WO2011148543A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2011148543A1
WO2011148543A1 PCT/JP2011/001173 JP2011001173W WO2011148543A1 WO 2011148543 A1 WO2011148543 A1 WO 2011148543A1 JP 2011001173 W JP2011001173 W JP 2011001173W WO 2011148543 A1 WO2011148543 A1 WO 2011148543A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
substrate
heat
liquid crystal
plastic substrate
Prior art date
Application number
PCT/JP2011/001173
Other languages
English (en)
French (fr)
Inventor
安松拓人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011148543A1 publication Critical patent/WO2011148543A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Definitions

  • the present invention relates to a display device such as a liquid crystal display device provided with a plastic substrate.
  • a display device for example, a pair of substrates (that is, a TFT (Thin Film Transistor) substrate and a CF (Color Filter) substrate) disposed opposite to each other and a liquid crystal provided between the pair of substrates.
  • a liquid crystal display device having a layer has been proposed.
  • the TFT substrate includes a flexible plastic substrate formed of polyimide resin or the like, and a display element layer provided on the plastic substrate and having a TFT as a switching element.
  • the CF substrate includes the above-described plastic substrate and a CF element layer provided on the plastic substrate.
  • a flexible printed circuit board is used as a drive circuit substrate in order to cope with the reduction in thickness and size of the liquid crystal display device.
  • the flexible printed wiring board is connected to the TFT substrate of the liquid crystal display device through a conductive adhesive layer.
  • This laminate layer is formed of a material different from the above-described plastic substrate (for example, a resin material such as polyethylene terephthalate resin), and is provided on the TFT substrate and the CF substrate by heat treatment via the adhesive layer. Yes.
  • a TFT substrate and a CF substrate are manufactured on separate glass substrates, and the TFT substrate and the CF substrate are bonded together, and then the glass substrate The glass substrate is peeled off by irradiating laser light from the back surface.
  • a laminate layer is provided on the surface of the TFT substrate and the CF substrate by heat treatment through the adhesive layer.
  • a flexible printed circuit board is connected to a TFT substrate by the heat press process through the said conductive adhesive layer (for example, refer patent document 1). .
  • the present invention has been made in view of the above-described problems, and can effectively suppress the occurrence of deformation such as warpage and undulation in the terminal region, and prevent a decrease in connection reliability of the drive circuit board. It is an object of the present invention to provide a display device that can be used.
  • a display device of the present invention comprises a display device substrate having a flexible plastic substrate and a display element layer formed on the plastic substrate, and a display region for displaying an image. And a terminal region provided around the display region and provided with a terminal to which a drive circuit board is connected, in the terminal region, the side of the plastic substrate opposite to the side on which the terminal is provided.
  • the heat resistance member which improves the heat resistance of a terminal area
  • the heat resistance of the terminal area can be improved by the heat resistant member. it can.
  • the rigidity (pressure resistance) of the terminal region can be improved by the deformation preventing member. Accordingly, it is possible to effectively prevent deformation such as warpage and undulation caused by the heat and pressure treatment in the terminal region, and as a result, it is possible to prevent the connection reliability of the drive circuit board from being lowered. be able to.
  • the thickness of the deformation preventing member is preferably 30 to 200 ⁇ m.
  • the rigidity of the terminal region can be sufficiently improved without increasing the thickness of the entire display device.
  • the deformation preventing member is formed of one selected from the group consisting of polyimide resin, glass, and metal.
  • the heat-resistant member has a thickness of 5 to 50 ⁇ m.
  • the connectivity in the terminal region can be sufficiently improved without increasing the thickness of the entire display device.
  • the heat-resistant member is formed of one selected from the group consisting of an epoxy resin, an acrylic resin, and a silicone resin.
  • a heat-resistant member having adhesiveness can be formed from an inexpensive and versatile resin material.
  • a laminate layer may be provided on the side of the plastic substrate opposite to the side where the terminals are provided in the display area.
  • an adhesive layer may be provided on the surface of the plastic substrate, and a laminate layer may be provided via the adhesive layer.
  • a laminate layer can be provided on the plastic substrate with a simple configuration.
  • the laminate layer is formed of a material different from that of the deformation preventing member.
  • the laminate layer from an inexpensive material while ensuring the connection reliability in the terminal region and without considering the heat resistance and rigidity required for the deformation preventing member.
  • the thickness of the laminate layer is larger than the total thickness of the plastic substrate and the display element layer.
  • the heat-resistant member is provided on the surface of the plastic substrate opposite to the side where the terminals are provided in the display region.
  • the heat resistance of the display area can be improved by the heat resistant member.
  • the heat resistant member can further improve the impact resistance of the display area of the display device, and can further prevent damage due to the impact.
  • the display device of the present invention can effectively prevent deformation such as warpage and waviness due to heat and pressure treatment in the terminal region, and can reduce the connection reliability of the flexible printed circuit board. It has an excellent characteristic that it can be prevented.
  • the present invention further includes another display device substrate disposed opposite to the display device substrate, and a display medium layer provided between the display device substrate and the other display device substrate. It is preferably used for an apparatus. Moreover, this invention is used suitably when a display medium layer is a liquid crystal layer.
  • FIG. 1 is a plan view showing a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the liquid crystal display device according to the first embodiment of the present invention, and is a cross-sectional view taken along the line AA in FIG. It is sectional drawing for demonstrating the manufacturing method of the liquid crystal display device which concerns on the 1st Embodiment of this invention. It is sectional drawing for demonstrating the manufacturing method of the liquid crystal display device which concerns on the 1st Embodiment of this invention. It is sectional drawing for demonstrating the manufacturing method of the liquid crystal display device which concerns on the 1st Embodiment of this invention.
  • a liquid crystal display device is exemplified as the display device.
  • FIG. 1 is a plan view showing a liquid crystal display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device 1 includes a TFT substrate 2 that is a display device substrate on which a plurality of TFTs (Thin-FilmTransistors) that are switching elements are formed, and a TFT substrate 2 facing the TFT substrate 2. And a CF substrate 3 which is another display device substrate. Further, the liquid crystal display device 1 is sandwiched between a liquid crystal layer 4 which is a display medium layer sandwiched between the TFT substrate 2 and the CF substrate 3, and the TFT substrate 2 and the CF substrate 3. The substrate 2 and the CF substrate 3 are bonded to each other, and a sealing material 5 provided in a frame shape is provided to enclose the liquid crystal layer 4.
  • TFT substrate 2 that is a display device substrate on which a plurality of TFTs (Thin-FilmTransistors) that are switching elements are formed
  • a CF substrate 3 which is another display device substrate.
  • the liquid crystal display device 1 is sandwiched between a liquid crystal layer 4
  • the sealing material 5 is formed so as to circulate around the liquid crystal layer 4, and the TFT substrate 2 and the CF substrate 3 are bonded to each other via the sealing material 5.
  • the TFT substrate 2 and the CF substrate 3 are each formed in a rectangular plate shape.
  • the liquid crystal display device 1 includes a plurality of photo spacers (not shown) for regulating the thickness of the liquid crystal layer 4 (that is, the cell gap).
  • a display area D for image display is defined in an area where the TFT substrate 2 and the CF substrate 3 overlap inside the sealing material 5. Yes.
  • the display area D is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
  • the liquid crystal display device 1 is formed in a rectangular shape, and in the longitudinal direction Y of the liquid crystal display device 1, the TFT substrate 2 protrudes from the CF substrate 3 on the upper side thereof.
  • a terminal region T is defined in the protruding region.
  • the terminal area T is provided around the display area D as shown in FIG.
  • the terminal region T is provided with a plurality of terminals 9 and connection wirings 20 connected to each of the plurality of terminals 9.
  • a flexible printed circuit board 24 which is a drive circuit board for supplying a signal from the outside, is attached.
  • the TFT substrate 2 and the flexible printed circuit board 24 are bonded to each other in the terminal region T through the conductive adhesive layer 16 having adhesiveness.
  • the terminals 9 and the terminals 25 formed on the flexible printed board 24 are electrically connected.
  • the conductive adhesive layer 16 is not particularly limited as long as it has conductivity and has an adhesive force capable of bonding and fixing the TFT substrate 2 and the flexible printed board 24.
  • a film adhesive, a conductive paste, or the like can be used as the conductive adhesive layer 16.
  • an adhesive containing conductive particles can be used, for example, an insulating thermosetting resin as a main component and conductive particles dispersed in the resin can be used.
  • thermosetting resin for example, an epoxy resin, a polyimide resin, a polyurethane resin, or the like can be used.
  • an epoxy resin as a thermosetting resin from a viewpoint of improving the adhesiveness of a film-form adhesive, and film formability.
  • electroconductive particle metal particles, such as copper, silver, gold
  • the film adhesive should just have at least 1 sort (s) as a main component among the above-mentioned thermosetting resins, and should just use at least 1 sort (s) among the above-mentioned metal particles.
  • an anisotropic conductive adhesive containing conductive particles can be used as the film adhesive. More specifically, as the anisotropic conductive adhesive, for example, an insulating thermosetting resin such as the above-described epoxy resin is a main component, and the conductive particles made of the above-described metal particles are included in the resin. Distributed ones can be used.
  • the thickness direction of the anisotropic conductive adhesive that is, the conductive adhesive layer 16 (direction of arrow X in FIG. 2).
  • the terminal 9 and the flexible printed circuit board 24 are fixed so as to face each other, and the terminal 9 and the flexible printed circuit board 24 are electrically connected, and in other directions, the conductive adhesive layer 16 having insulation properties.
  • this anisotropic conductive adhesive for example, a film-like anisotropic conductive film (Anisotropic Conductive Film) can be used.
  • the above-mentioned adhesive which can be used as a paste, can be used.
  • a thermosetting conductive paste mainly composed of conductive particles, a binder resin, and a solvent can be used.
  • the conductive particles for example, metal particles such as copper, silver, gold and nickel can be used.
  • an epoxy resin, a polyimide resin, a polyurethane resin etc. can be used for binder resin, for example.
  • the solvent for example, butyl acetate, butyl carbitol acetate or the like can be used.
  • a conductive adhesive layer 16 is formed by applying a conductive paste to the surface of the TFT substrate 2 by a screen printing method, an intaglio printing method, or the like, and applying a heat treatment to cure the binder resin. Is done. In addition, it is good also as a structure containing a hardening
  • the TFT substrate 2 includes a plastic substrate 6 having a film-like flexibility formed from a resin material.
  • a resin material for forming the plastic substrate 6 for example, an organic material such as polyimide resin, polyparaxylene resin, or acrylic resin can be used.
  • a display element layer 7 provided with TFTs and the like is formed.
  • the display element layer 7 includes a plurality of gate lines (not shown) extending in parallel to each other on the plastic substrate 6 and a plurality of source lines (not shown) extending in parallel to each other so as to be orthogonal to each gate line. I have.
  • the display element layer 7 includes a plurality of TFTs (not shown) provided at each intersection of the gate lines and the source lines, and a plurality of pixel electrodes (not shown) respectively connected to the TFTs. Yes.
  • the CF substrate 3 includes a plastic substrate 8 having a film-like flexibility (flexibility) formed of a resin material, like the TFT substrate 2.
  • a resin material for forming the plastic substrate 8 the same material as the organic material for forming the plastic substrate 6 described above can be used.
  • a CF element layer 19 is formed on the plastic substrate 8 of the CF substrate 3.
  • the CF element layer 19 is provided between each colored layer and a plurality of colored layers (not shown) colored in red, green, or blue, corresponding to each pixel electrode on the TFT substrate 2.
  • a color filter composed of a black matrix (not shown).
  • the CF element layer 19 includes an overcoat layer (not shown) provided on the color filter, a common electrode (not shown) provided on the overcoat layer, and an alignment film (not shown) provided on the common electrode. (Not shown).
  • the thickness of the plastic substrates 6 and 8 is preferably 3 to 30 ⁇ m. If the thickness is less than 3 ⁇ m, sufficient mechanical strength may not be obtained. If the thickness is greater than 30 ⁇ m, a plastic substrate may be used when forming the display element layer 7 or the CF element layer 19. This is because the warpages of 6 and 8 become large and a problem may occur in the process.
  • the liquid crystal layer 4 includes, for example, nematic liquid crystal having electro-optical characteristics.
  • laminate layers 10 and 11 are provided in order to improve impact resistance of the liquid crystal display device 1 and prevent damage due to impact. ing.
  • the impact resistance of the liquid crystal display device 1 on the side of the TFT substrate 2 opposite to the side where the liquid crystal layer 4 is provided that is, the side opposite to the side where the terminals 9 are provided of the plastic substrate 6).
  • a laminate layer 10 for improving the properties is provided.
  • the shock resistance of the liquid crystal display device 1 on the side of the CF substrate 3 opposite to the side on which the liquid crystal layer 4 is provided that is, the side on the plastic substrate 8 opposite to the side on which the liquid crystal layer 4 is provided.
  • a laminate layer 11 for improving the properties is provided.
  • the laminate layers 10 and 11 can be formed of a transparent resin material such as polyethylene terephthalate resin, polyethylene naphthalate resin, polyether sulfone resin, polycarbonate resin, and cycloolefin polymer resin.
  • a transparent resin material such as polyethylene terephthalate resin, polyethylene naphthalate resin, polyether sulfone resin, polycarbonate resin, and cycloolefin polymer resin.
  • the thickness T 1 of the laminate layer 10 is preferably at least 30 [mu] m.
  • the thickness T 1 of the laminate layer 10 is the thickness of the TFT substrate 2 (that is, the plastic substrate 6 constituting the TFT substrate 2 and the display).
  • the sum of the thicknesses of the element layers 7 is preferably larger than T 3 (that is, T 1 > T 3 ).
  • the thickness T 2 of the laminate layer 11 is larger than the thickness T 4 of the CF substrate 3 (that is, the total thickness of the plastic substrate 8 and the CF element layer 19 constituting the CF substrate 3) T 4 (that is, T 2. > T 4 ) is preferred.
  • the laminate layer 10 is laminated on the surface 6a of the plastic substrate 6 via the adhesive layer 12.
  • the laminate layer 11 is laminated on the surface 8 a of the plastic substrate 8 via the adhesive layer 13.
  • the adhesive constituting the adhesive layer 12.13 is not particularly limited, and examples of the adhesive include adhesives of various resins such as an epoxy resin, a butyral resin, and an acrylic resin.
  • a polarizing plate (not shown) is provided outside the laminate layer 10 of the TFT substrate 2, and a backlight unit (not shown) is provided outside the polarizing plate.
  • a polarizing plate (not shown) is provided outside the laminate layer 11 of the CF substrate 3.
  • the liquid crystal display device 1 of the present embodiment in the terminal region T of the liquid crystal display device 1, on the surface 6 a of the plastic substrate 6 on the side opposite to the side where the terminals 9 are provided. Further, a heat-resistant member 14 for improving the heat resistance of the terminal region T is provided, and a deformation preventing member 15 for preventing the deformation of the terminal region T is provided on the surface of the heat-resistant member 14. There is.
  • the heat resistance of the terminal region T is achieved by the heat resistant member 14.
  • the deformation preventing member 15 improves the rigidity (pressure resistance) of the terminal region T.
  • an adhesive member can be used, for example, an insulating resin having adhesive property as a main component can be used.
  • an insulating resin for example, an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
  • the thickness T 5 of the heat-resistant member 14 is preferably 5 to 50 ⁇ m. This is because if the thickness T5 is less than 5 ⁇ m, the connectivity in the terminal region T may not be sufficiently improved, and if it is greater than 50 ⁇ m, the thickness of the entire liquid crystal display device 1 becomes large. Because there are cases.
  • the deformation preventing member 15 is not particularly limited as long as it can prevent deformation of the terminal region T.
  • the heat and pressure treatment described above is performed in the terminal region T.
  • Those having a glass transition temperature of 150 ° C. or higher and high elasticity (elastic modulus of 1 GPa or higher) and low thermal expansibility (thermal expansion coefficient of 30 ppm / ° C. or lower) are preferable.
  • a material for forming such a deformation preventing member 15 for example, polyimide resin, glass, metal, and the like can be used.
  • the glass for example, alkali-free glass, alkali glass, or the like can be used.
  • a metal SUS, aluminum, etc. can be used, for example.
  • the deformation preventing member 15 is formed of a material different from that of the laminate layers 10 and 11. Therefore, it is possible to form the laminate layers 10 and 11 from an inexpensive material without considering the heat resistance and rigidity required for the deformation preventing member 15 while ensuring the connection reliability in the terminal region T.
  • the thickness T 6 of the deformation preventing member 15 is preferably 30 to 200 ⁇ m. If this is the thickness T 6 is less than 30 [mu] m, is because there may not be sufficiently improved rigidity of the terminal region T, also, if larger than 200 [mu] m, when the liquid crystal display device 1 overall thickness increases Because there is.
  • the “glass transition temperature” here refers to a physical property value of a polymer thin film measured using a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • 3 to 11 are cross-sectional views for explaining the manufacturing method of the liquid crystal display device according to the first embodiment of the present invention.
  • the following manufacturing method is merely an example, and the liquid crystal display device 1 according to the present invention is not limited to the one manufactured by the following method.
  • a glass substrate 17 having a thickness of about 0.7 mm is prepared as a support substrate.
  • a film-like flexible plastic substrate 6 made of, for example, a polyimide resin is formed on the glass substrate 17 with a thickness of about 20 ⁇ m, for example.
  • TFTs, pixel electrodes, terminals 9 and the like are patterned to form the display element layer 7 as shown in FIG.
  • a polyimide resin is applied to the entire substrate by a printing method, and then a rubbing process is performed to form an alignment film.
  • spherical silica or plastic particles are dispersed over the entire substrate to form spacers.
  • the TFT substrate 2 constituting the display region D and the terminal region T can be manufactured.
  • a glass substrate 18 having a thickness of about 0.7 mm is prepared as a support substrate.
  • a film-like flexible plastic substrate 8 made of, for example, polyimide resin is formed on the glass substrate 18 with a thickness of about 20 ⁇ m, for example.
  • a color filter including a colored layer and a black matrix is formed on the plastic substrate 8, and an overcoat layer, a common electrode, and the like are patterned to form a CF element layer 19.
  • a polyimide resin is applied to the entire substrate by a printing method, and then a rubbing process is performed to form an alignment film, thereby producing the CF substrate 3 constituting the display region D.
  • the black matrix is made of metal materials such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), and Al (aluminum), and black pigments such as carbon.
  • metal materials such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), and Al (aluminum), and black pigments such as carbon.
  • ⁇ TFT substrate / CF substrate bonding process First, for example, using a dispenser, the sealing material 5 made of ultraviolet curing and thermosetting resin or the like is drawn on the CF substrate 3 in a frame shape.
  • a liquid crystal material for forming the liquid crystal layer 4 is dropped on a region inside the sealing material 5 in the CF substrate 3 on which the sealing material 5 is drawn.
  • the CF substrate 3 onto which the liquid crystal material is dropped and the TFT substrate 2 are bonded together under reduced pressure.
  • the front and back surfaces of the bonded body are pressurized by releasing the bonded body to atmospheric pressure.
  • the sealing material 5 is cured by heating the bonded body, and as shown in FIG. 5, the TFT substrate 2 and the CF substrate 3 A bonded body in which is bonded is produced.
  • the glass substrate 17 is peeled off by irradiating laser light (arrows in FIG. 6) from the glass substrate 17 side.
  • the removal of the glass substrate 17 may not be peeling by laser light irradiation.
  • the glass substrate 17 may be removed using a polishing and etching apparatus.
  • a heat-resistant member 14 formed of an epoxy resin for example, It is formed with a thickness of about 20 ⁇ m.
  • the heat-resistant member 14 is formed on the surface 6a of the plastic substrate 6 by molding.
  • the deformation preventing member 15 made of polyimide resin is formed with a thickness of about 38 ⁇ m, for example.
  • the deformation preventing member 15 is formed on the surface of the heat-resistant member 14 at room temperature using a known laminating apparatus.
  • an adhesive layer 12 formed of, for example, an epoxy resin is formed on the surface 6 a of the plastic substrate 6 opposite to the side where the terminals 9 are provided. And a thickness of about 20 ⁇ m.
  • a laminate layer 10 made of, for example, polyethylene terephthalate resin is formed on the surface of the adhesive layer 12 with a thickness of about 100 ⁇ m, for example.
  • the laminate layer 10 is formed on the surface 6a of the plastic substrate 6 via the adhesive layer 12 by performing a lamination process at room temperature using a known laminating apparatus.
  • the resin material has a large coefficient of thermal expansion. As a result, stress is generated, and there is a problem that deformation such as warpage and undulation occurs in the display area of the display device using the plastic substrate.
  • the glass substrate 18 is peeled off by irradiating laser light (arrows in FIG. 9) from the glass substrate 18 side.
  • the removal of the glass substrate 18 may not be peeling by laser light irradiation as in the case of the glass substrate 17 described above.
  • the glass substrate 18 may be removed using a polishing and etching apparatus.
  • an adhesive layer 13 formed of, for example, an epoxy resin is formed on the surface 8a of the plastic substrate 8 opposite to the side on which the liquid crystal layer 4 is provided.
  • it is formed with a thickness of about 20 ⁇ m.
  • a laminate layer 11 made of, for example, polyethylene terephthalate resin is formed on the surface of the adhesive layer 13 with a thickness of about 100 ⁇ m, for example.
  • the laminate layer 11 is laminated on the surface 8a of the plastic substrate 8 via the adhesive layer 13 by laminating at a room temperature using a known laminating apparatus. It is formed.
  • the plastic substrate 8 and the laminate layer 11 it is possible to avoid the generation of stress due to the difference in thermal expansion coefficient. Therefore, the display region D of the liquid crystal display device 1 using the plastic substrate 8 is deformed such as warpage or undulation. Can be prevented from occurring.
  • the terminals 25 formed on the flexible printed circuit board 24 are placed on the conductive adhesive layer 16. Then, with the conductive adhesive layer 16 heated to a predetermined curing temperature (for example, 180 ° C.), the conductive adhesive layer 16 is moved toward the TFT substrate 2 with a predetermined pressure (via the flexible printed circuit board 24). For example, the conductive adhesive layer 16 is heated and melted by pressurizing at 3 MPa.
  • a predetermined curing temperature for example, 180 ° C.
  • the conductive adhesive layer 16 is mainly composed of a thermosetting resin
  • the conductive adhesive layer 16 when heated at a predetermined curing temperature, the conductive adhesive layer 16 is softened once, but is cured by continuing the heating. It will be.
  • the preset curing time of the conductive adhesive layer 16 elapses, the state of maintaining the curing temperature of the conductive adhesive layer 16 is released, and cooling is started, so that the conductive adhesive layer 16 is passed through the conductive adhesive layer 16.
  • Terminal 9 and terminal 25 are connected.
  • the TFT substrate 2 and the flexible printed circuit board 24 are bonded together via the conductive adhesive layer 16 having adhesiveness, and the conductive adhesive layer 16 and the terminals 9 and 25 are interposed.
  • the TFT substrate 2 and the flexible printed circuit board 24 are electrically connected, and the TFT substrate 2 and the flexible printed circuit board 24 become conductive.
  • a polarizing plate (not shown) and a backlight unit (not shown) are provided to complete the liquid crystal display device 1 shown in FIG.
  • the heat resistance of the terminal region T is improved on the surface 6a of the plastic substrate 6 constituting the TFT substrate 2 opposite to the side where the terminals 9 are provided.
  • the heat-resistant member 14 is provided.
  • a deformation preventing member 15 that prevents deformation of the terminal region T is provided on the surface of the heat resistant member 14. Therefore, the heat resistance of the terminal region T is improved by the heat-resistant member 14 even when the heat and pressure treatment is performed to connect the flexible printed circuit 24 to the terminal region T of the TFT substrate 2 including the plastic substrate 6. be able to.
  • the deformation preventing member 15 can improve the rigidity (pressure resistance) of the terminal region T. Therefore, in the terminal region T, it is possible to effectively prevent deformation such as warpage and waviness due to heat and pressure treatment, and as a result, the connection reliability of the flexible printed circuit board 24 is reduced. Can be prevented.
  • the thickness T 6 of the deformation preventing member 15 is set to 30 to 200 ⁇ m. Therefore, the rigidity of the terminal region T can be sufficiently improved without increasing the thickness of the entire liquid crystal display device 1.
  • the deformation preventing member 15 is formed of one type selected from the group consisting of polyimide resin, glass, and metal. Therefore, it is possible to provide the deformation preventing member 15 having heat resistance, high elasticity, and low thermal expansion in the terminal region T where the heat and pressure treatment is performed.
  • the thickness T 5 of the heat-resistant member 14 is set to 5 to 50 ⁇ m. Therefore, the connectivity in the terminal region T can be sufficiently improved without increasing the thickness of the entire liquid crystal display device 1.
  • the heat-resistant member 14 is formed of one type selected from the group consisting of an epoxy resin, an acrylic resin, and a silicone resin. Therefore, the heat-resistant member 14 having adhesiveness can be formed from an inexpensive and versatile resin material.
  • the laminate layer 10 is provided on the side of the plastic substrate 6 constituting the TFT substrate 2 opposite to the side on which the terminals 9 are provided. Therefore, the impact resistance of the liquid crystal display device 1 can be improved and damage due to the impact can be prevented.
  • the adhesive layer 12 is provided thereon, and the laminate layer 10 is provided via the adhesive layer 12. Therefore, the laminate layer 10 can be provided on the plastic substrate 6 with a simple configuration.
  • the laminate layer 10 is formed of a material different from that of the deformation preventing member 15. Therefore, it is possible to form the laminate layer 10 from an inexpensive material without considering the heat resistance and rigidity required for the deformation preventing member 15 while ensuring the connection reliability in the terminal region T.
  • the thickness T 1 of the laminate layer 10 is configured to be larger than the thickness T 3 of the TFT substrate. Therefore, impact resistance in the display area D can be improved.
  • FIG. 12 is a sectional view showing a liquid crystal display device according to the second embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, the plan view of the liquid crystal display device is the same as that described in the first embodiment, and a detailed description thereof is omitted here.
  • the liquid crystal display device 30 of the present embodiment has the above-described structure on the surface 6 a of the plastic substrate 6 opposite to the side where the terminals 9 are provided in the display region D of the liquid crystal display device 30. It is characterized in that the heat-resistant member 14 is provided.
  • the heat-resistant member 14 is provided only in the terminal region T of the liquid crystal display device 1, but in the present embodiment, not only in the terminal region T but also in the display region D, It is characterized in that a heat-resistant member 14 is provided.
  • the heat resistance of the display region D can be improved by the heat resistant member 14. Further, the heat resistant member 14 can further improve the impact resistance of the display region D of the liquid crystal display device 30 and further prevent damage due to the impact.
  • FIG. 13 to 17 are cross-sectional views for explaining a method of manufacturing a liquid crystal display device according to the second embodiment of the present invention.
  • the following manufacturing method is merely an example, and the liquid crystal display device 30 according to the present invention is not limited to the one manufactured by the following method.
  • the TFT substrate 2 and the CF substrate 3 are manufactured, and after the TFT substrate 2 and the CF substrate 3 are bonded together, the glass substrate is formed in the same manner as in FIG.
  • the glass substrate 17 is peeled off by irradiating laser light from the substrate 17 side.
  • the heat-resistant member 14 formed of, for example, epoxy resin on the surface 6a of the plastic substrate 6 opposite to the side where the terminals 9 are provided. For example, with a thickness of about 20 ⁇ m.
  • the heat-resistant member 14 is formed on the surface 6a of the plastic substrate 6 at a room temperature or a temperature of 100 to 120 ° C. using a known laminating apparatus.
  • the heat resistant member 14 is formed also in the display region D without increasing the number of steps, as compared with the first embodiment in which the heat resistant member 14 is formed only in the terminal region T. Can do.
  • the glass transition temperature is 150 ° C. or higher and the elastic modulus is 1 GPa or higher on the surface of the heat-resistant member 14 in the terminal region T as shown in FIG.
  • the deformation preventing member 15 formed of a material (for example, polyimide resin) having a thermal expansion coefficient of 30 ppm / ° C. or less is formed with a thickness of about 38 ⁇ m, for example.
  • the deformation preventing member 15 is formed on the surface of the heat-resistant member 14 at room temperature using a known laminating apparatus.
  • an adhesive layer 12 formed of, for example, an epoxy resin is formed on the surface 14a of the heat-resistant member 14 opposite to the side where the terminals 9 are provided. And a thickness of about 20 ⁇ m.
  • a laminate layer 10 made of, for example, polyethylene terephthalate resin is formed on the surface of the adhesive layer 12 with a thickness of about 100 ⁇ m, for example.
  • the laminate layer 10 is formed on the surface 6a of the plastic substrate 6 via the adhesive layer 12 by performing a lamination process at room temperature using a known laminating apparatus.
  • the glass substrate 18 is peeled off by irradiating laser light from the glass substrate 18 side.
  • the removal of the glass substrate 18 may not be peeling by laser light irradiation as in the case of the glass substrate 17 described above.
  • a laminate layer 11 made of, for example, polyethylene terephthalate resin is formed on the surface of the adhesive layer 13 with a thickness of about 100 ⁇ m, for example.
  • the laminate layer 11 is laminated on the surface 8a of the plastic substrate 8 via the adhesive layer 13 by laminating at a room temperature using a known laminating apparatus. It is formed.
  • a polarizing plate (not shown) and a backlight unit (not shown) are provided to complete the liquid crystal display device 30 shown in FIG.
  • the heat-resistant member 14 is provided on the surface 6a of the plastic substrate 6 opposite to the side on which the terminals 9 are provided. Therefore, the heat resistance of the display region D can be improved by the heat resistant member 14.
  • the heat resistant member 14 can further improve the impact resistance of the display region D of the liquid crystal display device 30 and further prevent damage due to the impact.
  • the display device is an organic EL (organic electroluminescence), electrophoresis (electrophoretic), PD (plasma display). Display), PALC (plasma addressed liquid crystal display), inorganic EL (inorganic electroluminescence), FED (field emission display), or SED (surface-conduction electron-emitter display) ) And the like.
  • organic EL organic electroluminescence
  • electrophoresis electrophoretic
  • PD plasma display
  • PALC plasma addressed liquid crystal display
  • inorganic EL inorganic electroluminescence
  • FED field emission display
  • SED surface-conduction electron-emitter display
  • the present invention is particularly useful for a display device such as a liquid crystal display device provided with a plastic substrate.
  • Liquid crystal display device 2 TFT substrate (substrate for display device) 3 CF substrate (other display device substrate) 4 Liquid crystal layer (display medium layer) 6 plastic substrate 6a surface of the plastic substrate opposite to the side where the terminals are provided 7 display element layer 9 terminal 10 laminate layer 12 adhesive layer 14 heat-resistant member 15 deformation preventing member 19 CF element layer 24 flexible printed circuit board (drive circuit) substrate) 25 Terminal D Display area T Terminal area T 1 Laminate layer thickness T 3 TFT substrate thickness (total thickness of plastic substrate and display element layer) The thickness of the thickness T 6 deformation preventing member T 5 heat-resistant member

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶表示装置(1)は、可撓性を有するプラスチック基板(6)と、プラスチック基板(6)上に形成された表示素子層(7)とを有するTFT基板(2)を備え、画像表示を行う表示領域(D)と、表示領域(D)の周辺に設けられ、フレキシブルプリント基板(24)が接続される端子(9)が形成された端子領域(T)とを有する。そして、端子領域(T)において、プラスチック基板(6)の、端子(9)が設けられた側と反対側の表面(6a)上に端子領域(T)の耐熱性を向上する耐熱部材(14)が設けられ、耐熱部材(14)の表面上に端子領域(T)の変形を防止する変形防止部材(15)が設けられている。

Description

表示装置
 本発明は、プラスチック基板を備えた液晶表示装置等の表示装置に関する。
 近年、ディスプレイ分野では、フレキシブル性、耐衝撃性や軽量性の点でガラス基板に比べて大きなメリットのあるプラスチック基板を用いた表示装置が非常に注目を浴びており、ガラス基板のディスプレイでは不可能であった新たな表示装置が創出される可能性を秘めている。
 このような表示装置としては、例えば、互いに対向して配置された一対の基板(即ち、TFT(Thin Film Transistor)基板とCF(Color Filter)基板)と、一対の基板の間に設けられた液晶層とを有する液晶表示装置が提案されている。
 この液晶表示装置では、TFT基板は、ポリイミド樹脂等により形成された可撓性を有するプラスチック基板と、プラスチック基板上に設けられ、スイッチング素子であるTFTを有する表示素子層とを備えている。また、CF基板は、上述のプラスチック基板と、プラスチック基板上に設けられたCF素子層とを備えている。
 また、この液晶表示装置では、液晶表示装置の薄型化及び小型化に対応すべく、駆動回路基板としてフレキシブルプリント基板が使用されている。このフレキシブルプリン配線板は、導電性接着剤層を介して、液晶表示装置のTFT基板に接続されている。
 また、プラスチック基板として、薄い基板(100μm以下)を使用した場合、プラスチック基板自体に破損は生じないものの、衝撃により、例えば、TFT基板に形成されたTFTが破損しやすくなる。従って、耐衝撃性を一層向上させて破損を防止するために、液晶表示装置の表示部をラミネート層で被覆する構成が提案されている。このラミネート層は、上述のプラスチック基板とは異なる材料(例えば、ポリエチレンテレフタレート樹脂等の樹脂材料)により形成されており、接着剤層を介して、加熱処理により、TFT基板及びCF基板に設けられている。
 また、このようなプラスチック基板を使用した液晶表示装置を製造する場合は、まず、別個のガラス基板上にTFT基板及びCF基板を製造し、TFT基板とCF基板を貼り合わせた後に、ガラス基板の裏面からレーザ光を照射して、ガラス基板を剥離する。次いで、接着剤層を介して、熱処理により、TFT基板及びCF基板の表面にラミネート層を設ける。そして、TFT基板の端子領域に導電性接着剤層を設けるとともに、当該導電性接着剤層を介して、加熱加圧処理により、フレキシブルプリント基板をTFT基板に接続する(例えば、特許文献1参照)。
特開昭62-256495号公報
 しかし、上記特許文献1に記載の製造方法においては、TFT基板の端子領域にフレキシブルプリント基板を接続するために加熱加圧処理を行うと、TFT基板の端子領域は可撓性のあるプラスチック基板により形成されているため、端子領域において反りやうねり等の変形が発生して、TFT基板とフレキシブルプリント基板との間で接続不良が発生する。その結果、フレキシブルプリント基板の接続信頼性が低下するという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、端子領域における反りやうねり等の変形の発生を効果的に抑制することができ、駆動回路基板の接続信頼性の低下を防止することができる表示装置を提供することを目的とする。
 上記目的を達成するために、本発明の表示装置は、可撓性を有するプラスチック基板と、プラスチック基板上に形成された表示素子層とを有する表示装置用基板を備え、画像表示を行う表示領域と、表示領域の周辺に設けられ、駆動回路基板が接続される端子が形成された端子領域とを有する表示装置であって、端子領域において、プラスチック基板の、端子が設けられた側と反対側の表面上に端子領域の耐熱性を向上する耐熱部材が設けられ、耐熱部材の表面上に端子領域の変形を防止する変形防止部材が設けられていることを特徴とする。
 同構成によれば、プラスチック基板を備える表示装置の端子領域に駆動回路基板を接続するために加熱加圧処理を行う場合であっても、耐熱部材により、端子領域の耐熱性を向上させることができる。また、変形防止部材により、端子領域の剛性(耐圧性)を向上させることができる。従って、端子領域において、加熱加圧処理に起因する反りやうねり等の変形が発生するのを効果的に防止することが可能になり、結果として、駆動回路基板の接続信頼性の低下を防止することができる。
 また、本発明の表示装置においては、変形防止部材の厚みが、30~200μmであることが好ましい。
 同構成によれば、表示装置全体の厚みを大きくすることなく、端子領域の剛性を十分に向上させることができる。
 また、本発明の表示装置においては、変形防止部材が、ポリイミド樹脂、ガラス、及び金属からなる群より選ばれる1種により形成されていることが好ましい。
 同構成によれば、加熱加圧処理が行われる端子領域において、耐熱性、高弾性、及び低い熱膨張性を有する変形防止部材を設けることが可能になる。
 また、本発明の表示装置においては、耐熱部材の厚みが、5~50μmであることが好ましい。
 同構成によれば、表示装置全体の厚みを大きくすることなく、端子領域における接続性を十分に向上させることができる。
 また、本発明の表示装置においては、耐熱部材が、エポキシ樹脂、アクリル樹脂、及びシリコーン樹脂からなる群より選ばれる1種により形成されていることが好ましい。
 同構成によれば、安価かつ汎用性のある樹脂材料により、接着性を有する耐熱部材を形成することができる。
 また、本発明の表示装置においては、表示領域において、プラスチック基板の、端子が設けられた側と反対側にラミネート層が設けられていてもよい。
 同構成によれば、表示装置の耐衝撃性を向上させて、衝撃による破損を防止することができる。
 また、本発明の表示装置においては、表示領域において、プラスチック基板の表面上に接着剤層が設けられ、ラミネート層が、接着剤層を介して設けられていてもよい。
 同構成によれば、簡単な構成で、プラスチック基板にラミネート層を設けることが可能になる。
 また、本発明の表示装置においては、ラミネート層が、変形防止部材と異なる材料により形成されていることが好ましい。
 同構成によれば、端子領域における接続信頼性を確保しつつ、変形防止部材に要求される耐熱性と剛性を考慮することなく、安価な材料によりラミネート層を形成することができる。
 また、本発明の表示装置においては、ラミネート層の厚みが、プラスチック基板と表示素子層との厚みの合計よりも大きいことが好ましい。
 同構成によれば、表示領域における衝撃耐性を向上させることができる。
 また、本発明の表示装置においては、耐熱部材が、表示領域において、プラスチック基板の、端子が設けられた側と反対側の表面上に設けられていることが好ましい。
 同構成によれば、耐熱部材により、表示領域の耐熱性を向上させることができる。また、耐熱部材により、表示装置の表示領域の耐衝撃性をより一層向上させて、衝撃による破損をより一層防止することが可能になる。
 また、本発明の表示装置は、端子領域において、加熱加圧処理に起因する反りやうねり等の変形が発生するのを効果的に防止することができ、フレキシブルプリント基板の接続信頼性の低下を防止することができるという優れた特性を備えている。従って、本発明は、表示装置用基板に対向して配置された他の表示装置用基板と、表示装置用基板及び他の表示装置用基板の間に設けられた表示媒体層とを更に備える表示装置に好適に使用される。また、本発明は、表示媒体層が液晶層である場合に好適に使用される。
 本発明によれば、可撓性を有するプラスチック基板を備える表示装置において、駆動回路基板の接続信頼性の低下を防止することができる。
本発明の第1の実施形態に係る液晶表示装置を示す平面図である。 本発明の第1の実施形態に係る液晶表示装置を示す断面図であり、図1のA-A断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第2の実施形態に係る液晶表示装置を示す断面図である。 本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。 本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。
 (第1の実施形態)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本実施形態においては、表示装置として液晶表示装置を例示する。
 図1は、本発明の第1の実施形態に係る液晶表示装置を示す平面図であり、図2は、本発明の第1の実施形態に係る液晶表示装置を示す断面図であり、図1のA-A断面図である。
 図1、図2に示すように、液晶表示装置1は、スイッチング素子であるTFT(Thin-Film Transistor)が複数形成された表示装置用基板であるTFT基板2と、TFT基板2に対向して配置された他の表示装置用基板であるCF基板3とを備えている。また、液晶表示装置1は、TFT基板2及びCF基板3の間に挟持して設けられた表示媒体層である液晶層4と、TFT基板2とCF基板3との間に狭持され、TFT基板2及びCF基板3を互いに接着するとともに液晶層4を封入するために枠状に設けられたシール材5とを備えている。
 このシール材5は、液晶層4を周回するように形成されており、TFT基板2とCF基板3は、このシール材5を介して相互に貼り合わされている。なお、TFT基板2及びCF基板3は、それぞれ矩形板状に形成されている。また、液晶表示装置1は、液晶層4の厚み(即ち、セルギャップ)を規制するための複数のフォトスペーサ(不図示)を備えている。
 また、液晶表示装置1では、図1、図2に示すように、シール材5の内側であって、TFT基板2及びCF基板3が重なる領域に、画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素がマトリクス状に複数配列して構成されている。
 また、図1に示すように、液晶表示装置1は、矩形状に形成されており、液晶表示装置1の長手方向Yにおいて、TFT基板2がその上辺においてCF基板3よりも突出しており、その突出した領域には、端子領域Tが規定されている。この端子領域Tは、図1に示すように、表示領域Dの周辺に設けられている。
 また、端子領域Tには、図1に示すように、複数の端子9と、当該複数の端子9の各々に接続された接続用の配線20とが設けられている。
 また、図1に示すように、端子領域Tにおいて、その一端部が端子9に接続され、外部からの信号を供給するための駆動回路基板であるフレキシブルプリント基板24が取り付けられている。
 また、図2に示すように、本実施形態の液晶表示装置1においては、端子領域Tにおいて、接着性を有する導電性接着剤層16を介して、TFT基板2とフレキシブルプリント基板24とが貼り合わされているとともに、端子9とフレキシブルプリント基板24に形成された端子25間を導通させる構成としている。
 この導電性接着剤層16としては、導電性を有するとともに、TFT基板2とフレキシブルプリント基板24とを接着固定できる接着力を有するものであれば、特に限定されない。例えば、導電性接着剤層16として、フィルム状の接着剤や導電性ペースト等を使用することができる。
 フィルム状の接着剤としては、導電性粒子を含有するものが使用でき、例えば、絶縁性の熱硬化性樹脂を主成分とし、当該樹脂中に導電性粒子が分散されたものが使用できる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂等を使用することができる。なお、フィルム状の接着剤の接着性やフィルム形成性を向上させるとの観点から、熱硬化性樹脂としてエポキシ樹脂を使用することが好ましい。また、導電性粒子としては、例えば、銅、銀、金、ニッケル等の金属粒子が使用できる。なお、フィルム状の接着剤は、上述の熱硬化性樹脂のうち、少なくとも1種を主成分としていれば良く、また、上述の金属粒子のうち、少なくとも1種を使用していれば良い。
 また、フィルム状の接着剤として、導電性粒子を含む異方導電性接着剤も使用することができる。より具体的には、当該異方導電性接着剤として、例えば、上述のエポキシ樹脂等の絶縁性の熱硬化性樹脂を主成分とし、当該樹脂中に、上述の金属粒子からなる導電性粒子が分散されたものを使用することができる。
 そして、導電性接着剤層16として、異方導電性接着剤を使用することにより、異方導電性接着剤(即ち、導電性接着剤層16)の厚み方向(図2の矢印Xの方向)においては、端子9とフレキシブルプリント基板24を互いに対向するように固定するとともに端子9とフレキシブルプリント基板24とを電気的に接続し、それ以外の方向においては絶縁性を有する導電性接着剤層16が実現できる。なお、この異方性導電性接着剤としては、例えば、フィルム状の異方性導電膜(Anisotropic Conductive Film)を使用することができる。
 導電性ペーストとしては、上述の接着剤であって、ペースト状のものが使用できる。例えば、導電性粒子、バインダー樹脂、および溶剤を主成分とする熱硬化型の導電性ペーストが使用できる。
 ここで、導電性粒子としては、例えば、銅、銀、金、ニッケル等の金属粒子が使用できる。また、バインダー樹脂は、例えば、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂等を使用することができる。さらに、溶剤としては、例えば、酢酸ブチル、ブチルカルビトールアセテート等を使用することができる。
 そして、例えば、スクリーン印刷法や凹版印刷法等により、導電性ペーストを、TFT基板2の表面に塗布するとともに、加熱処理を施してバインダー樹脂を硬化させることにより、導電性接着剤層16が形成される。なお、必要に応じて、硬化剤等を含有する構成としても良い。例えば、バインダー樹脂として、エポキシ樹脂を使用する場合には、硬化剤として、アミン化合物、イミダゾール化合物を使用することができる。
 TFT基板2は、樹脂材料により形成されたフィルム状の可撓性(フレキシビリティー)を有するプラスチック基板6を備える。このプラスチック基板6を形成する樹脂材料としては、例えば、ポリイミド樹脂、ポリパラキシレン樹脂、アクリル樹脂等の有機材料を用いることができる。
 また、TFT基板2のプラスチック基板6上には、TFT等を備えた表示素子層7が形成されている。
 ここで、表示素子層7は、プラスチック基板6上に互いに平行に延びる複数のゲート線(不図示)と、各ゲート線に直交するように互いに平行に延びる複数のソース線(不図示)とを備えている。また、表示素子層7は、ゲート線及びソース線の各交差部分にそれぞれ設けられた複数のTFT(不図示)と、各TFTにそれぞれ接続された複数の画素電極(不図示)とを備えている。
 また、CF基板3は、TFT基板2と同様に、樹脂材料により形成されたフィルム状の可撓性(フレキシビリティー)を有するプラスチック基板8を備える。このプラスチック基板8を形成する樹脂材料としては、上述のプラスチック基板6を形成する有機材料と同様の材料を使用することができる。
 また、CF基板3のプラスチック基板8上には、CF素子層19が形成されている。ここで、CF素子層19は、TFT基板2上の各画素電極に対応して、各々、赤色、緑色又は青色に着色された複数の着色層(不図示)と、各着色層の間に設けられたブラックマトリクス(不図示)とからなるカラーフィルターとを備えている。また、CF素子層19は、カラーフィルター上に設けられたオーバーコート層(不図示)と、オーバーコート層上に設けられた共通電極(不図示)と、共通電極上に設けられた配向膜(不図示)とを備えている。
 なお、プラスチック基板6,8の厚みとしては、3~30μmが好ましい。これは、厚みが3μm未満の場合は、十分な機械的強度が得られない場合があり、また、30μmよりも大きい場合は、表示素子層7やCF素子層19を形成する際に、プラスチック基板6,8の反りが大きくなり、プロセス上、問題が生じる場合があるからである。
 液晶層4は、例えば、電気光学特性を有するネマチック液晶を含んでいる。
 また、図2に示すように、液晶表示装置1の表示領域Dにおいては、液晶表示装置1の耐衝撃性を向上させて、衝撃による破損を防止するために、ラミネート層10,11が設けられている。
 より具体的には、TFT基板2の、液晶層4が設けられた側と反対側(即ち、プラスチック基板6の、端子9が設けられた側と反対側)に、液晶表示装置1の耐衝撃性を向上するラミネート層10が設けられている。
 また、同様に、CF基板3の、液晶層4が設けられた側と反対側(即ち、プラスチック基板8の、液晶層4が設けられた側と反対側)に、液晶表示装置1の耐衝撃性を向上するラミネート層11が設けられている。
 このラミネート層10,11は、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルサルフォン樹脂、ポリカーボネート樹脂、シクロオレフィンポリマー樹脂等の透明性を有する樹脂材料により形成することができる。
 なお、液晶表示装置1の耐衝撃性を確実に向上させるとの観点から、ラミネート層10の厚みTとしては30μm以上が好ましい。また、同様に、ラミネート層11の厚みTとしては、30μm以上が好ましい。
 更に、衝撃を緩和させて、表示領域Dにおける衝撃耐性を向上させるとの観点から、ラミネート層10の厚みTは、TFT基板2の厚み(即ち、TFT基板2を構成するプラスチック基板6と表示素子層7の厚みの合計)Tよりも大きい(即ち、T>T)ことが好ましい。
 また同様に、ラミネート層11の厚みTは、CF基板3の厚み(即ち、CF基板3を構成するプラスチック基板8とCF素子層19の厚みの合計)Tよりも大きい(即ち、T>T)ことが好ましい。
 また、図2に示すように、ラミネート層10は、プラスチック基板6の表面6aにおいて、接着剤層12を介して、積層される構成となっている。また、同様に、ラミネート層11は、プラスチック基板8の表面8aにおいて、接着剤層13を介して、積層される構成となっている。
 接着剤層12.13を構成する接着剤としては、特に限定されず、かかる接着剤としては、例えば、エポキシ樹脂、ブチラール樹脂、アクリル樹脂などの、各種の樹脂の接着剤が挙げられる。
 なお、TFT基板2のラミネート層10の外側には、偏光板(不図示)が設けられるとともに、当該偏光板の外側にはバックライトユニット(不図示)が設けられている。また、CF基板3のラミネート層11の外側には、偏光板(不図示)が設けられている。
 ここで、本実施形態の液晶表示装置1においては、図2に示すように、液晶表示装置1の端子領域Tにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、端子領域Tの耐熱性を向上する耐熱部材14が設けられ、更に、耐熱部材14の表面上に、端子領域Tの変形を防止するための変形防止部材15が設けられている点に特徴がある。
 このような構成により、プラスチック基板6を備えるTFT基板2の端子領域Tにフレキシブルプリント基板24を接続するために加熱加圧処理を行う場合であっても、耐熱部材14により、端子領域Tの耐熱性が向上するとともに、変形防止部材15により、端子領域Tの剛性(耐圧性)が向上する。その結果、端子領域Tにおいて、加熱加圧処理に起因する反りやうねり等の変形が発生するのを効果的に防止することが可能になる。
 耐熱部材14としては、接着性を有するものが使用でき、例えば、接着性を有する絶縁性樹脂を主成分とするものが使用できる。この絶縁性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、及びシリコーン樹脂等を使用することができる。
 なお、耐熱部材14の厚みTとしては、5~50μmが好ましい。これは、厚みTが5μm未満の場合は、端子領域Tにおける接続性を十分に向上できない場合があるからであり、また、50μmよりも大きい場合は、液晶表示装置1全体の厚みが大きくなる場合があるからである。
 また、変形防止部材15としては、端子領域Tの変形を防止することができるものであれば、特に限定はされないが、端子領域Tにおいては、上述の加熱加圧処理が行われるため、耐熱性(ガラス転移温度が150℃以上)と高弾性(弾性率が1GPa以上)を有し、かつ低い熱膨張性(熱膨張係数が30ppm/℃以下)を有するものが好ましい。
 このような変形防止部材15を形成する材料としては、例えば、ポリイミド樹脂、ガラス、及び金属等を使用することができる。ここで、ガラスとしては、例えば、無アルカリガラス、アルカリガラス等を使用することができる。また、金属としては、例えば、SUSやアルミニウム等を使用することができる。
 このように、本実施形態においては、変形防止部材15をラミネート層10,11と異なる材料により形成している。従って、端子領域Tにおける接続信頼性を確保しつつ、変形防止部材15に要求される耐熱性と剛性を考慮することなく、安価な材料によりラミネート層10,11を形成することができる。
 なお、変形防止部材15の厚みTとしては、30~200μmが好ましい。これは、厚みTが30μm未満の場合は、端子領域Tの剛性を十分に向上できない場合があるからであり、また、200μmよりも大きい場合は、液晶表示装置1全体の厚みが大きくなる場合があるからである。
 また、ここで言う「ガラス転移温度」とは、動的粘弾性測定装置(DMA)を用いて測定された高分子薄膜の物性値のことを言う。
 次に、本発明の実施形態に係る液晶表示装置1の製造方法について説明する。図3~図11は、本発明の第1の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。尚、以下に示す製造方法は単なる例示であり、本発明に係る液晶表示装置1は以下に示す方法により製造されたものに限定されるものではない。
 <TFT基板作製工程>
 まず、図3に示すように、支持基板として、例えば、厚さ0.7mm程度のガラス基板17を準備する。
 次いで、図3に示すように、ガラス基板17上に、例えば、ポリイミド樹脂により形成されたフィルム状の可撓性を有するプラスチック基板6を、例えば、20μm程度の厚みで形成する。
 次いで、プラスチック基板6上に、TFT、画素電極、端子9等をパターニングして、図3に示すように、表示素子層7を形成する。次いで、基板全体に、印刷法によりポリイミド樹脂を塗布し、その後、ラビング処理を行って、配向膜を形成する。次いで、基板全体に、例えば、球状のシリカやプラスチック粒子を散布して、スペーサを形成する。
 以上のようにして、表示領域D及び端子領域Tを構成するTFT基板2を作製することができる。
 <CF基板作製工程>
 まず、図4に示すように、支持基板として、例えば、厚さ0.7mm程度のガラス基板18を準備する。次いで、図4に示すように、ガラス基板18上に、例えば、ポリイミド樹脂により形成されたフィルム状の可撓性を有するプラスチック基板8を、例えば、20μm程度の厚みで形成する。
 次いで、プラスチック基板8上に、着色層及びブラックマトリクスを備えたカラーフィルターを形成するとともに、オーバーコート層、共通電極等をパターニングして、CF素子層19を形成する。その後、基板全体に、印刷法によりポリイミド樹脂を塗布し、その後、ラビング処理を行って、配向膜を形成することにより、表示領域Dを構成するCF基板3を作製する。
 なお、ブラックマトリクスは、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)などの金属材料、カーボンなどの黒色顔料が分散された樹脂材料、または、各々、光透過性を有する複数色の着色層が積層された樹脂材料などにより形成される。
 <TFT基板・CF基板貼り合わせ工程>
 まず、例えば、ディスペンサを用いて、CF基板3に、紫外線硬化及び熱硬化併用型樹脂等により構成されたシール材5を枠状に描画する。
 次いで、上記シール材5が描画されたCF基板3におけるシール材5の内側の領域に液晶層4を形成する液晶材料を滴下する。
 さらに、上記液晶材料が滴下されたCF基板3と、TFT基板2とを、減圧下で貼り合わせる。
 次いで、その貼り合わせた貼合体を大気圧に開放することにより、その貼合体の表面及び裏面を加圧する。次いで、上記貼合体に挟持されたシール材5にUV光を照射した後に、その貼合体を加熱することによりシール材5を硬化させ、図5に示すように、TFT基板2とCF基板3とが貼り合わされた貼り合わせ体を作製する。
 <ガラス板剥離工程>
 次いで、図6に示すように、ガラス基板17側からレーザ光(図6における矢印)を照射することにより、ガラス基板17を剥離させる。ここで、ガラス基板17の除去は、レーザ光照射による剥離でなくても良い。例えば、研磨及びエッチング装置を用いてガラス基板17を除去しても良い。
 <耐熱部材・変形防止部材形成工程>
 次いで、図7に示すように、端子領域Tにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、例えば、エポキシ樹脂で形成された耐熱部材14を、例えば、20μm程度の厚みで形成する。
 なお、耐熱部材14は、モールド形成により、プラスチック基板6の表面6aに形成される。
 次いで、図7に示すように、端子領域Tにおいて、耐熱部材14の表面上に、例えば、ガラス転移温度が150℃以上、弾性率が1GPa以上、及び熱膨張係数が30ppm/℃以下の材料(例えば、ポリイミド樹脂)で形成された変形防止部材15を、例えば、38μm程度の厚みで形成する。
 なお、変形防止部材15は、公知のラミネート装置を使用して、室温により、耐熱部材14の表面に形成される。
 <ラミネート層形成工程>
 次いで、図8に示すように、表示領域Dにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、例えば、エポキシ樹脂により形成された接着剤層12を、例えば、20μm程度の厚みで形成する。
 次いで、図8に示すように、表示領域Dにおいて、接着剤層12の表面上に、例えば、ポリエチレンテレフタレート樹脂により形成されたラミネート層10を、例えば、100μm程度の厚みで形成する。
 なお、ラミネート層10は、公知のラミネート装置を使用して、室温でラミネート処理することにより、接着剤層12を介して、プラスチック基板6の表面6aに形成される。
 上記従来の製造方法においては、プラスチック基板とラミネート層が異なる樹脂材料により形成されていると、樹脂材料は熱膨張係数が大きいため、ラミネート処理を行う際に加熱処理を行うと、熱膨張係数差により応力が発生し、プラスチック基板を用いた表示装置の表示領域に反りやうねり等の変形が発生するという問題があった。
 一方、本実施形態のごとく、室温でラミネート処理を行うことにより、プラスチック基板6とラミネート層10において、熱膨張係数差に起因する応力の発生を回避することができるため、プラスチック基板6を用いた液晶表示装置1の表示領域Dに反りやうねり等の変形が発生することを防止することが可能になる。
 <ガラス板剥離工程>
 次いで、図9に示すように、ガラス基板18側からレーザ光(図9における矢印)を照射することにより、ガラス基板18を剥離させる。ここで、ガラス基板18の除去は、上述のガラス基板17の場合と同様に、レーザ光照射による剥離でなくても良い。例えば、研磨及びエッチング装置を用いてガラス基板18を除去しても良い。
 <ラミネート層形成工程>
 次いで、図10に示すように、表示領域Dにおいて、プラスチック基板8の、液晶層4が設けられた側と反対側の表面8a上に、例えば、エポキシ樹脂により形成された接着剤層13を、例えば、20μm程度の厚みで形成する。
 次いで、図10に示すように、表示領域Dにおいて、接着剤層13の表面上に、例えば、ポリエチレンテレフタレート樹脂により形成されたラミネート層11を、例えば、100μm程度の厚みで形成する。
 なお、ラミネート層11は、上述のラミネート層10の場合と同様に、公知のラミネート装置を使用して、室温でラミネート処理することにより、接着剤層13を介して、プラスチック基板8の表面8aに形成される。
 従って、プラスチック基板8とラミネート層11において、熱膨張係数差に起因する応力の発生を回避することができるため、プラスチック基板8を用いた液晶表示装置1の表示領域Dに反りやうねり等の変形が発生することを防止することが可能になる。
 <フレキシブルプリント基板接続工程>
 次いで、図11に示すように、端子領域Tにおいて、フレキシブルプリント基板24を下向き(フェースダウン)にした状態で、TFT基板2に形成された端子9と、フレキシブルプリント基板24に形成された端子25とが接続されるように、TFT基板2とフレキシブルプリント基板24との間に導電性接着剤層16を介在させた状態で、TFT基板2とフレキシブルプリント基板24との位置合わせを行う。
 次いで、導電性接着剤層16上に、フレキシブルプリント基板24に形成された端子25を載置する。そして、導電性接着剤層16を所定の硬化温度(例えば、180℃)に加熱した状態で、フレキシブルプリント基板24を介して、導電性接着剤層16をTFT基板2の方向へ所定の圧力(例えば、3MPa)で加圧することにより、導電性接着剤層16を加熱溶融させる。
 なお、上述のごとく、導電性接着剤層16は、熱硬化性樹脂を主成分としているため、所定の硬化温度にて加熱をすると、一旦、軟化するが、加熱を継続することにより、硬化することになる。そして、予め設定した導電性接着剤層16の硬化時間が経過すると、導電性接着剤層16の硬化温度の維持状態を開放し、冷却を開始することにより、導電性接着剤層16を介して、端子9と端子25とを接続する。そうすると、端子領域Tにおいて、接着性を有する導電性接着剤層16を介して、TFT基板2とフレキシブルプリント基板24とが貼り合わされるとともに、導電性接着剤層16及び端子9,25を介して、TFT基板2とフレキシブルプリント基板24とが電気的に接続され、TFT基板2とフレキシブルプリント基板24とが導通することになる。
 そして、偏光板(不図示)及びバックライトユニット(不図示)を設けて、図2に示す液晶表示装置1が完成する。
 以上に説明した本実施形態においては、以下の効果を得ることができる。
 (1)本実施形態においては、端子領域Tにおいて、TFT基板2を構成するプラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、端子領域Tの耐熱性を向上する耐熱部材14を設ける構成としている。また、耐熱部材14の表面上に端子領域Tの変形を防止する変形防止部材15を設ける構成としている。従って、プラスチック基板6を備えるTFT基板2の端子領域Tにフレキシブルプリント基板24を接続するために加熱加圧処理を行う場合であっても、耐熱部材14により、端子領域Tの耐熱性を向上することができる。また、変形防止部材15により、端子領域Tの剛性(耐圧性)を向上することができる。従って、端子領域Tにおいて、加熱加圧処理に起因する反りやうねり等の変形が発生するのを効果的に防止することが可能になり、結果として、フレキシブルプリント基板24の接続信頼性の低下を防止することができる。
 (2)本実施形態においては、変形防止部材15の厚みTを、30~200μmに設定する構成としている。従って、液晶表示装置1全体の厚みを大きくすることなく、端子領域Tの剛性を十分に向上させることができる。
 (3)本実施形態においては、変形防止部材15を、ポリイミド樹脂、ガラス、及び金属からなる群より選ばれる1種により形成する構成としている。従って、加熱加圧処理が行われる端子領域Tにおいて、耐熱性、高弾性、及び低い熱膨張性を有する変形防止部材15を設けることが可能になる。
 (4)本実施形態においては、耐熱部材14の厚みTを、5~50μmに設定する構成としている。従って、液晶表示装置1全体の厚みを大きくすることなく、端子領域Tにおける接続性を十分に向上させることができる。
 (5)本実施形態においては、耐熱部材14を、エポキシ樹脂、アクリル樹脂、及びシリコーン樹脂からなる群より選ばれる1種により形成する構成としている。従って、安価かつ汎用性のある樹脂材料により、接着性を有する耐熱部材14を形成することができる。
 (6)本実施形態においては、表示領域Dにおいて、TFT基板2を構成するプラスチック基板6の、端子9が設けられた側と反対側にラミネート層10を設ける構成としている。従って、液晶表示装置1の耐衝撃性を向上させて、衝撃による破損を防止することができる
 (7)本実施形態においては、表示領域Dにおいて、TFT基板2を構成するプラスチック基板6の表面6a上に接着剤層12を設け、ラミネート層10を、接着剤層12を介して設ける構成としている。従って、簡単な構成で、プラスチック基板6にラミネート層10を設けることが可能になる。
 (8)本実施形態においては、ラミネート層10を、変形防止部材15と異なる材料により形成する構成としている。従って、端子領域Tにおける接続信頼性を確保しつつ、変形防止部材15に要求される耐熱性と剛性を考慮することなく、安価な材料によりラミネート層10を形成することができる。
 (9)本実施形態においては、ラミネート層10の厚みTが、TFT基板の厚みTよりも大きくなるように構成している。従って、表示領域Dにおける衝撃耐性を向上させることができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図12は、本発明の第2の実施形態に係る液晶表示装置を示す断面図である。なお、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、液晶表示装置の平面図については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
 本実施形態の液晶表示装置30は、図12に示すように、液晶表示装置30の表示領域Dにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、上述の耐熱部材14が設けられる点に特徴がある。
 即ち、上記第1の実施形態においては、液晶表示装置1の端子領域Tにのみ耐熱部材14が設けられていたが、本実施形態においては、端子領域Tのみならず、表示領域Dにおいても、耐熱部材14が設けられている点に特徴がある。
 このような構成により、耐熱部材14により、表示領域Dの耐熱性を向上させることができる。また、耐熱部材14により、液晶表示装置30の表示領域Dの耐衝撃性をより一層向上させて、衝撃による破損をより一層防止することが可能になる。
 次に、本発明の実施形態に係る液晶表示装置30の製造方法について説明する。図13~図17は、本発明の第2の実施形態に係る液晶表示装置の製造方法を説明するための断面図である。尚、以下に示す製造方法は単なる例示であり、本発明に係る液晶表示装置30は以下に示す方法により製造されたものに限定されるものではない。
 まず、上述の第1の実施形態の場合と同様に、TFT基板2及びCF基板3を作製するとともに、TFT基板2とCF基板3とを貼り合わせた後、上述の図6と同様に、ガラス基板17側からレーザ光を照射することにより、ガラス基板17を剥離させる。
 <耐熱部材・変形防止部材形成工程>
 次いで、図13に示すように、端子領域T及び表示領域Dにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、例えば、エポキシ樹脂で形成された耐熱部材14を、例えば、20μm程度の厚みで形成する。
 なお、耐熱部材14は、公知のラミネート装置を使用して、室温または100~120℃の温度により、プラスチック基板6の表面6aに形成される。
 このように、本実施形態においては、端子領域Tにのみ耐熱部材14を形成する第1の実施形態に比し、工程数を増加させることなく、表示領域Dにおいても耐熱部材14を形成することができる。
 次いで、図13に示すように、上述の第1の実施形態の場合と同様に、端子領域Tにおいて、耐熱部材14の表面上に、例えば、ガラス転移温度が150℃以上、弾性率が1GPa以上、及び熱膨張係数が30ppm/℃以下の材料(例えば、ポリイミド樹脂)で形成された変形防止部材15を、例えば、38μm程度の厚みで形成する。
 なお、変形防止部材15は、公知のラミネート装置を使用して、室温により、耐熱部材14の表面に形成される。
 <ラミネート層形成工程>
 次いで、図14に示すように、表示領域Dにおいて、耐熱部材14の、端子9が設けられた側と反対側の表面14a上に、例えば、エポキシ樹脂により形成された接着剤層12を、例えば、20μm程度の厚みで形成する。
 次いで、図14に示すように、表示領域Dにおいて、接着剤層12の表面上に、例えば、ポリエチレンテレフタレート樹脂により形成されたラミネート層10を、例えば、100μm程度の厚みで形成する。
 なお、ラミネート層10は、公知のラミネート装置を使用して、室温でラミネート処理することにより、接着剤層12を介して、プラスチック基板6の表面6aに形成される。
 <ガラス基板剥離工程>
 次いで、上述の第1の実施形態の場合と同様に、図15に示すように、ガラス基板18側からレーザ光を照射することにより、ガラス基板18を剥離させる。ここで、ガラス基板18の除去は、上述のガラス基板17の場合と同様に、レーザ光照射による剥離でなくても良い。
 <ラミネート層形成工程>
 次いで、上述の第1の実施形態の場合と同様に、図16に示すように、表示領域Dにおいて、プラスチック基板8の、液晶層4が設けられた側と反対側の表面8a上に、例えば、エポキシ樹脂により形成された接着剤層13を、例えば、20μm程度の厚みで形成する。
 次いで、図16に示すように、表示領域Dにおいて、接着剤層13の表面上に、例えば、ポリエチレンテレフタレート樹脂により形成されたラミネート層11を、例えば、100μm程度の厚みで形成する。
 なお、ラミネート層11は、上述のラミネート層10の場合と同様に、公知のラミネート装置を使用して、室温でラミネート処理することにより、接着剤層13を介して、プラスチック基板8の表面8aに形成される。
 <フレキシブルプリント基板接続工程>
 次いで、上述の第1の実施形態の場合と同様に、図17に示すように、端子領域Tにおいて、接着性を有する導電性接着剤層16を介して、TFT基板2とフレキシブルプリント基板24とを貼り合わせる。そうすると、TFT基板2とフレキシブルプリント基板24とが導電性接着剤層16及び端子9,25を介して、電気的に接続され、TFT基板2とフレキシブルプリント基板24とが導通する。
 そして、偏光板(不図示)及びバックライトユニット(不図示)を設けて、図12に示す液晶表示装置30が完成する。
 以上に説明した本実施形態においては、上述の(1)~(9)の効果に加えて、以下の効果を得ることできる。
 (10)本実施形態においては、液晶表示装置30の表示領域Dにおいて、プラスチック基板6の、端子9が設けられた側と反対側の表面6a上に、耐熱部材14を設ける構成としている。従って、耐熱部材14により、表示領域Dの耐熱性を向上させることができる。
 (11)また、耐熱部材14により、液晶表示装置30の表示領域Dの耐衝撃性をより一層向上させて、衝撃による破損をより一層防止することが可能になる。
 なお、上記実施形態は以下のように変更しても良い。
 上記本実施形態、表示装置としてLCD(liquid crystal display;液晶表示ディスプレイ)に係るものについて示したが、表示装置は、有機EL(organic electro luminescence)、電気泳動(electrophoretic)、PD(plasma display;プラズマディスプレイ
)、PALC(plasma addressed liquid crystal display;プラズマアドレス液晶ディ
スプレイ)、無機EL(inorganic electro luminescence)、FED(field emission display;電界放出ディスプレイ)、又はSED(surface-conduction electron-emitter display;表面電界ディスプレイ)等に係る表示装置であってもよい。
 以上説明したように、本発明は、プラスチック基板を備えた液晶表示装置等の表示装置に、特に、有用である。
 1  液晶表示装置
 2  TFT基板(表示装置用基板)
 3  CF基板(他の表示装置用基板)
 4  液晶層(表示媒体層)
 6  プラスチック基板
 6a  プラスチック基板の、端子が設けられた側と反対側の表面
 7  表示素子層
 9  端子
 10  ラミネート層
 12  接着剤層
 14  耐熱部材
 15  変形防止部材
 19  CF素子層
 24  フレキシブルプリント基板(駆動回路基板)
 25  端子
 D  表示領域
 T  端子領域
 T  ラミネート層の厚み
 T  TFT基板の厚み(プラスチック基板と表示素子層との厚みの合計)
 T  耐熱部材の厚み
 T  変形防止部材の厚み

Claims (12)

  1.  可撓性を有するプラスチック基板と、前記プラスチック基板上に形成された表示素子層とを有する表示装置用基板を備え、画像表示を行う表示領域と、該表示領域の周辺に設けられ、駆動回路基板が接続される端子が形成された端子領域とを有する表示装置であって、
     前記端子領域において、前記プラスチック基板の、前記端子が設けられた側と反対側の表面上に前記端子領域の耐熱性を向上する耐熱部材が設けられ、該耐熱部材の表面上に前記端子領域の変形を防止する変形防止部材が設けられていることを特徴とする表示装置。
  2.  前記変形防止部材の厚みが、30~200μmであることを特徴とする請求項1に記載の表示装置。
  3.  前記変形防止部材が、ポリイミド樹脂、ガラス、及び金属からなる群より選ばれる1種により形成されていることを特徴とする請求項1または請求項2に記載の表示装置。
  4.  前記耐熱部材の厚みが、5~50μmであることを特徴とする請求項1~請求項3のいずれか1項に記載の表示装置。
  5.  前記耐熱部材が、エポキシ樹脂、アクリル樹脂、及びシリコーン樹脂からなる群より選ばれる1種により形成されていることを特徴とする請求項1~請求項4のいずれか1項に記載の表示装置。
  6.  前記表示領域において、前記プラスチック基板の、前記端子が設けられた側と反対側にラミネート層が設けられていることを特徴とする請求項1~請求項5のいずれか1項に記載の表示装置。
  7.  前記表示領域において、前記プラスチック基板の表面上に接着剤層が設けられ、前記ラミネート層が、前記接着剤層を介して設けられていることを特徴とする請求項6に記載の表示装置。
  8.  前記ラミネート層が、前記変形防止部材と異なる材料により形成されていることを特徴とする請求項6または請求項7に記載の表示装置。
  9.  前記ラミネート層の厚みが、前記プラスチック基板と前記表示素子層との厚みの合計よりも大きいことを特徴とする請求項6~請求項8のいずれか1項に記載の表示装置。
  10.  前記耐熱部材が、前記表示領域において、前記プラスチック基板の、前記端子が設けられた側と反対側の表面上に設けられていることを特徴とする請求項1~請求項9のいずれか1項に記載の表示装置。
  11.  前記表示装置用基板に対向して配置された他の表示装置用基板と、
     前記表示装置用基板及び前記他の表示装置用基板の間に設けられた表示媒体層と
     を更に備えることを特徴とする請求項1~請求項10のいずれか1項に記載の表示装置。
  12.  前記表示媒体層が液晶層であることを特徴とする請求項11に記載の表示装置。
PCT/JP2011/001173 2010-05-26 2011-03-01 表示装置 WO2011148543A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010120661 2010-05-26
JP2010-120661 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011148543A1 true WO2011148543A1 (ja) 2011-12-01

Family

ID=45003545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001173 WO2011148543A1 (ja) 2010-05-26 2011-03-01 表示装置

Country Status (1)

Country Link
WO (1) WO2011148543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061949A1 (zh) * 2014-10-22 2016-04-28 京东方科技集团股份有限公司 阵列基板及其制备方法、柔性显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348189A (ja) * 1998-06-05 1999-12-21 Fujimori Kogyo Kk 光学用プラスチックス基板
JP2000006259A (ja) * 1998-06-24 2000-01-11 Fujimori Kogyo Kk 光学用プラスチックス基板
JP2000131707A (ja) * 1998-10-27 2000-05-12 Citizen Watch Co Ltd 液晶表示パネル
JP2001205743A (ja) * 2000-01-28 2001-07-31 Sumitomo Chem Co Ltd 光学用プラスチックス基板
JP2007078776A (ja) * 2005-09-12 2007-03-29 Sanyo Epson Imaging Devices Corp 電気光学装置、電気光学装置の製造方法、及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348189A (ja) * 1998-06-05 1999-12-21 Fujimori Kogyo Kk 光学用プラスチックス基板
JP2000006259A (ja) * 1998-06-24 2000-01-11 Fujimori Kogyo Kk 光学用プラスチックス基板
JP2000131707A (ja) * 1998-10-27 2000-05-12 Citizen Watch Co Ltd 液晶表示パネル
JP2001205743A (ja) * 2000-01-28 2001-07-31 Sumitomo Chem Co Ltd 光学用プラスチックス基板
JP2007078776A (ja) * 2005-09-12 2007-03-29 Sanyo Epson Imaging Devices Corp 電気光学装置、電気光学装置の製造方法、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061949A1 (zh) * 2014-10-22 2016-04-28 京东方科技集团股份有限公司 阵列基板及其制备方法、柔性显示面板和显示装置
US9666833B2 (en) 2014-10-22 2017-05-30 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, flexible display panel and display device
JP2017535824A (ja) * 2014-10-22 2017-11-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. アレイ基板及びその製造方法、フレキシブル表示パネルと表示装置
RU2671935C1 (ru) * 2014-10-22 2018-11-07 Боэ Текнолоджи Груп Ко., Лтд. Матричная подложка и способ ее производства, гибкая панель отображения и устройство отображения

Similar Documents

Publication Publication Date Title
TWI249052B (en) Display panel and method for fabricating the same
WO2014080604A1 (ja) 表示装置
CN106992197B (zh) 柔性显示器及其制造方法
US8279391B2 (en) Liquid crystal display device with grounded by thermocompression bonding tape and double-side adhesive tape
US9213195B2 (en) Display device
US20130308076A1 (en) Flexible display and method for manufacturing the same
US10964898B2 (en) Protection sheet, display, and electronic apparatus
US10090490B2 (en) Method of producing curved display panel
US9397077B2 (en) Display device having film substrate
JP6526358B1 (ja) 表示装置
TWI616706B (zh) 顯示面板製造方法與系統
KR20070077461A (ko) 전기 영동 표시 시트, 전기 영동 표시 장치, 및 전자 기기
US8154704B2 (en) Liquid crystal display and method for repairing the same
US20100261012A1 (en) Flexible Display Panel and Method of Manufacturing the same
WO2018043337A1 (ja) 大型表示パネル及びその製造方法
KR101033551B1 (ko) 액정 표시 기판 반송용 지그 및 이를 이용한 액정 표시장치의 제조 방법
WO2011148543A1 (ja) 表示装置
TWI453502B (zh) A manufacturing method for an electronic device, and a manufacturing method of an electronic device, and a member for an electronic device
JP4092192B2 (ja) 表示パネルの製造方法
KR20080000246A (ko) 전사필름, 이를 이용하여 제조된 액정표시장치 및 그의제조방법
WO2012132346A1 (ja) 表示装置
WO2012093468A1 (ja) 表示装置用基板及び表示装置
JP2009008711A (ja) 液晶表示素子
JP2005241827A (ja) 液晶表示装置
WO2012172768A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP