WO2011145438A1 - 反射部材 - Google Patents

反射部材 Download PDF

Info

Publication number
WO2011145438A1
WO2011145438A1 PCT/JP2011/060033 JP2011060033W WO2011145438A1 WO 2011145438 A1 WO2011145438 A1 WO 2011145438A1 JP 2011060033 W JP2011060033 W JP 2011060033W WO 2011145438 A1 WO2011145438 A1 WO 2011145438A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
silver
protective film
reflective
reflecting
Prior art date
Application number
PCT/JP2011/060033
Other languages
English (en)
French (fr)
Inventor
武 櫻井
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN2011800243915A priority Critical patent/CN102893187A/zh
Priority to EP11783375A priority patent/EP2573597A1/en
Priority to US13/522,337 priority patent/US20120307386A1/en
Publication of WO2011145438A1 publication Critical patent/WO2011145438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3647Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer in combination with other metals, silver being more than 50%
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3663Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer

Definitions

  • the present invention relates to a reflective member, and more particularly, to a reflective member having a silver reflective film.
  • a reflection member having a silver reflection film made of silver or an alloy containing silver has been used.
  • the silver reflective film has a higher light reflectance than, for example, a reflective film made of aluminum. For this reason, the reflection member which has a high light reflectivity is realizable by using a silver reflective film.
  • Patent Documents 1 to 3 describe that a protective film is formed on a silver reflective film.
  • Patent Documents 1 to 3 describe a SiO 2 film, a Ni—Cr film, an Al 2 O 3 film, a TiO 2 film, and the like as a protective film.
  • the present invention has been made in view of the above points, and an object thereof is to provide a reflective member having a silver reflective film and having excellent heat resistance.
  • the reflecting member according to the present invention includes a reflecting member main body, a silver reflecting film, and a first protective film.
  • the silver reflecting film is formed on the reflecting member body.
  • the silver reflecting film is made of silver or an alloy containing silver.
  • the first protective film is formed on the silver reflective film.
  • the first protective film is made of Ti, Ta, or Nb.
  • a first protective film made of Ti, Ta or Nb is formed on the silver reflecting film. For this reason, even if it is a case where a reflective member is put in a high temperature atmosphere, a silver reflective film is suitably interrupted from oxygen and sulfur in the air by the 1st protective film. Therefore, it can suppress effectively that a silver reflective film reacts with oxygen and sulfur in air, and the light reflectivity of a silver reflective film falls. Therefore, according to the present invention, a reflective member having excellent heat resistance can be obtained by forming the first protective film made of Ti, Ta or Nb on the silver reflective film. From the viewpoint of obtaining particularly excellent heat resistance, the first protective film is preferably made of Ti.
  • the alloy containing silver examples include an Ag—Pd alloy, an Ag—Pd—Cu alloy, and the like.
  • the silver content in the silver-containing alloy is preferably 90% by mass or more.
  • the reflecting member is preferably formed between the silver reflecting film and the first protective film, and further includes a second protective film made of an oxide.
  • a second protective film made of an oxide By providing the second protective film made of an oxide, migration of silver or the like occurs between the silver reflective film and the first protective film, effectively reducing the light reflectivity of the silver reflective film. Can be suppressed. Therefore, more excellent heat resistance can be realized.
  • the second protective film is not particularly limited as long as it is made of an oxide, but is preferably made of titanium oxide, niobium oxide, zirconium oxide or tantalum oxide.
  • the heat resistance of the second protective film itself can be increased, and the adhesion between the second protective film, the silver reflective film, and the first protective film can be increased.
  • the second protective film does not contain an Ag component such as metal Ag or silver oxide. This is because when the second protective film contains an Ag component, migration may easily occur between the second protective film, the silver reflective film, and the first protective film.
  • the reflecting member main body is not particularly limited, but preferably has excellent heat resistance.
  • the reflecting member main body is preferably made of glass, for example, and more preferably made of silicate glass or silicate crystallized glass.
  • the base film is formed between the reflecting member main body and the silver reflecting film.
  • the base film is not particularly limited as long as it has excellent adhesion to the reflective member main body and the silver reflective film.
  • the base film is preferably made of, for example, titanium oxide, aluminum oxide, or zirconium oxide.
  • the reflecting member further includes a third protective film formed on the surface of the first protective film opposite to the second protective film.
  • the first protective film made of Ti, Ta or Nb generally has lower mechanical durability than the protective film made of oxide. For this reason, it can suppress effectively that a 1st protective film is damaged by providing a 3rd protective film. As a result, higher heat resistance can be obtained.
  • the third protective film has a higher hardness than the first protective film.
  • the third protective film is preferably made of an oxide or a nitride. More specifically, the third protective film is preferably made of, for example, titanium oxide, niobium oxide, tantalum oxide, zirconium oxide, silicon oxide, or silicon nitride.
  • a reflecting member including a silver reflecting film and having excellent heat resistance.
  • FIG. 1 is a schematic cross-sectional view of a reflecting member according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a reflecting member according to a modification.
  • FIG. 3 is a graph showing the relationship between the heating temperature and the average light reflectance in Example 1 and Comparative Examples 1 and 2.
  • the reflecting member 1 is merely an example.
  • the reflecting member according to the present invention is not limited to the reflecting member 1 at all.
  • FIG. 1 is a schematic cross-sectional view of a reflecting member 1 according to this embodiment.
  • the reflecting member 1 is a member that reflects light incident from the reflecting member main body 11 side by the silver reflecting film 13.
  • the reflection member 1 includes a reflection member main body 11.
  • the reflecting member body 11 transmits light such as sunlight that is to be reflected by the reflecting member 1.
  • the reflecting member main body 11 is a member for ensuring the mechanical strength of the reflecting member 1.
  • the reflecting member body 11 is not particularly limited as long as it can secure the mechanical strength of the reflecting member 1.
  • the reflecting member main body 11 can be formed of glass, ceramics, resin, or the like, for example.
  • the reflection member main body 11 since it is preferable that the reflection member main body 11 has a low coefficient of thermal expansion and excellent heat resistance, it may be made of glass or ceramics such as silicate glass or silicate crystallized glass. preferable.
  • the thermal expansion coefficient of the reflecting member body 11 at 30 ° C. to 380 ° C. is preferably in the range of ⁇ 5 ⁇ 10 ⁇ 7 / K to 90 ⁇ 10 ⁇ 7 / K.
  • the thickness t1 of the reflecting member body 11 is not particularly limited as long as it is a thickness that can ensure the mechanical strength of the reflecting member 1.
  • the thickness t1 of the reflecting member main body 11 can be set to about 0.1 mm to 10 mm, for example.
  • a silver reflecting film 13 is formed on the reflecting member main body 11.
  • the silver reflection film 13 is a film exclusively responsible for the reflection characteristics of the reflection member 1.
  • the silver reflecting film 13 is made of silver or an alloy containing silver. In the alloy containing silver, the content of silver is preferably 90% by mass or more. Note that specific examples of the alloy containing silver include an Ag—Pd alloy and an Ag—Pd—Cu alloy.
  • the thickness t3 of the silver reflecting film 13 is preferably, for example, 100 nm or more, and more preferably 150 nm or more. This is because if the thickness t3 of the silver reflecting film 13 is too small, the light reflectance of the silver reflecting film 13 may be too low. However, if the thickness t3 of the silver reflecting film 13 is too thick, the cost required for forming the silver reflecting film 13 increases. For this reason, the thickness t3 of the silver reflective film 13 is preferably 500 nm or less, and more preferably 300 nm or less.
  • the base film 12 has a function of improving the adhesion strength between the silver reflecting film 13 and the reflecting member body 11. For this reason, the adhesion strength between the base film 12 and the silver reflection film 13 and the adhesion strength between the reflection member body 11 and the silver reflection film 13 are the same as those when the silver reflection film is formed directly on the reflection member body.
  • the base film 12 is formed of a material that is higher than the adhesion strength between the silver reflecting film and the reflecting member body.
  • the material of the base film 12 can be appropriately selected according to the types of the reflecting member body 11 and the silver reflecting film 13.
  • the base film 12 is preferably made of, for example, titanium oxide, aluminum oxide, or zirconium oxide.
  • the thickness t2 of the base film 12 is not particularly limited as long as the adhesion strength between the silver reflecting film 13 and the reflecting member body 11 is improved.
  • the base film 12 can be, for example, not less than 10 nm and not more than 500 nm.
  • a first protective film 15 is formed on the silver reflective film 13.
  • the first protective film 15 is made of Ti, Ta, or Nb.
  • the 1st protective film 15 has low permeability of oxygen and sulfur in the air. Therefore, by forming the first protective film 15 on the silver reflective film 13, the silver reflective film 13 can be suitably protected from oxygen and sulfur in the air, so that the silver reflective film 13 is in the air. It can suppress effectively that the light reflectivity of the silver reflective film 13 falls by reacting with oxygen and sulfur. Therefore, excellent heat resistance can be obtained. From the viewpoint of obtaining particularly excellent heat resistance, it is more preferable that the first protective film 15 is made of Ti.
  • the thickness t5 of the first protective film 15 is preferably 30 nm to 1000 nm, more preferably 50 nm to 500 nm, and still more preferably 100 nm to 400 nm. If the thickness t5 of the first protective film 15 is too thin, the oxygen and sulfur blocking effect may not be sufficiently obtained. If the thickness t5 of the first protective film 15 is too thick, the light reflectance of the reflecting member 1 may be too low, or the first protective film 15 may be easily peeled off.
  • silver easily migrates, for example, when the first protective film made of Ti, Ta, or Nb is formed directly on the silver reflective film, it is between the first protective film made of metal and the silver reflective film. Migration may occur and the light reflectivity of the silver reflective film may be lowered.
  • a second protective film 14 made of an oxide is provided between the silver reflective film 13 and the first protective film 15 made of a metal. Therefore, Ag migration from the silver reflecting film 13 can be effectively suppressed. As a result, a decrease in the light reflectance of the reflecting member 1 can be suppressed.
  • the second protective film 14 can suppress Ag migration, has high adhesion strength to the silver reflective film 13 and the first protective film 15, and has excellent heat resistance. Therefore, the second protective film 14 is preferably made of, for example, titanium oxide, niobium oxide, zirconium oxide, or tantalum oxide. Moreover, it is preferable that the 2nd protective film 14 does not contain Ag components, such as metal Ag and silver oxide.
  • the thickness t4 of the second protective film 14 is not particularly limited as long as Ag migration can be suppressed.
  • the thickness t4 of the second protective film 14 is preferably about 10 nm to 100 nm, for example. If the thickness t4 of the second protective film 14 is too thin, Ag migration may not be sufficiently suppressed. If the thickness t4 of the second protective film 14 is too thick, the second protective film 14 may be easily peeled off.
  • a third protective film 16 is formed on the first protective film 15.
  • the third protective film 16 suitably protects the first protective film 15 made of Ti, Ta or Nb and having low hardness. Therefore, higher heat resistance can be obtained.
  • the third protective film 16 is not particularly limited, but is preferably a film having higher hardness than the first protective film 15. Therefore, the third protective film 16 is preferably made of, for example, titanium oxide, niobium oxide, tantalum oxide, zirconium oxide, silicon oxide, or silicon nitride.
  • the thickness t6 of the third protective film 16 is not particularly limited as long as the thickness can suitably protect the first protective film 15, and can be, for example, about 100 nm to 1000 nm.
  • the formation method of the base film 12, the silver reflective film 13, and the first to third protective films 14 to 16 is not particularly limited.
  • Each of the base film 12, the silver reflective film 13, and the first to third protective films 14 to 16 can be formed by a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD (Chemical Vapor Deposition) method.
  • the first protective film 15 made of Ti, Ta, or Nb is preferably formed in an inert gas atmosphere or a reducing atmosphere.
  • the silver reflective film 13 is preferably heat-treated at about 100 ° C. to 200 ° C., for example. By doing so, silver grain growth in the silver reflective film 13 can be promoted. As a result, higher light reflectance can be obtained.
  • FIG. 2 is a schematic cross-sectional view of a reflecting member according to a modification.
  • the base film 12 is formed between the silver reflective film 13 and the reflective member main body 11, and the second and third protective films 14 and 16 are provided on both sides of the first protective film 15.
  • the base film 12 and the second and third protective films 14 and 16 are not necessarily essential. At least one of the base film 12 and the second and third protective films 14 and 16 may not be formed. Further, for example, as shown in FIG. 2, the base film 12 and the second and third protective films 14 and 16 are not formed, and the reflective member body 11, the silver reflective film 13, and the first protective film 15 are formed.
  • the reflection member may be comprised by these.
  • Example 1 a reflecting member having the same configuration as that of the reflecting member 1 according to the embodiment shown in FIG. 1 except that the second and third protective films 14 and 16 are not formed is as follows. It was produced with. Specifically, an Al 2 O 3 film having a thickness of 20 nm was formed on a glass substrate by a sputtering method. Next, a silver reflective film having a thickness of 150 nm was formed on the Al 2 O 3 film by a sputtering method. Finally, a reflective member according to Example 1 was fabricated by forming a Ti film having a thickness of 150 nm on the silver reflective film by a sputtering method.
  • Example 2 A reflective member according to Example 2 was fabricated in the same manner as in Example 1 except that a 150 nm thick Nb film was formed instead of the Ti film.
  • Comparative Example 1 A reflective member according to Comparative Example 1 was produced in the same manner as in Example 1 except that the Ti film was not formed.
  • Comparative Example 2 A reflective member according to Comparative Example 2 was produced in the same manner as in Example 1 except that an Al film having a thickness of 150 nm was formed instead of the Ti film.
  • Comparative Example 3 A reflective member according to Comparative Example 3 was produced in the same manner as in Example 1 except that a laminate of a 150 nm thick Cu film and a 150 nm thick Al film was formed instead of the Ti film.
  • Comparative Example 4 A reflective member according to Comparative Example 4 was produced in the same manner as in Example 1 except that a Si film having a thickness of 100 nm was formed instead of the Ti film.
  • Comparative Example 5 A reflective member according to Comparative Example 5 was produced in the same manner as in Example 1 except that a laminated body of a Si film having a thickness of 10 nm and a SiN film having a thickness of 100 nm was formed instead of the Ti film.
  • Comparative Example 6 A reflective member according to Comparative Example 6 was produced in the same manner as in Example 1 except that a laminated body of a Si film having a thickness of 100 nm and a Ti film having a thickness of 150 nm was formed instead of the Ti film.
  • Comparative Example 7 A reflective member according to Comparative Example 7 was produced in the same manner as in Example 1 except that a SiN film having a thickness of 100 nm was formed instead of the Ti film.
  • Comparative Example 8 A reflective member according to Comparative Example 8 was produced in the same manner as in Example 1 except that a TiN film having a thickness of 150 nm was formed instead of the Ti film.
  • Example 1 The reflecting member produced in each of Example 1 and Comparative Examples 1 and 2 was left in a constant temperature bath at 25 ° C., 100 ° C. or 200 ° C. for 120 hours at a humidity of 85%. Thereafter, the average light reflectance when light having a wavelength of 400 nm to 2500 nm was incident on each reflecting member at an incident angle of 12 ° was measured using U-4000 manufactured by Hitachi, Ltd. The results are shown in FIG.
  • Example 1 in which the Ti film was formed as the first protective film, the light reflectivity hardly decreased even when heated to 200 ° C. From this result, it is understood that excellent heat resistance can be obtained by forming the Ti film as the first protective film.
  • Heat resistance test 2 The reflecting member prepared in each of Examples 1 and 2 and Comparative Examples 2 to 8 was left in a constant temperature bath at 100 ° C., 200 ° C. or 300 ° C. for 120 hours. Thereafter, the average light reflectance when light having a wavelength of 400 nm to 2500 nm was incident on each reflecting member at an incident angle of 12 ° was measured using U-4000 manufactured by Hitachi, Ltd. And the case where the average light reflectance after the heat test is 93% or more is “ ⁇ ”, and the case where it is less than 93% or peeled between the silver reflective film and the protective film is “x”. evaluated. The results are shown in Table 1 below.
  • Comparative Examples 2 and 3 in which an Al film or a Cu film / Al film was provided as a protective film, the average light reflectance was less than 93% in a 200 ° C. heat resistance test.
  • Comparative Examples 4 to 6 in which a Si film, a Si film / SiN film, or a Si film / Ti film was provided as a protective film, all peeled between the silver reflective film and the Si film after the heat resistance test at 200 ° C. There has occurred.
  • Comparative Examples 7 and 8 in which a SiN film or a TiN film was provided as a protective film, the peeling was performed between the silver reflective film and the protective film. From this result, it can be seen that when the SiN film or the TiN film is provided as a protective film, the mechanical durability of the reflecting member is lowered.
  • Example 1 in which a Ti film or Nb film was provided as a protective film, no peeling occurred in the peeling test, and the average light reflectance was 93% or more even after the heat resistance test at 200 ° C. Met.
  • Example 1 in which the Ti film was provided as a protective film, the average light reflectance was maintained at 93% or more even after the heat resistance test at 300 ° C. From this result, high mechanical durability and high heat resistance can be obtained by providing a Ti film or Nb film as a protective film, and particularly high heat resistance can be obtained when a Ti film is provided as a protective film. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

 銀反射膜を備える反射部材であって、優れた耐熱性を有する反射部材を提供する。 反射部材1は、反射部材本体11と、銀反射膜13と、第1の保護膜15とを備えている。銀反射膜13は、反射部材本体11の上に形成されている。銀反射膜13は、銀または銀を含む合金からなる。第1の保護膜15は、銀反射膜13の上に形成されている。第1の保護膜15は、Ti,TaまたはNbからなる。

Description

反射部材
 本発明は、反射部材に関し、特に、銀反射膜を有する反射部材に関する。
 従来、銀や、銀を含む合金からなる銀反射膜を備える反射部材が用いられている。銀反射膜は、例えば、アルミニウムからなる反射膜などと比較して、高い光反射率を有する。このため、銀反射膜を用いることにより、高い光反射率を有する反射部材を実現することができる。
 しかしながら、銀反射膜は、耐候性、特に高温下における耐熱性が悪く、銀反射膜の光反射率が経時的に低下してしまうという問題がある。このような問題に鑑み、例えば、下記の特許文献1~3などにおいて、銀反射膜の上に保護膜を形成することが記載されている。特許文献1~3では、保護膜として、SiO膜、Ni-Cr膜、Al膜、TiO膜などが記載されている。
特許第2876325号公報 特公平7-3483号公報 特開平8-234004号公報
 しかしながら、銀反射膜の上に保護膜を設けたとしても、十分に優れた耐熱性を有する反射部材が得られない場合がある。
 本発明は、係る点に鑑みてなされたものであり、その目的は、銀反射膜を備える反射部材であって、優れた耐熱性を有する反射部材を提供することにある。
 本発明に係る反射部材は、反射部材本体と、銀反射膜と、第1の保護膜とを備えている。銀反射膜は、反射部材本体の上に形成されている。銀反射膜は、銀または銀を含む合金からなる。第1の保護膜は、銀反射膜の上に形成されている。第1の保護膜は、Ti,TaまたはNbからなる。
 本発明においては、銀反射膜の上に、Ti,TaまたはNbからなる第1の保護膜が形成されている。このため、反射部材が高温雰囲気中におかれた場合であっても、第1の保護膜によって空気中の酸素や硫黄から銀反射膜が好適に遮断される。よって、銀反射膜が空気中の酸素や硫黄と反応し、銀反射膜の光反射率が低下することを効果的に抑制することができる。従って、本発明に従い、銀反射膜の上に、Ti,TaまたはNbからなる第1の保護膜を形成することにより、優れた耐熱性を有する反射部材を得ることができる。特に優れた耐熱性を得る観点からは、第1の保護膜は、Tiからなるものであることが好ましい。
 なお、銀を含む合金の具体例としては、例えば、Ag-Pd合金、Ag-Pd-Cu合金などが挙げられる。銀を含む合金における銀の含有量は、90質量%以上であることが好ましい。
 本発明においては、反射部材は、銀反射膜と第1の保護膜との間に形成されており、酸化物からなる第2の保護膜をさらに備えていることが好ましい。酸化物からなる第2の保護膜を設けることにより、銀反射膜と第1の保護膜との間で、銀などのマイグレーションが生じ、銀反射膜の光反射率が低下することを効果的に抑制することができる。従って、より優れた耐熱性を実現することができる。
 なお、本発明において、第2の保護膜は、酸化物からなるものである限りにおいて特に限定されないが、酸化チタン、酸化ニオブ、酸化ジルコニウムまたは酸化タンタルからなるものであることが好ましい。この場合、第2の保護膜自体の耐熱性を高くできると共に、第2の保護膜と銀反射膜及び第1の保護膜との密着性を高くできるためである。
 第2の保護膜は、金属Agや酸化銀などのAg成分を含まないものであることが好ましい。第2の保護膜がAg成分を含んでいる場合、第2の保護膜と銀反射膜及び第1の保護膜との間でマイグレーションが生じやすくなる場合があるためである。
 本発明において、反射部材本体は、特に限定されないが、優れた耐熱性を有するものであることが好ましい。具体的には、反射部材本体は、例えば、ガラスからなるものであることが好ましく、珪酸塩系ガラスや珪酸塩系結晶化ガラスなどからなるものであることがより好ましい。
 但し、その場合は、反射部材本体の上に銀反射膜を直接形成すると、銀反射膜の密着性が低くなりやすい。このため、反射部材本体と銀反射膜との間に下地膜が形成されていることが好ましい。下地膜は、反射部材本体と銀反射膜とに対する密着性に優れたものである限りにおいて特に限定されない。下地膜は、例えば、酸化チタン、酸化アルミニウムまたは酸化ジルコニウムからなることが好ましい。
 また、本発明においては、反射部材は、第1の保護膜の第2の保護膜とは反対側の表面の上に形成されている第3の保護膜をさらに備えていることが好ましい。Ti,TaまたはNbからなる第1の保護膜は、酸化物からなる保護膜に較べて、一般的に機械的耐久性が低い。このため、第3の保護膜を設けることにより、第1の保護膜が損傷することを効果的に抑制することができる。その結果、より高い耐熱性を得ることができる。
 第3の保護膜は、第1の保護膜よりも高硬度であることが好ましい。具体的には、第3の保護膜は、酸化物または窒化物からなるものであることが好ましい。より具体的には、第3の保護膜は、例えば、酸化チタン、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化ケイ素または窒化ケイ素からなることが好ましい。
 本発明によれば、銀反射膜を備える反射部材であって、優れた耐熱性を有する反射部材を提供することができる。
図1は、本発明を実施した一実施形態に係る反射部材の略図的断面図である。 図2は、変形例に係る反射部材の略図的断面図である。 図3は、実施例1及び比較例1,2における加熱温度と平均光反射率との関係を表すグラフである。
 以下、本発明を実施した好ましい形態について、図1に示す反射部材1を例に挙げて説明する。但し、反射部材1は、単なる例示である。本発明に係る反射部材は、反射部材1に何ら限定されない。
 図1は、本実施形態に係る反射部材1の略図的断面図である。
 本実施形態に係る反射部材1は、反射部材本体11側から入射した光を、銀反射膜13によって反射する部材である。
 反射部材1は、反射部材本体11を備えている。反射部材本体11は、太陽光など、反射部材1により反射させようとする光を透過するものである。反射部材本体11は、反射部材1の機械的強度を担保するための部材である。反射部材本体11は、反射部材1の機械的強度を担保できるものである限りにおいて特に限定されない。反射部材本体11は、例えば、ガラス、セラミックス、樹脂などにより形成することができる。なかでも、反射部材本体11は、熱膨張率が低く、かつ優れた耐熱性を有するものであることが好ましいため、珪酸塩系ガラスや珪酸塩系結晶化ガラスなどのガラスまたはセラミックスからなることが好ましい。反射部材本体11の30℃~380℃における熱膨張係数は、-5×10-7/K~90×10-7/Kの範囲内であることが好ましい。
 反射部材本体11の厚みt1は、反射部材1の機械的強度を担保できる厚みである限りにおいて特に限定されない。反射部材本体11の厚みt1は、例えば、0.1mm~10mm程度とすることができる。
 反射部材本体11の上には、銀反射膜13が形成されている。銀反射膜13は、反射部材1の反射特性を専ら担う膜である。銀反射膜13は、銀または銀を含む合金からなる。銀を含む合金において、銀の含有量は、90質量%以上であることが好ましい。なお、銀を含む合金の具体例としては、例えば、Ag-Pd合金、Ag-Pd-Cu合金などが挙げられる。
 銀反射膜13の厚みt3は、例えば、100nm以上であることが好ましく、150nm以上であることがより好ましい。銀反射膜13の厚みt3が小さすぎると、銀反射膜13の光反射率が低くなりすぎる場合があるためである。但し、銀反射膜13の厚みt3が厚すぎると、銀反射膜13の形成に要するコストが高くなる。このため、銀反射膜13の厚みt3は、500nm以下であることが好ましく、300nm以下であることがより好ましい。
 銀反射膜13と反射部材本体11との間には、下地膜12が設けられている。この下地膜12は、銀反射膜13と反射部材本体11との密着強度を向上する機能を有する。このため、下地膜12と銀反射膜13との密着強度、及び反射部材本体11と銀反射膜13との密着強度のそれぞれが、銀反射膜が反射部材本体の上に直接形成された場合の銀反射膜と反射部材本体との密着強度よりも高くなるような材料により下地膜12が形成されている。下地膜12の材質は、反射部材本体11と銀反射膜13との種類等に応じて適宜選択することができる。下地膜12は、例えば、酸化チタン、酸化アルミニウムまたは酸化ジルコニウムからなることが好ましい。
 下地膜12の厚みt2は、銀反射膜13と反射部材本体11との密着強度が向上するような厚みである限りにおいて特に限定されない。下地膜12は、例えば、10nm以上500nm以下とすることができる。
 銀反射膜13の上には、第1の保護膜15が形成されている。第1の保護膜15は、Ti,TaまたはNbからなる。このため、第1の保護膜15は、空気中の酸素や硫黄の透過性が低い。よって、第1の保護膜15を銀反射膜13の上に形成することにより、銀反射膜13を空気中の酸素や硫黄から好適に保護することができるため、銀反射膜13が空気中の酸素や硫黄と反応し、銀反射膜13の光反射率が低下することを効果的に抑制することができる。従って、優れた耐熱性を得ることができる。特に優れた耐熱性を得る観点からは、第1の保護膜15がTiからなるものであることがより好ましい。
 第1の保護膜15の厚みt5は、30nm~1000nmであることが好ましく、50nm~500nmであることがより好ましく、100nm~400nmであることがさらに好ましい。第1の保護膜15の厚みt5が薄すぎると、上記酸素及び硫黄の遮断効果が十分に得られなくなる場合がある。第1の保護膜15の厚みt5が厚すぎると、反射部材1の光反射率が低くなりすぎたり、第1の保護膜15が剥離しやすくなったりする場合がある。
 ところで、銀はマイグレーションしやすいため、例えばTi,TaまたはNbからなる第1の保護膜を銀反射膜の上に直接形成した場合、金属からなる第1の保護膜と銀反射膜との間でマイグレーションが生じ、銀反射膜の光反射率が低くなってしまう場合がある。
 それに対して本実施形態では、銀反射膜13と、金属からなる第1の保護膜15との間に酸化物からなる第2の保護膜14が設けられている。従って、銀反射膜13からのAgのマイグレーションを効果的に抑制することができる。その結果、反射部材1の光反射率の低下を抑制することができる。
 第2の保護膜14は、Agのマイグレーションを抑制できると共に、銀反射膜13及び第1の保護膜15に対する密着強度が高く、かつ優れた耐熱性を有するものであることが好ましい。従って、第2の保護膜14は、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウムまたは酸化タンタルからなるものであることが好ましい。また、第2の保護膜14は、金属Agや酸化銀などのAg成分を含まないものであることが好ましい。
 第2の保護膜14の厚みt4は、Agのマイグレーションを抑制できる限りにおいて特に限定されない。第2の保護膜14の厚みt4は、例えば、10nm~100nm程度であることが好ましい。第2の保護膜14の厚みt4が薄すぎると、Agのマイグレーションを十分に抑制できない場合がある。第2の保護膜14の厚みt4が厚すぎると、第2の保護膜14が剥離しやすくなる場合がある。
 本実施形態では、第1の保護膜15の上には、第3の保護膜16が形成されている。この第3の保護膜16により、Ti,TaまたはNbからなり、低硬度である第1の保護膜15が好適に保護されている。従って、より高い耐熱性を得ることができる。
 第3の保護膜16は、特に限定されないが、第1の保護膜15よりも高硬度な膜であることが好ましい。従って、第3の保護膜16は、例えば、酸化チタン、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化ケイ素または窒化ケイ素からなることが好ましい。
 第3の保護膜16の厚みt6は、第1の保護膜15を好適に保護できるような厚みである限りにおいて特に限定されず、例えば、100nm~1000nm程度とすることができる。
 本実施形態において、下地膜12、銀反射膜13、第1~第3の保護膜14~16のそれぞれの形成方法は特に限定されない。下地膜12、銀反射膜13、第1~第3の保護膜14~16のそれぞれは、例えば、蒸着法、スパッタリング法やCVD(Chemical Vapor Deposition)法などの薄膜形成法により形成することができる。なお、Ti,TaまたはNbからなる第1の保護膜15は、不活性ガス雰囲気または還元性雰囲気で形成することが好ましい。また、銀反射膜13の形成後に、銀反射膜13を、例えば、100℃~200℃程度で熱処理することが好ましい。そのようにすることで、銀反射膜13における銀の粒成長を促進できる。その結果、より高い光反射率を得ることができる。
 (変形例)
 図2は、変形例に係る反射部材の略図的断面図である。
 上記実施形態では、銀反射膜13と反射部材本体11との間に下地膜12が形成されており、さらに、第1の保護膜15の両側に第2及び第3の保護膜14,16が形成されている例について説明した。但し、本発明において、下地膜12並びに第2及び第3の保護膜14,16は必ずしも必須ではない。下地膜12並びに第2及び第3の保護膜14,16の少なくとも一つが形成されていなくてもよい。また、例えば、図2に示すように、下地膜12並びに第2及び第3の保護膜14,16が形成されておらず、反射部材本体11と、銀反射膜13と第1の保護膜15とにより反射部材が構成されていてもよい。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 本実施例1では、第2及び第3の保護膜14,16が形成されていないこと以外は、図1に示す上記実施形態に係る反射部材1と同様の構成を有する反射部材を下記の要領で作製した。具体的には、ガラス基板の上に、厚み20nmのAl膜を、スパッタリング法により形成した。次に、Al膜の上に、厚み150nmの銀反射膜を、スパッタリング法により形成した。最後に、銀反射膜の上に、厚み150nmのTi膜を、スパッタリング法により形成することにより実施例1に係る反射部材を作製した。
 (実施例2)
 Ti膜に替えて、厚み150nmのNb膜を形成したこと以外は、上記実施例1と同様にして実施例2に係る反射部材を作製した。
 (比較例1)
 Ti膜を形成しなかったこと以外は、上記実施例1と同様にして比較例1に係る反射部材を作製した。
 (比較例2)
 Ti膜に替えて、厚み150nmのAl膜を形成したこと以外は、上記実施例1と同様にして比較例2に係る反射部材を作製した。
 (比較例3)
 Ti膜に替えて、厚み150nmのCu膜と、厚み150nmのAl膜との積層体を形成したこと以外は、上記実施例1と同様にして比較例3に係る反射部材を作製した。
 (比較例4)
 Ti膜に替えて、厚み100nmのSi膜を形成したこと以外は、上記実施例1と同様にして比較例4に係る反射部材を作製した。
 (比較例5)
 Ti膜に替えて、厚み10nmのSi膜と、厚み100nmのSiN膜との積層体を形成したこと以外は、上記実施例1と同様にして比較例5に係る反射部材を作製した。
 (比較例6)
 Ti膜に替えて、厚み100nmのSi膜と、厚み150nmのTi膜との積層体を形成したこと以外は、上記実施例1と同様にして比較例6に係る反射部材を作製した。
 (比較例7)
 Ti膜に替えて、厚み100nmのSiN膜を形成したこと以外は、上記実施例1と同様にして比較例7に係る反射部材を作製した。
 (比較例8)
 Ti膜に替えて、厚み150nmのTiN膜を形成したこと以外は、上記実施例1と同様にして比較例8に係る反射部材を作製した。
 (耐熱試験1)
 実施例1及び比較例1,2のそれぞれにおいて作製した反射部材を湿度85%で、25℃、100℃または200℃の恒温槽に120時間放置した。その後、各反射部材に、波長400nm~2500nmの光が入射角12°で入射したときの平均光反射率を、日立製作所社製U-4000を用いて測定した。結果を、図3に示す。
 図3に示すように、25℃では、実施例1及び比較例1,2のいずれの反射部材においても、ほぼ同様の光反射率であった。しかしながら、加熱温度が高くなるにつれ、保護膜を形成していない比較例1やAl膜を保護膜として形成した比較例2では、光反射率が低下する傾向にあった。これは、保護膜を形成していない比較例1やAl膜を保護膜として形成した比較例2においては、銀反射膜が劣化したものと考えられる。なかでも、Al膜を保護膜として形成した比較例2で、光反射率が大きく低下した理由は、Al膜と銀反射膜との間でAlとAgのマイグレーションが生じ、銀反射膜の光反射率が低下してしまったためであると考えられる。
 それに対して、Ti膜を第1の保護膜として形成した実施例1では、200℃まで加熱した場合であってもほとんど光反射率は低下しなかった。この結果から、Ti膜を第1の保護膜として形成することにより、優れた耐熱性が得られることが分かる。
 (耐熱試験2)
 上記実施例1,2及び比較例2~8のそれぞれにおいて作製した反射部材を、100℃、200℃または300℃の恒温槽に120時間放置した。その後、各反射部材に、波長400nm~2500nmの光が入射角12°で入射したときの平均光反射率を、日立製作所社製U-4000を用いて測定した。そして、耐熱試験実施後の平均光反射率が、93%以上である場合を「○」とし、93%未満である場合または銀反射膜と保護膜との間で剥離した場合を「×」として評価した。結果を下記の表1に示す。
 (剥離試験)
 上記実施例1,2及び比較例2~8のそれぞれにおいて作製した反射部材の下地膜、銀反射膜及び保護膜を貫通するようにカッターナイフで5本の傷を、5mmの間隔で入れ、スリーエム社製#610スコッチテープを5本の傷を跨るように貼った後に、上記スコッチテープを剥がす作業を5回繰り返した。その結果、銀反射膜と保護膜との間で剥離したものを「×」とし、剥離が生じなかったものを「○」として評価した。結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、保護膜として、Al膜またはCu膜/Al膜を設けた比較例2、3では、200℃の耐熱性試験で平均光反射率が93%未満となった。また、保護膜として、Si膜,Si膜/SiN膜またはSi膜/Ti膜を設けた比較例4~6では、いずれも200℃の耐熱試験実施後に銀反射膜とSi膜との間で剥離が発生した。保護膜としてSiN膜またはTiN膜を設けた比較例7、8では、剥離試験で銀反射膜と保護膜との間で剥離した。この結果から、SiN膜やTiN膜を保護膜として設けた場合は、反射部材の機械的耐久性が低くなることが分かる。
 それに対して、Ti膜またはNb膜を保護膜として設けた実施例1,2では、剥離試験において剥離が生じることがなく、200℃の耐熱性試験後においても、平均光反射率は93%以上であった。特に、Ti膜を保護膜として設けた実施例1では、300℃の耐熱性試験後においても、平均光反射率は93%以上を維持していた。この結果から、Ti膜またはNb膜を保護膜として設けることにより、高い機械的耐久性と高い耐熱性が得られ、Ti膜を保護膜として設けた場合は、特に高い耐熱性が得られることが分かる。
1…反射部材
11…反射部材本体
12…下地膜
13…銀反射膜
14…第2の保護膜
15…第1の保護膜
16…第3の保護膜

Claims (9)

  1.  反射部材本体と、
     前記反射部材本体の上に形成されており、銀または銀を含む合金からなる銀反射膜と、
     銀反射膜の上に形成されており、Ti,TaまたはNbからなる第1の保護膜と、
    を備える、反射部材。
  2.  前記第1の保護膜は、Tiからなる、請求項1に記載の反射部材。
  3.  前記銀反射膜と前記第1の保護膜との間に形成されており、酸化物からなる第2の保護膜をさらに備える、請求項1または2に記載の反射部材。
  4.  前記第2の保護膜は、酸化チタン、酸化ニオブ、酸化ジルコニウムまたは酸化タンタルからなる、請求項3に記載の反射部材。
  5.  前記第2の保護膜は、Ag成分を含まない、請求項3または4に記載の反射部材。
  6.  前記反射部材本体は、ガラスからなり、
     前記反射部材本体と前記銀反射膜との間に形成されている下地膜をさらに備える、請求項1~5のいずれか一項に記載の反射部材。
  7.  前記下地膜は、酸化チタン、酸化アルミニウムまたは酸化ジルコニウムからなる、請求項6に記載の反射部材。
  8.  前記第1の保護膜の前記第2の保護膜とは反対側の表面の上に形成されている第3の保護膜をさらに備える、請求項1~7のいずれか一項に記載の反射部材。
  9.  前記第3の保護膜は、酸化チタン、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化ケイ素または窒化ケイ素からなる、請求項8に記載の反射部材。
PCT/JP2011/060033 2010-05-19 2011-04-25 反射部材 WO2011145438A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800243915A CN102893187A (zh) 2010-05-19 2011-04-25 反射构件
EP11783375A EP2573597A1 (en) 2010-05-19 2011-04-25 Reflection member
US13/522,337 US20120307386A1 (en) 2010-05-19 2011-04-25 Reflection member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115445 2010-05-19
JP2010115445A JP2011242648A (ja) 2010-05-19 2010-05-19 反射部材

Publications (1)

Publication Number Publication Date
WO2011145438A1 true WO2011145438A1 (ja) 2011-11-24

Family

ID=44991549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060033 WO2011145438A1 (ja) 2010-05-19 2011-04-25 反射部材

Country Status (6)

Country Link
US (1) US20120307386A1 (ja)
EP (1) EP2573597A1 (ja)
JP (1) JP2011242648A (ja)
CN (1) CN102893187A (ja)
TW (1) TW201207444A (ja)
WO (1) WO2011145438A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180185A1 (ja) * 2012-06-01 2013-12-05 旭硝子株式会社 高反射鏡
US9134467B2 (en) * 2013-01-25 2015-09-15 Guardian Industries Corp. Mirror
DE102014108679A1 (de) 2014-06-20 2015-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optisches Element mit einer reflektierenden Beschichtung
CN104402244B (zh) * 2014-11-03 2018-03-20 肇庆市振华真空机械有限公司 一种真空镀银膜玻璃及其制备工艺
JP6587574B2 (ja) * 2015-08-04 2019-10-09 株式会社神戸製鋼所 積層膜及び熱線反射材
CN105334557A (zh) * 2015-11-10 2016-02-17 东莞鑫泰玻璃科技有限公司 一种高反射太阳光反射镜及其制备方法
CN110643944B (zh) * 2019-10-30 2022-07-12 中山凯旋真空科技股份有限公司 银层透明保护膜及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239203A (ja) * 1990-02-16 1991-10-24 Asahi Optical Co Ltd 表面高反射鏡
JPH073483B2 (ja) 1985-06-11 1995-01-18 旭硝子株式会社 銀 鏡
JPH08234004A (ja) 1995-02-27 1996-09-13 Canon Inc 金属ミラーおよびその製造方法
JP2876325B2 (ja) 1989-01-05 1999-03-31 グラヴルベル 被覆ガラス材料及びその被覆方法
JP2002055213A (ja) * 2000-06-02 2002-02-20 Canon Inc 高反射ミラー
JP2003016821A (ja) * 2001-04-24 2003-01-17 Mitsui Chemicals Inc ランプリフレクターおよび反射体
JP2008506977A (ja) * 2004-07-16 2008-03-06 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 裏面鏡
JP2008164768A (ja) * 2006-12-27 2008-07-17 Asahi Glass Co Ltd 反射鏡
JP2009115867A (ja) * 2007-11-02 2009-05-28 Oike Ind Co Ltd 反射フィルムの製造方法及び反射フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125158B2 (ja) * 2003-02-28 2008-07-30 キヤノン株式会社 反射鏡及びそれを用いた光学機器
US7294402B2 (en) * 2004-03-05 2007-11-13 Guardian Industries Corp. Coated article with absorbing layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073483B2 (ja) 1985-06-11 1995-01-18 旭硝子株式会社 銀 鏡
JP2876325B2 (ja) 1989-01-05 1999-03-31 グラヴルベル 被覆ガラス材料及びその被覆方法
JPH03239203A (ja) * 1990-02-16 1991-10-24 Asahi Optical Co Ltd 表面高反射鏡
JPH08234004A (ja) 1995-02-27 1996-09-13 Canon Inc 金属ミラーおよびその製造方法
JP2002055213A (ja) * 2000-06-02 2002-02-20 Canon Inc 高反射ミラー
JP2003016821A (ja) * 2001-04-24 2003-01-17 Mitsui Chemicals Inc ランプリフレクターおよび反射体
JP2008506977A (ja) * 2004-07-16 2008-03-06 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 裏面鏡
JP2008164768A (ja) * 2006-12-27 2008-07-17 Asahi Glass Co Ltd 反射鏡
JP2009115867A (ja) * 2007-11-02 2009-05-28 Oike Ind Co Ltd 反射フィルムの製造方法及び反射フィルム

Also Published As

Publication number Publication date
CN102893187A (zh) 2013-01-23
TW201207444A (en) 2012-02-16
US20120307386A1 (en) 2012-12-06
JP2011242648A (ja) 2011-12-01
EP2573597A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011145438A1 (ja) 反射部材
JP4490096B2 (ja) 赤外線及び/又は太陽放射を反射する薄膜積層体を備えたグレージング
JP6113794B2 (ja) 低放射コーティングを包含する被覆物品、被覆物品を包含する断熱ガラスユニット、及び/又はそれらの製造方法
EP2817432B1 (en) Coated article with low-e coating having multilayer overcoat and method of making same
KR101918425B1 (ko) 적외선 반사 필름
WO2016021532A1 (ja) 赤外線反射基板
EP2828215B1 (fr) Vitrage de controle solaire
KR20190123744A (ko) 은 기반 ir 반사 층(들)을 보호하기 위한 도핑된 은 보호층을 갖는 로이 코팅을 갖는 코팅된 물품, 및 이의 제조 방법
JP2000233947A5 (ja)
TR201808151T4 (tr) Kızılötesi ışınımları ve/veya güneş ışınımını yansıtan bir ince katmanlar yığınıyla ve bir ısıtma aracıyla donatılmış lamine cam panel.
RU2759407C2 (ru) Изделие с низкоэмиссионным покрытием, имеющее отражающую ик-излучение систему, включающую барьерный слой или слои на основе серебра и цинка
EP3233748B1 (fr) Vitrage contrôle solaire ou bas émissif comprenant une couche de protection supérieure
JP2007507404A5 (ja)
RU2658405C2 (ru) Термообрабатываемое покрытое изделие бронзового цвета, имеющее низкое значение солнечного фактора
JP6673349B2 (ja) 膜積層体および合わせガラス
KR20160085772A (ko) 은으로 제조된 기능성 층 및 TiOx로 제조된 두꺼운 차단성 하층을 포함하는 스택으로 코팅된 기판을 포함하는 글레이징
JP3997177B2 (ja) 電磁波シールド用Ag合金膜、電磁波シールド用Ag合金膜形成体および電磁波シールド用Ag合金膜の形成用のAg合金スパッタリングターゲット
JP4307921B2 (ja) 反射鏡
KR102511562B1 (ko) 보호성 코팅을 포함하는 글레이징
JP2001242312A (ja) 金属鏡および金属回転多面鏡およびその製造方法
WO2013031562A1 (ja) 熱線反射部材
WO2018105456A1 (ja) 積層体
JP2019006035A (ja) 積層体
JP2019130702A (ja) 積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024391.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011783375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE