WO2011148814A1 - Scrシステム - Google Patents

Scrシステム Download PDF

Info

Publication number
WO2011148814A1
WO2011148814A1 PCT/JP2011/061217 JP2011061217W WO2011148814A1 WO 2011148814 A1 WO2011148814 A1 WO 2011148814A1 JP 2011061217 W JP2011061217 W JP 2011061217W WO 2011148814 A1 WO2011148814 A1 WO 2011148814A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
scr
nox sensor
exhaust gas
nox
Prior art date
Application number
PCT/JP2011/061217
Other languages
English (en)
French (fr)
Inventor
貴夫 小野寺
真治 原
智之 上條
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45003805&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011148814(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US13/699,491 priority Critical patent/US9080489B2/en
Priority to CN201180025602.7A priority patent/CN102918245B/zh
Priority to EP11786513.9A priority patent/EP2578861B1/en
Publication of WO2011148814A1 publication Critical patent/WO2011148814A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an SCR system that reduces NOx in engine exhaust gas using urea water, and more particularly to an SCR system that can accurately detect NOx concentration regardless of the operating state of the engine.
  • An SCR system using an SCR (Selective Catalytic Reduction) device has been developed as an exhaust gas purification system for purifying NOx in exhaust gas of a diesel engine.
  • This SCR system supplies urea water upstream of the exhaust gas of the SCR device, generates ammonia by the heat of the exhaust gas, and reduces and purifies NOx on the SCR catalyst by this ammonia (for example, patents) Reference 1).
  • urea water injection is controlled according to the NOx concentration in the exhaust gas.
  • a NOx sensor is provided in the exhaust pipe.
  • the NOx sensor after removal of the O 2 in the exhaust gas, the exhaust gas that O 2 and NOx in the exhaust gas to remove is decomposed into N 2 and O 2, to decompose the NOx into N 2 and O 2
  • the NOx concentration is detected by detecting the O 2 concentration therein.
  • the NOx sensor has a characteristic that the detected value of the NOx concentration varies depending on the pressure.
  • the NOx sensor is designed to detect the NOx concentration at atmospheric pressure (1 atm). Therefore, if the NOx concentration is measured under a pressure greatly different from the atmospheric pressure, an error in the detected value of the NOx concentration becomes large. There is a problem that the detected value of the NOx concentration increases as the pressure increases.
  • the NOx sensor used in the SCR system is provided in the exhaust pipe of the engine. Since the pressure in the exhaust pipe of the engine, that is, the pressure of the exhaust gas varies greatly depending on the operating state of the engine, the NOx concentration is measured by the NOx sensor. There is a problem that it cannot be detected accurately.
  • the NOx concentration detected by the NOx sensor is used for urea water injection amount control and OBD (On-Board Diagnostics) diagnosis (self-fault diagnosis). Therefore, if the NOx concentration cannot be detected accurately, the urea water injection amount is not normally controlled, and the urea water injection is performed with an excessive injection amount. The problem that a rate falls will arise. Furthermore, there is a problem that the self-failure diagnosis cannot be normally performed.
  • OBD On-Board Diagnostics
  • an object of the present invention is to provide an SCR system capable of solving the above-described problems and accurately detecting the NOx concentration regardless of the operating state of the engine.
  • an SCR (selective reduction catalyst) device provided in an exhaust pipe of an engine, a dosing valve for injecting urea water upstream of the SCR device,
  • an SCR system comprising: a NOx sensor provided in the exhaust pipe; and a urea water injection control unit that controls a urea water injection amount in accordance with a detected value of the NOx concentration detected by the NOx sensor
  • the NOx sensor is A NOx sensor pressure, which is a pressure in the exhaust pipe at a provided position, and a NOx sensor detected by the NOx sensor are corrected according to the NOx sensor pressure estimated by the pressure estimating unit.
  • a NOx concentration detection value correction unit is
  • the NOx sensor is provided on the upstream side of the SCR device, and the pressure estimating unit adds the fuel flow rate obtained from the engine intake air flow rate and the engine speed and the fuel injection amount to obtain exhaust gas.
  • An exhaust gas flow rate estimation unit that estimates a flow rate, an exhaust gas specific volume estimation unit that estimates a specific volume of exhaust gas based on an SCR inlet temperature that is an exhaust gas temperature at the inlet of the SCR device, and an atmospheric pressure; Based on the exhaust gas flow rate estimated by the exhaust gas flow rate estimation unit, the specific volume of exhaust gas estimated by the exhaust gas specific volume estimation unit, and the SCR inlet temperature, the difference between the pressure at the inlet of the SCR device and the atmospheric pressure
  • An SCR differential pressure estimator for estimating pressure, a NOx sensor pressure estimator for estimating NOx sensor pressure by adding atmospheric pressure to the differential pressure estimated by the SCR differential pressure estimator, It may be provided.
  • an SCR system capable of accurately detecting the NOx concentration regardless of the operating state of the engine.
  • (A), (b) is a schematic block diagram of the SCR system which concerns on one embodiment of this invention. It is an input-output block diagram in the SCR system of FIG. In this invention, it is a graph showing the relationship of the error of the detected value of NOx density
  • an SCR system 100 includes a SCR device 103 provided in an exhaust pipe 102 of an engine E, and a dosing that injects urea water upstream of the SCR device 103 (upstream side of exhaust gas).
  • a DCU Dosing Control Unit
  • a DOC (Diesel Oxidation Catalyst) 107, a DPF (Diesel Particulate Filter) 108, and an SCR device 103 are sequentially arranged from the upstream side to the downstream side of the exhaust gas.
  • the DOC 107 is for oxidizing NO in the exhaust gas exhausted from the engine E into NO 2 and controlling the ratio of NO and NO 2 in the exhaust gas to increase the denitration efficiency in the SCR device 103.
  • the DPF 108 is for collecting PM (Particulate Matter) in the exhaust gas.
  • a dosing valve 104 is provided in the exhaust pipe 102 on the upstream side of the SCR device 103.
  • the dosing valve 104 has a structure in which an injection hole is provided in a cylinder filled with high-pressure urea water, and a valve body that closes the injection hole is attached to the plunger, and the valve is pulled up by energizing the coil to raise the plunger. The body is separated from the nozzle and the urea water is injected. When energization of the coil is stopped, the plunger is pulled down by the internal spring force and the valve body closes the injection port, so that the urea water injection is stopped.
  • the exhaust pipe 102 on the upstream side of the dosing valve 104 is provided with an exhaust temperature sensor 109 that measures the temperature of the exhaust gas at the inlet of the SCR device 103 (SCR inlet temperature).
  • An upstream NOx sensor 110 that detects the NOx concentration on the upstream side of the SCR device 103 is provided upstream of the SCR device 103 (here, upstream of the exhaust temperature sensor 109), and downstream of the SCR device 103.
  • the supply module 106 includes an SM pump 112 that pumps urea water, an SM temperature sensor 113 that measures the temperature of the supply module 106 (temperature of urea water flowing through the supply module 106), and the pressure of urea water in the supply module 106 (
  • the urea water pressure sensor 114 for measuring the discharge pressure of the SM pump 112 and the urea water flow path are switched to supply urea water from the urea tank 105 to the dosing valve 104 or within the dosing valve 104.
  • a reverting valve 115 for switching whether to return the urea water to the urea tank 105.
  • the reverting valve 115 when the reverting valve 115 is OFF, the urea water from the urea tank 105 is supplied to the dosing valve 104, and when the reverting valve 115 is ON, the urea water in the dosing valve 104 is supplied to the urea tank 105. I tried to return it.
  • the supply module 106 sucks the urea water in the urea tank 105 through the liquid feeding line 116 by the SM pump 112, and pumps it.
  • the dosing valve 104 is supplied through a line 117, and excess urea water is returned to the urea tank 105 through a recovery line 118.
  • the urea tank 105 is provided with an SCR sensor 119.
  • the SCR sensor 119 includes a level sensor 120 that measures the level (level) of urea water in the urea tank 105, a temperature sensor 121 that measures the temperature of urea water in the urea tank 105, and a sensor in the urea tank 105. And a quality sensor 122 for measuring the quality of the urea water.
  • the quality sensor 122 detects the quality of the urea water in the urea tank 105 by detecting, for example, the concentration of urea water and whether or not a different mixture is mixed in the urea water from the propagation speed and electrical conductivity of the ultrasonic waves. To do.
  • a cooling line 123 for circulating cooling water for cooling the engine E is connected to the urea tank 105 and the supply module 106.
  • the cooling line 123 is configured to exchange heat between the cooling water passing through the urea tank 105 and flowing through the cooling line 123 and the urea water in the urea tank 105.
  • the cooling line 123 passes through the supply module 106 and exchanges heat between the cooling water flowing through the cooling line 123 and the urea water in the supply module 106.
  • the cooling line 123 is provided with a tank heater valve (coolant valve) 124 for switching whether or not to supply cooling water to the urea tank 105 and the supply module 106. Although the cooling line 123 is also connected to the dosing valve 104, the dosing valve 104 is configured to be supplied with cooling water regardless of whether the tank heater valve 124 is opened or closed. Although not shown in FIG. 1A, the cooling line 123 is disposed along the liquid feed line 116, the pressure feed line 117, and the recovery line 118 through which the urea water passes.
  • FIG. 2 shows an input / output configuration diagram of the DCU 126.
  • the DCU 126 includes an upstream NOx sensor 110, a downstream NOx sensor 111, an SCR sensor 119 (level sensor 120, temperature sensor 121, quality sensor 122), exhaust temperature sensor 109, and SM of the supply module 106.
  • An input signal line from the temperature sensor 113, the urea water pressure sensor 114, and an ECM (Engine Control Module) 125 that controls the engine E is connected. From the ECM 125, an engine parameter (engine speed, etc.) signal is input.
  • the DCU 126 also has output signal lines to the tank heater valve 124, the SM pump 112 and the reverting valve 115 of the supply module 106, the dosing valve 104, the heater of the upstream NOx sensor 110, and the heater of the downstream NOx sensor 111. Connected.
  • the input / output of signals between the DCU 126 and each member may be either input / output via individual signal lines or input / output via CAN (Controller Area Network).
  • an ECU (electronic control unit) 128 is connected to the DCU 126 via a CAN transmission path.
  • a signal of the SCR inlet temperature detected by the exhaust temperature sensor 109 is transmitted from the DCU 126 to the ECU 128.
  • a NOx sensor pressure signal to be described later is transmitted from the ECU 128 to the DCU 126.
  • the ECM 125 is connected to the ECU 128 via a CAN transmission path, and receives signals of engine parameters (engine speed, fuel injection amount, etc.) from the ECM 125. Furthermore, an input signal line from an intake air flow sensor (MAF sensor) 129 provided in the intake pipe of the engine E and the atmospheric pressure sensor 130 is connected to the ECU 128.
  • MAF sensor intake air flow sensor
  • the DCU 126 is equipped with a urea water injection control unit 127 that controls the urea water injection amount according to the detected value of the NOx concentration detected by the upstream NOx sensor 110.
  • the urea water injection control unit 127 estimates the amount of NOx in the exhaust gas based on the engine parameter signal from the ECM 125 and the exhaust gas temperature from the exhaust temperature sensor 109, and the estimated NOx in the exhaust gas.
  • the amount of urea water to be injected from the dosing valve 104 is determined on the basis of this amount, and when it is injected with the amount of urea water determined by the dosing valve 104, the dosing valve 104 is based on the detected value of the upstream NOx sensor 110. Is controlled to adjust the amount of urea water injected from the dosing valve 104.
  • the pressure estimation unit 131 that estimates the NOx sensor pressure that is the pressure in the exhaust pipe 102 at the position where the upstream NOx sensor 110 is provided, and the pressure estimation unit 131 estimate the pressure.
  • a NOx concentration detection value correction unit 136 that corrects the detected value of the NOx concentration detected by the upstream NOx sensor 110 according to the NOx sensor pressure.
  • the pressure estimation unit 131 is mounted on the ECU 128, and the NOx concentration detection value correction unit 136 is mounted on the DCU 126. Both may be mounted on the DCU 126.
  • the pressure estimation unit 131 includes an exhaust gas flow rate estimation unit 132, an exhaust gas specific volume estimation unit 133, an SCR differential pressure estimation unit 134, and a NOx sensor pressure estimation unit 135.
  • the exhaust gas flow rate estimation unit 132 adds the intake gas flow rate (mass flow rate of intake air) of the engine E and the fuel flow rate obtained from the engine speed and the fuel injection amount, thereby adding an exhaust gas flow rate (exhaust gas mass). The flow rate is estimated.
  • the exhaust gas flow rate estimation unit 132 averages the intake flow rate detected by the MAF sensor 129 for a predetermined time to obtain the average mass flow rate of the intake air, and uses the obtained average mass flow rate of the intake air as the engine speed.
  • the intake air flow rate of the engine E is obtained through a low-pass filter in which a time constant is set according to the number. By using the low-pass filter, it is possible to suppress a sudden change in the value of the intake flow rate of the engine E.
  • the exhaust gas flow rate estimation unit 132 obtains the fuel flow rate by multiplying the fuel volume obtained from the engine speed and the fuel injection amount received from the ECM 125 by the fuel density.
  • the fuel injection amount a value obtained by adding the command injection amount, the post injection amount, and the exhaust pipe injection amount (only for vehicles that perform exhaust pipe injection) is used.
  • the exhaust gas flow rate estimating unit 132 passes the exhaust gas flow rate obtained by adding the intake flow rate and the fuel flow rate through a low-pass filter in which a time constant is set according to the engine speed, thereby obtaining the value of the exhaust gas flow rate. Is suppressed from abruptly fluctuating.
  • the exhaust gas specific volume estimation unit 133 is configured to estimate the specific volume of the exhaust gas based on the SCR inlet temperature received from the DCU 126 and the atmospheric pressure (external pressure) received from the atmospheric pressure sensor 130. More specifically, the exhaust gas specific volume estimation unit 133 multiplies the SCR inlet temperature by the gas constant of the exhaust gas previously set for each vehicle (for each vehicle type and vehicle type), and further obtains the obtained value at atmospheric pressure. By dividing, the specific volume of the exhaust gas is calculated.
  • the SCR differential pressure estimation unit 134 is based on the exhaust gas flow rate estimated by the exhaust gas flow rate estimation unit 132, the exhaust gas specific volume estimated by the exhaust gas specific volume estimation unit 133, and the SCR inlet temperature received from the DCU 126.
  • the pressure difference between the pressure at the inlet of the SCR device 103 and the atmospheric pressure (external pressure) (hereinafter simply referred to as SCR differential pressure) is estimated. Note that the pressure at the inlet of the SCR device 103 is equal to the pressure in the exhaust pipe 102 at the position where the upstream NOx sensor 110 is provided, that is, the NOx sensor pressure.
  • the SCR differential pressure estimator 134 refers to a base differential pressure map (not shown) based on the exhaust gas flow rate and the specific volume of the exhaust gas, and determines a value (hereinafter referred to as the SCR differential pressure) based on the SCR differential pressure.
  • Base pressure difference The base differential pressure map is a map set in advance for each vehicle (for each vehicle type and vehicle type), and is a map in which a base differential pressure is set for each exhaust gas flow rate and exhaust gas specific volume.
  • the SCR differential pressure estimation unit 134 obtains the viscosity coefficient of the exhaust gas at the inlet of the SCR device 103 from the SCR inlet temperature, and multiplies the reciprocal of the obtained viscosity coefficient by the exhaust gas flow rate to thereby obtain the viscosity of the SCR device 103.
  • the Reynolds number at the entrance is calculated.
  • the SCR differential pressure estimation unit 134 refers to a flow coefficient map (not shown) with the obtained Reynolds number and the SCR inlet temperature, and determines the flow coefficient of the exhaust gas at the inlet of the SCR device 103.
  • the flow coefficient map is a map set in advance for each vehicle (for each vehicle type and vehicle type), and an exhaust gas flow coefficient (pressure loss-shape factor related to flow rate) is set for each Reynolds number and SCR inlet temperature. Map.
  • the SCR differential pressure estimating unit 134 calculates the SCR differential pressure by multiplying the obtained base differential pressure and the flow coefficient.
  • the NOx sensor pressure estimator 135 adds the atmospheric pressure (external air pressure) received from the atmospheric pressure sensor 130 to the SCR differential pressure estimated by the SCR differential pressure estimator 134, so that the pressure on the upstream side of the SCR device 103, that is, The NOx sensor pressure, which is the pressure in the exhaust pipe 102 at the position where the upstream NOx sensor 110 is provided, is estimated.
  • the NOx sensor pressure estimation unit 135 is configured to transmit an estimated NOx sensor pressure signal to the DCU 126.
  • the NOx concentration detection value correction unit 136 mounted on the DCU 126 receives the NOx sensor pressure signal from the NOx sensor pressure estimation unit 135, and determines the correction coefficient by referring to the correction coefficient map based on the NOx sensor pressure.
  • the correction coefficient map is a map set in advance for each vehicle (for each vehicle type and vehicle type), and is a map in which a correction coefficient is set for each NOx sensor pressure. The correction coefficient is determined by performing a test in advance.
  • the NOx concentration detection value correction unit 136 corrects the detected value of NOx concentration by multiplying the obtained correction coefficient by the detected value of NOx concentration detected by the upstream NOx sensor 110.
  • the urea water injection control unit 127 is configured to control the urea water injection amount using the corrected detected value of the NOx concentration.
  • the pressure estimation unit 131 that estimates the NOx sensor pressure that is the pressure in the exhaust pipe 102 at the position where the upstream NOx sensor 110 is provided, and the pressure estimation And a NOx concentration detection value correction unit 136 that corrects the detected value of the NOx concentration detected by the upstream NOx sensor 110 in accordance with the NOx sensor pressure estimated by the unit 131.
  • the detected value of the NOx concentration at the upstream NOx sensor 110 increases as the NOx sensor pressure increases.
  • the NOx concentration could not be detected accurately.
  • the detected value of the upstream NOx sensor 110 is corrected according to the estimated NOx sensor pressure, so that the NOx sensor pressure is increased. Even in this case, the error in the detected value of the NOx concentration in the upstream NOx sensor 110 can be kept small, and the NOx concentration can be accurately detected.
  • the SCR system 100 it is possible to accurately detect the NOx concentration regardless of the NOx sensor pressure, that is, regardless of the operating state of the engine. Therefore, the control of the urea water injection amount is not normally performed, and the urea water injection is performed with an excessive injection amount, or the urea water injection amount is decreased and the NOx purification rate is decreased. Can be resolved. Further, it is possible to solve the problem that the OBD diagnosis (self-fault diagnosis) cannot be performed normally.
  • the present invention is also applicable to the downstream NOx sensor 111.
  • the NOx sensor pressure in the downstream NOx sensor 111 can be obtained by subtracting the pressure loss generated in the SCR device 103 from the NOx sensor pressure in the upstream NOx sensor 110 described above. Therefore, the detected value of the NOx concentration in the downstream NOx sensor 111 may be corrected according to the obtained NOx sensor pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 エンジンの運転状態によらずNOx濃度を精度よく検出可能なSCRシステムを提供する。 エンジンEの排気管102に設けられたSCR装置103と、SCR装置103の上流側で尿素水を噴射するドージングバルブ104と、排気管102に設けられたNOxセンサ110と、NOxセンサ110で検出したNOx濃度の検出値に応じて尿素水噴射量を制御する尿素水噴射制御部127と、を備えたSCRシステムにおいて、NOxセンサ110を設けた位置での排気管102内の圧力であるNOxセンサ圧力を推定する圧力推定部131と、圧力推定部131が推定したNOxセンサ圧力に応じて、NOxセンサ110が検出したNOx濃度の検出値を補正するNOx濃度検出値補正部136と、を備えた。

Description

SCRシステム
 本発明は、エンジンの排ガス中のNOxを尿素水を用いて還元するSCRシステムに係り、特に、エンジンの運転状態によらずNOx濃度を精度よく検出可能なSCRシステムに関するものである。
 ディーゼルエンジンの排気ガス中のNOxを浄化するための排ガス浄化システムとして、SCR(Selective Catalytic Reduction)装置を用いたSCRシステムが開発されている。
 このSCRシステムは、尿素水をSCR装置の排気ガス上流に供給し、排気ガスの熱でアンモニアを生成し、このアンモニアによって、SCR触媒上でNOxを還元して浄化するものである(例えば、特許文献1参照)。
 SCRシステムでは、尿素水の噴射は排気ガス中のNOx濃度に応じて制御される。この制御のために、排気管にはNOxセンサが設けられる。
 NOxセンサでは、排気ガス中のO2を除去した後、そのO2を除去した排気ガス中のNOxをN2とO2に分解させ、そのNOxをN2とO2に分解させた排気ガス中のO2濃度を検出することにより、NOx濃度を検出するようになっている。
特開2000-303826号公報
 ところで、NOxセンサは、圧力によりNOx濃度の検出値が変動するという特性を有している。一般に、NOxセンサは、大気圧(1atm)でNOx濃度を検出するよう設計されているため、大気圧と大きく異なる圧力下でNOx濃度を測定すると、NOx濃度の検出値の誤差が大きくなってしまう(圧力が高くなるほどNOx濃度の検出値が高くなってしまう)という問題がある。
 SCRシステムに用いられるNOxセンサは、エンジンの排気管に設けられるが、エンジンの排気管における圧力、すなわち排気ガスの圧力は、エンジンの運転状態によって大きく変動することから、NOxセンサにてNOx濃度を精度よく検出できないという問題がある。
 NOxセンサで検出したNOx濃度は、尿素水噴射量の制御やOBD(On-Board Diagnostics)診断(自己故障診断)に用いられる。よって、NOx濃度を精度よく検出できないと、尿素水噴射量の制御が正常に行われず、過剰な噴射量で尿素水の噴射が行われたり、逆に尿素水の噴射量が低下してNOx浄化率が低下してしまう問題が生じる。さらには、正常に自己故障診断を行うことができなくなるという問題も生じる。
 そこで、本発明の目的は、上記課題を解決し、エンジンの運転状態によらずNOx濃度を精度よく検出可能なSCRシステムを提供することにある。
 本発明は上記目的を達成するために創案されたものであり、エンジンの排気管に設けられたSCR(選択還元触媒)装置と、前記SCR装置の上流側で尿素水を噴射するドージングバルブと、前記排気管に設けられたNOxセンサと、前記NOxセンサで検出したNOx濃度の検出値に応じて尿素水噴射量を制御する尿素水噴射制御部と、を備えたSCRシステムにおいて、前記NOxセンサを設けた位置での前記排気管内の圧力であるNOxセンサ圧力を推定する圧力推定部と、前記圧力推定部が推定したNOxセンサ圧力に応じて、前記NOxセンサが検出したNOx濃度の検出値を補正するNOx濃度検出値補正部と、を備えたSCRシステムである。
 前記NOxセンサは、前記SCR装置の上流側に設けられ、前記圧力推定部は、前記エンジンの吸気流量と、エンジン回転数と燃料噴射量とから求めた燃料流量とを足し合わせることにより、排気ガス流量を推定する排気ガス流量推定部と、前記SCR装置の入口における排気ガス温度であるSCR入口温度と、大気圧とに基づき、排気ガスの比容積を推定する排気ガス比容積推定部と、前記排気ガス流量推定部が推定した排気ガス流量と、前記排気ガス比容積推定部が推定した排気ガスの比容積と、SCR入口温度とに基づき、前記SCR装置の入口における圧力と大気圧との差圧を推定するSCR差圧推定部と、SCR差圧推定部が推定した差圧に、大気圧を加えることにより、NOxセンサ圧力を推定するNOxセンサ圧力推定部と、を備えてもよい。
 本発明によれば、エンジンの運転状態によらずNOx濃度を精度よく検出可能なSCRシステムを提供できる。
(a),(b)は、本発明の一実施の形態に係るSCRシステムの概略構成図である。 図1のSCRシステムにおける入出力構成図である。 本発明において、NOxセンサ圧力に対する、NOxセンサでのNOx濃度の検出値の誤差の関係を表すグラフ図である。
 以下、本発明の好適な実施の形態を添付図面にしたがって説明する。
 まず、車両に搭載されるSCRシステムについて説明する。
 図1(a)に示すように、SCRシステム100は、エンジンEの排気管102に設けられたSCR装置103と、SCR装置103の上流側(排気ガスの上流側)で尿素水を噴射するドージングバルブ(尿素噴射装置、ドージングモジュール)104と、尿素水を貯留する尿素タンク105と、尿素タンク105に貯留された尿素水をドージングバルブ104に供給するサプライモジュール106と、ドージングバルブ104やサプライモジュール106等を制御するDCU(Dosing Control Unit)126とを主に備える。
 エンジンEの排気管102には、排気ガスの上流側から下流側にかけて、DOC(Diesel Oxidation Catalyst)107、DPF(Diesel Particulate Filter)108、SCR装置103が順次配置される。DOC107は、エンジンEから排気される排気ガス中のNOを酸化してNO2とし、排気ガス中のNOとNO2の比率を制御してSCR装置103における脱硝効率を高めるためのものである。また、DPF108は、排気ガス中のPM(Particulate Matter)を捕集するためのものである。
 SCR装置103の上流側の排気管102には、ドージングバルブ104が設けられる。ドージングバルブ104は、高圧の尿素水が満たされたシリンダに噴口が設けられ、その噴口を塞ぐ弁体がプランジャに取り付けられた構造となっており、コイルに通電することによりプランジャを引き上げることで弁体を噴口から離間させて尿素水を噴射するようになっている。コイルへの通電を止めると、内部のバネ力によりプランジャが引き下げられて弁体が噴口を塞ぐので尿素水の噴射が停止される。
 ドージングバルブ104の上流側の排気管102には、SCR装置103の入口における排気ガスの温度(SCR入口温度)を測定する排気温度センサ109が設けられる。また、SCR装置103の上流側(ここでは排気温度センサ109の上流側)には、SCR装置103の上流側でのNOx濃度を検出する上流側NOxセンサ110が設けられ、SCR装置103の下流側には、SCR装置103の下流側でのNOx濃度を検出する下流側NOxセンサ111が設けられる。
 サプライモジュール106は、尿素水を圧送するSMポンプ112と、サプライモジュール106の温度(サプライモジュール106を流れる尿素水の温度)を測定するSM温度センサ113と、サプライモジュール106内における尿素水の圧力(SMポンプ112の吐出側の圧力)を測定する尿素水圧力センサ114と、尿素水の流路を切り替えることにより、尿素タンク105からの尿素水をドージングバルブ104に供給するか、あるいはドージングバルブ104内の尿素水を尿素タンク105に戻すかを切り替えるリバーティングバルブ115とを備えている。ここでは、リバーティングバルブ115がOFFのとき、尿素タンク105からの尿素水をドージングバルブ104に供給するようにし、リバーティングバルブ115がONのとき、ドージングバルブ104内の尿素水を尿素タンク105に戻すようにした。
 リバーティングバルブ115が尿素水をドージングバルブ104に供給するように切り替えられている場合、サプライモジュール106は、そのSMポンプ112にて、尿素タンク105内の尿素水を送液ライン116を通して吸い上げ、圧送ライン117を通してドージングバルブ104に供給するようにされ、余剰の尿素水を、回収ライン118を通して尿素タンク105に戻すようにされる。
 尿素タンク105には、SCRセンサ119が設けられる。SCRセンサ119は、尿素タンク105内の尿素水の液面高さ(レベル)を測定するレベルセンサ120と、尿素タンク105内の尿素水の温度を測定する温度センサ121と、尿素タンク105内の尿素水の品質を測定する品質センサ122とを備えている。品質センサ122は、例えば、超音波の伝播速度や電気伝導度から、尿素水の濃度や尿素水に異種混合物が混合されているか否かを検出し、尿素タンク105内の尿素水の品質を検出するものである。
 尿素タンク105とサプライモジュール106には、エンジンEを冷却するための冷却水を循環する冷却ライン123が接続される。冷却ライン123は、尿素タンク105内を通り、冷却ライン123を流れる冷却水と尿素タンク105内の尿素水との間で熱交換するようにされる。同様に、冷却ライン123は、サプライモジュール106内を通り、冷却ライン123を流れる冷却水とサプライモジュール106内の尿素水との間で熱交換するようにされる。
 冷却ライン123には、尿素タンク105とサプライモジュール106に冷却水を供給するか否かを切り替えるタンクヒーターバルブ(クーラントバルブ)124が設けられる。なお、ドージングバルブ104にも冷却ライン123が接続されるが、ドージングバルブ104には、タンクヒーターバルブ124の開閉に拘わらず、冷却水が供給されるように構成されている。なお、図1(a)では図を簡略化しており示されていないが、冷却ライン123は、尿素水が通る送液ライン116、圧送ライン117、回収ライン118に沿って配設される。
 図2に、DCU126の入出力構成図を示す。
 図2に示すように、DCU126には、上流側NOxセンサ110、下流側NOxセンサ111、SCRセンサ119(レベルセンサ120、温度センサ121、品質センサ122)、排気温度センサ109、サプライモジュール106のSM温度センサ113と尿素水圧力センサ114、およびエンジンEを制御するECM(Engine Control Module)125からの入力信号線が接続されている。ECM125からは、エンジンパラメータ(エンジン回転数など)の信号が入力される。
 また、DCU126には、タンクヒーターバルブ124、サプライモジュール106のSMポンプ112とリバーティングバルブ115、ドージングバルブ104、上流側NOxセンサ110のヒータ、下流側NOxセンサ111のヒータ、への出力信号線が接続される。なお、DCU126と各部材との信号の入出力に関しては、個別の信号線を介した入出力、CAN(Controller Area Network)を介した入出力のどちらであってもよい。
 また、DCU126には、CANの伝送路を介してECU(電子制御ユニット)128が接続されている。DCU126からECU128には、排気温度センサ109で検出したSCR入口温度の信号が送信される。また、ECU128からDCU126には、後述するNOxセンサ圧力の信号が送信される。
 また、ECU128には、CANの伝送路を介してECM125が接続されており、ECM125より、エンジンパラメータ(エンジン回転数、燃料噴射量など)の信号を受信するようになっている。さらに、ECU128には、エンジンEの吸気管に設けられた吸気流量センサ(MAFセンサ)129、および大気圧センサ130からの入力信号線が接続されている。
 DCU126には、上流側NOxセンサ110で検出したNOx濃度の検出値に応じて尿素水噴射量を制御する尿素水噴射制御部127が搭載される。尿素水噴射制御部127は、ECM125からのエンジンパラメータの信号と、排気温度センサ109からの排気ガス温度とを基に、排気ガス中のNOxの量を推定すると共に、推定した排気ガス中のNOxの量を基にドージングバルブ104から噴射する尿素水量を決定するようにされ、さらに、ドージングバルブ104にて決定した尿素水量で噴射したとき、上流側NOxセンサ110の検出値に基づいてドージングバルブ104を制御して、ドージングバルブ104から噴射する尿素水量を調整するようにされる。
 さて、本実施の形態に係るSCRシステム100は、上流側NOxセンサ110を設けた位置での排気管102内の圧力であるNOxセンサ圧力を推定する圧力推定部131と、圧力推定部131が推定したNOxセンサ圧力に応じて、上流側NOxセンサ110が検出したNOx濃度の検出値を補正するNOx濃度検出値補正部136と、を備えている。
 圧力推定部131はECU128に搭載され、NOx濃度検出値補正部136はDCU126に搭載される。なお、両者ともDCU126に搭載するようにしてもよい。
 圧力推定部131は、排気ガス流量推定部132と、排気ガス比容積推定部133と、SCR差圧推定部134と、NOxセンサ圧力推定部135と、を備えている。
 排気ガス流量推定部132は、エンジンEの吸気流量(吸入空気の質量流量)と、エンジン回転数と燃料噴射量とから求めた燃料流量とを足し合わせることにより、排気ガス流量(排気ガスの質量流量)を推定するようにされる。
 より詳細には、排気ガス流量推定部132は、MAFセンサ129で検出された吸気流量を所定時間平均して、吸入空気の平均質量流量を求め、求めた吸入空気の平均質量流量を、エンジン回転数に応じて時定数が設定されるローパスフィルタに通して、エンジンEの吸気流量を求めるようにされる。ローパスフィルタを用いることより、エンジンEの吸気流量の値が急激に変動してしまうことを抑制できる。
 また、排気ガス流量推定部132は、ECM125より受信したエンジン回転数と燃料噴射量とから求めた燃料容積に、燃料密度を掛け合わせることによって、燃料流量を求めるようにされる。燃料噴射量としては、指示噴射量、ポスト噴射量、排気管噴射量(排気管噴射を行う車両のみ)を足し合わせた値が用いられる。
 さらに、排気ガス流量推定部132では、吸気流量と燃料流量を足し合わせて求めた排気ガス流量を、エンジン回転数に応じて時定数が設定されるローパスフィルタに通すことより、排気ガス流量の値が急激に変動してしまうことを抑制するようにしている。
 排気ガス比容積推定部133は、DCU126から受信したSCR入口温度と、大気圧センサ130から受信した大気圧(外気圧)とに基づき、排気ガスの比容積を推定するようにされる。より詳細には、排気ガス比容積推定部133では、SCR入口温度に、予め車両ごと(車種、車型ごと)に設定された排気ガスのガス定数を掛け合わせ、得られた値をさらに大気圧で除することにより、排気ガスの比容積を算出するようにされる。
 SCR差圧推定部134は、排気ガス流量推定部132が推定した排気ガス流量と、排気ガス比容積推定部133が推定した排気ガスの比容積と、DCU126から受信したSCR入口温度とに基づき、SCR装置103の入口における圧力と大気圧(外気圧)との差圧(以下、単にSCR差圧という)を推定するようにされる。なお、SCR装置103の入口における圧力は、上流側NOxセンサ110を設けた位置での排気管102内の圧力、すなわちNOxセンサ圧力と等しい。
 より詳細には、SCR差圧推定部134は、排気ガス流量と排気ガスの比容積とでベース差圧マップ(図示せず)を参照して、SCR差圧のベースとなる値(以下、SCRベース差圧という)を決定するようにされる。なお、ベース差圧マップは、車両ごと(車種、車型ごと)に予め設定されたマップであり、排気ガス流量と排気ガスの比容積ごとに、ベース差圧が設定されたマップである。
 また、SCR差圧推定部134は、SCR入口温度から、SCR装置103の入口における排気ガスの粘性係数を求め、求めた粘性係数の逆数と排気ガス流量とを掛け合わせることにより、SCR装置103の入口におけるレイノルズ数を算出するようにされる。さらに、SCR差圧推定部134は、得られたレイノルズ数とSCR入口温度とで流量係数マップ(図示せず)を参照し、SCR装置103の入口における排気ガスの流量係数を決定するようにされる。なお、流量係数マップは、車両ごと(車種、車型ごと)に予め設定されたマップであり、レイノルズ数とSCR入口温度ごとに、排気ガスの流量係数(圧力損失-流量に関する形状係数)が設定されたマップである。
 SCR差圧推定部134は、求めたベース差圧と流量係数とを掛け合わせることにより、SCR差圧を算出するようにされる。
 NOxセンサ圧力推定部135は、SCR差圧推定部134が推定したSCR差圧に、大気圧センサ130から受信した大気圧(外気圧)を加えることにより、SCR装置103の上流側の圧力、すなわち、上流側NOxセンサ110を設けた位置での排気管102内の圧力であるNOxセンサ圧力を、推定するようにされる。NOxセンサ圧力推定部135は、推定したNOxセンサ圧力の信号をDCU126に送信するようにされる。
 DCU126に搭載されたNOx濃度検出値補正部136は、NOxセンサ圧力推定部135からNOxセンサ圧力の信号を受信し、NOxセンサ圧力で補正用係数マップを参照して、補正用係数を決定する。補正用係数マップは、車両ごと(車種、車型ごと)に予め設定されたマップであり、NOxセンサ圧力ごとに、補正用係数が設定されたマップである。補正用係数は、予め試験を行い決定される。
 NOx濃度検出値補正部136は、得られた補正用係数を、上流側NOxセンサ110が検出したNOx濃度の検出値に掛け合わせることにより、NOx濃度の検出値の補正を行うようにされる。尿素水噴射制御部127は、補正後のNOx濃度の検出値を用いて、尿素水噴射量を制御するようにされる。
 以上説明したように、本実施の形態に係るSCRシステム100では、上流側NOxセンサ110を設けた位置での排気管102内の圧力であるNOxセンサ圧力を推定する圧力推定部131と、圧力推定部131が推定したNOxセンサ圧力に応じて、上流側NOxセンサ110が検出したNOx濃度の検出値を補正するNOx濃度検出値補正部136と、を備えている。
 図3に示すように、NOxセンサ圧力によりNOx濃度の検出値の補正を行わない従来のSCRシステム(図示破線)では、NOxセンサ圧力が大きくなるほど、上流側NOxセンサ110でのNOx濃度の検出値に誤差が大きくなり、NOx濃度を精度よく検出できなかった。これに対して、本発明のSCRシステム100(図示実線)では、推定したNOxセンサ圧力に応じて上流側NOxセンサ110の検出値を補正しているため、NOxセンサ圧力が大きくなった場合であっても、上流側NOxセンサ110でのNOx濃度の検出値の誤差を小さく維持し、NOx濃度を精度よく検出することが可能になる。
 つまり、本実施の形態に係るSCRシステム100によれば、NOxセンサ圧力によらず、すなわちエンジンの運転状態によらず、NOx濃度を精度よく検出することが可能となる。よって、尿素水噴射量の制御が正常に行われず、過剰な噴射量で尿素水の噴射が行われたり、逆に尿素水の噴射量が低下してNOx浄化率が低下してしまうといった不具合を解消できる。また、正常にOBD診断(自己故障診断)を行うことができないといった不具合も解消できる。
 本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。
 例えば、上記実施の形態では、上流側NOxセンサ110でのNOx濃度の検出値を補正する場合を説明したが、本発明は、下流側NOxセンサ111にも適用可能である。下流側NOxセンサ111に適用する場合、上述の上流側NOxセンサ110におけるNOxセンサ圧力から、SCR装置103で発生する圧力損失を減ずれば、下流側NOxセンサ111におけるNOxセンサ圧力を求めることができるので、得られたNOxセンサ圧力に応じて、下流側NOxセンサ111でのNOx濃度の検出値を補正するようにすればよい。
100 SCRシステム
102 排気管
103 SCR装置
104 ドージングバルブ
105 尿素タンク
106 サプライモジュール
110 上流側NOxセンサ(NOxセンサ)
111 下流側NOxセンサ
125 ECM
126 DCU
127 尿素水噴射制御部
128 ECU
131 圧力推定部
132 排気ガス流量推定部
133 排気ガス比容積推定部
134 SCR差圧推定部
135 NOxセンサ圧力推定部
136 NOx濃度検出値補正部
E エンジン

Claims (2)

  1.  エンジンの排気管に設けられたSCR(選択還元触媒)装置と、
     前記SCR装置の上流側で尿素水を噴射するドージングバルブと、
     前記排気管に設けられたNOxセンサと、
     前記NOxセンサで検出したNOx濃度の検出値に応じて尿素水噴射量を制御する尿素水噴射制御部と、を備えたSCRシステムにおいて、
     前記NOxセンサを設けた位置での前記排気管内の圧力であるNOxセンサ圧力を推定する圧力推定部と、
     前記圧力推定部が推定したNOxセンサ圧力に応じて、前記NOxセンサが検出したNOx濃度の検出値を補正するNOx濃度検出値補正部と、
     を備えたことを特徴とするSCRシステム。
  2.  前記NOxセンサは、前記SCR装置の上流側に設けられ、
     前記圧力推定部は、
     前記エンジンの吸気流量と、エンジン回転数と燃料噴射量とから求めた燃料流量とを足し合わせることにより、排気ガス流量を推定する排気ガス流量推定部と、
     前記SCR装置の入口における排気ガス温度であるSCR入口温度と、大気圧とに基づき、排気ガスの比容積を推定する排気ガス比容積推定部と、
     前記排気ガス流量推定部が推定した排気ガス流量と、前記排気ガス比容積推定部が推定した排気ガスの比容積と、SCR入口温度とに基づき、前記SCR装置の入口における圧力と大気圧との差圧を推定するSCR差圧推定部と、
     SCR差圧推定部が推定した差圧に、大気圧を加えることにより、NOxセンサ圧力を推定するNOxセンサ圧力推定部と、
     を備える請求項1記載のSCRシステム。
PCT/JP2011/061217 2010-05-25 2011-05-16 Scrシステム WO2011148814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/699,491 US9080489B2 (en) 2010-05-25 2011-05-16 Selective catalytic reduction system
CN201180025602.7A CN102918245B (zh) 2010-05-25 2011-05-16 Scr系统
EP11786513.9A EP2578861B1 (en) 2010-05-25 2011-05-16 Selective catalytic reduction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-119719 2010-05-25
JP2010119719A JP5482446B2 (ja) 2010-05-25 2010-05-25 Scrシステム

Publications (1)

Publication Number Publication Date
WO2011148814A1 true WO2011148814A1 (ja) 2011-12-01

Family

ID=45003805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061217 WO2011148814A1 (ja) 2010-05-25 2011-05-16 Scrシステム

Country Status (5)

Country Link
US (1) US9080489B2 (ja)
EP (1) EP2578861B1 (ja)
JP (1) JP5482446B2 (ja)
CN (1) CN102918245B (ja)
WO (1) WO2011148814A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120070A1 (en) * 2013-01-31 2014-08-07 Scania Cv Ab Determination and utilization of exhaust gas back-pressure
CN106139899A (zh) * 2016-07-29 2016-11-23 南通天蓝环保能源成套设备有限公司 垃圾焚烧炉的scr脱硝控制系统和方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901341A (zh) * 2014-04-29 2014-07-02 中国重汽集团济南动力有限公司 Dcu测试箱
KR101601519B1 (ko) * 2014-10-30 2016-03-08 두산엔진주식회사 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
KR101601520B1 (ko) * 2014-10-30 2016-03-08 두산엔진주식회사 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
JP6187505B2 (ja) * 2015-03-02 2017-08-30 トヨタ自動車株式会社 排気浄化装置
CN105179052A (zh) * 2015-07-13 2015-12-23 南通亚泰工程技术有限公司 一种船用scr尿素溶液喷射系统和控制方法
JP6288054B2 (ja) * 2015-11-27 2018-03-07 トヨタ自動車株式会社 排気浄化システムの故障診断装置
CN108397269B (zh) * 2017-02-08 2019-10-11 北京福田康明斯发动机有限公司 柴油发动机氮氧化物检测量的处理方法和系统
US11286835B2 (en) 2017-05-25 2022-03-29 Cummins Emission Solutions Inc. System and methods for controlling flow distribution in an aftertreatment system
CN107261827B (zh) * 2017-07-31 2021-06-08 中国大唐集团科学技术研究院有限公司华东分公司 一种基于小分区nox生成量的喷氨优化调整方法
FR3071871B1 (fr) 2017-09-29 2020-02-07 Continental Automotive France Procede de reduction catalytique selective avec desorption d'ammoniac a partir d'une cartouche dans une ligne d'echappement
CN109339912B (zh) * 2018-10-22 2020-07-03 北京工业大学 一种适用于大功率柴油机氮氧化物控制的方法及装置
KR102348619B1 (ko) * 2019-12-30 2022-01-07 고등기술연구원연구조합 선택적 촉매환원 학습 시스템 및 선택적 촉매환원 학습 방법
CN111810282A (zh) * 2020-07-17 2020-10-23 广西玉柴机器股份有限公司 一种根据尾气参数自适应的氮氧传感器修正方法
CN112426961A (zh) * 2020-11-02 2021-03-02 珠海格力智能装备有限公司 尿素溶液的生成方法及装置、尿素溶液的生成系统
CN112834235B (zh) * 2020-12-31 2023-04-07 安徽宝龙环保科技有限公司 车辆尾气检测方法、装置、计算机设备以及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2003515166A (ja) * 1999-11-25 2003-04-22 シーメンス アクチエンゲゼルシヤフト NOx濃度を求める方法
WO2007119311A1 (ja) * 2006-03-15 2007-10-25 Ngk Insulators, Ltd. NOxセンサの出力補正方法
JP2009210450A (ja) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd NOxセンサ制御装置及び車両側制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043365A1 (de) 2004-09-08 2006-03-09 Robert Bosch Gmbh Verfahren zum Bestimmen des Abgasgegendrucks im Abgasstrang einer Brennkraftmaschine
US7178328B2 (en) 2004-12-20 2007-02-20 General Motors Corporation System for controlling the urea supply to SCR catalysts
KR100957138B1 (ko) * 2007-07-09 2010-05-11 현대자동차주식회사 질소산화물 센서 고장 판단 방법 및 이를 수행하는 선택적환원 촉매 시스템
US8201394B2 (en) * 2008-04-30 2012-06-19 Cummins Ip, Inc. Apparatus, system, and method for NOx signal correction in feedback controls of an SCR system
CN201329254Y (zh) * 2008-05-28 2009-10-21 中国第一汽车集团公司 以排气中NOx为变量的车载SCR计量喷射系统
US7736595B2 (en) 2008-07-30 2010-06-15 Gm Global Technology Operations, Inc. Dosing agent injection control for selective catalytic reduction catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2003515166A (ja) * 1999-11-25 2003-04-22 シーメンス アクチエンゲゼルシヤフト NOx濃度を求める方法
WO2007119311A1 (ja) * 2006-03-15 2007-10-25 Ngk Insulators, Ltd. NOxセンサの出力補正方法
JP2009210450A (ja) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd NOxセンサ制御装置及び車両側制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120070A1 (en) * 2013-01-31 2014-08-07 Scania Cv Ab Determination and utilization of exhaust gas back-pressure
CN106139899A (zh) * 2016-07-29 2016-11-23 南通天蓝环保能源成套设备有限公司 垃圾焚烧炉的scr脱硝控制系统和方法

Also Published As

Publication number Publication date
JP5482446B2 (ja) 2014-05-07
CN102918245B (zh) 2015-06-24
JP2011247141A (ja) 2011-12-08
EP2578861A4 (en) 2016-09-07
EP2578861A1 (en) 2013-04-10
EP2578861B1 (en) 2018-03-07
US9080489B2 (en) 2015-07-14
US20130064718A1 (en) 2013-03-14
CN102918245A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5482446B2 (ja) Scrシステム
JP5533235B2 (ja) NOxセンサ診断装置及びSCRシステム
US9546584B2 (en) Multi-stage SCR system
JP5789925B2 (ja) NOxセンサ診断装置及びSCRシステム
JP5471831B2 (ja) Scrシステム
JP5678475B2 (ja) Scrシステム
EP2573344B1 (en) Validity diagnosis system for urea water temperature sensor
EP2573343B1 (en) Competency diagnosis system for urea water temperature sensor
WO2011148809A1 (ja) Scrシステム
JP5471832B2 (ja) Scrシステム
JP5516072B2 (ja) Scrシステム
JP5471833B2 (ja) Scrシステム
JP5712515B2 (ja) NOxセンサ昇温装置
JP5749450B2 (ja) Scrシステム
JP5640487B2 (ja) Scrシステム
JP2011241692A (ja) Scrシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025602.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011786513

Country of ref document: EP