WO2011148754A1 - 厚鋼板の製造方法 - Google Patents

厚鋼板の製造方法 Download PDF

Info

Publication number
WO2011148754A1
WO2011148754A1 PCT/JP2011/060337 JP2011060337W WO2011148754A1 WO 2011148754 A1 WO2011148754 A1 WO 2011148754A1 JP 2011060337 W JP2011060337 W JP 2011060337W WO 2011148754 A1 WO2011148754 A1 WO 2011148754A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
toughness
temperature
tin
slab
Prior art date
Application number
PCT/JP2011/060337
Other languages
English (en)
French (fr)
Inventor
浩幸 白幡
龍治 植森
明彦 児島
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2011543020A priority Critical patent/JP4897126B2/ja
Priority to BR112012024297-0A priority patent/BR112012024297B1/pt
Publication of WO2011148754A1 publication Critical patent/WO2011148754A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a method for producing a thick steel plate excellent in toughness of a base material and a welded heat affected zone (HEAT Affected Zone: HAZ).
  • the steel plate manufactured according to the present invention is suitable for welded structures such as ships, buildings, bridges, tanks, and marine structures.
  • the thick steel plate manufactured by this invention may distribute
  • Non-Patent Document 1 a technique for examining the effect of suppressing ⁇ grain growth on various nitrides, carbides, oxides, sulfides and the like generated in steel.
  • a technique for examining the effect of suppressing ⁇ grain growth on various nitrides, carbides, oxides, sulfides and the like generated in steel can be mentioned.
  • fine particles of TiN are generated in the steel, and ⁇ grain growth in the HAZ of the high heat input welded joint can be effectively suppressed (for example, Non-Patent Document 1).
  • Patent Document 1 For oxides and sulfides, in steel containing 0.04 to 0.10% Al, 0.002 to 0.02% Ti, and 0.003 to 0.05% rare earth element (REM) A technique for improving HAZ toughness has been proposed (for example, Patent Document 1). This is a method in which sulfides and oxides of REM are used to prevent coarsening of the HAZ part during high heat input welding.
  • REM rare earth element
  • Patent Document 2 a Ti oxide having a particle diameter of 0.1 to 3.0 ⁇ m and a particle number of 5 ⁇ 10 3 to 1 ⁇ 10 7 particles / mm 3 , or Ti oxide A steel containing any one of a composite of Ti and nitride has been proposed (for example, Patent Document 2).
  • This is a technology to improve the toughness by making particles such as Ti oxide or a composite of Ti oxide and Ti nitride act as ⁇ intragranular ferrite ( ⁇ ) transformation nuclei in HAZ, and refine the HAZ structure. is there.
  • BN also acts as an ⁇ transformation nucleus, so 0.005 to 0.08% Al, 0.0003 to 0.0050% B, and at least one of Ti, Ca, and REM A steel containing 0.03% or less has been proposed (for example, Patent Document 3).
  • This is a technique in which HAZ toughness is improved by forming BN in the cooling process starting from REM, Ca oxide, sulfide or TiN that is not dissolved in HAZ, and then generating ⁇ .
  • Patent Document 4 This is a technique that improves the toughness of the base metal by efficiently miniaturizing the ⁇ grain size by rolling under a predetermined condition using a slab containing a predetermined size and number of oxide particles. is there.
  • Kanazawa, Nakajima, Okamoto, Kanaya “Improvement of weld bond toughness by fine TiN and development of steel for high heat input welding”, Iron and Steel, Vol. 61 (1975), p. 2589
  • Non-Patent Document 1 is only a general technique using TiN particles, and there is no detailed description regarding the control of components, particle diameters, and distributions. It is difficult to ensure good HAZ toughness in high heat input welding.
  • Patent Document 1 uses REM sulfides and oxides, but it is usually difficult to finely disperse sulfides and oxides. Therefore, there is a limit to reducing the ⁇ particle size of the HAZ of the high heat input welded joint. Further, if coarse sulfides or oxides are present in the steel, the toughness may be lowered.
  • Patent Document 2 utilizes Ti oxide or composite particles of Ti oxide and Ti nitride as ⁇ intragranular ferrite ( ⁇ ) transformation nuclei.
  • intragranular ferrite
  • Patent Document 3 utilizes REM or Ca oxide, sulfide, or BN formed on TiN as an ⁇ transformation nucleus, but it is also effective in the case of coarse ⁇ grains.
  • oxides and sulfides may be the starting point of destruction.
  • Patent Document 4 uses oxide particles that are usually used for improving HAZ toughness to efficiently build base material toughness, but there is a coarse oxide. Then, HAZ toughness may decrease.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a thick steel plate excellent in toughness of a base material and a weld heat affected zone, which can be applied as a large structural steel.
  • the present invention pays attention to the Ti-containing nitride produced in the slab and the heating conditions for hot rolling, and a method for controlling the Ti-containing nitride that contributes to suppression of refinement of the base material and coarsening of the HAZ grain size And the manufacturing method for obtaining the thick steel plate excellent in the toughness of a base material and a welding heat affected zone is provided.
  • the strength of the thick steel plate is, for example, a yield strength of 315 MPa to 580 MPa and a tensile strength of 440 MPa to 720 MPa.
  • the yield strength may be 500 MPa or less, and the tensile strength may be 490 MPa or more or 620 MPa or less.
  • the plate thickness is, for example, 10 to 100 mm, and the lower limit may be 12 mm or 20 mm, particularly preferably 30 mm. Further, the upper limit of the plate thickness may be 70 mm or 50 mm.
  • the target of the toughness of the base material is to obtain a high value of 31J or more, 47J or more, or 100J or more with a Charpy absorbed energy value of ⁇ 50 ° C. or less, or ⁇ 40 ° C. in vTrs, for example.
  • the target of the toughness of the weld heat affected zone is, for example, in a weld heat affected zone of a welded joint having a heat input of 200 kJ / cm or higher, vTrs of ⁇ 40 ° C. or lower, or a Charpy absorbed energy value of ⁇ 21 ° C. of 27 J or higher, It is to obtain a high value of 34J or higher or 70J or higher.
  • the gist of the present invention is as follows.
  • the steel is in mass%, Cu: 1.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Ni: 2.0% or less, V: 0.10% or less, B: 0.0030% or less Mg: 0.0050% or less, Ca: 0.0030% or less, REM: The manufacturing method of the thick steel plate as described in said (1) or (2) characterized by containing 1 type or 2 types or more of 0.010% or less.
  • the HAZ toughness is obtained when welding with a base metal toughness and heat input of about 200 to 500 kJ / cm with a steel plate having a tensile strength of 440 MPa class or more, a plate thickness of 10 mm or more, particularly 30 mm or more. Since a good thick steel plate can be provided by an efficient manufacturing method, the industrial effect is extremely large.
  • FIG. 6 is a diagram showing the relationship between the TiN number density of 0.02 to 0.05 ⁇ m in the surface layer and the fracture surface transition temperature of the base material.
  • FIG. 6 is a diagram showing the relationship between the TiN number density of 0.05 to 0.2 ⁇ m in the center and the fracture surface transition temperature of HAZ. It is a figure which shows the relationship between the cooling rate at the time of casting, and TiN number density. It is a figure which shows the heating condition range in this invention of the steel containing Nb: 0.02% and Ti: 0.01%.
  • the ⁇ grain size becomes coarse in the weld heat affected zone (HAZ) heated to a temperature of 1400 ° C. or higher, and in the case of a highly hardenable component system, a martensite-austenite mixture ( A brittle phase called M-A) is formed, and the HAZ toughness is lowered. Therefore, in order to improve the HAZ toughness, it is basically necessary to combine the adjustment of chemical components and the inclusion control for HAZ microstructure refinement.
  • HAZ weld heat affected zone
  • alloy elements such as Mn are concentrated particularly in the center of the plate thickness, and the formation of MA is promoted, so that it is more difficult to ensure toughness.
  • the stress state at the central portion of the plate thickness becomes the most severe. Therefore, it is necessary to make the structure at the central portion of the plate thickness as fine as possible by making full use of the structure control means.
  • TMCP Thermo-Mechanical Control Process
  • CR Controlled Rolling
  • ACC Accelerated Cooling
  • the temperature of the surface layer of the steel sheet tends to rise locally in the heating process, and the coarse ⁇ grains generated in such a part remain even after recrystallization in the rough rolling process, resulting in a non-uniform final structure. , Toughness may decrease. Therefore, in order to ensure the toughness of the steel sheet, it is necessary to suppress the formation of coarse ⁇ grains in the surface layer portion. Therefore, the present inventors considered that the Ti-containing nitride particles used for securing the HAZ toughness of the high heat input welded joint could be used for refining the surface layer portion of the base material, and conducted various studies. It was. In addition, although Ti containing nitride particle
  • TiN is less stable at high temperatures than oxide, it can be relatively easily dispersed finely in steel. Moreover, since size distribution changes with thermal histories, it discovered that especially a heating process was very important among the casting process which manufactures a slab, and the process which manufactures a thick steel plate so that it may demonstrate below.
  • the TiN distribution necessary for suppressing the formation of coarse ⁇ grains in the surface layer portion and ensuring toughness was examined.
  • the TiN distribution necessary for suppressing the ⁇ grain growth in the central portion of the HAZ plate thickness and ensuring toughness was examined. Toughness was evaluated by the Charpy impact test and the fracture surface transition temperature (vTrs). Furthermore, based on these results, a detailed study was performed on the TiN distribution required for the surface layer portion and the center portion of the plate thickness of the slab. In addition, the size and density of TiN were measured using a transmission electron microscope by collecting samples from slabs, steel plates, and HAZ to produce extraction replicas.
