WO2011145517A1 - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
WO2011145517A1
WO2011145517A1 PCT/JP2011/061041 JP2011061041W WO2011145517A1 WO 2011145517 A1 WO2011145517 A1 WO 2011145517A1 JP 2011061041 W JP2011061041 W JP 2011061041W WO 2011145517 A1 WO2011145517 A1 WO 2011145517A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electronic component
axis direction
conductor
coil conductor
Prior art date
Application number
PCT/JP2011/061041
Other languages
French (fr)
Japanese (ja)
Inventor
薫 立花
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011145517A1 publication Critical patent/WO2011145517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core

Definitions

  • the present invention relates to an electronic component, and more particularly to an electronic component having a built-in coil.
  • a multilayer chip inductor described in Patent Document 1 As a conventional electronic component, for example, a multilayer chip inductor described in Patent Document 1 is known.
  • a spiral coil is formed by connecting a U-shaped coil pattern. Each coil pattern is connected in parallel with a coil pattern having the same shape. Thus, the coil has a double spiral structure.
  • the DC resistance of the coil is reduced by making the coil have a double spiral structure.
  • the multilayer chip inductor described in Patent Document 1 has a problem that the inductance value of the coil decreases.
  • the size of the chip is predetermined. Therefore, the number of coil patterns that can be provided in the multilayer chip inductor is limited. Therefore, in the multilayer chip inductor in which the coil patterns are connected in parallel, the number of turns of the coil is reduced compared to the multilayer chip inductor in which the coil patterns are not connected in parallel. As a result, in the multilayer chip inductor described in Patent Document 1, the inductance value of the coil is reduced.
  • an object of the present invention is to provide an electronic component capable of reducing the resistance of the coil while suppressing a decrease in the inductance value of the coil.
  • An electronic component includes a laminated body in which a plurality of insulating layers are laminated, and is built in the laminated body and swivels in a predetermined direction when viewed in plan from the lamination direction And a plurality of coil conductors having the same shape in a partial region of the coil. It is characterized by being connected in parallel.
  • FIG. 1 is an external perspective view of an electronic component according to an embodiment of the present invention. It is a disassembled perspective view of the laminated body of the electronic component which concerns on one Embodiment. It is a disassembled perspective view of the laminated body of the electronic component which concerns on other embodiment. It is the graph which showed the simulation result.
  • FIG. 1 is an external perspective view of an electronic component 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10 according to the embodiment.
  • the stacking direction of the electronic component 10 is defined as the z-axis direction, and the directions along the long side and the short side of the surface of the electronic component 10 on the positive direction side are the x-axis direction and the y-axis direction, respectively.
  • the x-axis direction, the y-axis direction, and the z-axis direction are orthogonal to each other.
  • the electronic component 10 includes a laminated body 12, external electrodes 14 (14a, 14b), connection portions 20 (20a, 20b), and a coil L.
  • the laminate 12 has a rectangular parallelepiped shape and incorporates a coil L.
  • the stacked body 12 is configured by stacking the insulator layers 16 (16a to 16q) so that they are arranged in this order from the positive side in the z-axis direction to the negative direction.
  • the insulator layer 16 is a rectangular layer made of a magnetic material (for example, Ni—Cu—Zn based ferrite).
  • the magnetic material means a material that functions as a magnetic material in a temperature range of ⁇ 55 ° C. or higher and + 125 ° C. or lower.
  • the surface on the positive side in the z-axis direction of the insulator layer 16 is referred to as a front surface
  • the surface on the negative direction side in the z-axis direction of the insulator layer 16 is referred to as a back surface.
  • the surface located in the both ends of az axis direction is called an upper surface and a lower surface
  • the surface which connects an upper surface and a lower surface is called a side surface.
  • the external electrode 14a is provided so as to cover the upper surface of the multilayer body 12, as shown in FIG. As shown in FIG. 1, the external electrode 14 b is provided so as to cover the lower surface of the multilayer body 12. Further, the external electrodes 14a and 14b are folded back with respect to the side surfaces adjacent to the upper surface and the lower surface.
  • the external electrodes 14 a and 14 b function as connection terminals that electrically connect a circuit outside the electronic component 10 and the coil L.
  • the coil L is built in the laminate 12 and is composed of coil conductors 18 (18a to 18g), 19 (19a, 19b, 19f, 19g) and via-hole conductors v4 to v17 as shown in FIG.
  • the coil L is formed in a spiral shape by connecting the coil conductors 18 and 19 and the via-hole conductors v4 to v17, and has a coil axis extending in the z-axis direction (that is, parallel to the z-axis direction).
  • the coil conductors 18a to 18g are provided on the surfaces of the insulator layers 16e, 16g to 16j, 16l, and 16n, respectively, and turn clockwise when viewed in plan from the z-axis direction.
  • This is a U-shaped linear conductor. More specifically, the coil conductors 18a to 18g have a number of turns of 3/4 and are along the three sides of the insulator layer 16.
  • the coil conductor 18a is provided along three sides other than the short side on the negative direction side in the x-axis direction in the insulator layer 16e.
  • the coil conductor 18b is provided along three sides of the insulator layer 16g other than the long side on the negative direction side in the y-axis direction.
  • the coil conductor 18c is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16h.
  • the coil conductor 18d is provided along three sides of the insulator layer 16i other than the long side on the positive direction side in the y-axis direction.
  • the coil conductor 18e is provided along three sides of the insulator layer 16j other than the short side on the negative direction side in the x-axis direction.
  • the coil conductor 18f is provided along three sides of the insulator layer 16l other than the long side on the negative direction side in the y-axis direction.
  • the coil conductor 18g is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16n.
  • the coil conductors 19a, 19b, 19f, and 19g are provided on the surfaces of the insulator layers 16d, 16f, 16k, and 16m, respectively, and when viewed in plan from the z-axis direction, It is a U-shaped linear conductor layer that swivels in a straight line. More specifically, the coil conductors 19a, 19b, 19f, and 19g have a number of turns of 3/4, and are along the three sides of the insulator layers 16d, 16f, 16k, and 16m. The coil conductor 19a is provided along three sides of the insulator layer 16d other than the short side on the negative direction side in the x-axis direction.
  • the coil conductor 19a has the same shape as the coil conductor 18a, and overlaps in a matched state when viewed from the positive side in the z-axis direction.
  • the coil conductor 19b is provided along three sides of the insulator layer 16f other than the long side on the negative direction side in the y-axis direction.
  • the coil conductor 19b has the same shape as the coil conductor 18b, and overlaps in a matched state when viewed from the positive side in the z-axis direction.
  • the coil conductor 19f is provided along three sides of the insulator layer 16k other than the long side on the negative direction side in the y-axis direction.
  • the coil conductor 19f has the same shape as the coil conductor 18f, and overlaps in a matched state when viewed from the positive side in the z-axis direction.
  • the coil conductor 19g is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16m.
  • the coil conductor 19g has the same shape as the coil conductor 18g, and overlaps in a matched state when viewed from the positive side in the z-axis direction.
  • the end portion on the upstream side in the clockwise direction is the upstream end
  • the end portion on the downstream side in the clockwise direction is the downstream end.
  • the number of turns of the coil conductors 18 and 19 is not limited to 3/4 turns. Therefore, the number of turns of the coil conductors 18 and 19 may be, for example, 1/2 turn or 7/8 turn.
  • the via-hole conductors v4 to v17 are provided so as to penetrate the insulating layers 16d to 16m in the z-axis direction. More specifically, the via-hole conductor v4 penetrates the insulator layer 16d in the z-axis direction and is connected to the upstream end of the coil conductor 19a and the upstream end of the coil conductor 18a.
  • the via-hole conductor v5 penetrates the insulator layer 16d in the z-axis direction, and is connected to the downstream end of the coil conductor 19a and the downstream end of the coil conductor 18a.
  • the via-hole conductor v6 passes through the insulator layer 16e in the z-axis direction, and is connected to the downstream end of the coil conductor 18a and the upstream end of the coil conductor 19b.
