeldt Method and an improved apparatus for separating solid particles from a liquid
GB9409914D0 (en) * 1994-05-18 1994-07-06 Aabh Patent Holdings Improvements relating to electro-chemical cell housings
JP4831875B2 (ja) * 2001-03-01 2011-12-07 トヨタ自動車株式会社 水素ガス生成装置
US20030098069A1 (en) * 2001-11-26 2003-05-29 Sund Wesley E. High purity fluid delivery system
JP4625232B2 (ja) * 2002-06-20 2011-02-02 九州電力株式会社 電池の注液方法、電池の注液装置、および、電池
US7104272B2 (en) * 2002-10-30 2006-09-12 Club Car, Inc. Vehicle battery fluid supply system with vacuum source
KR20050118235A (ko) * 2003-04-14 2005-12-15 젠셀 코포레이션 연료 전지에 전해질을 첨가하기 위한 장치 및 방법
JP4222868B2 (ja) * 2003-04-23 2009-02-12 パナソニック株式会社 密閉型電池の電解液注液方法および電解液注液装置
CN101633429A (zh) * 2009-08-18 2010-01-27 王庆生 一种容易沉淀和排放水垢杂尘物的饮水容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236144A (ja) 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd 鉛蓄電池の製造方法
JPH1196992A (ja) * 1997-09-22 1999-04-09 Toshiba Corp 電解液注入装置、電解液注入方法及び電池
JPH11126598A (ja) * 1997-10-22 1999-05-11 Enakkusu Kk 電解液注入装置
JP2001110400A (ja) * 1999-10-04 2001-04-20 Nec Mobile Energy Kk 電解液注入装置および電解液注入方法
JP2002340632A (ja) * 2001-05-15 2002-11-27 Tlv Co Ltd 流量計
JP2007173063A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd 扁平形電池の製造方法およびその製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579361A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751467A (zh) * 2012-07-11 2012-10-24 奇瑞汽车股份有限公司 一种动力电池的自动称重真空注液系统及其注液方法
JP2014216285A (ja) * 2013-04-30 2014-11-17 日産自動車株式会社 注液システム
CN109307156A (zh) * 2017-07-27 2019-02-05 天津金牛电源材料有限责任公司 一种电解液自动输送系统
CN109307156B (zh) * 2017-07-27 2020-08-07 天津金牛电源材料有限责任公司 一种电解液自动输送系统
WO2021039998A1 (ja) * 2019-08-30 2021-03-04 京セラ株式会社 二次電池

Also Published As

Publication number Publication date
US20130068327A1 (en) 2013-03-21
CN102918682B (zh) 2015-06-03
JPWO2011152221A1 (ja) 2013-07-25
EP2579361A1 (en) 2013-04-10
EP2579361A4 (en) 2014-02-19
JP5482895B2 (ja) 2014-05-07
CN102918682A (zh) 2013-02-06
KR20130040948A (ko) 2013-04-24
KR101433502B1 (ko) 2014-08-22

Similar Documents

Publication Publication Date Title
JP5482895B2 (ja) 電解液供給装置
TW202010875A (zh) 氣體製造裝置及氣體製造方法
KR101750647B1 (ko) 액 공급 장치 및 기판 처리 장치
WO2017206618A1 (zh) 液面高度自动维持装置及方法
JP2017020102A (ja) 電解液供給生成装置
TWI308602B (en) Fluorine gas generator
JP2016172587A (ja) ボトル給液システム及びボトルキャップアダプター
KR100611476B1 (ko) 가스 발생장치
EP3666438B1 (en) Reduction gas supply device and method for manufacturing completely processed workpiece
KR102564577B1 (ko) 금속 연료 수소발생장치용 금속 연료 공급장치
US20240174532A1 (en) Electrolyzed water spraying device
JP4888209B2 (ja) 鉛蓄電池の電槽化成方法
TW200528578A (en) Apparatus and process for refilling a bubbler
US9914632B2 (en) Methods and apparatus for liquid chemical delivery
JP2020077569A (ja) 燃料電池システム
JP2000015259A (ja) 次亜塩素酸生成装置
JP2011106421A (ja) 燃料供給装置
KR20130033699A (ko) 연료탱크의 연료레벨 판정 방법
JP5824256B2 (ja) 電解装置
JP6540593B2 (ja) 欠陥検査装置、および、欠陥検査方法
WO2023098486A1 (zh) 冰箱及其控制方法
CN219407835U (zh) 一种储罐内原料的保压封存系统
JP2003007286A (ja) 鉛蓄電池用補水栓
CN214650835U (zh) Pfa供液压力储液罐
JP2014145665A (ja) 燃料タンク構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027240.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789630

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012518325

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13701128

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127034053

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011789630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789630

Country of ref document: EP