  • TiN having an equivalent circle diameter of 0.02 to 0.05 ⁇ m at a surface layer portion of the slab is 7.0 per mm 2 If it is set to x10 4 or more, the toughness of the surface layer part of a base material will become favorable.
  • the density of TiN with an equivalent circle diameter of 0.02 to 0.05 ⁇ m If it is less than 0.02 ⁇ m, it dissolves during hot rolling, and if it exceeds 0.05 ⁇ m, the pinning effect This is because the effect of suppressing grain growth becomes insufficient.
  • the upper limit of the TiN number density in the surface layer portion of the slab is not particularly specified, but if it is too large, surface defects may occur in the surface layer portion. Therefore, 0.02 to 0.05 ⁇ m of TiN in the surface layer portion is preferably 4.0 ⁇ 10 5 or less per 1 mm 2 .
  • the thickness of the slab thickness of the slab is equal to or greater than 5.0 ⁇ 10 4 per mm 2 with 0.05 to 0.2 ⁇ m of equivalent circle diameter, HAZ toughness of the part becomes good. Attention was focused on the density of TiN with an equivalent circle diameter of 0.05 to 0.2 ⁇ m at the center of the plate thickness of the slab. This is because the effect becomes insufficient, and when the thickness exceeds 0.2 ⁇ m, the toughness of the base material decreases.
  • the upper limit of the TiN number density in the center part of the slab thickness is not particularly specified, but if it is too large, the toughness of the center part of the base metal thickness may be lowered. Therefore, 0.05 to 0.2 ⁇ m of TiN in the central portion of the plate thickness is preferably 3.0 ⁇ 10 5 or less per 1 mm 2 .
  • the present inventors have further studied, and the ratio (Ti / N) of each content (mass%) of Ti and N is 1.5 to 3.0, and a temperature of 1100 to 1300 ° C. corresponding to a precipitation nose.
  • the knowledge that the cooling rate of the center part of the slab in the range is required to be 0.1 ° C./s or more was obtained.
  • the surface layer of the slab is 7.0 equivalent to 0.02 to 0.05 ⁇ m in diameter with a circle equivalent diameter.
  • ⁇ 10 4 pieces / mm 2 or more, and TiN having an equivalent circle diameter of 0.05 to 0.2 ⁇ m can be set to 5.0 ⁇ 10 4 pieces / mm 2 or more at the center of the plate thickness of the slab.
  • the distribution of TiN is not necessarily uniform in the width direction and the longitudinal direction of the slab (slab), and there is a possibility of variation depending on the number density measurement method. For this reason, even when the cooling rate is 0.1 ° C./s or less, the number density of TiN in either the surface layer portion or the center portion of the plate thickness may satisfy the regulation.
  • Specific means for increasing the cooling rate include increasing the pressure and water volume of the cooling zone in the continuous casting machine, reducing the mold thickness, and reducing the slab thickness by reducing the unsolidified layer of the slab.
  • the upper limit of the cooling rate is not particularly defined, but it is difficult to exceed 1 ° C./s due to restrictions on the slab thickness (casting thickness) and equipment.
  • the slab thickness at the time of casting is not particularly specified, most of the cast thickness at the time of manufacturing the thick steel plate is in the range of 150 mm to 400 mm.
  • Functional form of P H is in the tempering parameters used in terms of temperature and time of tempering reference.
  • the left side of the inequality is the lower limit of the heating condition that changes according to the amount of Nb
  • the right side of the inequality is the upper limit of the heating condition that changes according to the amount of Ti.
  • Each coefficient was experimentally determined from the limit conditions for generating coarse ⁇ and the limit conditions for securing the amount of solute Nb.
  • the holding time was set to 30 minutes or more, which is for uniformly dissolving a trace alloy element such as Nb.
  • the holding time is defined as the time from when the temperature reaches 20 ° C. lower than the set furnace temperature until extraction, and the heating temperature is defined as the average temperature during that time.
  • FIG. 4 shows the Nb solid solution, ⁇ coarsening state, and heating condition range when Nb: 0.02% and Ti: 0.01%. If slab heating is performed within a range that satisfies this condition, solid solution Nb can be utilized to the maximum while suppressing the coarsening of ⁇ grains, so that the manufacturing load of subsequent processes such as hot rolling and accelerated cooling is not increased so much.
  • the base material toughness can be improved.
  • hot rolling performed at 900 ° C. or higher where recrystallization proceeds easily is defined as rough rolling
  • hot rolling may be performed at a temperature higher than 880 ° C. and lower than 900 ° C., the influence on the structure and mechanical properties is not significant.
  • Rough rolling is performed at a temperature of 900 ° C. or higher and a cumulative reduction ratio of 30% or higher. This is because if the temperature is less than 900 ° C. and the cumulative rolling reduction is less than 30%, the recrystallization of ⁇ does not proceed sufficiently to form a mixed grain structure and the material may become non-uniform.
  • the upper limit of the rough rolling temperature is not defined, and is determined as appropriate according to the heating temperature of the slab and the start temperature of finish rolling.
  • the upper limit of the cumulative rolling reduction is not specified, and is determined as appropriate according to the thickness of the cast slab, the thickness of the steel plate, and the cumulative rolling reduction of finish rolling.
  • Finish rolling is performed at a temperature of Ar 3 or higher and 880 ° C. or lower and a cumulative rolling reduction of 40% or higher. If the temperature is lower than Ar 3 , processed ferrite is generated and the toughness may be reduced. When the temperature is higher than 880 ° C. and the cumulative rolling reduction is less than 40%, it is difficult to increase the dislocation density, and the structure cannot be sufficiently refined and the toughness is lowered.
  • accelerated cooling is performed from a temperature of Ar 3 or higher to a temperature of 550 ° C. or lower at a cooling rate of 5 ° C./s or higher on the average thickness.
  • the cooling rate is less than 5 ° C./s or the cooling stop temperature is higher than 550 ° C., not only the strength is insufficient, but the structure is not sufficiently refined and the base material toughness is lowered.
  • the cooling rate of accelerated cooling is increased, a low temperature transformation structure that impairs toughness is not generated, and therefore the upper limit of the cooling rate is not specified.
  • the cooling rate has a limit depending on the thickness of the thick steel plate and the capability of the apparatus, and it is difficult to set the cooling rate above 100 ° C./s.
  • the upper limit of the cooling rate may be limited to 75 ° C./s, 50 ° C./s, or 30 ° C./s.
  • the lower limit of the cooling stop temperature is not necessarily limited in the present invention, and may be determined according to the required characteristics of the thick steel plate. In order to suppress the growth of crystal grains and precipitates and improve productivity, it is preferable to set the cooling stop temperature of accelerated cooling to 550 ° C. or lower. Moreover, if the accelerated cooling is stopped at less than 200 ° C., the time required for the accelerated cooling becomes long and the productivity may be impaired. Therefore, the cooling stop temperature is preferably set to 200 ° C. or higher. The lower limit of the cold stop temperature may be set to 300 ° C., 400 ° C., or 450 ° C. in order to improve the strength.
  • heat treatment may be performed at a temperature of 650 ° C. or lower in order to adjust strength and toughness.
  • the temperature exceeds 650 ° C., cementite and crystal grains are coarsened to promote the occurrence of brittle fracture, and the toughness of the base material may be lowered.
  • the temperature of heat processing shall be 400 degreeC or more. It may be 490 ° C. or higher for further improvement of toughness.
  • a steel plate manufactured under a predetermined condition using a slab having a TiN distribution as described above has good toughness in the surface layer portion, and even when high heat input welding is performed, the TiN in the central portion of the HAZ plate thickness is completely Thus, a large amount of TiN of 0.05 ⁇ m or less that can effectively suppress the growth of ⁇ grains remains. Therefore, the coarsening of the structure of the center portion of the HAZ thickness of the high heat input welded joint can be suppressed to some extent.
  • TiN in the surface layer portion of the base material is fine, most of it is dissolved due to the heat effect of high heat input welding. However, due to the effect of composite precipitates of TiN and MnS that re-precipitate during the cooling process, etc.
  • % for a component means mass%.
  • C is an essential element for increasing the strength, and 0.03% or more is added.
  • the addition amount increases, it becomes difficult to ensure the HAZ toughness, so 0.16% is made the upper limit of the C amount.
  • the lower limit of C may be 0.05%, 0.06%, or 0.07%.
  • the upper limit of C may be 0.14%, 0.13%, or 0.12%.
  • Si is an inexpensive deoxidizing element and contributes to solid solution strengthening, so 0.03% or more is added.
  • the upper limit is made 0.5%.
  • the lower limit of Si may be 0.05%, 0.08%, or 0.12%.
  • the upper limit of Si may be 0.40%, 0.35%, or 0.30%.
  • Mn is effective as an element for improving the strength and toughness of the base material, so 0.3% or more is added.
  • the lower limit of the amount of Mn is preferably 0.5% or 0.7%. More preferably, 0.9% or more or 1.0% or more is added.
  • the amount of Mn is preferably 1.8% or less, and more preferably 1.6% or less.
  • the upper limit is 0.020% for P and 0.010% for S.
  • the upper limit of P may be 0.017% or 0.015%, and the upper limit of S may be 0.008%, 0.006%, or 0.004%. The smaller the contents of P and S, the better.
  • the lower limit may be 0.001% for P and 0.0001% for S.
  • Nb is an element that contributes to the refinement of structure, transformation strengthening, and precipitation strengthening by adding a small amount.
  • 0.005% or more of Nb is added to ensure the strength of the base material.
  • the content may be 0.008% or more or 0.010% or more.
  • Nb is added excessively, the HAZ hardens and deteriorates toughness, so 0.030% or less is made the upper limit.
  • a more preferable upper limit of the Nb amount is 0.020%.
  • Al is an important deoxidizing element, 0.002% or more is added. In order to perform deoxidation reliably, it is good also as 0.008% or more or 0.012% or more. However, excessive addition of Al impairs the surface quality of the slab and forms inclusions harmful to toughness, so the upper limit is made 0.10%.
  • the upper limit with preferable Al amount is 0.07% or 0.05%.
  • Ti is an extremely important element in the present invention, and is effective for improving the strength and toughness of the base metal and the HAZ toughness by refinement of the structure, precipitation strengthening, and formation of fine TiN when added in a small amount.
  • a preferable lower limit of the amount of Ti is 0.005% or more, and more preferably 0.008% or more of Ti is added.
  • Ti is added excessively, the HAZ toughness is remarkably deteriorated, so 0.050% is made the upper limit.
  • a preferable upper limit of the Ti amount is 0.040%. The upper limit may be 0.030%, 0.025%, or 0.020%.
  • N is added in an amount of 0.0020% or more in order to form a nitride with Ti and improve the HAZ toughness.
  • a preferable lower limit of the N amount is 0.0030% or more, and more preferably 0.0035% or more.
  • the content is limited to 0.0100% or less. In order to prevent embrittlement, it may be 0.0080% or less or 0.0060% or less.
  • C, Mn, and Nb are elements that contribute to hardenability, and the added amount needs to satisfy the following formula (1) from the viewpoint of securing the base metal strength and the HAZ toughness. 0.32 ⁇ [C] +0.15 [Mn] +3.8 [Nb] ⁇ 0.39 (1) In the above formula, [C], [Mn], and [Nb] are added amounts of each element. The coefficient was experimentally determined from the contribution to hardenability. If [C] +0.15 [Mn] +3.8 [Nb] is less than 0.32, the strength becomes insufficient.
  • Mn and Nb are elements that are difficult to suppress center segregation, and when [C] +0.15 [Mn] +3.8 [Nb] exceeds 0.39, center segregation becomes significant.
  • the HAZ toughness of the high heat input welded joint will decrease. 0.38 or 0.37 may be set as the upper limit for improving HAZ toughness, and 0.33 may be set as the lower limit for improving strength.
  • one or more of Cu, Cr, Mo, Ni, V, B, Mg, Ca, and REM may be added.
  • Cu, Cr, and Mo are all elements that improve hardenability.
  • Cu, Cr, and Mo may be added in an amount of 0.05% or more in order to increase the strength of the base material and prevent softening of the HAZ.
  • the upper limit is 1.5% for Cu and 0.5% for Cr and Mo.
  • the upper limit of Cu is 0.5%, 0.35% or 0.20%
  • the upper limit of Cr is 0.3%, 0.2% or 0.1%.
  • the upper limit may be limited to 0.2%, 0.1%, and 0.08%.
  • Ni is effective for securing strength, arrestability, and improving HAZ toughness, and may be added by 0.05% or more.
  • an increase in the amount of Ni increases the alloy cost, so the upper limit is made 2.0%.
  • the upper limit of Ni may be set to 0.8%, 0.6%, or 0.4%.
  • V may contribute 0.005% or more because it contributes to strength increase by precipitation strengthening.
  • the upper limit is preferably made 0.10% or less. More preferably, it is 0.080% or less, More preferably, 0.05% or less is good.
  • B is an element that improves hardenability, and 0.0002% or more may be added to increase the strength of the steel. On the other hand, excessive addition of B impairs weldability, so the upper limit of B is made 0.0030%. It is good also as 0.0020% or 0.0015%.
  • Mg, Ca, and REM are elements that contribute to improving HAZ toughness by forming fine oxides and sulfides.
  • Mg is 0.0003% or more
  • Ca is 0.0005% or more
  • REM is 0.0005% or more. May be added.
  • the upper limit of Mg amount is 0.0050% or less
  • the upper limit of Ca amount is 0.0030% or less
  • the upper limit of REM is 0.010. % Or less is preferable.
  • REM is a rare earth metal such as La or Ce.
  • Ar3 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 + 0.35 (t-8)
  • t is a plate thickness (mm).
  • Tables 4 and 5 show the TiN number density of the slab, the strength and toughness of the base material, and the HAZ toughness.
  • TiN number density is the surface layer part of the slab, specifically, an extraction replica sample is prepared from the slab surface at a position 1 / 20th of the slab thickness and the slab thickness center, and transmission electron microscope (TEM) is used.
  • the TiN number density was calculated by taking 50 to 100 000 fields of view arbitrarily and measuring the size and number of TiN.
  • Base material strength is JIS Z 2201 No. 4 tensile test specimen taken from the center of the plate thickness in the direction perpendicular to the rolling direction, and subjected to a tensile test according to JIS Z 2241, yield strength (YP). Evaluation was made by measuring the tensile strength (TS). Based on JIS Z 2242, the base material toughness is 2 mmV notch Charpy specimens taken in the rolling direction from the outermost layer of the steel sheet and the center of the sheet thickness, and after performing Charpy impact tests at various temperatures, the fracture surface transition Evaluation was made by calculating the temperature (vTrs). The base material toughness (center portion and surface layer portion) was set to be ⁇ 50 ° C. or less in terms of vTrs.
  • HAZ toughness For HAZ toughness, electrogas welding (EGW) was performed under conditions of heat input of 200 to 450 kJ / cm, and a Charpy test piece with a notch in HAZ 1 mm away from the melt line at the center of the plate thickness was collected and tested. And evaluated with vTrs. In addition, the toughness (center portion) of HAZ was set to be ⁇ 40 ° C. or less in vTrs.
  • No. of the present invention example. Nos. 1 to 15 have chemical components within a predetermined range and manufactured under predetermined conditions, and therefore satisfy a predetermined TiN number density, and all have sufficient strength as steel having a tensile strength of 440 MPa or more.
  • the toughness was ⁇ 50 ° C. or less in vTrs, and the high heat input HAZ toughness was ⁇ 40 ° C. or less, both of which were good.
  • No. with a plate thickness of 60 mm or more and a large amount of heat input. 5, 7, 13, 14 and 15 also show good toughness.
  • any one of chemical components and production conditions was outside the scope of the present invention, and any of base material strength, base material toughness, and HAZ toughness was lowered.
  • No. Nos. 16, 20, and 25 are examples in which TiN number density was insufficient due to a slow cooling rate during casting, and at least one of base metal toughness or HAZ toughness was lowered.
  • No. No. 16 had a lack of TiN at the center of the plate thickness of the slab, and the HAZ ⁇ grains were coarsened, resulting in a decrease in toughness.
  • No. 25 did not satisfy the predetermined number density in the surface layer portion and the center portion, the base material toughness and the HAZ toughness were lowered.
  • both the surface layer portion of the slab and the plate thickness center portion do not satisfy the predetermined number density, the surface layer portion of the slab, and the plate thickness center.
  • One of the parts may not satisfy a predetermined number density.
  • No. Reference numerals 17, 19 and 23 are comparative examples in which the heating conditions for hot rolling are out of the scope of the present invention.
  • No. No. 27 is a comparative example in which the rough rolling conditions were out of the scope of the present invention. Since the cumulative rolling reduction was small, the microstructure was not refined and the base metal toughness was lowered.
  • No. 18, 21, and 26 are comparative examples in which the finish rolling conditions are out of the scope of the present invention.
  • No. No. 18 had a finish rolling start temperature and finish temperature lower than Ar3, so that processing ⁇ was generated, and the base metal toughness, particularly the toughness of the surface layer portion, was significantly lowered.
  • No. 21 since the start temperature and finish temperature of finish rolling were too high, the structure at the center of the plate thickness was particularly coarsened and the toughness was lowered.
  • No. No. 26 is an example in which the cumulative rolling reduction of finish rolling is small, and the structure becomes coarse and the toughness decreases.
  • No. 22 and 24 are comparative examples in which the conditions for accelerated cooling and heat treatment after hot rolling are outside the scope of the present invention.
  • No. No. 24 was an example in which accelerated cooling was not performed, and the structure was not refined and the toughness was lowered.
  • No. Reference numerals 28 to 32 are comparative examples in which chemical components are out of the scope of the present invention.
  • the index Ceq ′ composed of C, Mn, and Nb exceeded the upper limit value, so that the center segregation became remarkable, and the HAZ toughness particularly decreased.
  • the index Ceq ' was less than the lower limit value, so that the base material strength decreased.
  • No. 30 had a high Ti / N ratio, coarse Ti oxide remained, and the HAZ toughness particularly decreased.
  • TiN was low in No. 31, the HAZ toughness particularly deteriorated due to the effect of solute N.
  • No. 32 had a large amount of C, the strength was excessive, and the HAZ toughness particularly decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

母材の表層部および溶接熱影響部の板厚中心部の組織の粗大化が抑制され、大入熱溶接が施される大型構造用鋼として適用可能な、母材および溶接熱影響部の靭性に優れた厚鋼板の製造方法を提供する。C、Mn、Nb、Ti、Nの含有量が所定の条件を満足する組成の鋼を、板厚中心部の冷却速度が1100~1300℃の範囲で0.1℃/s以上となるように冷却して鋳造し、表層部に円相当径0.02~0.05μmのTiNを7.0×104個/mm2以上、板厚中心部に円相当径0.05~0.2μmのTiNを5.0×104個/mm2以上生成させた鋳片を得て、該鋳片を所定の条件で加熱し、粗圧延後、Ar3以上880℃以下で累積圧下率40%以上の仕上圧延を行い、引き続きAr3以上の温度から、板厚平均で5℃/s以上の冷却速度で550℃以下の温度まで加速冷却を行う。

Description

厚鋼板の製造方法
 本発明は、母材および溶接熱影響部(Heat Affected Zone:HAZ)の靭性に優れた厚鋼板の製造方法に関する。本発明によって製造された厚鋼板は、船舶、建築、橋梁、タンク、海洋構造物等の溶接構造物に好適である。また、本発明によって製造された厚鋼板は、厚鋼板に限らず、厚鋼板から鋼管、コラム等に加工した二次加工品として流通する場合もあり、これらも対象とする。
 近年の鋼構造物の大型化に伴い、使用される厚鋼板の厚手高強度化とともに、安全性を確保する観点から、靭性に対する要求も厳しさを増している。また、このような構造物は溶接により作製されるため、溶接部の靭性も同時に要求されることが多い。特に最近では溶接施工能率向上のため、サブマージアーク溶接やエレクトロガス溶接等の大入熱溶接が適用されることが多く、HAZ靭性の確保はますます困難となってきている。
 これまで大入熱溶接継手のHAZ靭性を向上させる手段は数多く提案されてきたが、これらは技術思想により次の2つに大別される。一つは、鋼中粒子を活用したピン止め効果を利用したオーステナイト(γ)粒粗大化防止技術であり、もう一つはγ粒内フェライト(α)変態利用による有効結晶粒微細化技術である。
 前者(ピン止め効果)に相当する技術としては、鋼中に生成する各種の窒化物、炭化物、酸化物、硫化物などについてγ粒成長抑制効果を検討したものが挙げられる。例えば、Tiを添加した鋼ではTiNの微細粒子が鋼中に生成し、大入熱溶接継手のHAZにおけるγ粒成長を効果的に抑制することができる(例えば、非特許文献1)。
 酸化物や硫化物については、Alを0.04~0.10%、Tiを0.002~0.02%、さらに、希土類元素(REM)を0.003~0.05%含有する鋼において、HAZ靱性を向上させる技術が提案されている(例えば、特許文献1)。これは、REMの硫化物や酸化物を、大入熱溶接時にHAZ部の粗粒化の防止に利用する方法である。
 一方、後者(粒内変態)に相当する技術として、粒子径が0.1~3.0μm、粒子数が5×10~1×10個/mmのTi酸化物、あるいはTi酸化物とTi窒化物との複合体のいずれかを含有する鋼が提案されている(例えば、特許文献2)。これは、Ti酸化物やTi酸化物とTi窒化物との複合体などの粒子を、HAZにおいてγ粒内フェライト(α)変態核として作用させ、HAZ組織を微細化して靱性を向上させる技術である。
 また、BNもα変態核として作用することから、Alを0.005~0.08%、Bを0.0003~0.0050%含み、さらに、Ti、Ca、REMのうち少なくとも1種以上を0.03%以下含む鋼が提案されている(例えば、特許文献3)。これは、HAZで未溶解のREMやCaの酸化物、硫化物あるいはTiNを起点として冷却過程でBNを形成し、これからαが生成することによりHAZ靱性が向上する技術である。
 以上は大入熱溶接継手のHAZ靭性を向上させる技術であるが、介在物を利用して母材靭性を向上させる技術も提案されている(例えば、特許文献4)。これは、所定の大きさ、個数の酸化物粒子を含む鋳片を用いて、所定の条件で圧延を行うことにより、γ粒径を効率的に微細化させて母材靭性を向上させる技術である。
特開昭60−184663号公報 特開昭60−245768号公報 特開昭61−253344号公報 特開2002−309315号公報
金沢、中島、岡本、金谷、「微細TiNによる溶接ボンド部靭性の改善と大入熱溶接用鋼の開発」、鉄と鋼、Vol.61(1975)、p.2589
 しかし、非特許文献1に記載された技術はTiN粒子を活用した一般的な技術に過ぎず、成分、粒子径、分布の制御に関する詳細な記載はないため、これだけで本発明が対象とするような大入熱溶接において良好なHAZ靭性を確保することは困難である。
 特許文献1に記載された方法は、REMの硫化物や酸化物を利用するものであるが、通常、硫化物や酸化物を微細に分散させることは困難である。そのため、大入熱溶接継手のHAZのγ粒径を小さくすることには限度がある。また、粗大な硫化物や酸化物が鋼中に存在すると靱性を低下させる恐れもある。
 一方、特許文献2に記載された技術はTi酸化物やTi酸化物とTi窒化物との複合粒子をγ粒内フェライト(α)変態核として活用するものである。しかしながら、大入熱溶接でγ粒が粗大化する場合には粒内変態だけでHAZ組織を微細化することには限度がある上、α変態核として有効な粒子は比較的サイズが大きく、靭性に悪影響を及ぼす可能性がある。
 特許文献3に記載された技術は、REMやCaの酸化物、硫化物あるいはTiN上に形成させたBNをα変態核として活用するものであるが、やはり粗大なγ粒の場合には効果が限定されるうえ、酸化物、硫化物が破壊の起点となる恐れもある。
 また、特許文献4に記載された技術は、通常HAZ靭性向上のために利用される酸化物粒子を、母材靭性の効率的な造り込みに利用するものであるが、粗大な酸化物が存在するとHAZ靭性が低下する可能性がある。
 本発明は、上記事情に鑑みてなされたものであり、大型構造用鋼として適用可能な、母材および溶接熱影響部の靭性に優れた厚鋼板の製造方法を提供することを目的とする。
 本発明は、鋳片に生成するTi含有窒化物および熱間圧延の加熱条件に着目し、母材の微細化およびHAZの粒径の粗大化の抑制に寄与するTi含有窒化物を制御する方法であって、母材および溶接熱影響部の靭性に優れた厚鋼板を得るための製造方法を提供するものである。厚鋼板の強度は、例えば、降伏強度315MPa以上580MPa以下、引張強さ440MPa以上720MPa以下である。降伏強度を500MPa以下、引張強さを490MPa以上又は620MPa以下としてもよい。板厚は、例えば、10~100mmであり、その下限を12mmまたは20mmに、特に好ましくは30mmにしてもよい。また、板厚の上限を70mm又は50mmとしてもよい。母材の靭性の目標は、例えば、vTrsで−50℃以下、若しくは−40℃のシャルピー吸収エネルギー値で31J以上、47J以上又は100J以上の高い値を得ることである。溶接熱影響部の靭性の目標は、例えば、溶接入熱が200kJ/cm以上の溶接継手の溶接熱影響部において、vTrsで−40℃以下、若しくは−21℃のシャルピー吸収エネルギー値で27J以上、34J以上又は70J以上の高い値を得ることである。本発明の要旨は以下のとおりである。
 (1) 質量%で、
 C :0.03~0.16%、
 Si:0.03~0.5%、
 Mn:0.3~2.0%、
 Nb:0.005~0.030%、
 Ti:0.003~0.050%、
 Al:0.002~0.10%、
 N :0.0020~0.0100%
を含有し、
 P :0.020%以下、
 S :0.010%以下
に制限し、残部がFeおよび不可避的不純物からなり、かつ下記(1)、(2)式を満足する組成の鋼を、1100~1300℃の温度範囲における鋳片厚中心部の冷却速度が0.1℃/s以上となるように冷却して鋳造し、表層部において円相当径で0.02~0.05μmのTi含有窒化物が1mm当たり7.0×10個以上、中心部において円相当径で0.05~0.2μmのTi含有窒化物が1mm当たり5.0×10個以上存在する鋳片を製造し、該鋳片を、下記(3)、(4)式を満たす条件で加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行い、さらにAr以上880℃以下の温度で、累積圧下率40%以上の仕上圧延を行い、引き続きAr以上の温度から、板厚平均で5℃/s以上の冷却速度で550℃以下の温度まで加速冷却を行うことを特徴とする厚鋼板の製造方法。
 0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39 ・・・(1)
 1.5≦[Ti]/[N]≦3.0   ・・・(2)
 56000/(1.2−0.18×log[Nb])≦(T+273)×{log(t)+25}≦91000/(1.9−0.18×log[Ti])   ・・・(3)
 t≧30   ・・・(4)
ただし、[X]:元素Xの添加量(質量%)、T:加熱温度(℃)、t:保持時間(分)
 (2) 前記加速冷却終了後、650℃以下の温度で熱処理することを特徴とする上記(1)記載の厚鋼板の製造方法。
 (3) さらに、前記鋼が質量%で、
 Cu:1.5%以下、
 Cr:0.5%以下、
 Mo:0.5%以下、
 Ni:2.0%以下、
 V:0.10%以下、
 B:0.0030%以下
 Mg:0.0050%以下、
 Ca:0.0030%以下、
 REM:0.010%以下
の1種または2種以上を含有することを特徴とする上記(1)又は(2)に記載の厚鋼板の製造方法。
 本発明の適用によって、引張強度が440MPa級以上、板厚が10mm以上、特に30mm以上の厚鋼板で、母材靭性および入熱が200~500kJ/cm程度の溶接を行ったときのHAZ靭性が良好な厚鋼板を、効率的な製造方法により提供することが可能になることから、産業上の効果は極めて大きい。
表層部における0.02~0.05μmのTiN個数密度と母材の破面遷移温度との関係を示す図である。 中心部における0.05~0.2μmのTiN個数密度とHAZの破面遷移温度との関係を示す図である。 鋳造時の冷却速度とTiN個数密度との関係を示す図である。 Nb:0.02%、Ti:0.01%を含有する鋼の、本発明における加熱条件範囲を示す図である。
 大入熱溶接を実施すると、1400℃以上の温度に加熱された溶接熱影響部(HAZ)ではγ粒径が粗大化し、さらに、焼入れ性の高い成分系では冷却過程でマルテンサイト−オーステナイト混合物(M−A)という脆化相が生成し、HAZ靭性を低下させる。したがって、HAZ靭性を向上させるためには、基本的に化学成分の調整とHAZ組織微細化のための介在物制御を組み合わせることが必要である。
 焼入れ性の高い成分系では、特に板厚中心部にはMnなどの合金元素が濃化しており、M−Aの生成を促進するため、靭性の確保は一層困難となる。また、全厚の破壊試験においては、板厚中心部の応力状態が最も厳しくなるため、組織制御手段を駆使して、板厚中心部の組織をできるだけ微細化しておくことが必要とされる。
 一方、母材靭性を向上させるためには、化学成分の調整と介在物制御に加えて、製造方法も重要であり、例えば、TMCP(Thermo−Mechanical Control Process;熱加工制御)が適用される。母材の製造プロセスにおいては、最も高温となる加熱工程でも高々1250℃程度であり、典型的なTMCPである制御圧延(Controlled Rolling;CR)や加速冷却(Accelerated Cooling;ACC)を行うことにより、板厚中心部においてもHAZと比べれば、容易に組織を微細化することができる。
 しかし、鋼板の表層部は加熱工程において局部的に温度が上昇しやすく、そのような部分で生成した粗大なγ粒は、粗圧延工程で再結晶させても残存し、最終組織が不均一となり、靭性が低下する可能性がある。したがって、鋼板の靭性を確保するためには、表層部の粗大なγ粒の生成を抑制することが必要である。そこで、本発明者らは、大入熱溶接継手のHAZ靭性の確保のために用いられるTi含有窒化物粒子を、母材の表層部の微細化にも使えないかと考え、種々の検討を行った。なお、Ti含有窒化物粒子は、酸化物や硫化物と複合したものを含むが、以下ではTiNと記載する。
 TiNは、酸化物より高温域での安定性は低いものの、比較的容易に鋼中に微細に分散させることができる。また、熱履歴によってサイズ分布が変化することから、以下に説明するように、鋳片を製造する鋳造工程、および厚鋼板を製造する工程のうち特に加熱工程が極めて重要であることを見出した。
 まず、熱間圧延を行うための鋳片の加熱工程において、表層部の粗大なγ粒の生成を抑制し、靭性を確保するために必要なTiN分布を検討した。次に、溶接工程において、HAZの板厚中心部のγ粒成長を抑制し、靭性を確保するために必要なTiN分布を検討した。靭性はシャルピー衝撃試験を行い、破面遷移温度(vTrs)で評価した。さらに、これらの結果に基づき、鋳片の表層部および板厚中心部に要求されるTiN分布について詳細な検討を行った。なお、TiNのサイズおよび密度は、鋳片、鋼板、HAZから試料を採取して抽出レプリカを作製し、透過型電子顕微鏡を用いて測定した。
 これらの検討結果に基づき、鋳片の表層部のTiNのサイズおよび密度と母材の表層部の靭性との関係、鋳片の板厚中心部のTiNのサイズおよび密度とHAZの板厚中心部の靭性との関係を評価した。その結果を図1および図2に示す。
 図1に示すように、鋳片の表層部(例えば、鋳片表面から鋳片厚の1/20の位置)において円相当径で0.02~0.05μmのTiNが1mm当たり7.0×10個以上とすれば、母材の表層部の靭性が良好となる。鋳片の表層部で、円相当径で0.02~0.05μmのTiNの密度に注目したのは、0.02μm未満では熱間圧延の加熱時に固溶し、0.05μm超ではピンニング効果が小さく、粒成長を抑制する効果が不十分になるためである。鋳片の表層部のTiNの個数密度の上限は特に規定しないが、あまりに大きすぎると表層部では表面欠陥が発生する恐れがある。そのため表層部における0.02~0.05μmのTiNは1mm当たり4.0×10個以下が好ましい。
 また、図2に示すように、鋳片の鋳片厚中心部において円相当径で0.05~0.2μmのTiNが1mm当たり5.0×10個以上とすれば、板厚中心部のHAZの靭性が良好となる。鋳片の板厚中心部で、円相当径で0.05~0.2μmのTiNの密度に注目したのは、0.05μm未満では溶接時の熱影響で固溶して粒成長を抑制する効果が不十分になり、0.2μmを超えると母材の靭性が低下するためである。鋳片の板厚中心部のTiNの個数密度の上限も特に規定しないが、あまりに大きすぎると母材の板厚中心部の靭性が低下する恐れがある。そのため、板厚中心部における0.05~0.2μmのTiNは1mm当たり3.0×10個以下が好ましい。
 このようなTiN分布を実現するためには、鋳造工程の冷却速度を制御する必要がある。本発明者らはさらに検討を行い、TiとNのそれぞれの含有量(mass%)の比(Ti/N)を1.5~3.0とし、析出ノーズに相当する1100~1300℃の温度範囲における鋳片の中心部の冷却速度を0.1℃/s以上とすることが必要であるという知見を得た。図3に示すように、鋳片の中心部の冷却速度を0.1℃/s以上にすれば、鋳片の表層部では円相当径で0.02~0.05μmのTiNを7.0×10個/mm以上、鋳片の板厚中心部では円相当径で0.05~0.2μmのTiNを5.0×10個/mm以上とすることができる。
 ただし、TiNの分布はスラブ(鋳片)の幅方向や長手方向で必ずしも均一ではなく、個数密度の測定方法によりばらつきが生じる可能性もある。そのため、冷却速度が0.1℃/s以下であっても、表層部または板厚中心部いずれかのTiNの個数密度が規定を満たすことがある。冷却速度を高める具体的な手段としては、連続鋳造機内の冷却帯の高圧化および高水量化、鋳型厚みの減厚化、鋳片未凝固層の圧下によるスラブ厚減少等が挙げられる。冷却速度の上限については特に規定しないが、スラブ厚(鋳造厚)、装置の制約から1℃/s超とすることは困難である。鋳造時のスラブ厚について特に指定しないが、厚鋼板の製造時の鋳造厚の殆どは、150mm以上400mm以下の範囲にある。
 上記のTiN分布を有する鋳片を用いて熱間圧延を行う際には、スラブの加熱温度および保持時間を制御する必要がある。そのためには、未再結晶温度を高めることなどの作用により高強度化に寄与するNbを十分固溶させつつ、鋳片表層部のTiNを確保できる加熱温度、保持時間とすることが必要である。本発明者らは、Nb、Tiの析出挙動について、種々の実験と熱力学計算を行い、その結果に基づいて下記の(3)式および(4)式を導出した。
 56000/(1.2−0.18×log[Nb])≦P≦91000/(1.9−0.18×log[Ti]) ・・・・・・・ (3)
 ただし、P=(T+273)×{log(t)+25}
 t≧30         ・・・・・・・ (4)
ただし、[X]:元素Xの添加量(質量%)、T:加熱温度(℃)、t:保持時間(分)
 Pの関数形は、焼戻しの温度および時間の換算に用いられる焼戻しパラメータを参考にしている。また、不等式の左辺は、Nb量に応じて変化する加熱条件の下限であり、不等式の右辺は、Ti量に応じて変化する加熱条件の上限である。各係数は、粗大γが生成する限界条件、固溶Nb量を確保するための限界条件から実験的に定めた。保持時間は30分以上としたが、これはNb等の微量合金元素を均一に固溶させるためである。なお、保持時間とは設定した炉温に対して20℃低い温度に達してから抽出するまでの時間とし、加熱温度とはその間の平均温度と定義する。スラブを高温に加熱しすぎると、非常に厚いスケールが生成し、鋼板の表面疵となる場合もある。このため、スラブの加熱温度を1300℃以下、1250℃以下、1200℃以下又は1180℃以下に制限してもよい。保持時間の上限を特に設ける必要はないが、長時間保持による生産性の低下を避けるために、500分、400分又は300分を保持時間の上限としてもよい。
 図4にNb:0.02%、Ti:0.01%の場合のNb固溶、γ粗大化状況と加熱条件範囲を示す。この条件を満たす範囲でスラブ加熱を行えば、γ粒の粗大化を抑制しつつ固溶Nbを最大限活用できるため、熱間圧延、加速冷却などの後工程の製造負荷をあまり大きくすることなく母材靭性を向上させることができる。
 続いて加熱以降の工程における製造条件の限定理由を説明する。本発明では、容易に再結晶が進行する900℃以上で行う熱間圧延を粗圧延と定義し、再結晶が抑制され、組織の微細化が顕著になる880℃以下で行う熱間圧延を仕上圧延と定義する。このため、粗圧延を粗圧延機で行う必要はなく、仕上圧延を仕上圧延機で行う必要はない。例えば、粗圧延と仕上圧延をすべてひとつの仕上圧延機で行ってもよい。880℃超、900℃未満で熱間圧延を行ってもよいが、組織や機械特性に及ぼす影響は顕著ではない。
 粗圧延は900℃以上の温度、30%以上の累積圧下率で行う。これは、温度が900℃未満、累積圧下率が30%未満であると、γの再結晶が十分進行せず混粒組織となり、材質が不均一になることがあるためである。粗圧延の温度の上限は規定せず、鋳片の加熱温度、仕上圧延の開始温度に応じて適宜決定する。また、累積圧下率の上限も規定せず、鋳片の板厚、鋼板の板厚、仕上圧延の累積圧下率に応じて適宜決定する。
 仕上圧延はAr以上880℃以下の温度、40%以上の累積圧下率で行う。温度がAr未満となると加工フェライトが生成して靭性が低下する恐れがある。温度が880℃超、累積圧下率が40%未満の場合には、転位密度を高めることが難しくなり、組織が十分微細化できず靭性が低下してしまう。
 仕上圧延完了後はAr以上の温度から、板厚平均で5℃/s以上の冷却速度で、550℃以下の温度まで加速冷却を行う。冷却速度が5℃/s未満、あるいは冷却停止温度が550℃よりも高いと、強度が不足するだけでなく、組織の微細化が不十分となり、母材靭性が低下してしまう。本発明の厚鋼板では、加速冷却の冷却速度を高めても靭性を損なう低温変態組織は生成しないため、冷却速度の上限は規定しない。ただし、冷却速度は厚鋼板の板厚や装置の能力に応じて限界があり、100℃/s超とすることは困難である。冷却速度の上限を、75℃/s、50℃/s又は30℃/sに制限してもよい。
 また、冷却停止温度の下限についても本発明では限定する必要はなく、厚鋼板の要求特性によって決定すればよい。結晶粒および析出物の成長を抑制し、生産性を向上させるためには、加速冷却の冷却停止温度を550℃以下にすることが好ましい。また、加速冷却を200℃未満で停止すると、加速冷却に要する時間が長くなり、生産性を損なうことがあるため、冷却停止温度を200℃以上にすることが好ましい。強度向上などのため、冷速停止温度の下限を300℃、400℃又は450℃としてもよい。
 加速冷却後は、強度および靭性を調整するために、650℃以下の温度で熱処理(焼戻し処理)を行ってもよい。温度が650℃を超えるとセメンタイトや結晶粒が粗大化して脆性破壊の発生を助長し、母材の靭性が低下することがある。また、厚鋼板の靭性を高めるためには、熱処理の温度を400℃以上にすることが好ましい。靭性の一層の改善のため、490℃以上としてもよい。
 上述したようなTiN分布を有する鋳片を用いて所定の条件で製造した鋼板は、表層部の靭性が良好であり、大入熱溶接を行った場合でもHAZの板厚中心部のTiNは完全には溶けきらず、γ粒成長を効果的に抑制可能な0.05μm以下のTiNが多数残存する。したがって、大入熱溶接継手のHAZの板厚中心部の組織の粗大化をある程度抑制することができる。一方、母材の表層部のTiNは微細であるため、大入熱溶接の熱影響によって多くが固溶してしまうが、冷却過程で再析出するTiNとMnSの複合析出物などの効果により粒内変態が促進される。その結果、板厚中心部ではHAZ組織の粗大化は抑制され、表層部のHAZ組織は微細化されるため、実用上十分なレベルの大入熱溶接継手のHAZ靭性が確保される。
 次に、本発明の成分限定理由について説明する。ここで、成分についての「%」は質量%を意味する。
 Cは、強度を高めるのに不可欠な元素であり、0.03%以上を添加する。一方、添加量が増えるとHAZ靭性確保が困難となるため、0.16%をC量の上限とする。強度向上のため、Cの下限を0.05%、0.06%又は0.07%としてもよい。HAZ靭性の向上のため、Cの上限を0.14%、0.13%又は0.12%としてもよい。
 Siは、安価な脱酸元素であり、固溶強化にも寄与するため、0.03%以上を添加する。一方、Si量が0.5%を超えると溶接性とHAZ靭性を劣化させるため上限を0.5%とする。確実な脱酸を行うため、Siの下限を0.05%、0.08%又は0.12%としてもよい。溶接性とHAZ靭性の向上のため、Siの上限を0.40%、0.35%又は0.30%としてもよい。
 Mnは、母材の強度および靭性を向上させる元素として有効であるため0.3%以上添加する。焼入れ性を向上させるためには、Mn量の下限は0.5%又は0.7%とすることが好ましい。より好ましくは、0.9%以上又は1.0%以上を添加する。一方、Mnを過剰に添加するとHAZ靭性、溶接割れ性を劣化させるため2.0%を上限とする。Mn量を1.8%以下とすることが好ましく、1.6%以下とすることがより好ましい。
 P、Sは、不可避的不純物である。母材及びHAZの靭性向上のため、Pは0.020%、Sは0.010%を上限とする。一層の靭性向上のため、Pの上限を0.017%又は0.015%と、Sの上限を0.008%、0.006%又は0.004%としてもよい。PおよびSの含有量は少ないほど望ましいが、工業的に低減させるためには多大なコストがかかることから、Pは0.001%、Sは0.0001%を下限としてもよい。
 Nbは、微量の添加により組織の微細化、変態強化、析出強化に寄与する元素である。本発明では、母材の強度を確保するために、0.005%以上のNbを添加する。強度の一層の向上等のため、0.008%以上又は0.010%以上としてもよい。一方、Nbを過剰に添加するとHAZが硬化し、靭性を劣化させるため0.030%以下を上限とする。Nb量のより好ましい上限は、0.020%である。
 Alは、重要な脱酸元素であるため0.002%以上を添加する。確実に脱酸を行うため、0.008%以上又は0.012%以上としてもよい。しかし、Alを過剰に添加するとスラブの表面品位を損ない、靭性に有害な介在物を形成するため0.10%を上限とする。Al量の好ましい上限は、0.07%又は0.05%である。
 Tiは、本発明では極めて重要な元素であり、微量の添加により組織の微細化、析出強化、微細TiN生成により母材の強度および靭性、HAZ靭性の向上に有効であるため、0.003%以上添加する。Ti量の好ましい下限値は0.005%以上であり、より好ましくは0.008%以上のTiを添加する。一方,Tiを過剰に添加するとHAZ靭性を著しく劣化させるため0.050%を上限とする。Ti量の好ましい上限は0.040%である。その上限を0.030%、0.025%又は0.020%としてもよい。
 Nは、Tiと共に窒化物を形成しHAZ靭性を向上させるため0.0020%以上を添加する。N量の好ましい下限値は0.0030%以上であり、より好ましくは0.0035%以上とする。一方、Nを過剰に添加すると固溶Nによる脆化が生じるため0.0100%以下に限定する。脆化を防止するため、0.0080%以下又は0.0060%以下としてもよい。
 C、Mn、Nbは焼入れ性に寄与する元素であり、添加量については、母材強度とHAZ靭性確保の観点から、次の(1)式を満たす必要がある。
 0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39・・・(1)上式の[C]、[Mn]、[Nb]は、各元素の添加量(質量%)であり、係数は焼入れ性への寄与から実験的に求めた。[C]+0.15[Mn]+3.8[Nb]が0.32未満であると、強度が不十分になる。一方、特に、Mn、Nbは、中心偏析を抑制することが難しい元素であり、[C]+0.15[Mn]+3.8[Nb]が0.39を超えると中心偏析が顕著になり、大入熱溶接継手のHAZ靭性が低下してしまう。HAZ靭性の改善のため、0.38又は0.37を上限としてもよく、強度向上のため0.33を下限としてもよい。
 TiN粒子をHAZ靭性確保に活用する際には、Ti、N単独の添加量だけでなく、バランスも考慮する必要がある。すなわち、下記(2)式に示すように、TiとNの添加量の比を1.5~3.0の範囲に制御しておくことが必要である。これらの比Ti/Nが1.5未満であると、固溶N量が過剰となり、HAZ靭性が低下する。一方、Ti/Nが3.0を超えると過剰なTiが粗大な酸化物や硫化物を形成、あるいはTiC析出により強度が上昇するために、HAZ靭性が低下してしまう。
 1.5≦[Ti]/[N]≦3.0   ・・・(2)
上式の[Ti]、[N]は、各元素の添加量(質量%)である。
 さらに、強度、靭性を向上させるために、Cu、Cr、Mo、Ni、V、B、Mg、Ca、REMの1種または2種以上を添加してもよい。一方、合金コストの削減のためには、これらの元素の添加を避けた方が好ましい。
 Cu、Cr、Moは、いずれも焼入れ性を向上させる元素である。Cu、Cr、Moは、母材を高強度化し、HAZの軟化を防止するために、0.05%以上を添加してもよい。一方、過度の添加はHAZ靭性を低下させるため、Cuは1.5%以下、CrおよびMoは0.5%以下を上限とする。HAZ靭性の劣化を避けるため、Cuの上限を0.5%、0.35%又は0.20%に、Crの上限を0.3%、0.2%又は0.1%に、Moの上限を0.2%、0.1%、0.08%に制限してもよい。
 Niは、強度確保とアレスト性、HAZ靭性向上に有効であるため0.05%以上添加してもよい。一方、Ni量の増加は合金コストを上昇させるため、上限は2.0%とする。合金コストの上昇を避けるため、Niの上限を0.8%、0.6%又は0.4%としてもよい。
 Vは、析出強化により強度上昇に寄与するため0.005%以上添加してもよい。一方、Vを過剰に添加するとHAZ靭性を低下させるため、0.10%以下を上限とすることが好ましい。より好ましくは0.080%以下、さらに好ましくは0.05%以下がよい。
 Bは、焼入れ性を向上させる元素であり、鋼の強度を高めるために、0.0002%以上を添加してもよい。一方、Bを過度に添加すると溶接性を損ねるため、Bの上限は、0.0030%とする。0.0020%又は0.0015%としてもよい。
 Mg、Ca、REMは、微細な酸化物や硫化物を形成しHAZ靭性向上に寄与する元素であり、Mgは0.0003%以上、Caは0.0005%以上、REMは0.0005%以上を添加してもよい。一方、これらを過度に添加すると、介在物が粗大化し、靭性を低下させるため、Mg量の上限は0.0050%以下、Ca量の上限は0.0030%以下、REMの上限は0.010%以下が好ましい。なお、REMとはLa、Ce等の希土類金属のことである。
 表1の化学成分を有するスラブ(鋳片)を用いて、表2および3に示す製造条件により板厚30~70mmの鋼板を製造した。なお、表1のCeq’は、[C]+0.15[Mn]+3.8[Nb]の計算値である。また、表2鋳造の冷却速度は、1100~1300℃の範囲の冷却速度、MLは、56000/(1.2−0.18×log[Nb])の計算値であり、Pは、(T+273)×{log(t)+25}の計算値であり、MUは、91000/(1.9−0.18×log[Ti])の計算値である。表2および3におけるAr3(℃)は、次の式により求めた。
 Ar3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo+0.35+0.35(t−8)
 ここで、tは板厚(mm)である。また、表4および5に鋳片のTiN個数密度、母材の強度および靭性、HAZ靭性を示す。
 TiN個数密度は鋳片の表層部、具体的には、鋳片表面から鋳片厚の1/20の位置、および鋳片厚中心部から抽出レプリカ試料を作製し、透過型電子顕微鏡(TEM)を用いて20000~50000倍で任意に50~100視野撮影し、TiNのサイズと個数を測定することによりTiN個数密度を算出した。
 母材強度は、鋼板の板厚中心部から圧延方向と直角の方向に採取したJIS Z 2201の4号引張試験片を採取し、JIS Z 2241の要領で引張試験を行い、降伏強度(YP)、引張強さ(TS)を測定することで評価した。母材靭性は、JIS Z 2242に準拠して、鋼板最表層、および板厚中心部から圧延方向に2mmVノッチシャルピー試験片を採取し、種々の温度でシャルピー衝撃試験を実施した後、破面遷移温度(vTrs)を算出することにより評価した。なお、母材靭性(中心部及び表層部)がvTrsで−50℃以下となることを目標とした。
 HAZ靭性については、入熱200~450kJ/cmの条件にてエレクトロガス溶接(EGW)を行い、板厚中心部の溶融線から1mm離れたHAZにノッチを入れたシャルピー試験片を採取して試験を行い、vTrsにて評価した。なお、HAZの靭性(中心部)がvTrsで−40℃以下となることを目標とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、本発明例のNo.1~15は化学成分が所定の範囲内にあり、かつ所定の条件で製造したため、所定のTiN個数密度を満たし、いずれも引張強度440MPa以上の鋼として十分な強度を有しており、母材靭性はvTrsで−50℃以下、大入熱溶接HAZ靭性は−40℃以下であり、ともに良好であった。特に、板厚が60mm以上で溶接入熱量が大きいNo.5、7、13、14および15においても靭性が良好であることがわかる。一方、表5に示す比較例のNo.16~32は化学成分、製造条件のいずれかが本発明の範囲外であり、母材強度、母材靭性、HAZ靭性のいずれかが低下してしまった。
 No.16、20、25は鋳造時の冷却速度が遅かったために、TiN個数密度が不足し、母材靭性またはHAZ靭性の少なくともいずれかが低下した例である。No.16は鋳片の板厚中心部のTiNが足りずにHAZのγ粒が粗大化したため、靭性が低下した。No.20は表層部のTiNが不足したために、鋳片加熱時に粗大γが生成し、表層部の母材靭性が低下してしまった。No.25は表層部、中心部ともに所定の個数密度を満たさなかったために、母材靭性、HAZ靭性が低下した。このように、鋳造時の冷却速度が遅い場合は、ばらつきのために、鋳片の表層部、板厚中心部の双方が所定の個数密度を満たさないこと、鋳片の表層部、板厚中心部の一方が所定の個数密度を満たさないことがある。
 No.17、19、23は熱間圧延の加熱条件を本発明の範囲外とした比較例である。No.17はPが上限を超えたために加熱γが粗大化し、母材靭性が低下した。No.19はPが下限未満であったためにNbが十分に固溶せず、強度が不足するとともに、母材靭性も低下してしまった。No.23は加熱保持時間が短かったために、合金元素の溶体化が不十分となり、母材靭性が低下した。
 No.27は粗圧延の条件を本発明の範囲外とした比較例であり、累積圧下率が小さかったために組織が微細化せず母材靭性が低下した。
 No.18、21、26は仕上圧延の条件を本発明の範囲外とした比較例である。No.18は仕上圧延の開始温度および終了温度がAr3よりも低いため、加工αが生成して母材靭性、特に表層部の靭性が著しく低下した。No.21は仕上圧延の開始温度および終了温度が高すぎるために、特に板厚中心部の組織が粗大化し、靭性が低下した。No.26は仕上圧延の累積圧下率が小さい例であり、組織が粗大化して靭性が低下した。
 No.22、24は、熱間圧延後の加速冷却、熱処理の条件を本発明の範囲外とした比較例である。No.24は加速冷却を行わなかった例であり、組織が微細化せず靭性が低下した。No.22は熱処理温度が高すぎるために、セメンタイトと組織が粗大化し、母材靭性が低下した。
 No.28~32は化学成分を本発明の範囲外とした比較例である。No.28はC、Mn、Nbからなる指標Ceq’が上限値を超えたために中心偏析が顕著になり、特にHAZ靭性が低下した。No.29は指標Ceq’が下限値に満たなかったために母材強度が低下した。No.30はTi/Nが高かったために、粗大なTi酸化物が残存し、特にHAZ靭性が低下した。No.31はTiNが低かったために、固溶Nの影響で特にHAZ靭性が低下した。No.32はC量が多かったために、強度過剰となり、特にHAZ靭性が低下した。

Claims (3)

  1.  質量%で、
     C :0.03~0.16%、
     Si:0.03~0.5%、
     Mn:0.3~2.0%、
     Nb:0.005~0.030%、
     Ti:0.003~0.050%、
     Al:0.002~0.10%、
     N :0.0020~0.0100%
    を含有し、
     P :0.020%以下、
     S :0.010%以下
    に制限し、残部がFeおよび不可避的不純物からなり、かつ下記(1)、(2)式を満足する組成の鋼を、1100~1300℃の温度範囲における鋳片厚中心部の冷却速度が0.1℃/s以上となるように冷却して鋳造し、表層部において円相当径で0.02~0.05μmのTi含有窒化物が1mm当たり7.0×10個以上、中心部において円相当径で0.05~0.2μmのTi含有窒化物が1mm当たり5.0×10個以上存在する鋳片を製造し、該鋳片を、下記(3)、(4)式を満たす条件で加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行い、さらにAr以上880℃以下の温度で、累積圧下率40%以上の仕上圧延を行い、引き続きAr以上の温度から、板厚平均で5℃/s以上の冷却速度で550℃以下の温度まで加速冷却を行うことを特徴とする厚鋼板の製造方法。
     0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39 ・・・(1)
     1.5≦[Ti]/[N]≦3.0   ・・・(2)
     56000/(1.2−0.18×log[Nb])≦(T+273)×{log(t)+25}≦91000/(1.9−0.18×log[Ti])   ・・・(3)
     t≧30   ・・・(4)
    ただし、[X]:元素Xの添加量(質量%)、T:再加熱温度(℃)、t:保持時間(分)
  2.  前記加速冷却終了後、650℃以下の温度で熱処理することを特徴とする請求項1記載の厚鋼板の製造方法。
  3.  さらに、前記鋼が質量%で、
     Cu:1.5%以下、
     Cr:0.5%以下、
     Mo:0.5%以下、
     Ni:2.0%以下、
     V:0.10%以下、
     B:0.0030%以下
     Mg:0.0050%以下、
     Ca:0.0030%以下、
     REM:0.010%以下
    の1種または2種以上を含有することを特徴とする請求項1又は2に記載の厚鋼板の製造方法。
PCT/JP2011/060337 2010-05-27 2011-04-21 厚鋼板の製造方法 WO2011148754A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011543020A JP4897126B2 (ja) 2010-05-27 2011-04-21 厚鋼板の製造方法
BR112012024297-0A BR112012024297B1 (pt) 2010-05-27 2011-04-21 Método de produção de uma chapa de aço

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-121871 2010-05-27
JP2010121871 2010-05-27

Publications (1)

Publication Number Publication Date
WO2011148754A1 true WO2011148754A1 (ja) 2011-12-01

Family

ID=45003746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060337 WO2011148754A1 (ja) 2010-05-27 2011-04-21 厚鋼板の製造方法

Country Status (3)

Country Link
JP (1) JP4897126B2 (ja)
BR (1) BR112012024297B1 (ja)
WO (1) WO2011148754A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019014A (ja) * 2011-07-11 2013-01-31 Jfe Steel Corp 大入熱溶接熱影響部のctod特性に優れる溶接構造用鋼およびその製造方法
WO2013099177A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
CN103627980A (zh) * 2013-11-25 2014-03-12 首钢总公司 低温大壁厚x80hd大变形管线钢及其生产方法
WO2014157215A1 (ja) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管
JP2019505676A (ja) * 2015-12-23 2019-02-28 ポスコPosco 熱間抵抗性に優れた高強度構造用鋼板及びその製造方法
WO2022097588A1 (ja) * 2020-11-05 2022-05-12 Jfeスチール株式会社 鋼板および鋼板の製造方法
WO2022097589A1 (ja) * 2020-11-05 2022-05-12 Jfeスチール株式会社 鋼板およびその製造方法
JP2022550795A (ja) * 2019-10-01 2022-12-05 ポスコ 中心部における極低温変形時効衝撃靭性に優れた高強度極厚物鋼材及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209581B1 (ko) * 2018-11-29 2021-01-28 주식회사 포스코 용접열영향부 인성이 우수한 강재 및 이의 제조방법
KR20230078073A (ko) * 2021-11-26 2023-06-02 주식회사 포스코 용접 열영향부 인성이 우수한 강재 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220821A (ja) * 1985-07-17 1987-01-29 Nippon Steel Corp 高強度厚鋼板の製造法
JPH0853734A (ja) * 1994-08-10 1996-02-27 Nippon Steel Corp 大入熱溶接熱影響部靭性の優れた溶接用鋼材の製造方法
JP2001288512A (ja) * 2000-04-05 2001-10-19 Nippon Steel Corp 靱性と延性に優れた高張力鋼の製造方法
JP2008169468A (ja) * 2006-12-14 2008-07-24 Nippon Steel Corp 脆性き裂伝播停止性能に優れた高強度厚鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220821A (ja) * 1985-07-17 1987-01-29 Nippon Steel Corp 高強度厚鋼板の製造法
JPH0853734A (ja) * 1994-08-10 1996-02-27 Nippon Steel Corp 大入熱溶接熱影響部靭性の優れた溶接用鋼材の製造方法
JP2001288512A (ja) * 2000-04-05 2001-10-19 Nippon Steel Corp 靱性と延性に優れた高張力鋼の製造方法
JP2008169468A (ja) * 2006-12-14 2008-07-24 Nippon Steel Corp 脆性き裂伝播停止性能に優れた高強度厚鋼板

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019014A (ja) * 2011-07-11 2013-01-31 Jfe Steel Corp 大入熱溶接熱影響部のctod特性に優れる溶接構造用鋼およびその製造方法
JPWO2013099177A1 (ja) * 2011-12-27 2015-04-30 Jfeスチール株式会社 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
WO2013099177A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
CN104024456A (zh) * 2011-12-27 2014-09-03 杰富意钢铁株式会社 脆性裂纹传播停止特性优良的结构用高强度厚钢板及其制造方法
KR101709033B1 (ko) 2013-03-29 2017-02-21 가부시키가이샤 고베 세이코쇼 내수소유기균열성과 용접열영향부의 인성이 우수한 강판 및 라인 파이프용 강관
WO2014157215A1 (ja) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管
KR20150119958A (ko) * 2013-03-29 2015-10-26 가부시키가이샤 고베 세이코쇼 내수소유기균열성과 용접열영향부의 인성이 우수한 강판 및 라인 파이프용 강관
CN105074036A (zh) * 2013-03-29 2015-11-18 株式会社神户制钢所 抗氢致裂纹性和焊接热影响部的韧性优异的钢板和管线钢管
CN103627980A (zh) * 2013-11-25 2014-03-12 首钢总公司 低温大壁厚x80hd大变形管线钢及其生产方法
JP2019505676A (ja) * 2015-12-23 2019-02-28 ポスコPosco 熱間抵抗性に優れた高強度構造用鋼板及びその製造方法
JP2022550795A (ja) * 2019-10-01 2022-12-05 ポスコ 中心部における極低温変形時効衝撃靭性に優れた高強度極厚物鋼材及びその製造方法
JP7404520B2 (ja) 2019-10-01 2023-12-25 ポスコホールディングス インコーポレーティッド 中心部における極低温変形時効衝撃靭性に優れた高強度極厚物鋼材及びその製造方法
JPWO2022097588A1 (ja) * 2020-11-05 2022-05-12
WO2022097589A1 (ja) * 2020-11-05 2022-05-12 Jfeスチール株式会社 鋼板およびその製造方法
JP7099653B1 (ja) * 2020-11-05 2022-07-12 Jfeスチール株式会社 鋼板およびその製造方法
WO2022097588A1 (ja) * 2020-11-05 2022-05-12 Jfeスチール株式会社 鋼板および鋼板の製造方法
JP7243916B2 (ja) 2020-11-05 2023-03-22 Jfeスチール株式会社 鋼板および鋼板の製造方法
KR20230041045A (ko) 2020-11-05 2023-03-23 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법

Also Published As

Publication number Publication date
JP4897126B2 (ja) 2012-03-14
BR112012024297A2 (pt) 2016-05-24
BR112012024297B1 (pt) 2019-02-12
JPWO2011148754A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP4897126B2 (ja) 厚鋼板の製造方法
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5445720B1 (ja) アレスト性に優れた高強度厚鋼板
JP5522084B2 (ja) 厚鋼板の製造方法
JP4844687B2 (ja) 低降伏比高強度高靭性鋼板及びその製造方法
JP5604842B2 (ja) 大入熱溶接用鋼材
WO2013145771A1 (ja) 耐歪時効特性に優れた低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP4897127B2 (ja) 溶接構造用高強度鋼板の製造方法
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
EP2832889A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5076658B2 (ja) 大入熱溶接用鋼材
JP5991175B2 (ja) 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP2012207237A (ja) 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法
WO2016157862A1 (ja) 高強度・高靭性鋼板およびその製造方法
WO2016157863A1 (ja) 高強度・高靭性鋼板およびその製造方法
WO2014175122A1 (ja) H形鋼及びその製造方法
WO2014199488A1 (ja) 溶接用超高張力鋼板
JP2007177326A (ja) 低降伏比を有する高張力薄肉鋼板およびその製造方法
WO2013088715A1 (ja) 大入熱溶接用鋼材
JP2007211278A (ja) 耐火厚鋼板及びその製造方法
JP5991174B2 (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
JP5668668B2 (ja) 溶接熱影響部の靭性に優れた鋼材並びに溶接継手、溶接継手の製造方法
JP6390813B2 (ja) 低温用h形鋼及びその製造方法
JP2005097694A (ja) 脆性亀裂伝播停止性能に優れた非調質高強度厚鋼板の製造方法
JP2007224404A (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011543020

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786454

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024297

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024297

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120925