  • the via-hole conductor v7 penetrates the insulator layer 16f in the z-axis direction, and is connected to the upstream end of the coil conductor 19b and the upstream end of the coil conductor 18b.
  • the via-hole conductor v8 passes through the insulator layer 16f in the z-axis direction, and is connected to the downstream end of the coil conductor 19b and the downstream end of the coil conductor 18b.
  • the via-hole conductor v9 penetrates the insulator layer 16g in the z-axis direction and is connected to the downstream end of the coil conductor 18b and the upstream end of the coil conductor 18c.
  • the via-hole conductor v10 passes through the insulator layer 16h in the z-axis direction, and is connected to the downstream end of the coil conductor 18c and the upstream end of the coil conductor 18d.
  • the via-hole conductor v11 penetrates the insulator layer 16i in the z-axis direction and is connected to the downstream end of the coil conductor 18d and the upstream end of the coil conductor 18e.
  • the via-hole conductor v12 penetrates the insulator layer 16j in the z-axis direction and is connected to the downstream end of the coil conductor 18e and the upstream end of the coil conductor 19f.
  • the via-hole conductor v13 penetrates the insulator layer 16k in the z-axis direction, and is connected to the upstream end of the coil conductor 19f and the upstream end of the coil conductor 18f.
  • the via-hole conductor v14 passes through the insulator layer 16k in the z-axis direction, and is connected to the downstream end of the coil conductor 19f and the downstream end of the coil conductor 18f.
  • the via-hole conductor v15 passes through the insulator layer 16l in the z-axis direction, and is connected to the downstream end of the coil conductor 18f and the upstream end of the coil conductor 19g.
  • the via-hole conductor v16 passes through the insulator layer 16m in the z-axis direction, and is connected to the upstream end of the coil conductor 19g and the upstream end of the coil conductor 18g.
  • the via-hole conductor v17 penetrates the insulator layer 16m in the z-axis direction, and is connected to the downstream end of the coil conductor 19g and the downstream end of the coil conductor 18g.
  • both ends of the coil conductor 18a and both ends of the coil conductor 19a are connected by via-hole conductors v4 and v5 provided in the insulator layer 16d, respectively. Thereby, the coil conductor 18a and the coil conductor 19a are connected in parallel. Further, both ends of the coil conductor 18b and both ends of the coil conductor 19b are connected by via-hole conductors v7 and v8 provided in the insulator layer 16f, respectively. Thereby, the coil conductor 18b and the coil conductor 19b are connected in parallel. Further, both ends of the coil conductor 18f and both ends of the coil conductor 19f are connected by via-hole conductors v13 and v14 provided in the insulator layer 16k, respectively.
  • both ends of the coil conductor 18g and both ends of the coil conductor 19g are connected by via-hole conductors v16 and v17 provided in the insulator layer 16m, respectively. Thereby, the coil conductor 18g and the coil conductor 19g are connected in parallel.
  • an end on the positive direction side in the z-axis direction is defined as an end t1
  • an end on the negative direction side in the z-axis direction is defined as an end t2.
  • the end t1 coincides with the upstream end of the coil conductor 19a
  • the end t2 coincides with the downstream end of the coil conductor 18g.
  • a region including the end t1 is defined as a region A1
  • a region including the end t2 is defined as a region A3.
  • a region sandwiched between the region A1 and the region A3 in the z-axis direction is defined as a region A2.
  • the coil conductors 18a and 18b and the coil conductors 19a and 19b having the same shape are connected in parallel in the region A1.
  • the coil conductors 18f and 18g having the same shape and the coil conductors 19f and 19g are connected in parallel.
  • the coil conductors 18c to 18e are not connected in parallel. That is, in the electronic component 10, the coil conductors 18 and 19 having the same shape are connected in parallel in the partial areas A1 and A3 of the coil L.
  • the connecting portion 20a connects the external electrode 14a and the end t1 of the coil L, and is configured by via-hole conductors v1 to v3.
  • the via-hole conductors v1 to v3 penetrate the insulator layers 16a to 16c in the z-axis direction and are connected to each other to constitute one via-hole conductor.
  • the connecting portion 20b connects the external electrode 14b and the end t2 of the coil L, and is composed of via-hole conductors v19 to v21.
  • the via-hole conductors v19 to v21 penetrate the insulator layers 16o to 16q in the z-axis direction, and are connected to each other to constitute one via-hole conductor.
  • a ceramic green sheet to be the insulator layer 16 is prepared. Specifically, ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) were weighed at a predetermined ratio and each material was put into a ball mill as a raw material. Wet preparation. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour. Then, the calcined powder is wet pulverized by a ball mill, dried and crushed to obtain a ferrite ceramic powder.
  • ferric oxide Fe 2 O 3
  • zinc oxide ZnO
  • NiO nickel oxide
  • CuO copper oxide
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the insulator layer 16.
  • via-hole conductors v1 to v21 are formed in each of the ceramic green sheets to be the insulator layer 16. Specifically, a via hole is formed by irradiating a ceramic green sheet to be the insulator layer 16 with a laser beam. Further, the via hole is filled with a paste made of a conductive material such as Ag, Pd, Cu, Au, or an alloy thereof by a method such as printing and coating to form the via hole conductors v1 to v21.
  • the coil conductors 18 and 19 are formed by applying a paste made of a conductive material on the ceramic green sheets to be the insulator layers 16d to 16n by a method such as a screen printing method or a photolithography method.
  • the paste made of a conductive material is obtained by adding varnish and a solvent to Ag, for example.
  • step of forming the coil conductor 18 and the step of filling the via hole with a paste made of a conductive material may be performed in the same step.
  • ceramic green sheets to be the insulator layer 16 are laminated one by one and temporarily pressed to obtain an unfired mother laminate. Specifically, the ceramic green sheets to be the insulator layer 16 are laminated one by one and temporarily bonded. Then, this press-bonding is performed on the unfired mother laminate by an isostatic press.
  • the unfired mother laminate is cut into a predetermined size to obtain a plurality of unfired laminates 12.
  • the unfired laminate 12 is subjected to binder removal processing and firing.
  • the binder removal treatment is performed, for example, in a low oxygen atmosphere at 850 ° C. for 2 hours. Firing is performed at 900 ° C. to 930 ° C. for 2.5 hours, for example. Thereafter, the surface of the laminate 12 is subjected to barrel polishing to chamfer.
  • an electrode paste made of a conductive material mainly composed of Ag is applied to the upper and lower surfaces of the laminate 12. Then, the applied electrode paste is baked at a temperature of about 800 ° C. for 1 hour. Thereby, the silver electrode which should become the external electrode 14 is formed. Further, the external electrode 14 is formed by performing Ni plating / Sn plating on the surface of the silver electrode to be the external electrode 14. Through the above steps, the electronic component 10 is completed.
  • the electronic component 10 a decrease in the inductance value of the coil L can be suppressed. More specifically, in the electronic component 10, in the entire coil L (regions A1 to A3), the coil conductor 18 and the coil conductor 19 are not connected in parallel, but a part of the region A1, A1 of the coil L. Only in A3, the coil conductor 18 and the coil conductor 19 are connected in parallel. Accordingly, in the region A2 of the coil L, the coil conductors 18 are not connected in parallel. Thereby, in the electronic component 10, the number of turns of the coil L can be increased when the size of the multilayer body 12 is the same as that of the electronic component in which all the coil conductors are connected in parallel. That is, in the electronic component 10, a large inductance value can be obtained as compared with an electronic component in which all coil conductors are connected in parallel.
  • the electronic component according to the present invention is not limited to the electronic component 10 shown in the embodiment. Therefore, the electronic component according to the present invention can be changed within the scope of the gist.
  • FIG. 3 is an exploded perspective view of the multilayer body 12a of the electronic component 10a according to another embodiment.
  • FIG. 1 is used for the external perspective view of the electronic component 10a.
  • the coil conductor 18 and the coil conductor 19 are connected in parallel in the region A2.
  • the coil conductors 18 and 19 may be connected in parallel in the region A3 other than the regions A1 and A2 including the ends t1 and t2.
  • the electronic component 10 a can reduce the resistance of the coil L while suppressing a decrease in the inductance value of the coil L.
  • the electronic component 10 has excellent high-frequency characteristics as compared with the electronic component 10a, as will be described below. More specifically, in the electronic component 10a, as shown in FIG. 3, the coil conductors 18 are not connected in parallel in the region A1 including the end t1. Therefore, the coil L for one turn is opposed to the external electrode 14a by two layers of coil conductors 18a and 18b from the positive direction side in the z-axis direction. A stray capacitance is generated between the coil L for one turn and the external electrode 14a.
  • the coil conductor 18 and the coil conductor 19 are connected in parallel in a region A1 including the end t1.
  • the coil conductors 18a and 19a for two layers from the positive direction side in the z-axis direction only the coil L for 3/4 turns faces the external electrode 14a.
  • the third-layer coil conductor 19b from the positive side in the z-axis direction faces the external electrode 14a, so that the coil L for one turn faces the external electrode 14a.
  • the coil conductor 19b is located in the third layer from the positive direction side in the z-axis direction, and is far from the coil conductors 18a and 19a.
  • the electronic component 10 the magnitude of the stray capacitance generated between the coil L for one turn and the external electrode 14a is smaller than that in the electronic component 10a. As a result, the electronic component 10 has superior high frequency characteristics compared to the electronic component 10a.
  • the inventor of the present application performed a computer simulation described below.
  • the inventor of the present application has created a first model having the same structure as the electronic component 10 and a second model having the same structure as the electronic component 10a.
  • the number of turns was 33.
  • the number of turns in each of the areas A1 and A3 was 3 turns, and the number of turns in the area A2 was 27 turns.
  • the number of turns in each of the areas A1 and A3 was 13.5 turns, and the number of turns in the area A2 was 6 turns.
  • FIG. 4 is a graph showing simulation results.
  • the vertical axis represents impedance, and the horizontal axis represents frequency.
  • FIG. 4 shows that the first model has better high frequency characteristics than the second model. This is because, as described above, the electronic component 10 has a smaller stray capacitance generated between the coil L for one turn and the external electrode 14a than the electronic component 10a. From the above simulation, it can be seen that the electronic component 10 has superior high-frequency characteristics compared to the electronic component 10a.
  • the present invention is useful for electronic components, and is particularly excellent in that the resistance of the coil can be reduced while suppressing a decrease in the inductance value of the coil.

Abstract

Provided is an electronic component, wherein the resistance of a coil can be made lower, while decrease in the inductance value thereof can be restrained. A laminate (12) is comprised by having a plurality of insulator layers (16) laminated. A spiral-formed coil (L) is contained within the laminate (12), and is comprised by having a plurality of linear coil conductors (18, 19) revolving in the clockwise direction, when seen as a planar view from the z-axis direction, connected with each other. The coil conductors (18, 19), having the same shape, are connected in parallel at partial areas (A1, A3) of the coil (L).

Description

電子部品Electronic components
 本発明は、電子部品に関し、より特定的には、コイルを内蔵している電子部品に関する。 The present invention relates to an electronic component, and more particularly to an electronic component having a built-in coil.
 従来の電子部品としては、例えば、特許文献1に記載の積層チップインダクタが知られている。該積層チップインダクタでは、コ字型をなすコイル用パターンが接続されることにより、螺旋状のコイルが構成されている。そして、各コイル用パターンには、同一の形状を有するコイル用パターンが並列接続されている。これにより、コイルは、二重螺旋構造をなしている。積層チップインダクタでは、コイルを二重螺旋構造とすることにより、コイルの直流抵抗を低減している。 As a conventional electronic component, for example, a multilayer chip inductor described in Patent Document 1 is known. In the multilayer chip inductor, a spiral coil is formed by connecting a U-shaped coil pattern. Each coil pattern is connected in parallel with a coil pattern having the same shape. Thus, the coil has a double spiral structure. In the multilayer chip inductor, the DC resistance of the coil is reduced by making the coil have a double spiral structure.
 しかしながら、特許文献1に記載の積層チップインダクタでは、コイルのインダクタンス値が低下してしまうという問題がある。積層チップインダクタでは、チップのサイズが予め定められている。そのため、積層チップインダクタ内に設けることができるコイル用パターンの数は限られている。よって、コイル用パターンが並列接続された積層チップインダクタでは、コイル用パターンが並列接続されていない積層チップインダクタに比べて、コイルのターン数が少なくなってしまう。その結果、特許文献1に記載の積層チップインダクタでは、コイルのインダクタンス値が低下してしまう。 However, the multilayer chip inductor described in Patent Document 1 has a problem that the inductance value of the coil decreases. In the multilayer chip inductor, the size of the chip is predetermined. Therefore, the number of coil patterns that can be provided in the multilayer chip inductor is limited. Therefore, in the multilayer chip inductor in which the coil patterns are connected in parallel, the number of turns of the coil is reduced compared to the multilayer chip inductor in which the coil patterns are not connected in parallel. As a result, in the multilayer chip inductor described in Patent Document 1, the inductance value of the coil is reduced.
特開2001-358016号公報JP 2001-358016 A
 そこで、本発明の目的は、コイルのインダクタンス値の低下を抑制しつつ、コイルの低抵抗化を図ることができる電子部品を提供することである。 Therefore, an object of the present invention is to provide an electronic component capable of reducing the resistance of the coil while suppressing a decrease in the inductance value of the coil.
 本発明の一形態に係る電子部品は、複数の絶縁体層が積層されて構成されている積層体と、前記積層体に内蔵され、かつ、積層方向から平面視したときに、所定方向に旋回している複数の線状のコイル導体が接続されることにより構成されている螺旋状のコイルと、を備えており、前記コイルの一部の領域において、同じ形状を有する複数の前記コイル導体が並列に接続されていること、を特徴とする。 An electronic component according to an aspect of the present invention includes a laminated body in which a plurality of insulating layers are laminated, and is built in the laminated body and swivels in a predetermined direction when viewed in plan from the lamination direction And a plurality of coil conductors having the same shape in a partial region of the coil. It is characterized by being connected in parallel.
 本発明によれば、コイルのインダクタンス値の低下を抑制しつつ、コイルの低抵抗化を図ることができる。 According to the present invention, it is possible to reduce the resistance of the coil while suppressing a decrease in the inductance value of the coil.
本発明の一実施形態に係る電子部品の外観斜視図である。1 is an external perspective view of an electronic component according to an embodiment of the present invention. 一実施形態に係る電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component which concerns on one Embodiment. その他の実施形態に係る電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component which concerns on other embodiment. シミュレーション結果を示したグラフである。It is the graph which showed the simulation result.
 以下に、本発明の実施形態に係る電子部品について説明する。 Hereinafter, an electronic component according to an embodiment of the present invention will be described.
(電子部品の構成)
 本発明の一実施形態に係る電子部品の構成について説明する。図1は、本発明の一実施形態に係る電子部品10の外観斜視図である。図2は、一実施形態に係る電子部品10の積層体12の分解斜視図である。
(Configuration of electronic parts)
A configuration of an electronic component according to an embodiment of the present invention will be described. FIG. 1 is an external perspective view of an electronic component 10 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10 according to the embodiment.
 以下、電子部品10の積層方向をz軸方向と定義し、電子部品10のz軸方向の正方向側の面の長辺及び短辺に沿った方向をそれぞれ、x軸方向及びy軸方向と定義する。x軸方向とy軸方向とz軸方向とは直交している。 Hereinafter, the stacking direction of the electronic component 10 is defined as the z-axis direction, and the directions along the long side and the short side of the surface of the electronic component 10 on the positive direction side are the x-axis direction and the y-axis direction, respectively. Define. The x-axis direction, the y-axis direction, and the z-axis direction are orthogonal to each other.
 電子部品10は、図1及び図2に示すように、積層体12、外部電極14(14a,14b)、接続部20(20a,20b)及びコイルLを備えている。 1 and 2, the electronic component 10 includes a laminated body 12, external electrodes 14 (14a, 14b), connection portions 20 (20a, 20b), and a coil L.
 積層体12は、図1に示すように、直方体状をなしており、コイルLを内蔵している。積層体12は、図2に示すように、絶縁体層16(16a~16q)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。絶縁体層16は、磁性体材料(例えば、Ni-Cu-Zn系フェライト)からなる長方形状の層である。磁性体材料とは、-55℃以上+125℃以下の温度範囲において、磁性体材料として機能する材料を意味する。以下では、絶縁体層16のz軸方向の正方向側の面を表面と称し、絶縁体層16のz軸方向の負方向側の面を裏面と称す。また、積層体12において、z軸方向の両端に位置する表面を上面及び下面と呼び、上面と下面とを接続する面を側面と呼ぶ。 As shown in FIG. 1, the laminate 12 has a rectangular parallelepiped shape and incorporates a coil L. As shown in FIG. 2, the stacked body 12 is configured by stacking the insulator layers 16 (16a to 16q) so that they are arranged in this order from the positive side in the z-axis direction to the negative direction. The insulator layer 16 is a rectangular layer made of a magnetic material (for example, Ni—Cu—Zn based ferrite). The magnetic material means a material that functions as a magnetic material in a temperature range of −55 ° C. or higher and + 125 ° C. or lower. Hereinafter, the surface on the positive side in the z-axis direction of the insulator layer 16 is referred to as a front surface, and the surface on the negative direction side in the z-axis direction of the insulator layer 16 is referred to as a back surface. Moreover, in the laminated body 12, the surface located in the both ends of az axis direction is called an upper surface and a lower surface, and the surface which connects an upper surface and a lower surface is called a side surface.
 外部電極14aは、図1に示すように、積層体12の上面を覆うように設けられている。外部電極14bは、図1に示すように、積層体12の下面を覆うように設けられている。更に、外部電極14a,14bは、上面及び下面に隣接する側面に対して折り返されている。外部電極14a,14bは、電子部品10外の回路とコイルLとを電気的に接続する接続端子として機能する。 The external electrode 14a is provided so as to cover the upper surface of the multilayer body 12, as shown in FIG. As shown in FIG. 1, the external electrode 14 b is provided so as to cover the lower surface of the multilayer body 12. Further, the external electrodes 14a and 14b are folded back with respect to the side surfaces adjacent to the upper surface and the lower surface. The external electrodes 14 a and 14 b function as connection terminals that electrically connect a circuit outside the electronic component 10 and the coil L.
 コイルLは、積層体12に内蔵され、図2に示すように、コイル導体18(18a~18g),19(19a,19b,19f,19g)及びビアホール導体v4~v17により構成されている。コイルLは、コイル導体18,19及びビアホール導体v4~v17が接続されることにより螺旋状をなすように構成され、z軸方向に延在する(すなわち、z軸方向に平行な)コイル軸を有している。 The coil L is built in the laminate 12 and is composed of coil conductors 18 (18a to 18g), 19 (19a, 19b, 19f, 19g) and via-hole conductors v4 to v17 as shown in FIG. The coil L is formed in a spiral shape by connecting the coil conductors 18 and 19 and the via-hole conductors v4 to v17, and has a coil axis extending in the z-axis direction (that is, parallel to the z-axis direction). Have.
 コイル導体18a~18gはそれぞれ、図2に示すように、絶縁体層16e,16g~16j,16l,16nの表面上に設けられており、z軸方向から平面視したときに、時計回りに旋回するコ字型の線状導体である。より詳細には、コイル導体18a~18gは、3/4ターンのターン数を有しており、絶縁体層16の三辺に沿っている。コイル導体18aは、絶縁体層16eにおいて、x軸方向の負方向側の短辺以外の三辺に沿って設けられている。コイル導体18bは、絶縁体層16gにおいて、y軸方向の負方向側の長辺以外の三辺に沿って設けられている。コイル導体18cは、絶縁体層16hにおいて、x軸方向の正方向側の短辺以外の三辺に沿って設けられている。コイル導体18dは、絶縁体層16iにおいて、y軸方向の正方向側の長辺以外の三辺に沿って設けられている。コイル導体18eは、絶縁体層16jにおいて、x軸方向の負方向側の短辺以外の三辺に沿って設けられている。コイル導体18fは、絶縁体層16lにおいて、y軸方向の負方向側の長辺以外の三辺に沿って設けられている。コイル導体18gは、絶縁体層16nにおいて、x軸方向の正方向側の短辺以外の三辺に沿って設けられている。 As shown in FIG. 2, the coil conductors 18a to 18g are provided on the surfaces of the insulator layers 16e, 16g to 16j, 16l, and 16n, respectively, and turn clockwise when viewed in plan from the z-axis direction. This is a U-shaped linear conductor. More specifically, the coil conductors 18a to 18g have a number of turns of 3/4 and are along the three sides of the insulator layer 16. The coil conductor 18a is provided along three sides other than the short side on the negative direction side in the x-axis direction in the insulator layer 16e. The coil conductor 18b is provided along three sides of the insulator layer 16g other than the long side on the negative direction side in the y-axis direction. The coil conductor 18c is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16h. The coil conductor 18d is provided along three sides of the insulator layer 16i other than the long side on the positive direction side in the y-axis direction. The coil conductor 18e is provided along three sides of the insulator layer 16j other than the short side on the negative direction side in the x-axis direction. The coil conductor 18f is provided along three sides of the insulator layer 16l other than the long side on the negative direction side in the y-axis direction. The coil conductor 18g is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16n.
 コイル導体19a,19b,19f,19gはそれぞれ、図2に示すように、絶縁体層16d,16f,16k,16mの表面上に設けられており、z軸方向から平面視したときに、時計回りに旋回するコ字型の線状導体層である。より詳細には、コイル導体19a,19b,19f,19gは、3/4ターンのターン数を有しており、絶縁体層16d,16f,16k,16mの三辺に沿っている。コイル導体19aは、絶縁体層16dにおいて、x軸方向の負方向側の短辺以外の三辺に沿って設けられている。コイル導体19aは、コイル導体18aと同じ形状を有しており、z軸方向の正方向側から平面視したときに、一致した状態で重なっている。コイル導体19bは、絶縁体層16fにおいて、y軸方向の負方向側の長辺以外の三辺に沿って設けられている。コイル導体19bは、コイル導体18bと同じ形状を有しており、z軸方向の正方向側から平面視したときに、一致した状態で重なっている。コイル導体19fは、絶縁体層16kにおいて、y軸方向の負方向側の長辺以外の三辺に沿って設けられている。コイル導体19fは、コイル導体18fと同じ形状を有しており、z軸方向の正方向側から平面視したときに、一致した状態で重なっている。コイル導体19gは、絶縁体層16mにおいて、x軸方向の正方向側の短辺以外の三辺に沿って設けられている。コイル導体19gは、コイル導体18gと同じ形状を有しており、z軸方向の正方向側から平面視したときに、一致した状態で重なっている。 As shown in FIG. 2, the coil conductors 19a, 19b, 19f, and 19g are provided on the surfaces of the insulator layers 16d, 16f, 16k, and 16m, respectively, and when viewed in plan from the z-axis direction, It is a U-shaped linear conductor layer that swivels in a straight line. More specifically, the coil conductors 19a, 19b, 19f, and 19g have a number of turns of 3/4, and are along the three sides of the insulator layers 16d, 16f, 16k, and 16m. The coil conductor 19a is provided along three sides of the insulator layer 16d other than the short side on the negative direction side in the x-axis direction. The coil conductor 19a has the same shape as the coil conductor 18a, and overlaps in a matched state when viewed from the positive side in the z-axis direction. The coil conductor 19b is provided along three sides of the insulator layer 16f other than the long side on the negative direction side in the y-axis direction. The coil conductor 19b has the same shape as the coil conductor 18b, and overlaps in a matched state when viewed from the positive side in the z-axis direction. The coil conductor 19f is provided along three sides of the insulator layer 16k other than the long side on the negative direction side in the y-axis direction. The coil conductor 19f has the same shape as the coil conductor 18f, and overlaps in a matched state when viewed from the positive side in the z-axis direction. The coil conductor 19g is provided along three sides other than the short side on the positive direction side in the x-axis direction in the insulator layer 16m. The coil conductor 19g has the same shape as the coil conductor 18g, and overlaps in a matched state when viewed from the positive side in the z-axis direction.
