WO2011145422A1 - 光照射成形装置及び光照射成形方法 - Google Patents

光照射成形装置及び光照射成形方法 Download PDF

Info

Publication number
WO2011145422A1
WO2011145422A1 PCT/JP2011/059691 JP2011059691W WO2011145422A1 WO 2011145422 A1 WO2011145422 A1 WO 2011145422A1 JP 2011059691 W JP2011059691 W JP 2011059691W WO 2011145422 A1 WO2011145422 A1 WO 2011145422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
light irradiation
pair
rubber mold
thermoplastic resin
Prior art date
Application number
PCT/JP2011/059691
Other languages
English (en)
French (fr)
Inventor
文夫 栗原
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Priority to US13/698,837 priority Critical patent/US20130062816A1/en
Publication of WO2011145422A1 publication Critical patent/WO2011145422A1/ja
Priority to US14/669,036 priority patent/US9669566B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • B29C33/405Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/005Compensating volume or shape change during moulding, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles

Definitions

  • the present invention relates to a light irradiation molding apparatus and a light irradiation molding method in which a thermoplastic resin is filled into cavities formed in a pair of rubber molds having a property of transmitting light, and a molded product is formed by irradiating light.
  • thermoplastic resin there are various molding methods such as injection molding, blow molding, extrusion molding, and press molding as a method of obtaining a molded product having a predetermined shape using a thermoplastic resin.
  • injection molding blow molding, extrusion molding, and press molding
  • a molten thermoplastic resin is filled in a cavity of a mold
  • an electromagnetic wave including a wavelength region of 0.78 to 2 ⁇ m is obtained.
  • a method of irradiating a thermoplastic resin through a mold is disclosed. In this method, the thermoplastic resin is heated more strongly than the rubber mold because of the difference in physical properties between the rubber and the thermoplastic resin constituting the mold.
  • thermoplastic resin in a particle state filled in a rubber mold cavity is irradiated with an electromagnetic wave including a wavelength region of 0.78 to 2 ⁇ m, and the thermoplastic resin is heated. It is disclosed to melt and then additionally fill a space left in the cavity with a molten thermoplastic resin.
  • Patent Document 1 an apparatus for pre-melting particulate or solid thermoplastic resin such as pellets is required in order to fill a mold mold cavity with a pre-melted thermoplastic resin. . Also in Patent Document 2, a similar apparatus is required to additionally fill a molten thermoplastic resin. In addition, when filling a molten thermoplastic resin, it is necessary to secure an extra thermoplastic resin, and it is difficult to reduce the amount of thermoplastic resin used.
  • the present invention has been made in view of such conventional problems, and an apparatus for previously melting a thermoplastic resin and injecting it into a cavity becomes unnecessary, and a molded product can be molded with a small amount of thermoplastic resin used.
  • An object of the present invention is to provide a light irradiation molding apparatus and a light irradiation molding method.
  • a first aspect of the present invention includes a pair of rubber mold parts that are made of a rubber material having a property of transmitting light, and that form a cavity on opposite sides that are combined with each other.
  • the pair of rubber mold portions are configured to be close to each other and reduce the volume of the cavity when the thermoplastic resin disposed in the cavity is melted by light irradiated from the light irradiation means. It is in the light irradiation shaping
  • molding apparatus characterized by having.
  • the second side surface is made of a rubber material having a property of transmitting light, and a pair of rubber mold portions that form cavities on opposite sides that meet each other;
  • light irradiation means for irradiating light to the particulate or solid thermoplastic resin disposed in the cavity from the surface of the pair of rubber mold parts, While the thermoplastic resin disposed in the cavity is melted by the light irradiated from the light irradiation means, the pair of rubber mold parts are brought close to each other to reduce the volume of the cavity, and the volume of the cavity is reduced.
  • the molded article of the thermoplastic resin is molded.
  • a cavity having a volume larger than that of a molded product to be molded is formed between a pair of rubber mold parts, and a particulate or solid thermoplastic resin is melted.
  • the volume of the cavity is reduced to obtain a molded product.
  • a particulate or solid thermoplastic resin is disposed in the cavity between the pair of rubber mold parts, and light is irradiated from the surface of the pair of rubber mold parts by the light irradiation means. At this time, most of the light passes through the rubber mold and is absorbed by the thermoplastic resin. Thereby, the thermoplastic resin is heated and melted.
  • the pair of rubber mold portions By bringing the pair of rubber mold portions closer to each other, the volume of the cavity is reduced, and the molten thermoplastic resin is filled in the entire cavity. In this manner, a molded article of the thermoplastic resin can be formed in the cavity whose volume is reduced. After the molded product is cooled and solidified, the pair of rubber mold parts can be released and taken out.
  • thermoplastic resin used for previously melting the thermoplastic resin and injecting it into the cavity becomes unnecessary, and a molded product can be molded with a small amount of the thermoplastic resin used. it can.
  • this solid thermoplastic resin can be arrange
  • Explanatory drawing which shows the state which has arrange
  • Explanatory drawing which shows the state which has arrange
  • Explanatory drawing which shows the cross section of the state which looked at the formation state of the suction opening and the several suction gate in the one side rubber type
  • Explanatory drawing which shows the state which the thermoplastic resin which received light irradiation in Example 1 fuse
  • Explanatory drawing which shows the state which the thermoplastic resin which received light irradiation in Example 1 fuse
  • Explanatory drawing shown in the cross section which looked at the molded article in Example 1 from the front. 3 is a graph showing the light transmittance of silicone rubber in Example 1.
  • FIG. Explanatory drawing which shows the state which has arrange
  • Explanatory drawing which shows the state which the thermoplastic resin which received light irradiation in Example 2 fuse
  • the thermoplastic resin is in the form of particles or solid.
  • the term “particulate” means a state such as a spherical shape, a cylindrical shape, or an indefinite shape found in a pulverized product.
  • the solid state means a plate shape, a rod shape, a linear shape or the like.
  • a particulate or solid thermoplastic resin can be appropriately selected.
  • two or more types of particulate or solid thermoplastic resins can be mixed and used.
  • the particle diameter of the thermoplastic resin that can be used depends on the thickness of the molded article to be molded, that is, the width of the cavity, but the particle diameter of the thermoplastic resin is 1 It can be in the range of ⁇ 3000 ⁇ m.
  • the particle diameter of the thermoplastic resin can be preferably in the range of 50 to 3000 ⁇ m, more preferably in the range of 200 to 2500 ⁇ m.
  • the thermoplastic resin contains small particles of thermoplastic resin having an average particle diameter of the thermoplastic resin within these ranges and within a range of 1 to 100 ⁇ m, the thermoplastic resin particles are filled in the cavity. It may be preferable.
  • the bulk specific gravity of the particles is preferably 0.4 or more, more preferably 0.45 or more, and still more preferably 0.5 or more.
  • the light irradiation means preferably generates light including a wavelength region of 0.78 to 2 ⁇ m.
  • the thermoplastic resin in the cavity it is easier for the thermoplastic resin in the cavity to absorb more light than the rubber mold part, and the thermoplastic resin can be actively heated and melted compared to the rubber mold part. it can.
  • the light (electromagnetic wave) irradiated to the thermoplastic resin through the rubber mold part may include not only light in a wavelength region of 0.78 to 2 ⁇ m but also light in other regions. Good.
  • the light irradiated to the thermoplastic resin through the rubber mold part includes more light in a region having a wavelength of 0.78 to 2 ⁇ m than light in other regions.
  • thermoplastic resin used for molding the molded product
  • a resin that absorbs light (electromagnetic wave) and promotes heating can be used.
  • the thermoplastic resin is not particularly limited as long as it contains a polymer having thermoplasticity, ABS resin (acrylonitrile / butadiene / styrene resin), ASA resin (acrylate / styrene / acrylonitrile resin), AES resin (acrylonitrile).
  • ABS resin acrylonitrile / butadiene / styrene resin
  • ASA resin acrylate / styrene / acrylonitrile resin
  • AES resin acrylonitrile
  • Ethylene-propylene-diene / styrene resin rubber reinforced styrene resin, polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer, styrene such
  • thermoplastic resins rubber-reinforced styrene resins, olefin resins, acrylic resins, polyester resins, polyamide resins, polyester resins and polycarbonate resins are suitable as thermoplastic resins used for light irradiation molding.
  • examples include alloys of alloys, rubber-reinforced styrene resins and polycarbonate resins, alloys of rubber-reinforced styrene resins and polyester resins.
  • thermoplastic resin is preferably an amorphous thermoplastic resin.
  • the cooling rate of the thermoplastic resin is slower than that of the mold because the pair of rubber mold portions are made of rubber. For this reason, the crystallinity of the thermoplastic resin may increase during cooling, which may reduce the dimensional accuracy of the molded product or the impact resistance of the molded product.
  • thermoplastic resin an amorphous thermoplastic resin, it may be possible to prevent a decrease in dimensional accuracy and a decrease in impact resistance of the molded product.
  • the thermoplastic resin may be further filled with fillers such as fibers, particles, and plates, decorative agents such as metallic pigments, ultraviolet absorbers, antioxidants, anti-aging agents, and antistatic agents.
  • additives such as additives, flame retardants, weathering agents, plasticizers, lubricants, antibacterial agents, hydrophilicity-imparting agents, and light-colored colorants may be contained.
  • the pair of rubber molds are preferably made of transparent or translucent silicone rubber. In this case, it is easy to produce the rubber mold part, and the thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 ⁇ m with little heating of the rubber mold part. it can.
  • the hardness of the silicone rubber is preferably 25 to 80 in the JIS-A standard measurement.
  • the light irradiation molding apparatus includes a vacuum means for evacuating the cavity, and the pressure in the cavity is made lower than the pressure outside the pair of rubber mold portions by the vacuum means, It is preferable that the pair of rubber mold portions be configured to approach each other when the thermoplastic resin is melted by generating a suction force in the pair of rubber mold portions. Further, in the light irradiation molding method, vacuum means for evacuating the cavity is used, and the pressure in the cavity is made lower than the pressure outside the pair of rubber mold parts by the vacuum means, It is preferable to cause the pair of rubber mold parts to approach each other when the thermoplastic resin melts by generating a suction force in the pair of rubber mold parts.
  • the pair of rubber mold portions it is easy to bring the pair of rubber mold portions closer to each other by the suction force (clamping force) generated by the vacuum means. Further, by bringing the pair of rubber mold portions closer to each other by using a suction force, the molten thermoplastic resin can be easily spread over the entire cavity.
  • the pair of rubber mold parts can be forced to approach each other by applying an external force to the pair of rubber mold parts, in addition to using the suction force generated by the vacuum means.
  • the pair of rubber mold portions are inserted in the insertion recesses provided in one of the insertion recesses provided in one of the rubber mold portions in the original position before approaching each other, and the insertion projections and the insertion recesses are inserted.
  • the entire circumference of the dividing surface formed between the pair of rubber mold portions can be closed. In this case, it is possible to easily prevent the thermoplastic resin from leaking from the gap formed in the dividing surface in order to bring the pair of rubber mold portions closer to each other.
  • the pair of rubber mold parts are arranged in a cavity forming concave part provided in one of the pair of rubber mold parts in an original position before being brought close to each other, and the cavity forming convex part provided in the other is disposed.
  • the entire periphery of the divided surface may be closed with a resin tape attached to the entire periphery of the divided surface formed therebetween. Also in this case, it is possible to easily prevent the thermoplastic resin from leaking from the gap formed in the dividing surface in order to bring the pair of rubber mold portions closer to each other.
  • one of the pair of rubber mold portions includes a cavity forming convex portion that molds the back surface of the molded product, an annular insertion concave portion formed on the entire outer edge of the cavity forming convex portion, and an annular insertion concave portion.
  • An annular outer peripheral convex portion that is formed so as to protrude from the entire periphery of the outer edge portion, and the other of the pair of rubber mold portions is arranged with the cavity forming convex portion on the inside to mold the design surface of the molded product.
  • the outer peripheral surface of the cavity forming convex part and the annular inner peripheral convex part Inside Between the surface and the bottom surface of the annular fitting recess and the tip surface of the annular inner peripheral convex portion, and one of the pair of rubber mold portions is open to the tip surface of the cavity forming convex portion. It is preferable to form a suction port that opens and a suction gate that opens to the bottom surface of the annular fitting recess, and to connect the suction port and the suction gate with a vacuum suction path for performing vacuum suction by the vacuum means. .
  • the pair of rubber mold parts are brought closer to each other by fitting the outer peripheral surface of the annular inner peripheral convex part in the other of the pair of rubber mold parts into the inner peripheral surface of the annular outer peripheral convex part in one of the pair of rubber mold parts. Therefore, it is possible to easily prevent the thermoplastic resin from leaking out from the gap formed on the dividing surface.
  • a suction force can be easily generated between the pair of rubber mold parts, and the molten thermoplastic resin can be easily applied to the entire cavity. Can be spread over.
  • excess molten thermoplastic resin can overflow into the cavity.
  • the suction port also serves as a charging port for charging the particulate thermoplastic resin into the cavity.
  • the particulate thermoplastic resin can be introduced from the suction port in a state where the pair of rubber mold portions are closed.
  • the pair of rubber mold portions are brought close to each other until the bottom surface of the annular fitting concave portion in one of the pair of rubber mold portions and the tip surface of the annular inner peripheral convex portion in the other of the pair of rubber mold portions are in contact with each other.
  • the thermoplastic resin is supplied to the space to form the molded product. In this case, the dimensional accuracy of the molded product to be molded can be stabilized. Moreover, the surplus part of the thermoplastic resin used for shaping
  • the suction gate preferably has a smaller channel cross-sectional area than the suction port. Moreover, it is preferable that the suction gate is formed to open at a position facing the bottom surface of the cavity forming recess and a position facing the annular inner peripheral projection on the bottom surface of the annular fitting recess. In this case, the suction gate is less likely to be clogged with particulate thermoplastic resin, and the thermoplastic resin can be stably distributed to the end of the cavity. Moreover, it is preferable that the opening position of the suction gate on the bottom surface of the annular insertion recess is arranged at least in a pair or a plurality of pairs facing each other through the center portion in the annular shape. Thereby, the suction from the suction port can be performed in a balanced manner in the circumferential direction.
  • the light irradiation means is configured to irradiate light from the outer surface of the other of the pair of rubber mold portions, and is disposed in the cavity first from the cavity forming recess.
  • the vacuum gate prevents the suction gate from being blocked and fills the entire cavity with the thermoplastic resin. It can be configured to continue evacuation.
  • the light emitted from the light irradiation means is irradiated from the outer side surface of the other of the pair of rubber mold parts, and the cavity disposed in the cavity first from the cavity forming recess side.
  • the suction gate By melting and filling the particulate thermoplastic resin, the suction gate is prevented from being blocked, and the vacuum means is evacuated until the entire thermoplastic resin is filled into the cavity. Can continue. In these cases, it is possible to effectively prevent the suction gate from being blocked, and to apply a suction force between the pair of rubber molds until the entire cavity is filled with the thermoplastic resin. I can keep it.
  • the light irradiation means is configured to irradiate light while moving partly sequentially from one side to the other side of the outer surface of the other of the pair of rubber mold portions.
  • the thermoplastic resin can be sequentially filled from one side to the other side of the cavity.
  • the light from the light irradiation means is irradiated while being partially moved sequentially from one side to the other side of the outer surface of the other of the pair of rubber mold portions,
  • the thermoplastic resin can be sequentially filled from the side toward the other side. In these cases, by partially melting the thermoplastic resin in the cavity, the thermoplastic resin can be stably distributed throughout the cavity.
  • Example 1 As shown in FIGS. 1, 2, and 4, the light irradiation molding apparatus 1 of this example is made of a rubber material having a property of transmitting light X and forms a pair of rubber molds on opposite sides that meet each other. 2A and 2B, and light irradiation means 4 for irradiating the particulate thermoplastic resin 6 disposed in the cavity 20 with light X from the surface of the pair of rubber mold portions 2A and 2B. As shown in FIGS.
  • the light irradiation molding device 1 melts the thermoplastic resin 6 disposed in the cavity 20 with the light X irradiated from the light irradiation means 4, while the pair of rubber mold portions 2 ⁇ / b> A and 2 ⁇ / b> B is formed.
  • the volume of the cavity 20 is reduced by being brought close to each other, and the molded article 7 of the thermoplastic resin 6 is formed in the cavity 20 having the reduced volume.
  • 1 and 2 show a state in which the pair of rubber mold portions 2A and 2B are at the original position P1.
  • FIG. 4 shows a state in which the pair of rubber mold portions 2A and 2B are slightly close to each other.
  • FIG. 5 shows a state in which the molded product 7 is molded at the position P2 where the pair of rubber mold portions 2A and 2B are closest to each other.
  • the pair of rubber mold parts 2A, 2B is made of transparent or translucent silicone rubber as a rubber material.
  • the pair of rubber mold parts 2A and 2B is configured such that a master model (handmade product etc.) of a molded product 7 to be molded is placed in a liquid silicone rubber, the silicone rubber is cured, and the master model is obtained from the cured silicone rubber. Can be taken out.
  • a split surface (parting surface) 205 for performing mold opening when taking out the molded product 7 after molding see FIGS. 1 and 2). Can be easily and arbitrarily formed.
  • thermoplastic resin 6 particles of an ABS resin that is an amorphous thermoplastic resin and a rubber-modified thermoplastic resin are used.
  • thermoplastic resin 6 one having a particle diameter of 1 to 3000 ⁇ m can be used.
  • the particulate thermoplastic resin 6 is a fine pellet of the thermoplastic resin 6 having a bulk specific gravity of about 0.6.
  • the light irradiation means 4 is configured to generate light X including a wavelength region of 0.78 to 2 ⁇ m.
  • the light irradiation means 4 is constituted by using a halogen lamp that emits light X including a wavelength region of 0.78 to 2 ⁇ m (corresponding to a near infrared wavelength region).
  • the halogen lamp used had a light intensity peak in the wavelength range of 0.78 to 2 ⁇ m (in this example, about 0.9 ⁇ m).
  • the halogen lamp includes a light source 41 and a reflector 42 that collects and reflects the light X emitted from the light source 41.
  • the thermoplastic resin 6 disposed in the cavity 20 is selectively heated by the light irradiation means 4 as compared with the pair of rubber mold parts 2A and 2B made of silicone rubber, and is stabilized.
  • a molded product 7 with dimensional accuracy can be formed.
  • FIG. 7 shows the transmittance of light X in each silicone rubber with the wavelength (nm) on the horizontal axis and the transmittance (%) of light X on the vertical axis for transparent silicone rubber and translucent silicone rubber. It is a graph which shows. In the figure, it can be seen that each silicone rubber transmits light X having a wavelength between 200 and 2200 (nm).
  • the light irradiation molding apparatus 1 includes a vacuum means 5 for evacuating the cavity 20.
  • the vacuum means 5 is a pump connected to the pair of rubber mold portions 2A, 2B, and is configured to evacuate the cavity 20 in which the thermoplastic resin 6 is disposed and to make the inside of the cavity 20 into a vacuum state. Yes.
  • the light irradiation molding apparatus 1 makes the pressure in the cavity 20 lower than the pressure outside the pair of rubber mold parts 2A and 2B, and sucks the pair of rubber mold parts 2A and 2B. By generating force (clamping force) F, the pair of rubber mold parts 2A and 2B are configured to approach each other when the thermoplastic resin 6 is melted.
  • the molded product 7 to be molded in the light irradiation molding apparatus 1 has a main body portion 71 and a standing wall portion 72 formed so as to stand substantially perpendicularly or inclined with respect to the main body portion 71. It is.
  • the standing wall portion 72 in this example is erected from the entire periphery of the outer edge portion of the main body portion 71.
  • the molded product 7 can be configured such that the standing wall portion 72 is erected from an appropriate portion of the main body portion 71 substantially vertically or inclined.
  • molded by the suction port 27 mentioned later can be cut
  • one side rubber mold 2 ⁇ / b> A that is one of the pair of rubber molds 2 ⁇ / b> A and 2 ⁇ / b> B includes a cavity forming convex 21 that molds the back surface 702 of the molded product 7, and a cavity forming convex 21.
  • the annular insertion recess 22 is formed on the entire outer periphery of the outer periphery of the outer periphery, and the annular outer peripheral projection 23 is formed so as to protrude from the entire outer periphery of the annular insertion recess 22.
  • the other rubber mold part 2B which is the other of the pair of rubber mold parts 2A and 2B, includes a cavity forming concave part 25 that arranges the cavity forming convex part 21 on the inner side and molds the design surface 701 of the molded product 7, and a cavity forming concave part 25 has an annular inner circumferential convex portion 26 that protrudes in the entire outer periphery of the outer edge portion 25 and fits into the inner circumferential surface 231 of the annular outer circumferential convex portion 23 and is disposed in the annular fitting concave portion 22.
  • the insertion recesses in the rubber mold portions 2A and 2B are formed by the annular insertion recess 22 and the annular outer peripheral projection 23 in the one side rubber mold portion 2A, and the insertion protrusions in the rubber mold portions 2A and 2B are the other side rubber. It is formed by the annular inner circumferential convex portion 26 in the mold portion 2B.
  • the outer peripheral surface 263 of the annular inner peripheral convex portion 26 in the other rubber mold portion 2B is fitted into the inner peripheral surface 231 of the annular outer peripheral convex portion 23 at the original position P1 before the pair of rubber mold portions 2A, 2B are brought close to each other. Yes.
  • the pair of rubber mold parts 2A and 2B is formed between the pair of rubber mold parts 2A and 2B by the outer peripheral surface 263 of the annular inner peripheral convex part 26 and the inner peripheral surface 231 of the annular outer peripheral convex part 23 before and after being brought close to each other.
  • the entire circumference of the divided surface 205 is closed.
  • the cavity 20 has a front end surface 211 of the cavity forming convex portion 21 and a bottom surface 251 of the cavity forming concave portion 25 at the original position P1 before the pair of rubber mold portions 2A and 2B are brought close to each other.
  • the pair of rubber mold portions 2A and 2B is formed by the bottom surface 221 of the annular insertion recess 22 in the one-side rubber mold portion 2A when the thermoplastic resin 6 disposed in the cavity 20 melts. And it is comprised so that it may approach until the front end surface 261 of the cyclic
  • thermoplastic resin 6 is supplied to the standing wall space 202 formed in the above.
  • the particulate thermoplastic resin is indicated by 6A
  • the molten thermoplastic resin is indicated by 6B.
  • the one-side rubber mold portion 2 ⁇ / b> A has a suction port 27 that opens to the front end surface 211 of the cavity forming convex portion 21 and a suction gate 28 that opens to the bottom surface 221 of the annular fitting concave portion 22. It is formed through.
  • the suction port 27 also serves as a charging port for charging the particulate thermoplastic resin 6 ⁇ / b> A into the cavity 20.
  • the suction port 27 serves as a space for overflowing the molten thermoplastic resin 6B that is excessive in the main body space 201 when the particulate thermoplastic resin 6A disposed in the main body space 201 is melted. It also has a function.
  • the molded product 7 to be molded in this example is such that the standing wall portion 72 rises substantially vertically or in an inclined manner on the entire circumference of the main body portion 71 as described above.
  • the suction gate 28 opens at a plurality of locations on the bottom surface 221 of the annular insertion recess 22, a position facing the bottom surface 251 of the cavity forming recess 25 and a position facing the annular inner circumferential protrusion 26.
  • FIG. 3 shows a state in which the suction port 27 and the plurality of suction gates 28 are formed in the one-side rubber mold portion 2A.
  • the suction gate 28 can be appropriately formed in accordance with the position where the standing wall portion 72 is formed. For example, in the case where only a pair of standing wall portions 72 facing each other is formed, a position facing the bottom surface 251 of the cavity forming recess 25 in a portion of the bottom surface 221 of the annular fitting recess 22 and forming the standing wall portion 72; A suction gate 28 that opens only at a position facing the annular inner circumferential convex portion 26 is formed. As shown in FIG. 8, in the remaining portion of the bottom surface 221 of the annular insertion recess 22 that does not form the standing wall portion 72, a position facing the bottom surface 251 of the cavity forming recess 25, and a position facing the annular inner peripheral projection 26.
  • the suction gate 28 may not be formed.
  • the outer peripheral surface 212 of the cavity forming convex portion 21 in the one side rubber mold portion 2A and the annular shape in the other side rubber mold portion 2B in the remaining portion of the bottom surface 221 of the annular insertion recess 22 that does not form the standing wall portion 72.
  • the inner peripheral surface 262 of the inner peripheral convex portion 26 is kept in contact so that the molten thermoplastic resin 6 does not flow between the tip surface 261 of the annular inner peripheral convex portion 26 and the bottom surface 221 of the annular fitting concave portion 22. it can.
  • the suction gate 28 has a channel cross-sectional area smaller than that of the suction port 27.
  • the suction gate 28 has a flow path smaller than the particles of the thermoplastic resin 6A so that the particulate thermoplastic resin 6A in the cavity 20 is not sucked when the gas (air) in the cavity 20 is sucked by the vacuum means 5. It is formed with a cross-sectional area.
  • the backup plate 3 On the side of the one-side rubber mold portion 2A that does not face the other-side rubber mold portion 2B, the backup plate 3 is disposed so as to overlap.
  • a evacuation path 31 for evacuating by the vacuum means 5 is formed between the one-side rubber mold portion 2A and the backup plate 3. The evacuation path 31 communicates with the suction port 27 and the plurality of suction gates 28.
  • the light irradiation means 4 is disposed to face the outer surface 206 formed in parallel with the bottom surface 251 of the cavity forming recess 25 in the other rubber mold portion 2B.
  • the light irradiation molding apparatus 1 uses the light X irradiated on the outer surface 206 of the other rubber mold part 2B from the light irradiating means 4, and is in the form of particulate thermoplastic disposed in the cavity 20 first from the cavity forming recess 25 side.
  • the resin 6A can be melted.
  • the light irradiation molding apparatus 1 can prevent the suction gate 28 from being blocked, and can continue the evacuation by the vacuum means 5 until the entire cavity 20 is filled with the molten thermoplastic resin 6B. it can.
  • the pair of rubber mold parts 2A and 2B can be arranged in a state where the one side rubber mold part 2A and the other side rubber mold part 2B are combined in the horizontal direction, and can irradiate the light X from the horizontal direction.
  • the light X can be irradiated by the light irradiation means 4 from above the one side rubber mold part 2A to the pair of rubber mold parts 2A, 2B arranged with the other side rubber mold part 2B on the lower side.
  • the particulate thermoplastic resin 6A is arranged in the cavity 20 formed between the pair of rubber mold portions 2A and 2B.
  • the thermoplastic resin 6A can be put into the cavity 20 between the pair of rubber mold portions 2A and 2B in a state of being combined with each other from the suction port (loading port) 27 formed in the one-side rubber mold portion 2A. it can.
  • the thermoplastic resin 6A can be disposed in the cavity forming recess 25 in the other rubber mold portion 2B in the open state. In this case, the pair of rubber mold portions 2A and 2B in a state where the thermoplastic resin 6A is disposed are combined with each other.
  • the pair of rubber mold portions 2A and 2B can be combined after the thermoplastic resin 6 is disposed with respect to the cavity forming concave portion 25 or the cavity forming convex portion 21. .
  • the thermoplastic resin 6 can be used in combination of a particulate thing and a solid thing.
  • FIG. 1 and FIG. 2 in a state where the pair of rubber mold parts 2A and 2B are combined, the inner peripheral surface 231 of the annular outer peripheral convex part 23 in the one side rubber mold part 2A and the other side rubber mold part.
  • the entire circumference of the dividing surface 205 formed between the pair of rubber mold portions 2A and 2B is closed by the outer peripheral surface 263 of the annular inner peripheral convex portion 26 in 2B.
  • evacuation of the cavity 20 is started by the vacuum means 5 from the evacuation path 31 through the suction port 27 and the plurality of suction gates 28.
  • air is sucked from the gap formed between the particulate thermoplastic resin 6A in the cavity 20, and the pair of rubber mold portions 2A, 2B is subjected to a suction force F that tends to approach each other, thereby causing the particles Pressure is applied between the particles of the thermoplastic resin 6A in the form of a tube.
  • the light irradiation means 4 irradiates the outer surface 206 of the other rubber mold part 2B with light X including a wavelength region of 0.78 to 2 ⁇ m. To do. At this time, most of the light X passes through the other rubber mold portion 2B and is absorbed by the thermoplastic resin 6A in the cavity 20. Then, the thermoplastic resin 6A located in the vicinity of the bottom surface 251 of the cavity forming recess 25 in the other rubber mold portion 2B disposed on the side close to the light irradiation means 4 is positively heated. The particulate thermoplastic resin 6A disposed in the cavity 20 is first melted from the particles located in the vicinity of the bottom surface 251 of the cavity forming recess 25 of the other rubber mold part 2B in the main body space 201 of the cavity 20.
  • melting of the particulate thermoplastic resin 6A releases the pressure acting between the particles of the particulate thermoplastic resin 6A due to the gap between the particles being in a vacuum state.
  • the suction force F acting on the rubber mold portions 2A and 2B the particulate thermoplastic resin 6A in the main body space 201 is melted, and the volume of the main body space 201 is reduced.
  • the pair of rubber mold portions 2A and 2B approach each other as much as the volume of the main body space 201 is reduced. Further, even after the thermoplastic resin 6 ⁇ / b> A in the cavity 20 starts to melt, evacuation in the cavity 20 by the vacuum means 5 is continued.
  • the particulate thermoplastic resin 6 ⁇ / b> A in the cavity 20 is melted first from the particles located in the vicinity of the bottom surface 251 of the cavity forming recess 25 in the main body space 201 of the cavity 20.
  • the particles are sequentially melted into particles located near the tip surface 211 of the portion 21.
  • the particulate thermoplastic resin 6A disposed in the standing wall space 202 and the surplus space 203 in the cavity 20 does not melt until substantially the entire particulate thermoplastic resin 6A disposed in the main body space 201 is melted.
  • the particle state is maintained. Thereby, the evacuation of the main body space 201 in the cavity 20 is continued from the gap formed between the particulate thermoplastic resin 6 ⁇ / b> A disposed in the suction port 27 and the plurality of suction gates 28.
  • the particulate thermoplastic resin 6A in the main body space 201 is melted and the pair of rubber mold portions 2A and 2B approach each other, the particulate thermoplastic resin 6A disposed in the standing wall space 202 and the surplus space 203 is melted. .
  • the molten thermoplastic resin 6B in the surplus space 203 is supplied to the standing wall space 202 when the volume of the surplus space 203 decreases due to the approach of the pair of rubber mold portions 2A and 2B.
  • the molten thermoplastic resin 6 ⁇ / b> B that is excessive in the main body space 201 is also supplied to the standing wall space 202.
  • the pair of rubber mold portions 2A and 2B includes a bottom surface 221 of the annular insertion recess 22 in the one-side rubber mold portion 2A and the other-side rubber mold portion when the thermoplastic resin 6 disposed in the cavity 20 melts. It approaches until the front end surface 261 of the annular inner circumferential convex portion 26 in 2B comes into contact. And between the bottom face 221 of the annular insertion recessed part 22 and the front end surface 261 of the annular inner peripheral convex part 26, a molded product of a thin sheet-like (burr-like) thermoplastic resin is formed.
  • the resin molding step evacuation by the vacuum means 5 is continued until the melted thermoplastic resin 6B is filled in the entire cavity 20, and the melted thermoplastic resin in the entire cavity 20 whose volume is reduced.
  • the resin 6B can be distributed.
  • a resin cooling step a state in which the melted thermoplastic resin 6B is filled in the cavity 20 in the pair of rubber mold portions 2A and 2B is maintained.
  • the molten thermoplastic resin 6B is cooled and solidified, and the main body portion 71 is formed in the main body space 201 and the standing wall portion 7 is formed in the standing wall space 202 to obtain the molded product 7 of the thermoplastic resin 6. be able to.
  • the molded product take-out step the pair of rubber mold portions 2A and 2B are released, and the molded product 7 that has been molded can be taken out.
  • the thermoplastic resin 6 can be selectively heated and melted as compared with the rubber mold parts 2A and 2B, and the temperature rise of the rubber mold parts 2A and 2B is suppressed, and the thermoplastic resin 6 is It can be heated effectively. Therefore, when the molded product 7 of the thermoplastic resin 6 is molded, it is possible to effectively prevent the rubber mold portions 2A and 2B from being thermally deteriorated. Moreover, since the volume of the cavity 20 is reduced and the molded product 7 is molded, there is no need to fill the cavity 20 with the molten thermoplastic resin 6B. Further, a device such as a resin injection nozzle that melts the thermoplastic resin 6 in advance and injects it into the cavity 20 becomes unnecessary. Further, almost all of the thermoplastic resin 6 disposed in the cavity 20 can be used for molding the molded product 7.
  • thermoplastic resin 6 an apparatus for previously melting the thermoplastic resin 6 and injecting the thermoplastic resin 6 into the cavity 20 becomes unnecessary, and a small amount of the thermoplastic resin 6 is obtained.
  • the molded product 7 can be molded with the amount used.
  • Example 2 In this example, some examples in which the configuration of the light irradiation molding apparatus 1 is different from the configuration of the first embodiment are shown.
  • the pair of rubber mold parts 2A and 2B are divided surfaces between the pair of rubber mold parts 2A and 2B by fitting the inner peripheral surface 231 of the annular outer peripheral convex part 23 and the outer peripheral surface 263 of the annular inner peripheral convex part 26.
  • the divided surface 205 is formed by a resin tape 35 attached to the entire circumference of the divided surface 205 formed between the pair of rubber mold portions 2A, 2B. It is also possible to have a structure that closes the entire circumference of the.
  • the cavity forming convex portion 210 is formed on the one side rubber mold portion 2A
  • the annular concave portion 220 is formed on the entire outer edge portion thereof
  • the cavity forming concave portion 250 is formed on the other side rubber mold portion 2B.
  • the annular convex part 260 is formed in the outer periphery whole periphery.
  • the one side rubber mold part 2A, the other side rubber mold part 2B and the other side rubber mold part 2B are attached by the resin tape 35 which is applied between the side surface 207 of the one side rubber mold part 2A and the side surface 207 of the other side rubber mold part 2B.
  • the gap 29 on the dividing surface 205 is closed.
  • the spacer 61 of the thermoplastic resin 6 having the same composition as the thermoplastic resin 6 used for molding the molded product 7 is disposed between the bottom surface of the annular recess 220 and the tip surface of the annular projection 260.
  • the volume of the main body space 201 before molding that is, the volume of the cavity 20 before molding can be set to an intended volume.
  • the resin tape 35 can prevent the molten thermoplastic resin 6 in the cavity 20 from leaking outside through the gap 29 in the dividing surface 205.
  • the light irradiation means 4 extends from one side to the other side along the outer surface 206 formed in parallel with the bottom surface 251 of the cavity forming recess 25 in the other rubber mold portion 2B, that is, The light X may be partially irradiated while sequentially moving from one side to the other side in a direction orthogonal to the direction in which the pair of rubber mold portions 2A and 2B face each other. Then, the cavity 20 in which the thermoplastic resin 6 is disposed is evacuated by the vacuum means 5 and irradiated with the light X by the light irradiation means 4 that moves sequentially, whereby the cavities 20 of the pair of rubber mold portions 2A and 2B are obtained.
  • thermoplastic resin 6 is heated and melted sequentially from one side to the other side.
  • the pair of rubber mold portions 2A, 2B are made to approach each other sequentially from one side to the other side, and the entire cavity 20 is filled with the thermoplastic resin 6 to obtain the molded product 7.
  • the molten thermoplastic resin 6 ⁇ / b> B can be stably distributed throughout the cavity 20.
  • molding apparatus 1 is the same as that of the said Example 1, and can obtain the effect similar to the said Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 光照射成形装置1は、光Xを透過する性質を有するゴム材料からなると共に互いに合わさる対向側にキャビティ20を形成する一対のゴム型部2A、2Bと、一対のゴム型部2A、2Bの表面から、キャビティ20に配置した粒子状の熱可塑性樹脂6に光Xを照射する光照射手段4とを備えている。光照射成形装置1は、光照射手段4から照射する光Xによってキャビティ20に配置した熱可塑性樹脂6を溶融させながら、一対のゴム型部2A、2Bを互いに接近させ、容積が縮小したキャビティ20に熱可塑性樹脂6の成形品7を成形するよう構成してある。

Description

光照射成形装置及び光照射成形方法
 本発明は、光を透過する性質を有する一対のゴム型部に形成したキャビティ内に熱可塑性樹脂を充填し光を照射して成形品を成形する光照射成形装置及び光照射成形方法に関する。
 熱可塑性樹脂を用いて所定形状の成形品を得る方法としては、一般的には、射出成形、ブロー成形、押出成形、プレス成形等の種々の成形方法がある。
 これらの一般的な成形方法とは別に、例えば、特許文献1においては、成形型のキャビティ内に溶融状態の熱可塑性樹脂を充填する際に、0.78~2μmの波長領域を含む電磁波を、成形型を介して熱可塑性樹脂に照射する方法が開示されている。この方法では、成形型を構成するゴムと熱可塑性樹脂との物性の違いにより、ゴム製の成形型に比べて、熱可塑性樹脂の方が強く加熱される。
 また、例えば、特許文献2においては、ゴム型のキャビティ内に充填した粒子状態の熱可塑性樹脂に、0.78~2μmの波長領域を含む電磁波を照射して、この熱可塑性樹脂を加熱して溶融させ、その後、キャビティにおいて残された空間に、溶融状態の熱可塑性樹脂を追加充填することが開示されている。
特開2007-216447号公報 特開2009-241455号公報
 しかしながら、特許文献1においては、予め溶融させた熱可塑性樹脂を成形型のキャビティ内に充填するために、ペレット等の粒子状又は固形状の熱可塑性樹脂を予め溶融させるための装置が必要になる。また、特許文献2においても、溶融状態の熱可塑性樹脂を追加充填するために、同様の装置が必要になる。また、溶融状態の熱可塑性樹脂の充填を行う場合には、余分に熱可塑性樹脂を確保しておく必要があり、熱可塑性樹脂の使用量を少なくすることが困難である。
 本発明は、かかる従来の問題点に鑑みてなされたもので、熱可塑性樹脂を予め溶融させてキャビティへ注入する装置が不要になり、少ない熱可塑性樹脂の使用量で成形品を成形することができる光照射成形装置及び光照射成形方法を提供しようとするものである。
 本発明の第1の側面は、光を透過する性質を有するゴム材料からなり、互いに合わさる対向側にキャビティを形成する一対のゴム型部と、
 該一対のゴム型部の表面から、上記キャビティ内に配置した粒子状又は固形状の熱可塑性樹脂に光を照射する光照射手段とを備えており、
 上記一対のゴム型部は、上記光照射手段から照射する光によって上記キャビティ内に配置した上記熱可塑性樹脂を溶融させる際に、互いに接近して上記キャビティの容積を縮小させることができるよう構成されていることを特徴とする光照射成形装置にある。
 第2の側面は、光を透過する性質を有するゴム材料からなり、互いに合わさる対向側にキャビティを形成する一対のゴム型部と、
 該一対のゴム型部の表面から、上記キャビティ内に配置した粒子状又は固形状の熱可塑性樹脂に光を照射する光照射手段とを用い、
 該光照射手段から照射する光によって上記キャビティ内に配置した上記熱可塑性樹脂を溶融させながら、上記一対のゴム型部を互いに接近させて上記キャビティの容積を縮小させ、容積が縮小した上記キャビティ内において上記熱可塑性樹脂の成形品を成形することを特徴とする光照射成形方法にある。
 上記光照射成形装置及び光照射成形方法は、一対のゴム型部の間に、成形する成形品よりも大きな容積のキャビティを形成しておき、粒子状又は固形状の熱可塑性樹脂を溶融させる際に、キャビティの容積を縮小させて成形品を得るものである。
 一対のゴム型部の間のキャビティ内には、粒子状又は固形状の熱可塑性樹脂を配置し、光照射手段によって一対のゴム型部の表面から光を照射する。このとき、光の多くはゴム型部を透過し、熱可塑性樹脂に吸収される。これにより、熱可塑性樹脂が加熱されて溶融する。このとき、一対のゴム型部を互いに接近させることにより、キャビティの容積が縮小して、溶融した熱可塑性樹脂がキャビティの全体に充填される。
 こうして、容積が縮小したキャビティ内において熱可塑性樹脂の成形品を成形することができる。成形品は、冷やされて固化した後、一対のゴム型部を離型して取り出すことができる。
 それ故、上記光照射成形装置及び光照射成形方法によれば、熱可塑性樹脂を予め溶融させてキャビティへ注入する装置が不要になり、少ない熱可塑性樹脂の使用量で成形品を成形することができる。
 なお、固形状の熱可塑性樹脂を用いる場合には、この固形状の熱可塑性樹脂をキャビティの一部に配置し、残部に粒子状の熱可塑性樹脂を配置することができる。
実施例1における、原位置にある一対のゴム型部の間のキャビティに熱可塑性樹脂を配置した状態を、正面から見た断面で示す説明図。 実施例1における、原位置にある一対のゴム型部の間のキャビティに熱可塑性樹脂を配置した状態を、側方から見た断面で示す説明図。 実施例1における、一方側ゴム型部における吸引口及び複数の吸引ゲートの形成状態を、上方から見た状態の断面で示す説明図。 実施例1における、光の照射を受けた熱可塑性樹脂が溶融して、一対のゴム型部が若干互いに接近した状態を、正面から見た断面で示す説明図。 実施例1における、光の照射を受けた熱可塑性樹脂が溶融して、一対のゴム型部が最も接近した状態を、正面から見た断面で示す説明図。 実施例1における、成形品を正面から見た断面で示す説明図。 実施例1における、シリコーンゴムにおける光の透過率を示すグラフ。 実施例1における、他の一対のゴム型部の間のキャビティに熱可塑性樹脂を配置した状態を、側方から見た断面で示す説明図。 実施例2における、原位置にある一対のゴム型部を、正面から見た断面で示す説明図。 実施例2における、光の照射を受けた熱可塑性樹脂が溶融して、一対のゴム型部が部分的に順次接近していく状態を、正面から見た断面で示す説明図。
 上述した光照射成形装置及び光照射成形方法における好ましい実施の形態につき説明する。
 上記熱可塑性樹脂は、粒子状又は固形状のものを用いる。ここで、粒子状とは、球状、円筒状、その他粉砕品に見られる不定形状等の状態のことをいう。固形状とは、板状、棒状、線状等の状態をいう。
 目的とする成形品の形状によって、粒子状、固形状の熱可塑性樹脂を適宜選択することができる。また、粒子状又は固形状の熱可塑性樹脂は、2種以上の形態のものを混合して用いることができる。
 上記熱可塑性樹脂が粒子状である場合には、用いることができる熱可塑性樹脂の粒子径は、成形する成形品の厚み、すなわちキャビティの幅に依存するが、熱可塑性樹脂の粒子径は、1~3000μmの範囲内とすることができる。熱可塑性樹脂の粒子径は、好ましくは、50~3000μmの範囲内、更に好ましくは200~2500μmの範囲内とすることができる。
 また、熱可塑性樹脂の平均粒子径がこれらの範囲内であって、更に1~100μmの範囲内の熱可塑性樹脂の小形粒子を含有していると、キャビティへの熱可塑性樹脂の粒子の充填に際して好ましい場合がある。粒子の嵩比重は、0.4以上が好ましく、より好ましくは0.45以上、更に好ましくは0.5以上である。
 また、上記光照射手段は、0.78~2μmの波長領域を含む光を発生させることが好ましい。この場合には、ゴム型部に比べてキャビティ内の熱可塑性樹脂に多くの光を吸収させることが容易であり、ゴム型部に比べて熱可塑性樹脂を積極的に加熱して溶融させることができる。
 また、上記ゴム型部を介して上記熱可塑性樹脂に照射する光(電磁波)としては、波長が0.78~2μmの領域の光だけでなく、これ以外の領域の光も含まれていてもよい。この場合において、ゴム型部を介して熱可塑性樹脂に照射する光は、波長が0.78~2μmの領域の光を、これ以外の領域の光よりも多く含むことが好ましい。
 また、上記成形品の成形に用いる熱可塑性樹脂(以下、単に熱可塑性樹脂ということがある。)としては、光(電磁波)を吸収し、加熱が促進されるものを用いることができる。
 この熱可塑性樹脂は、熱可塑性を有する重合体を含むものであれば、特に限定されず、ABS樹脂(アクリロニトリル・ブタジエン・スチレン樹脂)、ASA樹脂(アクリレート・スチレン・アクリロニトリル樹脂)、AES樹脂(アクリロニトリル・エチレン-プロピレン-ジエン・スチレン樹脂)等のゴム強化スチレン系樹脂、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、(メタ)アクリル酸エステル・スチレン共重合体等のスチレン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、環状オレフィン樹脂、アクリル系樹脂、ポリカーボネート樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂、イミド系樹脂、ケトン系樹脂、スルホン系樹脂、ウレタン系樹脂、ポリ酢酸ビニル、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、フェノキシ樹脂、感光性樹脂、液晶ポリマー、生分解性プラスチック等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記熱可塑性樹脂のうち、光照射成形に用いる熱可塑性樹脂として好適なものとして、ゴム強化スチレン系樹脂、オレフィン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂及びポリカーボネート樹脂のアロイ、ゴム強化スチレン系樹脂及びポリカーボネート樹脂のアロイ、ゴム強化スチレン系樹脂及びポリエステル系樹脂のアロイ等が挙げられる。
 さらに、上記熱可塑性樹脂は、非晶性熱可塑性樹脂であることが好ましい。
 熱可塑性樹脂の冷却速度は、一対のゴム型部がゴム製であるため、金型の場合に比べて遅くなる。そのため、冷却中に熱可塑性樹脂の結晶性が高くなることがあり、これによって、成形品の寸法精度が低下したり、成形品の耐衝撃性が低下したりすることがある。これに対し、熱可塑性樹脂を非晶性熱可塑性樹脂にすることにより、上記成形品の寸法精度の低下及び耐衝撃性の低下等を防止できる場合がある。
 上記熱可塑性樹脂は、目的や用途に応じて、更に、繊維状、粒子状、板状等の充填剤、メタリック顔料等の加飾剤、紫外線吸収剤、酸化防止剤、老化防止剤、帯電防止剤、難燃剤、耐候剤、可塑剤、滑剤、抗菌剤、親水性付与剤、淡色系着色剤等の添加剤を含有していてもよい。
 また、上記一対のゴム型部は、透明又は半透明のシリコーンゴムからなることが好ましい。
 この場合には、ゴム型部の作製が容易であるとともに、上記0.78~2μmの波長領域を含む光により、ゴム型部をほとんど加熱することなく熱可塑性樹脂を選択的に加熱することができる。
 また、シリコーンゴムの硬度は、JIS-A規格測定において25~80であることが好ましい。
 また、上記光照射成形装置は、上記キャビティ内の真空引きを行う真空手段を備えており、該真空手段によって上記キャビティ内の圧力を上記一対のゴム型部の外部の圧力よりも低くして、該一対のゴム型部に吸引力を発生させることにより、上記熱可塑性樹脂が溶融する際に上記一対のゴム型部が互いに接近するよう構成することが好ましい。
 また、上記光照射成形方法においては、上記キャビティ内の真空引きを行う真空手段を用い、該真空手段によって上記キャビティ内の圧力を上記一対のゴム型部の外部の圧力よりも低くして、該一対のゴム型部に吸引力を発生させることにより、上記熱可塑性樹脂が溶融する際に上記一対のゴム型部を互いに接近させることが好ましい。
 これらの場合には、真空手段によって発生させた吸引力(型締め力)によって、一対のゴム型部を互いに接近させることが容易である。また、吸引力を利用して一対のゴム型部を互いに接近させることにより、溶融した熱可塑性樹脂をキャビティの全体に容易に行き渡らせることができる。
 なお、一対のゴム型部は、真空手段によって発生させる吸引力を利用する以外にも、一対のゴム型部に外力を加えて強制的に互いに接近させることもできる。
 また、上記一対のゴム型部は、互いに接近させる前の原位置において、いずれか一方に設けた被嵌入凹部内に他方に設けた嵌入凸部を嵌入し、該嵌入凸部と上記被嵌入凹部とによって上記一対のゴム型部の間に形成された分割面の全周を閉塞して構成することができる。
 この場合には、一対のゴム型部を互いに接近させるために分割面に形成した隙間から熱可塑性樹脂が漏れ出すことを容易に防止することができる。
 また、上記一対のゴム型部は、互いに接近させる前の原位置において、いずれか一方に設けたキャビティ形成凹部内に、他方に設けたキャビティ形成凸部を配置し、上記一対のゴム型部の間に形成された分割面の全周に貼り付けられた樹脂テープによって、上記分割面の全周を閉塞して構成することもできる。
 この場合にも、一対のゴム型部を互いに接近させるために分割面に形成した隙間から熱可塑性樹脂が漏れ出すことを容易に防止することができる。
 また、上記一対のゴム型部の一方は、上記成形品の裏面を成形するキャビティ形成凸部と、該キャビティ形成凸部の外縁部全周に形成された環状嵌入凹部と、該環状嵌入凹部の外縁部全周において突出形成された環状外周凸部とを有しており、上記一対のゴム型部の他方は、上記キャビティ形成凸部を内側に配置して上記成形品の意匠面を成形するキャビティ形成凹部と、該キャビティ形成凹部の外縁部全周において突出し上記環状外周凸部の内周面に嵌入して上記環状嵌入凹部内に配置する環状内周凸部とを有しており、上記キャビティは、上記一対のゴム型部を互いに接近させる前の原位置において、上記キャビティ形成凸部の先端面と上記キャビティ形成凹部の底面との間、上記キャビティ形成凸部の外周面と上記環状内周凸部の内周面との間、上記環状嵌入凹部の底面と上記環状内周凸部の先端面との間に連続して形成し、上記一対のゴム型部の一方には、上記キャビティ形成凸部の先端面に開口する吸引口と、上記環状嵌入凹部の底面に開口する吸引ゲートとを形成し、上記吸引口及び上記吸引ゲートには、上記真空手段によって真空引きを行うための真空引き経路を連通させることが好ましい。
 この場合には、一対のゴム型部の一方における環状外周凸部の内周面に対する、一対のゴム型部の他方における環状内周凸部の外周面の嵌入によって、一対のゴム型部を互いに接近させるために分割面に形成した隙間から熱可塑性樹脂が漏れ出すことを容易に防止することができる。
 また、吸引口及び吸引ゲートを介してキャビティ内の真空引きを行うことにより、一対のゴム型部の間に容易に吸引力を発生させることができ、溶融した熱可塑性樹脂をキャビティの全体に容易に行き渡らせることができる。
 また、吸引口には、キャビティに配置された粒子状の熱可塑性樹脂が溶融する際に、このキャビティに余剰になった溶融状態の熱可塑性樹脂を溢れ出させることもできる。
 また、上記吸引口は、上記粒子状の熱可塑性樹脂を上記キャビティ内へ投入する投入口も兼ねていることが好ましい。
 この場合には、キャビティ内に熱可塑性樹脂を配置する際には、一対のゴム型部を閉じた状態において吸引口から粒子状の熱可塑性樹脂を投入することができる。
 また、上記一対のゴム型部は、上記一対のゴム型部の一方における上記環状嵌入凹部の底面と上記一対のゴム型部の他方における上記環状内周凸部の先端面とが当接するまで接近させ、上記環状嵌入凹部の底面と上記環状内周凸部の先端面との間に形成された余剰空間から、上記キャビティ形成凸部の外周面と上記環状内周凸部の内周面との間に形成された立壁空間へ上記熱可塑性樹脂を供給して、上記成形品を成形するよう構成することが好ましい。
 この場合には、成形する成形品の寸法精度を安定させることができる。また、成形に用いる熱可塑性樹脂の余剰分を極力低減することができ、熱可塑性樹脂の使用量を少なくすることができる。
 また、上記吸引ゲートは、上記吸引口よりも流路断面積が小さいことが好ましい。また、上記吸引ゲートは、上記環状嵌入凹部の底面における、上記キャビティ形成凹部の底面に対向する位置と、上記環状内周凸部に対向する位置とに開口して形成することが好ましい。
 この場合には、吸引ゲートに粒子状の熱可塑性樹脂の目詰まりを生じ難くし、キャビティにおける端部まで熱可塑性樹脂を安定して行き渡らせることができる。
 また、上記環状嵌入凹部の底面における上記吸引ゲートの開口位置は、少なくとも、環状形状における中心部分を介して対峙する一対、あるいは複数対の位置に配置することが好ましい。これにより、吸引口からの吸引を周方向においてバランスよく行うことができる。
 また、上記光照射成形装置においては、上記光照射手段は、上記一対のゴム型部の他方における外側面から光を照射するよう構成し、上記キャビティ形成凹部の側から先に上記キャビティ内に配置された上記粒子状の熱可塑性樹脂を溶融させて充填することにより、上記吸引ゲートが閉塞されることを防止して、上記キャビティの全体に上記熱可塑性樹脂が充填されるまで、上記真空手段による真空引きを継続するよう構成することができる。
 また、上記光照射成形方法においては、上記光照射手段による光を、上記一対のゴム型部の他方における外側面から照射し、上記キャビティ形成凹部の側から先に上記キャビティ内に配置された上記粒子状の熱可塑性樹脂を溶融させて充填することにより、上記吸引ゲートが閉塞されることを防止して、上記キャビティの全体に上記熱可塑性樹脂が充填されるまで、上記真空手段による真空引きを継続することができる。
 これらの場合には、吸引ゲートが閉塞されることを効果的に防止することができると共に、キャビティの全体に熱可塑性樹脂が充填されるまで、一対のゴム型部の間に吸引力を作用させておくことができる。
 また、上記光照射成形装置においては、上記光照射手段は、上記一対のゴム型部の他方における外側面の一方側から他方側へ部分的に順次相対的に移動しながら光を照射するよう構成し、上記キャビティにおける一方側から他方側に向けて順次上記熱可塑性樹脂を充填するよう構成することもできる。
 また、上記光照射成形方法においては、上記光照射手段による光を、上記一対のゴム型部の他方における外側面の一方側から他方側へ部分的に順次移動しながら照射し、上記キャビティにおける一方側から他方側に向けて順次上記熱可塑性樹脂を充填することもできる。
 これらの場合には、キャビティ内の熱可塑性樹脂を部分的に溶融させていくことにより、キャビティの全体に熱可塑性樹脂を安定して行き渡らせることができる。
 以下に、本発明の光照射成形装置及び方法に係る実施例につき、図面を参照して説明する。
(実施例1)
 本例の光照射成形装置1は、図1、図2、図4に示すごとく、光Xを透過する性質を有するゴム材料からなると共に互いに合わさる対向側にキャビティ20を形成する一対のゴム型部2A、2Bと、一対のゴム型部2A、2Bの表面から、キャビティ20内に配置した粒子状の熱可塑性樹脂6に光Xを照射する光照射手段4とを備えている。光照射成形装置1は、図4、図5に示すごとく、光照射手段4から照射する光Xによってキャビティ20内に配置した熱可塑性樹脂6を溶融させながら、一対のゴム型部2A、2Bを互いに接近させてキャビティ20の容積を縮小させ、容積が縮小したキャビティ20内において熱可塑性樹脂6の成形品7を成形するよう構成してある。
 なお、図1、図2は、一対のゴム型部2A、2Bが原位置P1にある状態を示す。図4は、一対のゴム型部2A、2Bが若干互いに接近した状態を示す。図5は、一対のゴム型部2A、2Bが最も接近した位置P2において成形品7を成形する状態を示す。
 以下に、本例の光照射成形装置1及び光照射成形方法につき、図1~図8を参照して詳説する。
 一対のゴム型部2A、2Bは、ゴム材料としての透明又は半透明のシリコーンゴムからなる。この一対のゴム型部2A、2Bは、成形する成形品7のマスターモデル(手作りの現物等)を液状のシリコーンゴム内に配置し、このシリコーンゴムを硬化させ、硬化後のシリコーンゴムからマスターモデルを取り出して作製することができる。また、一対のゴム型部2A、2Bは、ゴム製であるため、成形後の成形品7を取り出す際の型開きを行うための分割面(パーティング面)205(図1、図2参照)を簡単にかつ任意に形成することができる。
 熱可塑性樹脂6としては、非晶性熱可塑性樹脂であるとともにゴム変性熱可塑性樹脂であるABS樹脂の粒子を用いる。熱可塑性樹脂6としては、粒子径が1~3000μmのものを用いることができる。また、粒子状の熱可塑性樹脂6は、嵩比重が0.6程度の熱可塑性樹脂6の微細ペレットである。
 図4に示すごとく、光照射手段4は、0.78~2μmの波長領域を含む光Xを発生させるよう構成されている。光照射手段4は、0.78~2μmの波長領域(ほぼ近赤外線の波長領域に相当する。)を含む光Xを発するハロゲンランプを用いて構成してある。このハロゲンランプは、0.78~2μmの波長領域内に(本例では約0.9μmに)光強度のピークを有するものを用いた。ハロゲンランプは、光源41と、光源41から発せられた光Xを集光して反射させるリフレクタ42とを用いて構成されている。
 光照射成形装置1は、光照射手段4によって、キャビティ20内に配置した熱可塑性樹脂6を、シリコーンゴムからなる一対のゴム型部2A、2Bに比べて、選択的に加熱して、安定した寸法精度の成形品7を成形することができるものである。
 図7は、透明のシリコーンゴムと半透明のシリコーンゴムについて、横軸に波長(nm)をとり、縦軸に光Xの透過率(%)をとって、各シリコーンゴムにおける光Xの透過率を示すグラフである。同図において、各シリコーンゴムは、200~2200(nm)の間の波長の光Xを透過させることがわかる。そのため、この波長の領域である近赤外線をシリコーンゴム製のゴム型部2A、2Bの表面に照射すると、当該近赤外線の多くを、ゴム型部2A、2Bを透過させてキャビティ2内の熱可塑性樹脂6に吸収させることができる。
 図1に示すごとく、光照射成形装置1は、キャビティ20内の真空引きを行う真空手段5を備えている。真空手段5は、一対のゴム型部2A、2Bに接続するポンプであり、熱可塑性樹脂6が配置されたキャビティ20内の真空引きを行い、このキャビティ20内を真空状態にするよう構成されている。図4、図5に示すごとく、光照射成形装置1は、キャビティ20内の圧力を一対のゴム型部2A、2Bの外部の圧力よりも低くして、一対のゴム型部2A、2Bに吸引力(型締め力)Fを発生させることにより、熱可塑性樹脂6が溶融する際に一対のゴム型部2A、2Bが互いに接近するよう構成されている。
 図6に示すごとく、光照射成形装置1において成形する成形品7は、本体部71と、本体部71に対して略垂直に又は傾斜して起立するよう形成された立壁部72とを有するものである。本例の立壁部72は、本体部71の外縁部の全周から起立するものとした。これ以外にも、成形品7は、本体部71の適宜部分から立壁部72を略垂直に又は傾斜して起立させたものとすることができる。なお、後述する吸引口27に成形された成形部分73を切断して、成形品7とすることができる。
 図1、図2に示すごとく、一対のゴム型部2A、2Bの一方である一方側ゴム型部2Aは、成形品7の裏面702を成形するキャビティ形成凸部21と、キャビティ形成凸部21の外縁部全周に形成された環状嵌入凹部22と、環状嵌入凹部22の外縁部全周に突出形成された環状外周凸部23とを有している。一対のゴム型部2A、2Bの他方である他方側ゴム型部2Bは、キャビティ形成凸部21を内側に配置して成形品7の意匠面701を成形するキャビティ形成凹部25と、キャビティ形成凹部25の外縁部全周において突出し環状外周凸部23の内周面231に嵌入して環状嵌入凹部22内に配置する環状内周凸部26とを有している。
 ゴム型部2A、2Bにおける被嵌入凹部は、一方側ゴム型部2Aにおける環状嵌入凹部22及び環状外周凸部23によって形成されており、ゴム型部2A、2Bにおける嵌入凸部は、他方側ゴム型部2Bにおける環状内周凸部26によって形成されている。
 他方側ゴム型部2Bにおける環状内周凸部26の外周面263は、一対のゴム型部2A、2Bを互いに接近させる前の原位置P1において、環状外周凸部23の内周面231に嵌入されている。一対のゴム型部2A、2Bは、互いに接近させる前後において、環状内周凸部26の外周面263と環状外周凸部23の内周面231とによって、一対のゴム型部2A、2Bの間に形成された分割面205の全周が閉塞されている。
 一方側ゴム型部2Aにおける環状外周凸部23の内周面231に対する、他方側ゴム型部における環状内周凸部26の外周面263の嵌入によって、一対のゴム型部2A、2Bを互いに接近させるために分割面205に形成した隙間29から溶融した熱可塑性樹脂6Bが漏れ出すことを容易に防止することができる。
 図1、図2に示すごとく、キャビティ20は、一対のゴム型部2A、2Bを互いに接近させる前の原位置P1において、キャビティ形成凸部21の先端面211とキャビティ形成凹部25の底面251との間、キャビティ形成凸部21の外周面212と環状内周凸部26の内周面262との間、環状嵌入凹部22の底面221と環状内周凸部26の先端面261との間に連続して形成されている。
 図4、図5に示すごとく、一対のゴム型部2A、2Bは、キャビティ20内に配置された熱可塑性樹脂6が溶融する際に、一方側ゴム型部2Aにおける環状嵌入凹部22の底面221と、他方側ゴム型部2Bにおける環状内周凸部26の先端面261とが当接するまで接近するよう構成されている。一対のゴム型部2A、2Bが互いに接近してキャビティ20内に成形品7を成形する際には、キャビティ形成凸部21とキャビティ形成凹部25との間に形成された本体空間201と、環状嵌入凹部22の底面221と環状内周凸部26の先端面261との間に形成された余剰空間203とから、キャビティ形成凸部21の外周面212と環状内周凸部26の内周面262との間に形成された立壁空間202へ熱可塑性樹脂6が供給される。なお、図4、図5において、粒子状の熱可塑性樹脂を6Aで示し、溶融した熱可塑性樹脂を6Bで示す。
 図1、図2に示すごとく、一方側ゴム型部2Aには、キャビティ形成凸部21の先端面211に開口する吸引口27と、環状嵌入凹部22の底面221に開口する吸引ゲート28とが貫通形成されている。吸引口27は、粒子状の熱可塑性樹脂6Aをキャビティ20内へ投入するための投入口の機能も兼ねている。また、吸引口27は、本体空間201に配置された粒子状の熱可塑性樹脂6Aが溶融する際に、この本体空間201に余剰になった溶融状態の熱可塑性樹脂6Bを溢れ出させる空間としての機能も有している。
 本例において成形する成形品7は、上記のごとく立壁部72が本体部71の全周において略垂直又は傾斜状に起立するものである。そして、図3に示すごとく、吸引ゲート28は、環状嵌入凹部22の底面221における、キャビティ形成凹部25の底面251に対向する位置と、環状内周凸部26に対向する位置との複数箇所に開口して形成してある。なお、図3は、一方側ゴム型部2Aにおける吸引口27及び複数の吸引ゲート28の形成状態を示す。
 吸引ゲート28は、立壁部72を形成する位置に合わせて適宜形成することができる。
 例えば、互いに対向する一対の立壁部72のみを形成する場合には、環状嵌入凹部22の底面221であって立壁部72を形成する部分において、キャビティ形成凹部25の底面251に対向する位置と、環状内周凸部26に対向する位置とにのみ開口する吸引ゲート28を形成する。図8に示すごとく、環状嵌入凹部22の底面221であって立壁部72を形成しない残りの部分においては、キャビティ形成凹部25の底面251に対向する位置と、環状内周凸部26に対向する位置とには吸引ゲート28を形成しないことができる。この場合、環状嵌入凹部22の底面221であって立壁部72を形成しない残りの部分においては、一方側ゴム型部2Aにおけるキャビティ形成凸部21の外周面212と他方側ゴム型部2Bにおける環状内周凸部26の内周面262とを接触させておき、溶融した熱可塑性樹脂6が、環状内周凸部26の先端面261と環状嵌入凹部22の底面221との間に流入しないようにすることができる。
 図1、図2に示すごとく、吸引ゲート28は、吸引口27よりも流路断面積が小さい。吸引ゲート28は、真空手段5によってキャビティ20内の気体(エア)を吸引する際に、キャビティ20内における粒子状の熱可塑性樹脂6Aが吸引されないように熱可塑性樹脂6Aの粒子よりも小さな流路断面積で形成してある。
 一方側ゴム型部2Aにおいて他方側ゴム型部2Bと対向しない側には、バックアッププレート3が重ねて配置されている。そして、一方側ゴム型部2Aとバックアッププレート3との間には、真空手段5によって真空引きを行うための真空引き経路31が形成されている。真空引き経路31は、吸引口27及び複数の吸引ゲート28に連通している。
 図4、図5に示すごとく、光照射手段4は、他方側ゴム型部2Bにおけるキャビティ形成凹部25の底面251と平行に形成された外側面206に対向して配設されている。光照射成形装置1は、他方側ゴム型部2Bにおける外側面206に光照射手段4から照射する光Xによって、キャビティ形成凹部25の側から先にキャビティ20内に配置された粒子状の熱可塑性樹脂6Aを溶融させることができる。そして、光照射成形装置1は、吸引ゲート28が閉塞されることを防止して、キャビティ20の全体に溶融した熱可塑性樹脂6Bが充填されるまで、真空手段5による真空引きを継続することができる。
 図4、図5においては、吸引口27を設けた一方側ゴム型部2Aを下側にして配置した一対のゴム型部2A、2Bに対して、他方側ゴム型部2Bの上方から光照射手段4によって光Xを照射する状態を示した。これに対し、一対のゴム型部2A、2Bは、一方側ゴム型部2Aと他方側ゴム型部2Bとを水平方向に組み合わさる状態で配置し、水平方向から光Xを照射することもできる。また、他方側ゴム型部2Bを下側にして配置した一対のゴム型部2A、2Bに対して、一方側ゴム型部2Aの上方から光照射手段4によって光Xを照射することもできる。
 次に、上記光照射成形装置1を用いた光照射成形方法による作用効果について説明する。
 まず、樹脂配置工程として、一対のゴム型部2A、2Bの間に形成するキャビティ20内に粒子状の熱可塑性樹脂6Aを配置する。このとき、熱可塑性樹脂6Aは、一方側ゴム型部2Aに形成した吸引口(投入口)27から互いに組み合わせた状態の一対のゴム型部2A、2Bの間のキャビティ20内へ投入することができる。また、熱可塑性樹脂6Aは、開いた状態の他方側ゴム型部2Bにおけるキャビティ形成凹部25内に配置することもできる。この場合、熱可塑性樹脂6Aを配置した状態の一対のゴム型部2A、2Bを互いに組み合わせる。
 特に、固形状の熱可塑性樹脂6を用いる場合には、キャビティ形成凹部25又はキャビティ形成凸部21に対して熱可塑性樹脂6を配置した後、一対のゴム型部2A、2Bを組み合わせることができる。また、熱可塑性樹脂6は、粒子状のものと固形状のものとを組み合わせて用いることができる。
 また、図1、図2に示すごとく、一対のゴム型部2A、2Bを組み合わせた状態においては、一方側ゴム型部2Aにおける環状外周凸部23の内周面231と、他方側ゴム型部2Bにおける環状内周凸部26の外周面263とによって、一対のゴム型部2A、2Bの間に形成された分割面205の全周が閉塞される。
 次いで、樹脂成形工程として、図1に示すごとく、真空手段5によって真空引き経路31から吸引口27及び複数の吸引ゲート28を介してキャビティ20内の真空引きを開始する。このとき、キャビティ20において粒子状の熱可塑性樹脂6Aの間に形成された隙間から空気が吸引され、一対のゴム型部2A、2Bには、互いに接近しようとする吸引力Fが作用し、粒子状の熱可塑性樹脂6Aの粒子同士の間に圧力が加わる。
 そして、図4に示すごとく、真空手段5による真空引きを継続した状態で、光照射手段4によって他方側ゴム型部2Bにおける外側面206へ0.78~2μmの波長領域を含む光Xを照射する。このとき、光Xの多くは他方側ゴム型部2Bを透過し、キャビティ20内の熱可塑性樹脂6Aに吸収される。そして、光照射手段4に近い側に配置された他方側ゴム型部2Bにおけるキャビティ形成凹部25の底面251の近傍に位置する熱可塑性樹脂6Aが積極的に加熱される。キャビティ20内に配置された粒子状の熱可塑性樹脂6Aは、キャビティ20の本体空間201において他方側ゴム型部2Bのキャビティ形成凹部25の底面251の近傍に位置する粒子から先に溶融する。
 このとき、粒子状の熱可塑性樹脂6Aの溶融によって、粒子同士の間の隙間が真空状態であることにより粒子状の熱可塑性樹脂6Aの粒子同士の間に作用していた圧力が開放され、一対のゴム型部2A、2Bに作用する吸引力Fによって、本体空間201における粒子状の熱可塑性樹脂6Aが溶融し、本体空間201の容積が減少する。これにより、本体空間201の容積が減少した分だけ一対のゴム型部2A、2Bが互いに接近する。
 また、キャビティ20内の熱可塑性樹脂6Aが溶融を開始した後も、真空手段5によるキャビティ20内の真空引きを継続する。
 図5に示すごとく、キャビティ20内における粒子状の熱可塑性樹脂6Aは、キャビティ20の本体空間201においてキャビティ形成凹部25の底面251の近傍に位置する粒子から先に溶融し、次いで、キャビティ形成凸部21の先端面211の近傍に位置する粒子へと順次溶融して行く。そして、キャビティ20における立壁空間202及び余剰空間203に配置された粒子状の熱可塑性樹脂6Aは、本体空間201に配置された粒子状の熱可塑性樹脂6Aの略全体が溶融するまで、溶融せずに粒子状態が維持される。これにより、吸引口27及び複数の吸引ゲート28に配置された粒子状の熱可塑性樹脂6Aの間に形成された隙間からキャビティ20における本体空間201の真空引きが継続される。
 本体空間201における粒子状の熱可塑性樹脂6Aが溶融し、一対のゴム型部2A、2Bが互いに接近したときには、立壁空間202及び余剰空間203に配置された粒子状の熱可塑性樹脂6Aが溶融する。このとき、余剰空間203における溶融した熱可塑性樹脂6Bは、一対のゴム型部2A、2Bの接近によって余剰空間203の容積が減少する際に立壁空間202へと供給される。また、本体空間201において余剰となった溶融状態の熱可塑性樹脂6Bも、立壁空間202へと供給される。
 こうして、立壁空間202における粒子状の熱可塑性樹脂6Aが溶融する際に、立壁空間202における熱可塑性樹脂6の不足分は、余剰空間203及び本体空間201から補充することができ、立壁空間202に成形する立壁部72の厚みが薄くなることを回避することができる。また、一対のゴム型部2A、2Bは、キャビティ20内に配置された熱可塑性樹脂6が溶融する際に、一方側ゴム型部2Aにおける環状嵌入凹部22の底面221と、他方側ゴム型部2Bにおける環状内周凸部26の先端面261とが当接するまで接近する。そして、環状嵌入凹部22の底面221と環状内周凸部26の先端面261との間には、薄いシート状(バリ状)の熱可塑性樹脂の成形品が成形される。
 このように、樹脂成形工程においては、キャビティ20の全体に溶融した熱可塑性樹脂6Bが充填されるまで、真空手段5による真空引きを継続し、容積が減少したキャビティ20の全体に溶融した熱可塑性樹脂6Bを行き渡らせることができる。
 次いで、樹脂冷却工程として、一対のゴム型部2A、2Bにおけるキャビティ20に溶融した熱可塑性樹脂6Bが充填された状態を維持する。このとき、溶融した熱可塑性樹脂6Bが冷やされて固化し、本体空間201において本体部71が成形されると共に立壁空間202において立壁部7が成形されて、熱可塑性樹脂6の成形品7を得ることができる。
 その後、成形品取出工程として、一対のゴム型部2A、2Bを離型して、成形した成形品7を取り出すことができる。
 本例においては、ゴム型部2A、2Bに比べて熱可塑性樹脂6を選択的に加熱して溶融させることができ、ゴム型部2A、2Bの温度上昇を抑制して、熱可塑性樹脂6を効果的に加熱することができる。そのため、熱可塑性樹脂6の成形品7を成形する際に、ゴム型部2A、2Bの熱劣化を効果的に防止することができる。
 また、キャビティ20の容積を縮小させて成形品7を成形するため、キャビティ20内へ溶融状態の熱可塑性樹脂6Bを充填する必要がない。また、熱可塑性樹脂6を予め溶融させてキャビティ20へ注入する樹脂注入ノズル等の装置が不要になる。また、キャビティ20内に配置した熱可塑性樹脂6のほぼすべてを成形品7の成形に使用することができる。
 それ故、本例の光照射成形装置1及びこれを用いた光照射成形方法によれば、熱可塑性樹脂6を予め溶融させてキャビティ20へ注入する装置が不要になり、少ない熱可塑性樹脂6の使用量で成形品7を成形することができる。
(実施例2)
 本例においては、上記光照射成形装置1の構成を上記実施例1とは異なる構成にしたいくつかの例を示す。
 上記一対のゴム型部2A、2Bは、上記環状外周凸部23の内周面231と上記環状内周凸部26の外周面263との嵌合によって一対のゴム型部2A、2Bの間の分割面205の全周を閉塞する以外にも、図9に示すごとく、一対のゴム型部2A、2Bの間に形成された分割面205の全周に貼り付けられた樹脂テープ35によって、分割面205の全周を閉塞する構造とすることもできる。
 具体的には、一方側ゴム型部2Aに、キャビティ形成凸部210を形成すると共にその外縁部全周に環状凹部220を形成し、他方側ゴム型部2Bに、キャビティ形成凹部250を形成すると共にその外縁部全周に環状凸部260を形成する。
 そして、一方側ゴム型部2Aの側面207と他方側ゴム型部2Bの側面207との間に掛け渡して貼り付けた樹脂テープ35によって、一方側ゴム型部2Aと他方側ゴム型部2Bとの間の分割面205における隙間29を塞ぐ。このとき、環状凹部220の底面と環状凸部260の先端面との間に、成形品7の成形に用いる熱可塑性樹脂6と同じ組成の熱可塑性樹脂6のスペーサ61を配置する。そして、このスペーサ61の高さを調節することによって、本体空間201の成形前の容積、すなわちキャビティ20の成形前の容積を意図する容積に設定することができる。この場合には、樹脂テープ35によって、溶融したキャビティ20内の熱可塑性樹脂6が分割面205における隙間29から外部へ漏れ出すことを防止することができる。
 また、図10に示すごとく、上記光照射手段4は、他方側ゴム型部2Bにおけるキャビティ形成凹部25の底面251と平行に形成された外側面206に沿って一方側から他方側へ、すなわち、一対のゴム型部2A、2Bが向き合う方向に対して直交する方向の一方側から他方側へ、順次移動しながら部分的に光Xを照射するよう構成することができる。そして、熱可塑性樹脂6を配置したキャビティ20内を真空手段5によって真空状態にしておき、順次移動する光照射手段4によって光Xを照射することにより、一対のゴム型部2A、2Bのキャビティ20における一方側から他方側に沿って順次熱可塑性樹脂6を加熱して溶融させる。これにより、一対のゴム型部2A、2Bを一方側から他方側に沿って順次互いに接近させ、キャビティ20の全体に熱可塑性樹脂6を充填して、成形品7を得ることができる。この場合には、キャビティ20内の粒子状の熱可塑性樹脂6Aを部分的に溶融させていくことにより、キャビティ20の全体に溶融した熱可塑性樹脂6Bを安定して行き渡らせることができる。
 本例においても、光照射成形装置1のその他の構成は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。

Claims (14)

  1.  光を透過する性質を有するゴム材料からなり、互いに合わさる対向側にキャビティを形成する一対のゴム型部と、
     該一対のゴム型部の表面から、上記キャビティ内に配置した粒子状又は固形状の熱可塑性樹脂に光を照射する光照射手段とを備えており、
     該光照射手段から照射する光によって上記キャビティ内に配置した上記熱可塑性樹脂を溶融させながら、上記一対のゴム型部を互いに接近させて上記キャビティの容積を縮小させ、容積が縮小した上記キャビティ内において上記熱可塑性樹脂の成形品を成形するよう構成してあることを特徴とする光照射成形装置。
  2.  請求項1に記載の光照射成形装置において、該光照射成形装置は、上記キャビティ内の真空引きを行う真空手段を備えており、
     該真空手段によって上記キャビティ内の圧力を上記一対のゴム型部の外部の圧力よりも低くして、該一対のゴム型部に吸引力を発生させることにより、上記熱可塑性樹脂が溶融する際に上記一対のゴム型部が互いに接近するよう構成してあることを特徴とする光照射成形装置。
  3.  請求項1又は2に記載の光照射成形装置において、上記一対のゴム型部は、互いに接近させる前の原位置において、いずれか一方に設けた被嵌入凹部内に他方に設けた嵌入凸部を嵌入してなり、
     該嵌入凸部と上記被嵌入凹部とによって上記一対のゴム型部の間に形成された分割面の全周が閉塞されていることを特徴とする光照射成形装置。
  4.  請求項1又は2に記載の光照射成形装置において、上記一対のゴム型部は、互いに接近させる前の原位置において、いずれか一方に設けたキャビティ形成凹部内に、他方に設けたキャビティ形成凸部を配置してなり、
     上記一対のゴム型部の間に形成された分割面の全周に貼り付けられた樹脂テープによって、上記分割面の全周が閉塞されていることを特徴とする光照射成形装置。
  5.  請求項1又は2に記載の光照射成形装置において、上記一対のゴム型部の一方は、上記成形品の裏面を成形するキャビティ形成凸部と、該キャビティ形成凸部の外縁部全周に形成された環状嵌入凹部と、該環状嵌入凹部の外縁部全周において突出形成された環状外周凸部とを設けてなり、
     上記一対のゴム型部の他方は、上記キャビティ形成凸部を内側に配置して上記成形品の意匠面を成形するキャビティ形成凹部と、該キャビティ形成凹部の外縁部全周において突出し上記環状外周凸部の内周面に嵌入して上記環状嵌入凹部内に配置する環状内周凸部とを設けてなり、
     上記キャビティは、上記一対のゴム型部を互いに接近させる前の原位置において、上記キャビティ形成凸部の先端面と上記キャビティ形成凹部の底面との間、上記キャビティ形成凸部の外周面と上記環状内周凸部の内周面との間、上記環状嵌入凹部の底面と上記環状内周凸部の先端面との間に連続して形成されており、
     上記一対のゴム型部の一方には、上記キャビティ形成凸部の先端面に開口する吸引口と、上記環状嵌入凹部の底面に開口する吸引ゲートとが形成してあり、
     上記吸引口及び上記吸引ゲートには、上記真空手段によって真空引きを行うための真空引き経路が連通してあることを特徴とする光照射成形装置。
  6.  請求項5に記載の光照射成形装置において、上記吸引口は、上記粒子状の熱可塑性樹脂を上記キャビティ内へ投入するための投入口も兼ねていることを特徴とする光照射成形装置。
  7.  請求項5又は6に記載の光照射成形装置において、上記一対のゴム型部は、上記一対のゴム型部の一方における上記環状嵌入凹部の底面と上記一対のゴム型部の他方における上記環状内周凸部の先端面とが当接するまで接近させ、上記環状嵌入凹部の底面と上記環状内周凸部の先端面との間に形成された余剰空間から、上記キャビティ形成凸部の外周面と上記環状内周凸部の内周面との間に形成された立壁空間へ上記熱可塑性樹脂を供給して、上記成形品を成形するよう構成してあることを特徴とする光照射成形装置。
  8.  請求項5~7のいずれか一項に記載の光照射成形装置において、上記吸引ゲートは、上記吸引口よりも流路断面積が小さく、かつ、上記環状嵌入凹部の底面における、上記キャビティ形成凹部の底面に対向する位置と、上記環状内周凸部に対向する位置とに開口して形成してあることを特徴とする光照射成形装置。
  9.  請求項1~8のいずれか一項に記載の光照射成形装置において、上記光照射手段は、上記一対のゴム型部の他方における外側面から光を照射するよう構成してあり、
     上記キャビティ形成凹部の側から先に上記キャビティ内に配置された上記粒子状の熱可塑性樹脂を溶融させて充填することにより、上記吸引ゲートが閉塞されることを防止して、上記キャビティの全体に上記熱可塑性樹脂が充填されるまで、上記真空手段による真空引きを継続するよう構成してあることを特徴とする光照射成形装置。
  10.  請求項1~8のいずれか一項に記載の光照射成形装置において、上記光照射手段は、上記一対のゴム型部の他方における外側面の一方側から他方側へ部分的に順次相対的に移動しながら光を照射するよう構成してあり、
     上記キャビティにおける一方側から他方側に向けて順次上記熱可塑性樹脂を充填するよう構成してあることを特徴とする光照射成形装置。
  11.  光を透過する性質を有するゴム材料からなり、互いに合わさる対向側にキャビティを形成する一対のゴム型部と、
     該一対のゴム型部の表面から、上記キャビティ内に配置した粒子状又は固形状の熱可塑性樹脂に光を照射する光照射手段とを用い、
     該光照射手段から照射する光によって上記キャビティ内に配置した上記熱可塑性樹脂を溶融させながら、上記一対のゴム型部を互いに接近させて上記キャビティの容積を縮小させ、容積が縮小した上記キャビティ内において上記熱可塑性樹脂の成形品を成形することを特徴とする光照射成形方法。
  12.  請求項11に記載の光照射成形方法において、上記キャビティ内の真空引きを行う真空手段を用い、
     該真空手段によって上記キャビティ内の圧力を上記一対のゴム型部の外部の圧力よりも低くして、該一対のゴム型部に吸引力を発生させることにより、上記熱可塑性樹脂が溶融する際に上記一対のゴム型部を互いに接近させることを特徴とする光照射成形方法。
  13.  請求項12に記載の光照射成形方法において、上記光照射手段による光を、上記一対のゴム型部の他方における外側面から照射し、
     上記キャビティ形成凹部の側から先に上記キャビティ内に配置された上記粒子状の熱可塑性樹脂を溶融させて充填することにより、上記吸引ゲートが閉塞されることを防止して、上記キャビティの全体に上記熱可塑性樹脂が充填されるまで、上記真空手段による真空引きを継続することを特徴とする光照射成形方法。
  14.  請求項12に記載の光照射成形方法において、上記光照射手段による光を、上記一対のゴム型部の他方における外側面の一方側から他方側へ部分的に順次移動しながら照射し、
     上記キャビティにおける一方側から他方側に向けて順次上記熱可塑性樹脂を充填することを特徴とする光照射成形方法。
PCT/JP2011/059691 2010-05-17 2011-04-20 光照射成形装置及び光照射成形方法 WO2011145422A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/698,837 US20130062816A1 (en) 2010-05-17 2011-04-20 Light irradiation molding apparatus and light irradiation molding method
US14/669,036 US9669566B2 (en) 2010-05-17 2015-03-26 Light irradiation molding apparatus and light irradiation molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-112996 2010-05-17
JP2010112996A JP5349403B2 (ja) 2010-05-17 2010-05-17 光照射成形装置及び方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/698,837 A-371-Of-International US20130062816A1 (en) 2010-05-17 2011-04-20 Light irradiation molding apparatus and light irradiation molding method
US14/669,036 Division US9669566B2 (en) 2010-05-17 2015-03-26 Light irradiation molding apparatus and light irradiation molding method

Publications (1)

Publication Number Publication Date
WO2011145422A1 true WO2011145422A1 (ja) 2011-11-24

Family

ID=44991537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059691 WO2011145422A1 (ja) 2010-05-17 2011-04-20 光照射成形装置及び光照射成形方法

Country Status (4)

Country Link
US (2) US20130062816A1 (ja)
JP (1) JP5349403B2 (ja)
TW (1) TWI438074B (ja)
WO (1) WO2011145422A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636916B2 (ja) 2010-11-30 2014-12-10 Jsr株式会社 光照射成形装置及び光照射成形方法
JP5790778B2 (ja) * 2011-11-16 2015-10-07 Jsr株式会社 成形装置、及び熱可塑性成形品の製造方法
US10737423B2 (en) 2015-08-28 2020-08-11 The Boeing Company Systems and methods for sealant injection molding
PE20180955A1 (es) * 2015-09-15 2018-06-12 Com Nicem Exinte S A Molde para la inyeccion de termoplasticos y procedimiento de utilizacion de dicho molde
EP3936299A4 (en) * 2019-04-26 2022-06-15 micro-AMS Inc. RESIN FORMING PROCESS
JP7137227B2 (ja) * 2020-02-25 2022-09-14 株式会社micro-AMS 予備成形装置及び予備成形方法、並びに樹脂成形システム及び樹脂成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216444A (ja) * 2006-02-15 2007-08-30 Ushio Inc 真空注型装置用加熱ユニット
JP2008012896A (ja) * 2006-07-10 2008-01-24 Techno Polymer Co Ltd 樹脂成形装置
WO2009123046A1 (ja) * 2008-03-31 2009-10-08 テクノポリマー株式会社 熱可塑性樹脂成形品の製造方法及び熱可塑性樹脂粒子組成物
JP2010269541A (ja) * 2009-05-22 2010-12-02 Techno Polymer Co Ltd 電磁波照射成形用のゴム型及び電磁波照射成形方法
WO2011070998A1 (ja) * 2009-12-10 2011-06-16 テクノポリマー株式会社 熱可塑性樹脂成形品の成形方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553334B2 (ja) * 1986-08-06 1996-11-13 謙治 土場 樹脂成形装置
EP0509371B1 (en) * 1991-04-08 1997-07-16 Sumitomo Chemical Company, Limited Process for producing multilayer molded article
US5370521A (en) * 1993-09-29 1994-12-06 The Budd Company Compression mold with vacuum seal
US5632936A (en) * 1994-05-04 1997-05-27 Ciba-Geigy Ag Method and apparatus for molding ophthalmic lenses using vacuum injection
TW429327B (en) * 1997-10-21 2001-04-11 Novartis Ag Single mould alignment
US6749794B2 (en) * 2001-08-13 2004-06-15 R + S Technik Gmbh Method and apparatus for molding components with molded-in surface texture
US20040245677A1 (en) * 2003-06-06 2004-12-09 Marple Melvyn G. UV cure resin molding method
JP2006247995A (ja) * 2005-03-10 2006-09-21 Seiko Epson Corp 成形型、成形装置及び光学部品の製造方法
US20070090554A1 (en) * 2005-10-26 2007-04-26 Rick Wykoff Panel molding method and apparatus
KR100950873B1 (ko) * 2005-11-15 2010-04-06 니혼 렉스 가부시키가이샤 수지 성형 방법 및 수지 성형 장치
JP4234143B2 (ja) * 2006-02-15 2009-03-04 テクノポリマー株式会社 樹脂成形方法及び樹脂成形装置
FR2903934B1 (fr) * 2006-07-21 2012-06-15 Axon Cable Sa Unite et procede de thermoformage permettant l'obtention de formes complexes
JP5160284B2 (ja) 2008-03-31 2013-03-13 テクノポリマー株式会社 樹脂成形方法
JP5636916B2 (ja) * 2010-11-30 2014-12-10 Jsr株式会社 光照射成形装置及び光照射成形方法
JP5920347B2 (ja) 2011-06-17 2016-05-18 Jsr株式会社 電磁波照射成形装置及び電磁波照射成形方法
JP5790778B2 (ja) * 2011-11-16 2015-10-07 Jsr株式会社 成形装置、及び熱可塑性成形品の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216444A (ja) * 2006-02-15 2007-08-30 Ushio Inc 真空注型装置用加熱ユニット
JP2008012896A (ja) * 2006-07-10 2008-01-24 Techno Polymer Co Ltd 樹脂成形装置
WO2009123046A1 (ja) * 2008-03-31 2009-10-08 テクノポリマー株式会社 熱可塑性樹脂成形品の製造方法及び熱可塑性樹脂粒子組成物
JP2010269541A (ja) * 2009-05-22 2010-12-02 Techno Polymer Co Ltd 電磁波照射成形用のゴム型及び電磁波照射成形方法
WO2011070998A1 (ja) * 2009-12-10 2011-06-16 テクノポリマー株式会社 熱可塑性樹脂成形品の成形方法

Also Published As

Publication number Publication date
US20150197041A1 (en) 2015-07-16
JP5349403B2 (ja) 2013-11-20
TW201206674A (en) 2012-02-16
JP2011240539A (ja) 2011-12-01
US9669566B2 (en) 2017-06-06
US20130062816A1 (en) 2013-03-14
TWI438074B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2011145422A1 (ja) 光照射成形装置及び光照射成形方法
JP5790778B2 (ja) 成形装置、及び熱可塑性成形品の製造方法
JP5652169B2 (ja) 熱可塑性樹脂成形品の成形方法
US8293165B2 (en) Resin forming method and resin forming apparatus
US9383074B2 (en) Light-emitting device and production method for synthetic resin globe for said light-emitting device
JP5160284B2 (ja) 樹脂成形方法
JP5636916B2 (ja) 光照射成形装置及び光照射成形方法
WO2010047269A1 (ja) 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
KR20130136408A (ko) 사출 성형기에서 액체 실리콘 재료를 가공하기 위한 방법과 장치 및 사출 성형기
JP2010269541A (ja) 電磁波照射成形用のゴム型及び電磁波照射成形方法
JP2008201137A (ja) 成形体の製造装置および製造方法
JP5330094B2 (ja) 多色成形方法及び多色成形品
JP2007076178A (ja) 成形体の製造装置および製造方法
JP2012254577A (ja) バルブゲート式金型装置
JP2013006361A (ja) バルブゲート式金型装置
JP2011189549A (ja) 光照射成形用のゴム型、光照射成形装置及び光照射成形方法
JP2013022753A (ja) バルブゲート式金型装置
JP2011143635A (ja) 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
JP2006159645A (ja) 光学素子の製造方法及び製造装置
JP2009154366A (ja) 樹脂成形用のゴム型、並びにこれを用いた成形装置及び成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698837

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11783359

Country of ref document: EP

Kind code of ref document: A1