 以下では、コイル導体18,19において、z軸方向の正方向側から平面視したときに、時計回りの上流側の端部を上流端とし、時計回りの下流側の端部を下流端とする。なお、コイル導体18,19のターン数は、3/4ターンに限らない。よって、コイル導体18,19のターン数は、例えば、1/2ターンであってもよいし、7/8ターンであってもよい。 In the following, in the coil conductors 18 and 19, when viewed in plan from the positive direction side in the z-axis direction, the end portion on the upstream side in the clockwise direction is the upstream end, and the end portion on the downstream side in the clockwise direction is the downstream end. . The number of turns of the coil conductors 18 and 19 is not limited to 3/4 turns. Therefore, the number of turns of the coil conductors 18 and 19 may be, for example, 1/2 turn or 7/8 turn.
 ビアホール導体v4~v17は、図2に示すように、絶縁体層16d~16mをz軸方向に貫通するように設けられている。より詳細には、ビアホール導体v4は、絶縁体層16dをz軸方向に貫通し、コイル導体19aの上流端及びコイル導体18aの上流端に接続されている。ビアホール導体v5は、絶縁体層16dをz軸方向に貫通し、コイル導体19aの下流端及びコイル導体18aの下流端に接続されている。ビアホール導体v6は、絶縁体層16eをz軸方向に貫通し、コイル導体18aの下流端及びコイル導体19bの上流端に接続されている。ビアホール導体v7は、絶縁体層16fをz軸方向に貫通し、コイル導体19bの上流端及びコイル導体18bの上流端に接続されている。ビアホール導体v8は、絶縁体層16fをz軸方向に貫通し、コイル導体19bの下流端及びコイル導体18bの下流端に接続されている。ビアホール導体v9は、絶縁体層16gをz軸方向に貫通し、コイル導体18bの下流端及びコイル導体18cの上流端に接続されている。ビアホール導体v10は、絶縁体層16hをz軸方向に貫通し、コイル導体18cの下流端及びコイル導体18dの上流端に接続されている。ビアホール導体v11は、絶縁体層16iをz軸方向に貫通し、コイル導体18dの下流端及びコイル導体18eの上流端に接続されている。ビアホール導体v12は、絶縁体層16jをz軸方向に貫通し、コイル導体18eの下流端及びコイル導体19fの上流端に接続されている。ビアホール導体v13は、絶縁体層16kをz軸方向に貫通し、コイル導体19fの上流端及びコイル導体18fの上流端に接続されている。ビアホール導体v14は、絶縁体層16kをz軸方向に貫通し、コイル導体19fの下流端及びコイル導体18fの下流端に接続されている。ビアホール導体v15は、絶縁体層16lをz軸方向に貫通し、コイル導体18fの下流端及びコイル導体19gの上流端に接続されている。ビアホール導体v16は、絶縁体層16mをz軸方向に貫通し、コイル導体19gの上流端及びコイル導体18gの上流端に接続されている。ビアホール導体v17は、絶縁体層16mをz軸方向に貫通し、コイル導体19gの下流端及びコイル導体18gの下流端に接続されている。 As shown in FIG. 2, the via-hole conductors v4 to v17 are provided so as to penetrate the insulating layers 16d to 16m in the z-axis direction. More specifically, the via-hole conductor v4 penetrates the insulator layer 16d in the z-axis direction and is connected to the upstream end of the coil conductor 19a and the upstream end of the coil conductor 18a. The via-hole conductor v5 penetrates the insulator layer 16d in the z-axis direction, and is connected to the downstream end of the coil conductor 19a and the downstream end of the coil conductor 18a. The via-hole conductor v6 passes through the insulator layer 16e in the z-axis direction, and is connected to the downstream end of the coil conductor 18a and the upstream end of the coil conductor 19b. The via-hole conductor v7 penetrates the insulator layer 16f in the z-axis direction, and is connected to the upstream end of the coil conductor 19b and the upstream end of the coil conductor 18b. The via-hole conductor v8 passes through the insulator layer 16f in the z-axis direction, and is connected to the downstream end of the coil conductor 19b and the downstream end of the coil conductor 18b. The via-hole conductor v9 penetrates the insulator layer 16g in the z-axis direction and is connected to the downstream end of the coil conductor 18b and the upstream end of the coil conductor 18c. The via-hole conductor v10 passes through the insulator layer 16h in the z-axis direction, and is connected to the downstream end of the coil conductor 18c and the upstream end of the coil conductor 18d. The via-hole conductor v11 penetrates the insulator layer 16i in the z-axis direction and is connected to the downstream end of the coil conductor 18d and the upstream end of the coil conductor 18e. The via-hole conductor v12 penetrates the insulator layer 16j in the z-axis direction and is connected to the downstream end of the coil conductor 18e and the upstream end of the coil conductor 19f. The via-hole conductor v13 penetrates the insulator layer 16k in the z-axis direction, and is connected to the upstream end of the coil conductor 19f and the upstream end of the coil conductor 18f. The via-hole conductor v14 passes through the insulator layer 16k in the z-axis direction, and is connected to the downstream end of the coil conductor 19f and the downstream end of the coil conductor 18f. The via-hole conductor v15 passes through the insulator layer 16l in the z-axis direction, and is connected to the downstream end of the coil conductor 18f and the upstream end of the coil conductor 19g. The via-hole conductor v16 passes through the insulator layer 16m in the z-axis direction, and is connected to the upstream end of the coil conductor 19g and the upstream end of the coil conductor 18g. The via-hole conductor v17 penetrates the insulator layer 16m in the z-axis direction, and is connected to the downstream end of the coil conductor 19g and the downstream end of the coil conductor 18g.
 以上のように、コイル導体18aの両端とコイル導体19aの両端とはそれぞれ、絶縁体層16dに設けられているビアホール導体v4,v5により接続されている。これにより、コイル導体18aとコイル導体19aとは並列に接続されている。また、コイル導体18bの両端とコイル導体19bの両端とはそれぞれ、絶縁体層16fに設けられているビアホール導体v7,v8により接続されている。これにより、コイル導体18bとコイル導体19bとは並列に接続されている。また、コイル導体18fの両端とコイル導体19fの両端とはそれぞれ、絶縁体層16kに設けられているビアホール導体v13,v14により接続されている。これにより、コイル導体18fとコイル導体19fとは並列に接続されている。また、コイル導体18gの両端とコイル導体19gの両端とはそれぞれ、絶縁体層16mに設けられているビアホール導体v16,v17により接続されている。これにより、コイル導体18gとコイル導体19gとは並列に接続されている。 As described above, both ends of the coil conductor 18a and both ends of the coil conductor 19a are connected by via-hole conductors v4 and v5 provided in the insulator layer 16d, respectively. Thereby, the coil conductor 18a and the coil conductor 19a are connected in parallel. Further, both ends of the coil conductor 18b and both ends of the coil conductor 19b are connected by via-hole conductors v7 and v8 provided in the insulator layer 16f, respectively. Thereby, the coil conductor 18b and the coil conductor 19b are connected in parallel. Further, both ends of the coil conductor 18f and both ends of the coil conductor 19f are connected by via-hole conductors v13 and v14 provided in the insulator layer 16k, respectively. Thereby, the coil conductor 18f and the coil conductor 19f are connected in parallel. Further, both ends of the coil conductor 18g and both ends of the coil conductor 19g are connected by via-hole conductors v16 and v17 provided in the insulator layer 16m, respectively. Thereby, the coil conductor 18g and the coil conductor 19g are connected in parallel.
 ここで、コイルLにおいて、z軸方向の正方向側の端部を端部t1と定義し、z軸方向の負方向側の端部を端部t2と定義する。端部t1は、コイル導体19aの上流端と一致し、端部t2は、コイル導体18gの下流端と一致している。また、コイルLにおいて、端部t1を含む領域を領域A1と定義し、端部t2を含む領域を領域A3と定義する。また、コイルLにおいて、領域A1と領域A3とにz軸方向において挟まれている領域を領域A2と定義する。 Here, in the coil L, an end on the positive direction side in the z-axis direction is defined as an end t1, and an end on the negative direction side in the z-axis direction is defined as an end t2. The end t1 coincides with the upstream end of the coil conductor 19a, and the end t2 coincides with the downstream end of the coil conductor 18g. In the coil L, a region including the end t1 is defined as a region A1, and a region including the end t2 is defined as a region A3. In the coil L, a region sandwiched between the region A1 and the region A3 in the z-axis direction is defined as a region A2.
 電子部品10では、図2に示すように、領域A1において、同じ形状を有するコイル導体18a,18bとコイル導体19a,19bとが並列に接続されている。同様に、領域A3において、同じ形状を有するコイル導体18f,18gとコイル導体19f,19gとが並列に接続されている。一方、領域A2において、コイル導体18c~18eは並列に接続されていない。すなわち、電子部品10では、コイルLの一部の領域A1,A3において、同じ形状を有するコイル導体18,19が並列に接続されている。 In the electronic component 10, as shown in FIG. 2, the coil conductors 18a and 18b and the coil conductors 19a and 19b having the same shape are connected in parallel in the region A1. Similarly, in the region A3, the coil conductors 18f and 18g having the same shape and the coil conductors 19f and 19g are connected in parallel. On the other hand, in the region A2, the coil conductors 18c to 18e are not connected in parallel. That is, in the electronic component 10, the coil conductors 18 and 19 having the same shape are connected in parallel in the partial areas A1 and A3 of the coil L.
 接続部20aは、外部電極14aとコイルLの端部t1とを接続し、ビアホール導体v1~v3により構成されている。ビアホール導体v1~v3は、絶縁体層16a~16cをz軸方向に貫通しており、互いに接続されることにより1本のビアホール導体を構成している。 The connecting portion 20a connects the external electrode 14a and the end t1 of the coil L, and is configured by via-hole conductors v1 to v3. The via-hole conductors v1 to v3 penetrate the insulator layers 16a to 16c in the z-axis direction and are connected to each other to constitute one via-hole conductor.
 接続部20bは、外部電極14bとコイルLの端部t2とを接続し、ビアホール導体v19~v21により構成されている。ビアホール導体v19~v21は、絶縁体層16o~16qをz軸方向に貫通しており、互いに接続されることにより1本のビアホール導体を構成している。 The connecting portion 20b connects the external electrode 14b and the end t2 of the coil L, and is composed of via-hole conductors v19 to v21. The via-hole conductors v19 to v21 penetrate the insulator layers 16o to 16q in the z-axis direction, and are connected to each other to constitute one via-hole conductor.
(電子部品の製造方法)
 以下に、電子部品10の製造方法について図面を参照しながら説明する。
(Method for manufacturing electronic parts)
Below, the manufacturing method of the electronic component 10 is demonstrated, referring drawings.
 まず、絶縁体層16となるべきセラミックグリーンシートを準備する。具体的には、酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)及び酸化銅(CuO)を所定の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を800℃で1時間仮焼する。そして、仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 First, a ceramic green sheet to be the insulator layer 16 is prepared. Specifically, ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) were weighed at a predetermined ratio and each material was put into a ball mill as a raw material. Wet preparation. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour. Then, the calcined powder is wet pulverized by a ball mill, dried and crushed to obtain a ferrite ceramic powder.
 このフェライトセラミック粉末に対して、結合剤(酢酸ビニル、水溶性アクリル等)、可塑剤、湿潤材及び分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、キャリアシート上にシート状に形成して乾燥させ、絶縁体層16となるべきセラミックグリーンシートを作製する。 To this ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. The obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the insulator layer 16.
 次に、絶縁体層16となるべきセラミックグリーンシートのそれぞれに、ビアホール導体v1~v21を形成する。具体的には、絶縁体層16となるべきセラミックグリーンシートにレーザビームを照射してビアホールを形成する。更に、ビアホールに対して、Ag,Pd,Cu,Auやこれらの合金などの導電性材料からなるペーストを印刷塗布などの方法により充填して、ビアホール導体v1~v21を形成する。 Next, via-hole conductors v1 to v21 are formed in each of the ceramic green sheets to be the insulator layer 16. Specifically, a via hole is formed by irradiating a ceramic green sheet to be the insulator layer 16 with a laser beam. Further, the via hole is filled with a paste made of a conductive material such as Ag, Pd, Cu, Au, or an alloy thereof by a method such as printing and coating to form the via hole conductors v1 to v21.
 次に、絶縁体層16d~16nとなるべきセラミックグリーンシート上に、導電性材料からなるペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、コイル導体18,19を形成する。導電性材料からなるペーストは、例えば、Agに、ワニス及び溶剤が加えられたものである。 Next, the coil conductors 18 and 19 are formed by applying a paste made of a conductive material on the ceramic green sheets to be the insulator layers 16d to 16n by a method such as a screen printing method or a photolithography method. The paste made of a conductive material is obtained by adding varnish and a solvent to Ag, for example.
 なお、コイル導体18を形成する工程とビアホールに対して導電性材料(Ag又はAg-Pt)からなるペーストを充填する工程とは、同じ工程において行われてもよい。 Note that the step of forming the coil conductor 18 and the step of filling the via hole with a paste made of a conductive material (Ag or Ag-Pt) may be performed in the same step.
 次に、絶縁体層16となるべきセラミックグリーンシートを一枚ずつ積層及び仮圧着して未焼成のマザー積層体を得る。具体的には,絶縁体層16となるべきセラミックグリーンシートを1枚ずつ積層及び仮圧着する。この後、未焼成のマザー積層体に対して、静水圧プレスにて本圧着を施す。 Next, ceramic green sheets to be the insulator layer 16 are laminated one by one and temporarily pressed to obtain an unfired mother laminate. Specifically, the ceramic green sheets to be the insulator layer 16 are laminated one by one and temporarily bonded. Then, this press-bonding is performed on the unfired mother laminate by an isostatic press.
 次に、未焼成のマザー積層体を所定サイズにカットして、複数の未焼成の積層体12を得る。そして、未焼成の積層体12に、脱バインダー処理及び焼成を施す。脱バインダー処理は、例えば、低酸素雰囲気中において850℃で2時間の条件で行う。焼成は、例えば、900℃~930℃で2.5時間の条件で行う。この後、積層体12の表面に、バレル研磨処理を施して、面取りを行う。 Next, the unfired mother laminate is cut into a predetermined size to obtain a plurality of unfired laminates 12. Then, the unfired laminate 12 is subjected to binder removal processing and firing. The binder removal treatment is performed, for example, in a low oxygen atmosphere at 850 ° C. for 2 hours. Firing is performed at 900 ° C. to 930 ° C. for 2.5 hours, for example. Thereafter, the surface of the laminate 12 is subjected to barrel polishing to chamfer.
 次に、Agを主成分とする導電性材料からなる電極ペーストを、積層体12の上面及び下面に塗布する。そして、塗布した電極ペーストを約800℃の温度で1時間の条件で焼き付ける。これにより、外部電極14となるべき銀電極を形成する。更に、外部電極14となるべき銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14を形成する。以上の工程により、電子部品10が完成する。 Next, an electrode paste made of a conductive material mainly composed of Ag is applied to the upper and lower surfaces of the laminate 12. Then, the applied electrode paste is baked at a temperature of about 800 ° C. for 1 hour. Thereby, the silver electrode which should become the external electrode 14 is formed. Further, the external electrode 14 is formed by performing Ni plating / Sn plating on the surface of the silver electrode to be the external electrode 14. Through the above steps, the electronic component 10 is completed.
(効果)
 以上のような電子部品10によれば、コイルの低抵抗化を図ることができる。より詳細には、電子部品10では、同じ形状を有するコイル導体18a,18b,18f,18gとコイル導体19a,19b,19f,19gとが並列に接続されている。これにより、電子部品10では、全てのコイル導体が並列に接続されてない電子部品に比べて、コイルLの低抵抗化が図られる。
(effect)
According to the electronic component 10 as described above, it is possible to reduce the resistance of the coil. More specifically, in the electronic component 10, the coil conductors 18a, 18b, 18f, 18g having the same shape and the coil conductors 19a, 19b, 19f, 19g are connected in parallel. Thereby, in the electronic component 10, resistance reduction of the coil L is achieved compared with the electronic component to which all the coil conductors are not connected in parallel.
 更に、電子部品10によれば、コイルLのインダクタンス値の低下を抑制できる。より詳細には、電子部品10では、コイルLの全体(領域A1~A3)において、コイル導体18とコイル導体19とが並列に接続されているのではなく、コイルLの一部の領域A1,A3においてのみ、コイル導体18とコイル導体19とが並列に接続されている。したがって、コイルLの領域A2では、コイル導体18は並列に接続されていない。これにより、電子部品10では、全てのコイル導体が並列に接続されている電子部品に比べて、積層体12のサイズが同じである場合に、コイルLのターン数を多くすることができる。すなわち、電子部品10では、全てのコイル導体が並列に接続されている電子部品に比べて、大きなインダクタンス値を得ることができる。 Furthermore, according to the electronic component 10, a decrease in the inductance value of the coil L can be suppressed. More specifically, in the electronic component 10, in the entire coil L (regions A1 to A3), the coil conductor 18 and the coil conductor 19 are not connected in parallel, but a part of the region A1, A1 of the coil L. Only in A3, the coil conductor 18 and the coil conductor 19 are connected in parallel. Accordingly, in the region A2 of the coil L, the coil conductors 18 are not connected in parallel. Thereby, in the electronic component 10, the number of turns of the coil L can be increased when the size of the multilayer body 12 is the same as that of the electronic component in which all the coil conductors are connected in parallel. That is, in the electronic component 10, a large inductance value can be obtained as compared with an electronic component in which all coil conductors are connected in parallel.
 以上のように、電子部品10によれば、コイルLのインダクタンス値の低下を抑制しつつ、コイルLの低抵抗化を図ることができる。 As described above, according to the electronic component 10, it is possible to reduce the resistance of the coil L while suppressing a decrease in the inductance value of the coil L.
(その他の実施形態)
 本発明に係る電子部品は、前記実施形態に示した電子部品10に限らない。よって、本発明に係る電子部品は、その要旨の範囲内において変更可能である。
(Other embodiments)
The electronic component according to the present invention is not limited to the electronic component 10 shown in the embodiment. Therefore, the electronic component according to the present invention can be changed within the scope of the gist.
 図3は、その他の実施形態に係る電子部品10aの積層体12aの分解斜視図である。なお、電子部品10aの外観斜視図については図1を援用する。 FIG. 3 is an exploded perspective view of the multilayer body 12a of the electronic component 10a according to another embodiment. In addition, FIG. 1 is used for the external perspective view of the electronic component 10a.
 電子部品10aでは、領域A2において、コイル導体18とコイル導体19とが並列に接続されている。このように、端部t1,t2を含む領域A1,A2以外の領域A3において、コイル導体18,19が並列に接続されていてもよい。電子部品10aにおいても、電子部品10と同様に、コイルLのインダクタンス値の低下を抑制しつつ、コイルLの低抵抗化を図ることができる。 In the electronic component 10a, the coil conductor 18 and the coil conductor 19 are connected in parallel in the region A2. Thus, the coil conductors 18 and 19 may be connected in parallel in the region A3 other than the regions A1 and A2 including the ends t1 and t2. Similarly to the electronic component 10, the electronic component 10 a can reduce the resistance of the coil L while suppressing a decrease in the inductance value of the coil L.
 ただし、電子部品10は、以下に説明するように、電子部品10aに比べて、優れた高周波特性を有している。より詳細には、電子部品10aでは、図3に示すように、端部t1を含んでいる領域A1では、コイル導体18は並列に接続されていない。そのため、z軸方向の正方向側から2層分のコイル導体18a,18bによって、1ターン分のコイルLが外部電極14aと対向する。そして、1ターン分のコイルLと外部電極14aとの間に浮遊容量が発生する。 However, the electronic component 10 has excellent high-frequency characteristics as compared with the electronic component 10a, as will be described below. More specifically, in the electronic component 10a, as shown in FIG. 3, the coil conductors 18 are not connected in parallel in the region A1 including the end t1. Therefore, the coil L for one turn is opposed to the external electrode 14a by two layers of coil conductors 18a and 18b from the positive direction side in the z-axis direction. A stray capacitance is generated between the coil L for one turn and the external electrode 14a.
 一方、電子部品10では、図2に示すように、端部t1を含んでいる領域A1において、コイル導体18とコイル導体19とが並列に接続されている。そのため、z軸方向の正方向側から2層分のコイル導体18a,19aでは、3/4ターン分のコイルLしか外部電極14aと対向しない。そして、z軸方向の正方向側から3層目のコイル導体19bが外部電極14aと対向することによって、1ターン分のコイルLが外部電極14aに対向する。しかしながら、コイル導体19bは、z軸方向の正方向側から3層目に位置しており、コイル導体18a,19aに比べて遠くはなれている。そのため、電子部品10では電子部品10aに比べて、1ターン分のコイルLと外部電極14aとの間に発生する浮遊容量の大きさは小さくなる。その結果、電子部品10は、電子部品10aに比べて、優れた高周波特性を有している。 On the other hand, in the electronic component 10, as shown in FIG. 2, the coil conductor 18 and the coil conductor 19 are connected in parallel in a region A1 including the end t1. For this reason, in the coil conductors 18a and 19a for two layers from the positive direction side in the z-axis direction, only the coil L for 3/4 turns faces the external electrode 14a. The third-layer coil conductor 19b from the positive side in the z-axis direction faces the external electrode 14a, so that the coil L for one turn faces the external electrode 14a. However, the coil conductor 19b is located in the third layer from the positive direction side in the z-axis direction, and is far from the coil conductors 18a and 19a. Therefore, in the electronic component 10, the magnitude of the stray capacitance generated between the coil L for one turn and the external electrode 14a is smaller than that in the electronic component 10a. As a result, the electronic component 10 has superior high frequency characteristics compared to the electronic component 10a.
 本願発明者は、電子部品10が電子部品10aに比べて優れた高周波特性を有することを明らかにするために、以下に説明するコンピュータシミュレーションを行った。 In order to clarify that the electronic component 10 has excellent high-frequency characteristics compared to the electronic component 10a, the inventor of the present application performed a computer simulation described below.
 本願発明者は、電子部品10と同じ構造を有する第1のモデル、及び、電子部品10aと同じ構造を有する第2のモデルを作成した。第1のモデル及び第2のモデルでは、ターン数を33ターンとした。また、第1のモデルにおいて、領域A1,A3におけるターン数をそれぞれ3ターンとし、領域A2におけるターン数を27ターンとした。第2のモデルにおいて、領域A1,A3におけるターン数をそれぞれ13.5ターンとし、領域A2におけるターン数を6ターンとした。 The inventor of the present application has created a first model having the same structure as the electronic component 10 and a second model having the same structure as the electronic component 10a. In the first model and the second model, the number of turns was 33. In the first model, the number of turns in each of the areas A1 and A3 was 3 turns, and the number of turns in the area A2 was 27 turns. In the second model, the number of turns in each of the areas A1 and A3 was 13.5 turns, and the number of turns in the area A2 was 6 turns.
 以上の第1のモデル及び第2のモデルを用いて、周波数とインピーダンスとの関係を調べた。図4は、シミュレーション結果を示したグラフである。縦軸はインピーダンスを示し、横軸は周波数を示している。 Using the above first model and second model, the relationship between frequency and impedance was examined. FIG. 4 is a graph showing simulation results. The vertical axis represents impedance, and the horizontal axis represents frequency.
 図4によれば、第1のモデルの方が第2のモデルよりもすぐれた高周波特性を有していることが分かる。これは、前記の通り、電子部品10では電子部品10aに比べて、1ターン分のコイルLと外部電極14aとの間に発生する浮遊容量の大きさは小さくなるためである。以上のシミュレーションより、電子部品10は、電子部品10aに比べて、優れた高周波特性を有していることが分かる。 FIG. 4 shows that the first model has better high frequency characteristics than the second model. This is because, as described above, the electronic component 10 has a smaller stray capacitance generated between the coil L for one turn and the external electrode 14a than the electronic component 10a. From the above simulation, it can be seen that the electronic component 10 has superior high-frequency characteristics compared to the electronic component 10a.
 以上のように、本発明は、電子部品に有用であり、特に、コイルのインダクタンス値の低下を抑制しつつ、コイルの低抵抗化を図ることができる点において優れている。 As described above, the present invention is useful for electronic components, and is particularly excellent in that the resistance of the coil can be reduced while suppressing a decrease in the inductance value of the coil.
 A1~A3 領域
 L コイル
 t1,t2 端部
 v1~v21,v31~v49 ビアホール導体
 10,10a 電子部品
 12,12a 積層体
 14a,14b 外部電極
 16a~16q 絶縁体層
 18a~18g,19a~19g コイル導体
 20a,20b 接続部
A1 to A3 region L coil t1, t2 end v1 to v21, v31 to v49 Via hole conductor 10, 10a Electronic component 12, 12a Laminated body 14a, 14b External electrode 16a to 16q Insulator layer 18a to 18g, 19a to 19g Coil conductor 20a, 20b connection part

Claims (4)

  1.  複数の絶縁体層が積層されて構成されている積層体と、
     前記積層体に内蔵され、かつ、積層方向から平面視したときに、所定方向に旋回している複数の線状のコイル導体が接続されることにより構成されている螺旋状のコイルと、
     を備えており、
     前記コイルの一部の領域において、同じ形状を有する複数の前記コイル導体が並列に接続されていること、
     を特徴とする電子部品。
    A laminated body constituted by laminating a plurality of insulator layers;
    A spiral coil configured by being connected to a plurality of linear coil conductors that are built in the laminated body and are turned in a predetermined direction when viewed in plan from the lamination direction;
    With
    A plurality of coil conductors having the same shape are connected in parallel in a partial region of the coil;
    Electronic parts characterized by
  2.  積層方向の両端に位置する前記積層体の表面のそれぞれに設けられている第1の外部電極及び第2の外部電極と、
     前記コイルの一端と前記第1の外部電極とを接続する第1の接続部と、
     前記コイルの他端と前記第2の外部電極とを接続する第2の接続部と、
     更に備えていること、
     を特徴とする請求項1に記載の電子部品。
    A first external electrode and a second external electrode provided on each of the surfaces of the stacked body located at both ends in the stacking direction;
    A first connecting portion connecting one end of the coil and the first external electrode;
    A second connecting portion for connecting the other end of the coil and the second external electrode;
    More
    The electronic component according to claim 1.
  3.  前記コイルの一部の領域は、該コイルの一端を含んでいること、
     を特徴とする請求項2に記載の電子部品。
    A partial region of the coil includes one end of the coil;
    The electronic component according to claim 2.
  4.  並列に接続されている複数の前記コイル導体は、積層方向から平面視したときに一致した状態で重なっていること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の電子部品。
    A plurality of the coil conductors connected in parallel overlap each other when viewed in plan from the stacking direction;
    The electronic component according to any one of claims 1 to 3, wherein:
PCT/JP2011/061041 2010-05-19 2011-05-13 Electronic component WO2011145517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115315 2010-05-19
JP2010115315 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145517A1 true WO2011145517A1 (en) 2011-11-24

Family

ID=44991623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061041 WO2011145517A1 (en) 2010-05-19 2011-05-13 Electronic component

Country Status (1)

Country Link
WO (1) WO2011145517A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251455A (en) * 2012-06-01 2013-12-12 Ibiden Co Ltd Electromagnetic coil
WO2015022889A1 (en) * 2013-08-13 2015-02-19 株式会社村田製作所 Electronic component
GB2521559A (en) * 2012-09-28 2015-06-24 Murata Manufacturing Co Impedance conversion circuit and wireless communication device
JP2016139742A (en) * 2015-01-28 2016-08-04 株式会社村田製作所 Coil component
CN109119223A (en) * 2017-06-26 2019-01-01 株式会社村田制作所 Laminated inductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260644A (en) * 1998-01-08 1999-09-24 Taiyo Yuden Co Ltd Electronic component
JP2001044038A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated electronic component
JP2001244117A (en) * 1999-12-20 2001-09-07 Murata Mfg Co Ltd Laminated ceramic electronic component and method of manufacturing the same
WO2009016937A1 (en) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. Chip-type coil component
JP2009094149A (en) * 2007-10-04 2009-04-30 Hitachi Metals Ltd Multilayered inductor
JP2011029278A (en) * 2009-07-22 2011-02-10 Murata Mfg Co Ltd Electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260644A (en) * 1998-01-08 1999-09-24 Taiyo Yuden Co Ltd Electronic component
JP2001044038A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated electronic component
JP2001244117A (en) * 1999-12-20 2001-09-07 Murata Mfg Co Ltd Laminated ceramic electronic component and method of manufacturing the same
WO2009016937A1 (en) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. Chip-type coil component
JP2009094149A (en) * 2007-10-04 2009-04-30 Hitachi Metals Ltd Multilayered inductor
JP2011029278A (en) * 2009-07-22 2011-02-10 Murata Mfg Co Ltd Electronic component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251455A (en) * 2012-06-01 2013-12-12 Ibiden Co Ltd Electromagnetic coil
GB2521559A (en) * 2012-09-28 2015-06-24 Murata Manufacturing Co Impedance conversion circuit and wireless communication device
GB2521559B (en) * 2012-09-28 2016-05-11 Murata Manufacturing Co A radio frequency impedance matching circuit and wireless communication apparatus
US9515632B2 (en) 2012-09-28 2016-12-06 Murata Manufacturing Co., Ltd. Impedance transformation circuit and wireless communication apparatus
WO2015022889A1 (en) * 2013-08-13 2015-02-19 株式会社村田製作所 Electronic component
CN105408972A (en) * 2013-08-13 2016-03-16 株式会社村田制作所 Electronic component
JP6044716B2 (en) * 2013-08-13 2016-12-14 株式会社村田製作所 Electronic components
JP2016139742A (en) * 2015-01-28 2016-08-04 株式会社村田製作所 Coil component
CN109119223A (en) * 2017-06-26 2019-01-01 株式会社村田制作所 Laminated inductor
JP2019009299A (en) * 2017-06-26 2019-01-17 株式会社村田製作所 Multilayer inductor
US11282629B2 (en) 2017-06-26 2022-03-22 Murata Manufacturing Co., Ltd. Multilayer inductor

Similar Documents

Publication Publication Date Title
JP5994933B2 (en) Electronic components
WO2010092730A1 (en) Electronic component
JP5126243B2 (en) Electronic components
JP5598452B2 (en) Electronic component and manufacturing method thereof
WO2010079804A1 (en) Electronic component
JP5644957B2 (en) Electronic components
WO2012023315A1 (en) Electronic component and method for manufacturing same
WO2011145517A1 (en) Electronic component
JP2011187535A (en) Electronic component, and method of manufacturing the same
WO2010084794A1 (en) Electronic component and method for manufacturing same
JP5494892B2 (en) Electronic components
JP5327231B2 (en) Electronic components
WO2010010799A1 (en) Electronic component and method for manufacturing same
WO2010109936A1 (en) Electronic part and manufacturing method therefor
JP2011192737A (en) Electronic component and method of manufacturing the same
JP5553550B2 (en) Electronic components
WO2014181756A1 (en) Electronic component
JP5957895B2 (en) Manufacturing method of electronic parts
JP5136065B2 (en) Electronic components
WO2012020590A1 (en) Electronic component
JP2011187897A (en) Electronic component, and method of manufacturing the same
JP2011091221A (en) Electronic component
JP5637282B2 (en) Electronic components
JP2012256809A (en) Lamination type coil
JP2012060049A (en) Electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP