WO2011145339A1 - オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法 - Google Patents

オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法 Download PDF

Info

Publication number
WO2011145339A1
WO2011145339A1 PCT/JP2011/002755 JP2011002755W WO2011145339A1 WO 2011145339 A1 WO2011145339 A1 WO 2011145339A1 JP 2011002755 W JP2011002755 W JP 2011002755W WO 2011145339 A1 WO2011145339 A1 WO 2011145339A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
austenitic
austenitic cast
amount
casting
Prior art date
Application number
PCT/JP2011/002755
Other languages
English (en)
French (fr)
Inventor
杉山 知平
石川 学
守 小嶋
木下 恭一
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2012515755A priority Critical patent/JP5488941B2/ja
Priority to US13/695,719 priority patent/US9567657B2/en
Priority to PL11783276T priority patent/PL2573199T3/pl
Priority to EP11783276.6A priority patent/EP2573199B1/en
Publication of WO2011145339A1 publication Critical patent/WO2011145339A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present invention relates to an austenitic cast iron excellent in oxidation resistance, a casting made thereof and a method for producing the same.
  • a member having a complicated shape or a relatively large member is often manufactured by casting, and a relatively inexpensive cast iron casting (hereinafter simply referred to as “casting”) is often used.
  • Cast iron is one in which carbon (C) in an alloy containing iron-carbon as a main component exceeds the maximum solid solubility limit (about 2% by mass) in ⁇ -iron and is accompanied by eutectic solidification.
  • C carbon
  • various alloy elements are added in order to improve properties such as mechanical properties, corrosion resistance, and heat resistance.
  • Such cast iron is called alloy cast iron, and in particular, cast iron with a large amount of alloy elements is called high alloy cast iron.
  • This high alloy cast iron is generally roughly classified into ferritic cast iron and austenitic cast iron depending on the difference in crystal structure of the crystallization base.
  • austenitic cast iron is mainly composed of an austenite phase ( ⁇ phase) not only in a high temperature range but also in a normal temperature range, so that it has excellent heat resistance, oxidation resistance, corrosion resistance, etc., and excellent ductility and toughness.
  • austenitic cast iron is frequently used for members used in harsh environments such as high-temperature atmospheres.
  • turbocharger housings, exhaust manifolds, catalyst cases, and the like Each member is a component that is exposed to high-temperature exhaust gas and requires long-term durability.
  • JIS Japanese Industrial Standard
  • FCA flake graphite
  • FCDA spheroidal graphite
  • Ni is an austenite stabilizing element (for example, Ni: 18 to 36%), so that an austenitic phase can be obtained even at room temperature.
  • Ni is very expensive as compared with iron (Fe) as a base material and other alloy elements, and a casting made of conventional austenitic cast iron is very expensive.
  • a JIS FCDA-NiSiCr3552 equivalent Ni-resist cast iron called D-5S has a high austenite phase stability due to its high Ni content, and also exhibits excellent oxidation resistance.
  • austenitic cast iron with a relatively low Ni content such as JIS FCDA-NiCr202 equivalent Ni-resist cast iron called D-2.
  • Ni-resist cast iron equivalent to FCDA-NiCr202 is inferior in oxidation resistance. Therefore, for example, it is not suitable for a housing of a variable nozzle turbo (VNT (trademark), also called a variable capacity turbo).
  • VNT variable nozzle turbo
  • VNT is a type of turbocharger, and the exhaust area of a plurality of variable nozzles arranged outside the exhaust turbine in the housing is varied in accordance with the engine speed to control the exhaust gas flow rate. The rotational speed of the exhaust turbine is adjusted by changing the supply efficiency.
  • the oxidation resistance of the housing is important from the viewpoint of securing the dimension of the gap.
  • the oxide peeled off from the housing may be caught in the movable part of the turbine blade and the turbine blade may not move or be damaged.
  • both the turbocharger housing and the exhaust manifold are parts used in the exhaust system, if the separated oxide is large in size, it may cause clogging of the honeycomb carrier of the exhaust gas purification catalyst.
  • Patent Document 1 describes highly heat-resistant corrosion-resistant cast iron containing 0.8 to 2.0% of C. Silicon (Si) is added for the purpose of improving heat insulation. Moreover, chromium (Cr) and copper (Cu) are contained from a viewpoint of corrosion resistance. Patent Document 1 does not mention the relationship between the hardness and composition of cast iron. Cast irons 1 to 9 all have high hardness (Vickers hardness of about Hv280 or more) and are not suitable for processing. Moreover, in patent document 1, the heat insulation of cast iron is improved by making C content less than normal cast iron.
  • Patent Document 1 focusing on the amount of C, the amount of C in each of the examples described in Patent Document 1 is 0.8 to 1.0%, so that it is disclosed in Patent Document 1 rather than cast iron.
  • Cast steel discloses an austenitic cast iron in which the amount of Ni is further decreased while the amount of Si is increased as compared with the above-described niresist cast iron.
  • Patent Document 2 discloses that the oxidation increase per unit area decreases as the Si amount increases with respect to oxidation resistance, which is an index of heat resistance regarding austenitic cast iron (No. 6 in Patent Document 2). (See figure).
  • the present inventor has disclosed an austenitic cast iron having a low Ni content and excellent not only in thermal fatigue strength but also in oxidation resistance in Patent Document 3.
  • the amount of Ni in the entire cast iron is considerably small (upper limit is 15%). From the conventional technical common sense, it seems that a base having an austenite phase stable in a normal temperature range as a main phase cannot be obtained.
  • Ni content is more than usual by making each content of C (especially solid solution carbon amount Cs), Si, Cr, manganese (Mn), and Cu which are other alloy elements into an appropriate range. We succeeded in obtaining the austenite phase even with a small amount.
  • an object of the present invention is to provide an austenitic cast iron having a relatively low Ni content and excellent in oxidation resistance at high temperatures and austenite phase stability in a medium temperature range. Also provided also to austenitic castings and a manufacturing method thereof comprising from its austenitic cast iron.
  • the present inventor presupposes a smaller amount of Ni than conventional Ni-resist cast iron (D5S), which is excellent in oxidation resistance and austenite phase stability, and C, Si, Cr, Mn and
  • D5S Ni-resist cast iron
  • the present inventors have succeeded in obtaining an austenitic cast iron that achieves both oxidation resistance at high temperatures and austenite phase stability at intermediate temperatures.
  • the austenitic cast iron of the present invention is Basic elements composed of carbon (C), silicon (Si), chromium (Cr), nickel (Ni), manganese (Mn) and copper (Cu); The balance is iron (Fe) and inevitable impurities and / or a trace amount of trace reforming elements effective for improving properties,
  • An austenitic cast iron which is a cast iron organized in a base made of an Fe alloy having an austenite phase as a main phase in a normal temperature range, The basic element is in a composition range satisfying the following conditions when the entire cast iron is 100% by mass (hereinafter simply referred to as “%”).
  • C 2.0 to 3.0% Si: 4.0 to 5.4% Cr: 0.8 to 2.0%
  • Mn 3.9 to 5.6%
  • Cu 0.9 to 1.6%
  • FIG. 1 shows the weight loss of each element with respect to the weight loss after the Fe—C—Si—Ni—Mn—Cu—Cr alloy is left in the atmosphere at 750 ° C., 800 ° C. or 850 ° C. for 100 hours. It is a graph which shows the partial regression coefficient at the time of performing the multivariate analysis made into the variable.
  • the method for measuring the oxidation loss is the same as the method described later (Example column).
  • the vertical axis of the graph in FIG. 1 shows the amount of change in oxidation loss when 1% by mass of each element is added, and is expressed as a positive value when it is easy to oxidize and as a negative value when it becomes difficult to oxidize.
  • the oxidation resistance is improved by increasing the amount of Si, but the oxidation resistance particularly at 850 ° C. is remarkably improved.
  • the addition of Ni has little effect on the oxidation resistance.
  • FIG. 2 shows the amount of change in the BCC transformation driving force at an intermediate temperature range of 500 ° C. or 600 ° C. of the Fe—C—Si—Ni—Mn—Cu—Cr alloy. It is a graph which shows the partial regression coefficient at the time of performing a variable analysis.
  • the austenitic cast iron of the present invention contains Si to the extent that the oxidation resistance at high temperatures can be maintained, and by adding Mn, Cu and Cr in a complex manner, the normal temperature can be achieved with a relatively small Ni addition amount.
  • the austenite phase can be stabilized even in the middle temperature range. Therefore, the austenitic cast iron of the present invention can achieve both the stability of the austenite phase in the middle temperature range and the excellent oxidation resistance at high temperatures even if the Ni content is relatively small.
  • the decrease in the austenite ratio in the middle temperature range in austenitic cast iron is a phenomenon that has not been noticed so far. This is because the austenitic cast iron did not crack or deform due to an increase in the ferrite phase even when left for a long time in a high temperature range of 700 ° C. or higher. That is, in the high temperature range of 700 ° C. or higher, it is presumed that the austenite phase is stable without being greatly influenced by the composition even if it is kept for a long time. This becomes clear when the BCC transformation driving force is theoretically calculated with respect to temperature.
  • FIG. 3 is a graph showing the stability of the austenite phase of various austenitic cast irons (the symbols in the figure are the same as those of the test piece No. described later), and shows the BCC transformation driving force ( ⁇ G) obtained by theoretical calculation. Shows temperature dependence. In this graph, when ⁇ G is a positive value, it can be said that the austenite phase is theoretically stable.
  • the graph of FIG. 3 shows changes in ⁇ G of six types of austenitic cast irons having different compositions. In any austenitic cast iron, the value of ⁇ G increases as the temperature increases, and ⁇ G> 0 at 700 ° C. or higher. Moreover, when the test piece C4 was actually heat-treated at 700 ° C.
  • the austenitic cast iron of the present invention with enhanced stability of the austenitic phase in the intermediate temperature range is less likely to crack even if kept for a long time in the intermediate temperature range to the high temperature range.
  • austenitic cast iron of the present invention within the above composition range also sufficiently exhibits mechanical properties such as proof stress, tensile strength, and elongation.
  • the “austenite phase” does not have to be a complete austenite single phase. That is, in the present invention, “having an austenite phase as a main phase” and “stable austenite phase” are 100% austenite by X-ray diffraction (XRD), and are composed of martensite and pearlite in austenite. In addition to a single austenite phase that does not contain a layered structure, it is acceptable to include a few martensite phases.
  • the peak area (that is, the austenite ratio) may be more than 50%, 60% or more, 70% or more, 80% or more, 90% or more, and 95% or more.
  • the peak area can be calculated from the XRD measurement result.
  • the present invention can be grasped not only as the austenitic cast iron described above but also as an austenitic cast made of the austenitic cast iron.
  • austenitic cast of the present invention include members that are exposed to high-temperature environments, such as exhaust equipment members.
  • the present invention includes a melt preparation step of preparing a melt having the composition range described above, A pouring step of pouring the molten metal into a mold; A solidification step of cooling and solidifying the molten metal poured into the mold;
  • the method for producing an austenitic cast may be characterized in that a cast made of the austenitic cast iron of the present invention described above is obtained.
  • an auxiliary is often added to increase the number of graphite particles crystallized in the matrix structure and to make the shape spherical.
  • the manufacturing method of the austenitic cast of the present invention includes a main hot water preparation step of preparing a main hot water composed of a molten metal having the composition range described above, An auxiliary agent addition step of directly or indirectly adding an auxiliary agent containing at least one of an inoculant as a nucleus of graphite to be crystallized or precipitated and a spheroidizing agent for promoting spheroidization of the graphite; A pouring step of pouring the molten metal after the auxiliary agent addition step or during the auxiliary agent addition step into a mold; A solidification step of cooling and solidifying the molten metal poured into the mold; And a casting made of the austenitic cast iron in which substantially spherical graphite is crystallized or precipitated in the matrix may be obtained.
  • the austenitic cast iron of the present invention has a relatively low Ni content, but is excellent in oxidation resistance at high temperatures and austenitic phase stability in the middle temperature range.
  • FIG. 6 is a graph showing a partial regression coefficient when performing multivariate analysis using the added mass% of each element in a Fe—C—Si—Ni—Mn—Cu—Cr alloy as a variable, and the oxidation resistance is represented by the oxidation weight loss. It is the result evaluated by the change value.
  • 6 is a graph showing a partial regression coefficient when a multivariate analysis is performed with the addition mass% of each element as a variable in an Fe—C—Si—Ni—Mn—Cu—Cr alloy, and the stability of the austenite phase is represented by BCC. It is the result evaluated by the change value of the transformation driving force. It is a graph which shows the stability of the austenitic phase of various austenitic cast iron with respect to temperature.
  • FIG. 6 is a graph showing a partial regression coefficient when a multivariate analysis was performed with the addition mass% of each element in a Fe—C—Si—Ni—Mn—Cu—Cr alloy as a variable, and the Vickers hardness was measured for the test piece. It is the result evaluated by the change value of Vickers hardness with respect to board thickness.
  • the X-ray diffraction peak of the austenitic cast iron of a comparative example is shown. It is a graph which shows stability of the austenitic cast iron of this invention, and the austenite phase of the cast iron conventionally used widely. It is a graph which shows the oxidation weight loss of the austenitic cast iron of this invention and the cast iron conventionally used widely.
  • the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • the austenitic cast iron of the present invention is composed of a basic element and the balance Fe, and the basic element is composed of six elements of C, Si, Cr, Mn, Ni and Cu.
  • the action or function of each of these elements and the preferred composition will be described.
  • Cast iron is one in which C in the Fe-C alloy exceeds the maximum solid solubility limit in ⁇ iron and involves eutectic solidification, so the lower limit of the C content is basically 1%, and the solid solubility limit is limited. Exceeding C crystallizes as graphite. However, if the amount of C is too small, the fluidity of the molten metal is lowered and a preferable castability cannot be obtained.
  • the C content is preferably 2.0% or more (maximum solid solubility limit or more), 2.1% or more, further 2.2% or more, preferably 2.3% or more, more preferably 2.4%. That's it. If the amount of C is excessive, the base structure decreases and the mechanical properties and the like of the austenitic cast iron deteriorate. In particular, the amount of C affects the hardness of austenitic cast iron, and consequently the workability of austenitic cast iron. In addition, casting defects such as shrinkage cavities are likely to occur during casting. Therefore, the C content is 3.0% or less, preferably 2.9% or less, 2.8% or less, 2.7% or less, and more preferably 2.6% or less.
  • Si lowers the metastable eutectic temperature to promote eutectic ⁇ Fe- graphite, which contributes to crystallization of graphite.
  • the Si may form a passive film of silicon oxide near the surface of the graphite to be crystallized to enhance the oxidation resistance of the cast iron.
  • the Si content is preferably 4.0% or more, and more preferably 4.1% or more. If even higher oxidation resistance is required, it should be 4.2% or higher, 4.3% or higher, or 4.5% or higher.
  • the Si amount is 5.4% or less, and further 5.3% or less. Further, when the amount of Si is excessive, the thermal fatigue strength and the elongation at room temperature tend to decrease.
  • the tapping temperature of a general casting facility is set to 1500 to 1550 ° C. However, considering mass productivity, the temperature drop generated during continuous pouring of the mold is 100 ° C. or more, and the temperature drop due to the addition of the auxiliary agent is about 100 ° C. It is desirable to keep the melting point below 1350 ° C.
  • the phase diagram in the composition range of the austenitic cast iron of the present invention is unknown, but when considering using the cutting equilibrium phase diagram at 2.4 mass% Si of the Fe-C phase diagram generally used in cast iron, C Is 4.0% or less, the melting point is 1350 ° C. or less. If C is less than 1.2%, carbon is in a solid solution state, so that graphite may not crystallize depending on the cooling rate. From the above, when Ceq is set to 2.0 to 4.8%, the molten metal flow is good and the formation of the cast hole is suppressed.
  • Ceq has the lowest melting point in the vicinity of the eutectic point, and the control range of the addition amount of the alloy element in mass production is about C: ⁇ 0.3% and Si: about ⁇ 0.5%. Therefore, it is 3.6 to 4.6%.
  • the Cr content is preferably 0.8% or more, more preferably 0.9% or more.
  • the Cr content is preferably 2.0% or less, and preferably 1.9% or less, further 1.7% or less, 1.6% or less, and 1.5% or less.
  • Mn is an element effective not only for stabilizing the austenite structure, but also for removing S that causes fluidity deterioration and embrittlement. Further, if Mn is too small, martensite is easily generated, so the lower limit of the amount of Mn is basically 1.5%. However, even if it contains Mn exceeding 1.5%, when the Si content is high and the Ni content is low, ferrite is likely to be generated in the middle temperature range. Therefore, the amount of Mn is good to be 3.9% or more, further 4.0% or more. On the other hand, if the amount of Mn is excessive, Mn carbide increases, leading to a decrease in toughness and the like of cast iron and a decrease in heat resistance. Also, gas defects such as blow holes are likely to occur, which is not preferable. Also, the thermal fatigue strength is reduced.
  • the amount of Mn is preferably 5.6% or less, more preferably 5.2% or less, and 5.0% or less.
  • Ni is an element effective for the austenitization of the base structure. However, as described above, if Ni is too small, it is difficult to obtain an austenite phase that is stable in the middle temperature range. Therefore, the amount of Ni is preferably 17% or more, more preferably 19% or more. Furthermore, since Ni can reduce hardness and improve thermal fatigue strength, the amount of Ni is preferably 19.5% or more, more preferably 20% or more. However, in the austenitic cast iron of the present invention, the austenitic cast iron is reduced in price by reducing the amount of Ni. The amount of Ni is preferably 22% or less, more preferably 21.5% or less, and 21% or less.
  • Mn is an element that has the effect of improving the stability of the austenite phase in the middle temperature range to the same extent as Ni. Therefore, if the total amount of Ni and Mn added (Ni + Mn) is defined, it is preferably 21% or more and 27% or less. Ni + Mn is preferably 21.5% or more, 23% or more, and more preferably 24% or more, since the austenite phase stability in the intermediate temperature range can be ensured even if the Si addition amount is relatively large. On the other hand, if the addition amount of Si is in the above range, Ni + Mn can be reduced to 26% or less, and further to 25.5% or less.
  • the amount of Cu is 0.9% or more, preferably 1.0% or more, more preferably 1.2% or more.
  • the amount of Cu is 1.6% or less, preferably 1.5% or less, more preferably 1.4% or less.
  • FIG. 4 shows a thickness of 25 mm based on the partial regression coefficient when the multivariate analysis was performed with the addition mass% of each element in the Fe—C—Si—Ni—Mn—Cu—Cr alloy as a variable. It is a graph which shows the correlation with the raise value of the hardness of each test piece, and the board thickness of a test piece for every 12 mm, 5 mm, and 3 mm test piece.
  • the hardness measurement method is the same as that described later.
  • the increase in hardness is represented by a value of plus when the hardness is higher and minus when the hardness is low, based on the hardness of Fe-3% C-4% Si.
  • the addition of Cr, Mn and Si increases the hardness of the austenitic cast iron and causes embrittlement.
  • the addition of Ni and Cr reduces the hardness of the austenitic cast iron and improves the ductility.
  • the austenitic cast iron of the present invention is also characterized in that the amount of Mn added is suppressed in order to improve ductility.
  • the stability of the austenite phase in the intermediate temperature range is lowered.
  • the stability of the austenite phase in the middle temperature range is maintained by adding Ni and Cu.
  • the addition of Ni and Cu improves the ductility. That is, in the austenitic cast iron of the present invention, by adding Ni and Cu, the decrease in the stability of the austenite phase in the intermediate temperature range due to the reduction in the amount of Mn added is compensated, and the ductility is further improved.
  • the austenitic cast iron of the present invention has an appropriate hardness by adjusting the content of each additive element to an appropriate range. If the hardness of the austenitic cast iron is specified, it is preferable that the Vickers hardness is Hv 130 to 250, Hv 140 to 220, Hv 150 to 200. When Hv exceeds 250, not only thermal fatigue strength but also elongation and tensile strength are lowered, which is not preferable. In addition, austenitic cast iron exhibiting moderate hardness and sufficient elongation is excellent in workability.
  • ⁇ Trace modification element> In order to improve various properties such as metal structure, oxidation resistance, corrosion resistance, mechanical properties such as strength and toughness in normal temperature range or high temperature range, and electrical properties of austenitic cast iron (castings), trace amounts of elements It is preferable to contain. Austenitic cast iron containing such a modified element is naturally within the scope of the present invention as long as the basic element is within the above-described range.
  • the trace modification element examples include magnesium (Mg), rare earth element (RE), aluminum (Al), calcium (Ca), barium (Ba), bismuth (Bi), antimony (Sb), tin (Sn). ), Titanium (Ti), zirconium (Zr), molybdenum (Mo), vanadium (V), tungsten (W), niobium (Nb) or nitrogen (N).
  • the content of each of these elements is appropriately adjusted according to the characteristics required for austenitic cast iron. However, from the viewpoints of cost, influence on the composition of basic elements, etc., the total amount of the trace modification elements is preferably 1% or less, 0.8% or even 0.6% or less.
  • the added trace reforming element may disappear during casting because the melting point is lower than that of Fe. For this reason, the content of each element does not necessarily match the total amount of the element added. Therefore, as long as it is effective for improving the cast structure, the content of the trace modification element may be the lowest detectable level.
  • Typical trace modifying elements are each element contained in an inoculating agent that promotes crystallization of graphite in the Fe base and a spheronizing agent that promotes spheroidization of the crystallized graphite.
  • Auxiliaries such as inoculants and spheroidizing agents are blended during the preparation of the molten metal, or added as appropriate during casting.
  • the contained elements and the contents of each element are not constant and vary widely. That is, the actual situation is that trial and error are performed to obtain a desired cast structure (particularly, the shape of graphite to be crystallized and the number of grains thereof). Therefore, it is difficult to clearly specify the kind of trace modification element and its content. And, it is not in accordance with the gist of the present invention that the kind and content of the trace modification element are concerned.
  • Mg and R.I. E. (Especially cerium (Ce)) is well known as a spheroidizing agent for graphite to crystallize. Therefore, even in the case of the austenitic cast iron of the present invention, it is preferable that the entire cast iron be 100% and that 0.01 to 0.1% Mg and / or 0.005 to 0.05% Ce be included as a minor modification element. .
  • Mg easily disappears from the high-temperature molten metal. Therefore, it is preferable that the added amount is adjusted so that the lower limit becomes 0.02%, further 0.03%, with the entire cast iron as 100%.
  • the upper limit of the Mg content is not particularly limited as long as it does not affect the composition of the basic elements, but is practically 0.07%, further 0.06%, assuming the entire cast iron as 100%.
  • R. E. Ce is expensive, and a spheroidizing effect can be obtained even in a small amount (0.001% or more). Therefore, the upper limit of Ce is 0.03%, further 0.01% with 100% of the entire cast iron. Preferably there is.
  • the lower limit of Ce is not particularly limited as long as the effect as a spheroidizing agent can be obtained, but in fact, the lower limit is 0.007% and further 0.008% with 100% of the entire cast iron.
  • Inevitable impurities include, for example, phosphorus (P) and sulfur (S).
  • P is harmful to the spheroidization of graphite, and also precipitates at the grain boundaries to lower the oxidation resistance and room temperature elongation.
  • S is also harmful to graphite spheroidization. Accordingly, these inevitable impurities are preferably 0.05% or less, 0.03% or less, 0.02% or less, and further 0.01% or less.
  • this invention is a manufacturing method of an austenitic casting, it is provided with a molten metal preparation process, a pouring process, and a solidification process as described above.
  • the austenitic cast iron of the present invention is required to be spheroidal graphite cast iron. Therefore, it is desired to finely crystallize a large number of spherical graphite in a base composed of an austenite phase, and an auxiliary agent such as an inoculant or a spheroidizing agent is added or added.
  • auxiliaries are blended in advance from the stage of the molten metal preparation process, for example.
  • a hot spring made of basic elements is prepared (original It is more preferable to provide an auxiliary agent adding step of adding or adding an auxiliary agent directly or indirectly to the hot water preparation step).
  • the case of adding “directly” is the case of adding an auxiliary agent to the hot water before pouring into the mold.
  • “indirectly” or the like is a case where an auxiliary agent is previously introduced into the cavity of the mold.
  • any of ladle inoculation, in-mold inoculation, wire inoculation and the like may be used. The same applies to the spheroidizing process.
  • auxiliary agent is added at any stage.
  • the auxiliary agent may be any of powder, granule, wire and the like.
  • the auxiliary agent is typically an inoculant or a spheronizing agent, but other additives may be used.
  • the inoculum is, for example, Si, Ca, Bi, Ba, Al, Sn, Cu or R. E. It is preferable when it consists of 1 or more types. Specifically, Si—Ca—Bi—Ba—Al, Si—Ca—Bi—Al—R. E. Type, Si-Ca-Al-Ba type, Si-Sn-Cu type inoculums.
  • the addition amount or blending amount of the inoculum is determined in consideration of disappearance, fading phenomenon, and the like. Therefore, for example, it is preferable that the total amount added is 0.05 to 1% when the total amount of the hot water is 100%.
  • the graphite spheroidizing agent is, for example, Mg and R. E. It is preferable when it consists of 1 or more types. Specifically, Mg—R. E. R.S., Mg simple substance, Misch metal (Mm), etc. E. There are spheroidizing agents such as simple substance, Ni—Mg, Fe—Si—Mg.
  • the addition amount or blending amount of the spheroidizing agent is also determined in consideration of disappearance and fading phenomenon. For example, the Mg residual amount (the amount of Mg remaining in the prepared cast iron) is 0.01 to 0.1%, more preferably 0.03 to 0.08% when the entire hot spring is 100%. It is preferable to be added so that
  • the austenitic cast of the present invention is a member having a desired shape made of the austenitic cast iron of the present invention described above, but it goes without saying that the shape, thickness, etc. are not limited.
  • the thickness, shape, size, method, etc. of the casting may affect the structure and casting defects of the austenitic casting, but in the case of the austenitic casting of the present invention, the base is stable austenite. It has been confirmed to be a phase.
  • the present inventor can obtain the desired spheroidal graphite cast iron by appropriately adjusting the method and timing of adding the auxiliary agent. Has been confirmed.
  • the structure of austenitic castings is broadly divided into base structures and eutectic structures.
  • the matrix structure of the present invention is composed of an austenite phase of Fe.
  • the eutectic structure of the present invention is graphite.
  • the austenitic cast of the present invention is also preferably made of spheroidal graphite cast iron.
  • the structure of spheroidal graphite cast iron is generally indicated by the spheroidization rate of graphite and the number of graphite particles.
  • the spheroidization rate of graphite crystallized or precipitated in the matrix is 70% or more, 75% or more, and further 80% or more.
  • the number of crystallized or precipitated graphite particles is large.
  • the number of graphite grains having a particle diameter of 10 ⁇ m or more is 50 pieces / mm 2 or more, 75 pieces / mm 2 or more, and further 100 pieces / mm 2 or more in a portion where the thickness of the casting is 5 mm or less.
  • the spherical graphite is preferably finely dispersed in the matrix. Further, in the portion where the thickness of the casting is 5 mm or less, the number of graphite particles having a particle diameter of 5 ⁇ m or more is 150 pieces / mm 2 or more, 200 pieces / mm 2 or more, 250 pieces / mm 2 or more, and further 300 pieces / mm 2 or more. Is preferable.
  • the spherical graphite is preferably finely dispersed in the matrix.
  • the spheroidization rate of graphite is measured by a graphite spheroidization rate determination test method such as JIS G5502107.4 or former JIS G5502 (NIK method).
  • the number of graphite particles is measured by measuring the number of graphite particles per unit area.
  • the austenitic cast of the present invention is less expensive than the prior art, it can be manufactured at a low cost by using it for members and the like that currently use austenitic cast iron. Therefore, the application field is not limited to the automobile field and the engine field, and the austenitic casting of the present invention can be used for various members.
  • the austenitic casting of the present invention is excellent in the stability of the austenite phase in the middle temperature range and the oxidation resistance at high temperatures as described above. Therefore, a specific application of the austenitic cast iron of the present invention is, for example, exhaust system parts such as automobiles. This is because these parts are exposed not only to an intermediate temperature environment of 500 to 600 ° C.
  • the austenitic cast iron of the present invention is superior in oxidation resistance to the D-2 material, and has an oxidation resistance comparable to that of the D-5S material and an excellent austenite phase, although the Ni content is lower than that of the D-5S material. Therefore, it is promising as a material to replace the D-2 or D-5S material. Needless to say, it can also be used for members used in a room temperature range of about room temperature and a high temperature range of 700 ° C. or higher.
  • ⁇ Method for producing specimen> ⁇ Melt preparation process> Various raw materials containing C, Si, Cr, Mn, Ni and Cu (basic elements) and the balance Fe were blended and mixed, and then melted in the air in a high frequency furnace to obtain 47 kg of molten metal.
  • ⁇ Pouring process> The molten metal was poured into a mold prepared in advance. The mold was a sand mold. At this time, hot water was poured out at about 1550 ° C. and poured at about 1450 ° C.
  • auxiliary agents such as an inoculant and a spheronizing agent were also added.
  • the inoculum was added in an amount of 0.4% by mass of Osaka Special Alloy Carbaloy (containing Si—Ca—Al—Ba) or Toyo Denka BIL (containing Si—Ca—Ba—Bi—Al) from Toyo Denka Co., Ltd. % Addition was performed. Regardless of which inoculum was added, there was no significant difference in the results described below.
  • the addition of the spheroidizing agent is 0.04% by mass or 0.07% by mass of Mg alone relative to 100% of Motoyu. E. (Using misch metal) 0.05% by mass and 0.0005% by mass of Sb alone were added to the hot water. Note that the reason why the amount of Mg is large is due to consideration of disappearance and the like.
  • the mold used here is 50 mm wide ⁇ 180 mm long, and the height (thickness) is [1] 50 mm (length 50 mm) ⁇ [2] 25 mm (length 45 mm) ⁇ [3] 12 mm (length 40 mm) ⁇ [4]
  • Y blocks of JIS B and JIS D were produced by casting.
  • Test pieces of A1 to A9, B1, B2, C1 to C8 (comparative examples), D1 and E1 having different blending compositions were produced by the above production method.
  • the composition is shown in Tables 1 and 2 (A1 to A9 and R1), Tables 4 and 5 (B1, B2, D1, C1 to C6 and R2), and Table 7 (R3 to R6, C7, C8 and E1). It was.
  • R1 to R6 are test pieces made from conventionally used cast iron in the same procedure, R1 and R4 are equivalent to D-2 (ASTM), R2 is equivalent to NiMn137 (JIS), and R3 is D- 5S (ASTM) equivalent, R5 is equivalent to HiSiMoFCD (general name), and R6 is equivalent to FCD450 (JIS).
  • X-ray diffraction (XRD) measurement using Co as an X-ray tube was performed on a sample collected from a 25 mm thick portion of the test piece C8.
  • XRD measurement was performed on an as-cast material and a heat-treated material that was held in an atmosphere at 600 ° C. for 100 hours. The results are shown in FIG.
  • XRD measurement was similarly performed for each test piece shown in Table 1 and Table 2, Table 4 and Table 5. The heat treatment was performed by holding each test piece (as-cast material) in the atmosphere at 500 ° C. or 600 ° C. for 100 hours, 200 hours or 300 hours.
  • the austenite ratio was calculated using the integrated intensity of each peak of the austenite phase and the ferrite phase.
  • Austenite ratio the integrated intensity of the peak of the (220) plane I gamma, when the I alpha, and integrated intensity of the peak of the (200) plane, I ⁇ / (I ⁇ + I ⁇ ) percentage of (in% ). The results are shown in Table 3, Table 6, and FIG.
  • Test piece R5 had an austenite ratio of 0% for both the as-cast material and the heat-treated material.
  • each test piece shown in Table 7 was evaluated by measuring oxidation loss based on JIS Z 2282. Specifically, first, each test piece of ⁇ 20 mm ⁇ 20 mm collected from JIS B and JIS D Y blocks prepared by casting was held in an air atmosphere at 750 ° C., 800 ° C. or 850 ° C. for 100 hours. . An iron ball having a shot ball diameter of 0.4 mm was projected onto the surface of the test piece after the heat treatment until the oxide film on the surface disappeared.
  • the oxidation loss is the mass reduction amount of the test piece per unit area.
  • the oxidation loss is obtained by subtracting the mass of the test piece after the shot from the mass of the test piece immediately after the heat treatment (before the shot).
  • Table 9 and FIG. 7 show the oxidation weight loss (two number average values) when heat-treated at 850 ° C.
  • the test piece E1 was removed from the test piece surface in the form of powdered oxide.
  • the oxide film peeled off as a lump.
  • Thermal stress test The thermal fatigue strength or thermal fatigue life of the test pieces R4, C7, C8 and E1 was measured using a ⁇ 8 mm round bar test piece taken from the cast JIS B No. Y block.
  • the temperature of a test piece having a predetermined constraint rate is repeatedly changed to 800 ° C. and 200 ° C., the number of cycles in which the stress is reduced by 10%, the number of cycles in which the stress is reduced by 25%, and the stress is reduced by 50%.
  • the number of cycles to perform and the number of cycles to break apart were examined. The results are shown in Table 9 and FIG.
  • the test piece C8 is composed of almost 100% austenite phase ( ⁇ phase) in the as-cast state, but most of the austenite ( ⁇ Fe) is maintained by holding in the atmosphere at 600 ° C. for 100 hours. All transformed to ferrite ( ⁇ Fe). This is presumably because the Si content was 5.1% and the oxidation resistance at 850 ° C. was excellent, but the Ni content was too small and the Mn content was insufficient.
  • Specimens A1 to A9 all had an austenite ratio after heat treatment exceeding 50%. That is, it was found to exhibit a stability comparable or greater austenite phase D-2 and (specimen R1) which is a general-purpose material. In particular, the austenite ratio after holding for 300 hours at 600 ° C. were both 60% or more of test piece A1 ⁇ A9.
  • the stability of the austenite phase in the middle temperature range (especially long-time heat treatment) at 16% or less. It was found that the stability when the The test piece C3 contained only 16.1% of Ni in the analytical composition, but the stability of the austenite phase was high. This is because the Si content was reduced to 3.2% with the target composition. That is, it was found that when the Ni content is less than 17%, the stability of the austenite phase cannot be maintained unless the Si content is reduced to sacrifice oxidation resistance.
  • test pieces A1, A3, A4, A6 to A9, B1 and D1 having an Ni amount of 19.5 to 21.5% were held for a long time (300 hours) in the intermediate temperature range (500 ° C. or 600 ° C.).
  • the later austenite ratio was 60% or more in any case, and the austenite phase stability in the middle temperature range was particularly excellent.
  • the test pieces A2, A5 to A7, B1 and B2 all had a target Si content of 5.1%.
  • Si content is high, the stability of the austenite phase in the intermediate temperature range tends to decrease, but in the test piece B2, the total amount of Ni and Mn added (Ni + Mn) is 21% or more, so that austenite The phase stability was maintained.
  • the stability of the austenite phase in the intermediate temperature range was further improved by setting Ni + Mn to 23% or more, further 24% or more as in test pieces A2, A5 to A7 and B1.
  • Ni + Mn can be reduced to 27% or less further to 26% or less from the result of test piece A3, A4, and D1.
  • test piece E1 was the same target composition as the test piece A9.
  • the test piece E1 after the heat treatment at 850 ° C. had an oxidation loss equivalent to that of D-5S (test piece R3), which is the most versatile material and has the most excellent oxidation resistance.
  • the test pieces A1, A2 and A5 to A8 having a Si content comparable to or higher than that of the test piece A9, 850 ° C. It can be predicted that the oxidation resistance at is comparable to or superior to that of the test piece R3. Furthermore, from FIG.
  • test piece A3 is predicted to have an oxidation loss of about 35 mg / cm 2 at most even if the Si content is 4.16% in the analytical composition.
  • the test pieces A1 to A9 are D-5S (test piece containing a large amount of Ni by adjusting the contents of C, Si, Cr, Mn and Cu to an appropriate range even if the Ni content is kept low. It has been found that it exhibits oxidation resistance comparable to R3) and excellent austenite phase stability.
  • test pieces B1, B2, and D1 have an Si content of 4.2% or more, more preferably 5.1% or more in the analytical composition, so that the oxidation resistance at 850 ° C. is sufficient as shown in Table 6. it was high.
  • the mechanical properties (proof strength, tensile strength and elongation at break) and thermal fatigue life of the test piece E1 are also high, and it is assumed that the test pieces A1 to A9, B1, B2 and D1 are the same. Is done. Therefore, the austenitic cast irons of the test specimens A1 to A9, B1, B2 and D1 are not only from the viewpoint of not only the oxidation resistance at high temperatures and the stability of the austenite phase at intermediate temperatures, but also from the viewpoint of mechanical properties and thermal fatigue life. For example, it can be said that it is in a usable range as a housing of a VNT turbo.
  • test pieces F1 to F3 ⁇ Manufacture of test pieces F1 to F3> In the same manner as in the above production method, test pieces of F1 to F3 having different blending compositions were produced.
  • test pieces F1 to F3> In the same manner as described above, analysis of alloy composition, structure evaluation, Vickers hardness measurement, and tensile test were performed. The results are shown in Tables 10-12. In the tensile test, the room temperature was 23 ° C., and the drawing was calculated in addition to the proof stress, tensile strength and elongation.
  • test pieces F1 to F3 had large elongation and drawing values, excellent ductility, and hardness suitable for processing.
  • the test piece F2 having a larger amount of Si, Cr and Mn than the test piece F1, and having a smaller amount of Ni and Cu has a higher hardness than the test piece F1.
  • the addition of Cr tends to contribute to the improvement of hardness
  • Ni and Cu tends to contribute to the reduction of hardness. It is.
  • the austenitic cast irons of test pieces A1 to A9, B1, B2, D1 and E1 in which the content of each alloy element is in an appropriate range show hardness and ductility suitable for processing.
  • the C amount is 2.2 to 2.8%
  • the Si amount is 4.3 to 5.1%
  • the Cr amount is 1 to 2%
  • the Mn amount is 4 to 5%
  • the Ni amount is 19 to 21%
  • the Cu content is set to 1 to 1.6%, it is possible to obtain an austenitic cast iron capable of exhibiting a good balance of oxidation resistance at high temperatures, stability of austenite phase in the middle temperature range, and mechanical properties. all right.
  • the Si amount is 4.4 to 5.1%, more preferably 4.4 to 4.9%
  • the Cr amount is 1.2 to 1.8%, further 1.2 to 1.6%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 本発明のオーステナイト系鋳鉄は、C、Si、Cr、Ni、MnおよびCuからなる基本元素と、残部がFeと不可避不純物および/または特性改善に有効な微量の微量改質元素と、からなり、常温域でオーステナイト相を主相とするFe合金からなる基地で組織された鋳鉄であるオーステナイト系鋳鉄であって、前記基本元素は、前記鋳鉄全体を100質量%(以下単に「%」と表示する。)としたとき、C:2.0~3.0%、Si:4.0~5.4%、Cr:0.8~2.0%、Mn:3.9~5.6%、Ni:17~22%、Cu:0.9~1.6%を満足する組成範囲内にあることを特徴とする。Ni含有量が比較的少ないオーステナイト系鋳鉄であって、高温下での耐酸化性および中温域でのオーステナイト相の安定性に優れる。

Description

オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法
 本発明は、耐酸化性に優れるオーステナイト系鋳鉄およびそれからなる鋳物およびその製造方法に関するものである。
 複雑な形状をした部材や比較的大型の部材は鋳造により製造されることが多く、しかも、比較的安価な鋳鉄製鋳物(以下単に「鋳物」という。)が多用される。
 鋳鉄は、鉄-炭素を主成分とする合金中の炭素(C)がγ鉄中の最大固溶限(約2質量%)を超え、共晶凝固を伴うものである。通常は、機械的特性、耐食性、耐熱性等の特性改善のため、種々の合金元素が加えられる。このような鋳鉄を合金鋳鉄といい、特に、合金元素量の多い鋳鉄を高合金鋳鉄という。この高合金鋳鉄には、通常、晶出する基地の結晶構造の相違により、フェライト系鋳鉄とオーステナイト系鋳鉄に大別される。
 なかでもオーステナイト系鋳鉄は、高温域はもちろん常温域でも主にオーステナイト相(γ相)からなるため、耐熱性、耐酸化性、耐食性等に優れ、また、延性や靱性等に優れる。このため、高温雰囲気等の過酷な環境下で使用される部材にオーステナイト系鋳鉄が多用される。たとえば、自動車分野でいえば、ターボチャージャーハウジング、エキゾーストマニホルド、触媒ケースなどである。いずれの部材も、高温の排気ガスに曝され、長期耐久性が要求される部品等である。
 ところで、オーステナイト系鋳鉄にも種々あり、代表的なものは、ニレジスト、ニモル、ニクロシラル、モネル、ミノーバー、ノーマグ等である。また、日本工業規格(JIS)にも、片状黒鉛(FCA)系鋳鉄が9種、球状黒鉛(FCDA)系鋳鉄が14種規定されている。
 従来のオーステナイト系鋳鉄は、オーステナイト安定化元素であるニッケル(Ni)を多量含有させることで(たとえばNi:18~36%)、常温域でもオーステナイト相が得られるようにしていた。このNiは、母材の鉄(Fe)や他の合金元素と比較して非常に高価であり、従来のオーステナイト系鋳鉄からなる鋳物は非常に高コストであった。
 たとえば、D-5Sと称されるJISのFCDA-NiSiCr3552相当のニレジスト鋳鉄は、Niを多量に含むためオーステナイト相の安定性が高く、優れた耐酸化性をも示す。また、D-2と称されるJISのFCDA-NiCr202相当のニレジスト鋳鉄のように、Ni含有量が比較的少ないオーステナイト系鋳鉄も公知となっている。しかし、FCDA-NiCr202相当のニレジスト鋳鉄は、耐酸化性が劣る。そのため、たとえば可変ノズルターボ(VNT(商標)、可変容量ターボとも呼ばれる)のハウジングには不向きである。VNTは、ターボチャージャーの一種であり、ハウジング内で排気タービンの外側に配設された複数の可変ノズルの開口面積をエンジンの回転数に応じて可変させて、排気ガスの流量を制御して過給効率を変化させて排気タービンの回転速度を調整する。VNTでは、ハウジングとタービンブレードとの間隙が排気ガスの流量に大きく影響するため、ハウジングの耐酸化性は、間隙の寸法確保の観点から重要である。また、ハウジングから剥離した酸化物がタービンブレードの可動部に噛み込んでタービンブレードが動かなくなったり破損したりする懸念もある。さらに、ターボチャージャーハウジングもエキゾーストマニホルドも排気系に使用される部品であるため、剥離した酸化物が塊状の大きなものであると、排ガス浄化触媒のハニカム担体を目詰まりさせる原因にもなる。
 耐食性に優れた鋳鉄として、特許文献1には、Cを0.8~2.0%含む高断熱性耐食鋳鉄が記載されている。珪素(Si)は、断熱性の向上を目的として添加されている。また、耐食性の観点から、クロム(Cr)および銅(Cu)を含有させている。特許文献1では、鋳鉄の硬さと組成との関係について言及されていないが、実施例に記載のNo.1~9の鋳鉄は、いずれも高硬度(ビッカース硬さで約Hv280以上)であり、加工には不向きである。また、特許文献1では、C含有量を通常の鋳鉄よりも少なくすることで、鋳鉄の断熱性を向上させている。特にC量に着目すると、特許文献1に記載の各実施例の合金のC量が0.8~1.0%であることから、特許文献1で開示されているのは鋳鉄と言うより寧ろ鋳鋼である。
 また、前述のニレジスト鋳鉄よりもさらにNi量を少なくする一方でSi量を増やしたオーステナイト系鋳鉄が、特許文献2に開示されている。特許文献2は、オーステナイト系鋳鉄に関する耐熱性の一指標である耐酸化性に関して、Si量が増大する程、単位面積あたりの酸化増量が少なくなることを開示している(特許文献2の第6図参照)。しかし、本発明者の研究によれば、Si量が過多になると、オーステナイト系鋳鉄の伸びの低下や被削性の悪化を招く。このため、オーステナイト系鋳鉄からなる耐熱部材の信頼性や量産性等を考慮すると、Si量の調整だけでその耐酸化性を実用上充分なレベルにまで高めることは現実的ではない。
 そこで、本発明者は、Niの含有量が少なく、熱疲労強度等に優れるのみならず耐酸化性にも優れるオーステナイト系鋳鉄を、特許文献3に開示している。特許文献3に記載のオーステナイト系鋳鉄では、Ni量が鋳鉄全体としてかなり少量(上限が15%)になっている。従来の技術常識からすれば、常温域で安定したオーステナイト相を主相とする基地が得られないようにも思われる。しかし、それ以外の合金元素であるC(特に、固溶炭素量Cs)、Si、Cr、マンガン(Mn)およびCuの各含有量を適切な範囲とすることで、Ni含有量が通常よりも少量であってもオーステナイト相を得ることに成功した。
特開平5-302141号公報 特開昭58-27951号公報 国際公開WO2009/028736号パンフレット
 しかし、特許文献3に開示されている組成のオーステナイト系鋳鉄には、高温下(たとえば850℃)における耐酸化性が十分ではないものがあることがわかった。さらに、本発明者の研究によれば、後に詳説するように、特許文献3に開示されている組成のオーステナイト系鋳鉄においてSi添加量を増加することで、500~600℃程度の中温域で長時間保持した後のオーステナイト率が大きく低下することが新たにわかった。オーステナイト率の低下は、主としてオーステナイト(γ)→フェライト(α)の相変態により生じる。フェライト相が増加することで、鋳鉄の脆化および変態歪みの発生が引き起こされる。つまり、特許文献3に記載の発明をさらに発展させる必要がある。
 本発明は、このような事情に鑑みて為されたものである。すなわち、Ni含有量が比較的少ないオーステナイト系鋳鉄であって、高温下での耐酸化性および中温域でのオーステナイト相の安定性に優れるオーステナイト系鋳鉄を提供することを目的とする。また、そのオーステナイト系鋳鉄からなるオーステナイト系鋳物およびその製造方法もあわせて提供する。
 一般に、Crおよび/またはSiの添加量を増加させることで耐酸化性が向上することは知られている。特許文献3に記載のFe-C-Si-Ni-Mn-Cu-Cr合金について上記の課題を解決すべく鋭意研究し試行錯誤を重ねた結果、850℃程度の高温下では、Cr添加量よりもSi添加量の増加が、耐酸化性の向上に対して最も効果的であることを見出した。しかし、特許文献3に記載のFe-C-Si-Ni-Mn-Cu-Cr合金において耐酸化性を向上させることを目的として多くのSiを添加すると、500~600℃程度の中温域で長時間保持した後のオーステナイト率が大きく低下することが新たにわかった。本発明者はこれらの新たな着眼点に基づき、耐酸化性とオーステナイト相の安定性とに優れる従来のニレジスト鋳鉄(D5S)よりも少ないNi量を前提としつつ、C、Si、Cr、MnおよびCuの添加量、特にSiの添加量を適切な範囲とすることで、高温下での耐酸化性および中温域でのオーステナイト相の安定性を両立するオーステナイト系鋳鉄を得ることに成功した。
 すなわち、本発明のオーステナイト系鋳鉄は、
 炭素(C)、ケイ素(Si)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)および銅(Cu)からなる基本元素と、
 残部が鉄(Fe)と不可避不純物および/または特性改善に有効な微量の微量改質元素と、
 からなり、常温域でオーステナイト相を主相とするFe合金からなる基地で組織された鋳鉄であるオーステナイト系鋳鉄であって、
 前記基本元素は、前記鋳鉄全体を100質量%(以下単に「%」と表示する。)としたとき、下記の条件を満足する組成範囲内にあることを特徴とする。
  C  : 2.0~3.0 %
  Si : 4.0~5.4 %
  Cr : 0.8~2.0 %
  Mn : 3.9~5.6 %
  Ni :  17~22  %
  Cu : 0.9~1.6 %
 たとえば、図1は、Fe-C-Si-Ni-Mn-Cu-Cr合金を750℃、800℃または850℃の大気中に100時間放置した後の酸化減量に関し、各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数を示すグラフである。なお、酸化減量の測定方法は、後述(実施例の欄)の方法と同様である。図1のグラフの縦軸は各元素を1質量%添加したときの酸化減量の変化量を示し、酸化しやすくなる場合はプラス、酸化しにくくなる場合はマイナスの値で表される。図1からわかるように、Si量が増加することで耐酸化性は向上するが、特に850℃における耐酸化性が顕著に向上する。しかし、Niの添加は、耐酸化性にほとんど影響がない。
 また、図2は、Fe-C-Si-Ni-Mn-Cu-Cr合金の500℃または600℃の中温域におけるBCC変態駆動力の変化量に関し、各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数を示すグラフである。なお、「BCC変態駆動力」とは、FCC構造を有するオーステナイトがBCC構造を有するフェライトに変態するときのギブズの自由エネルギー変化量(Gfcc-Gbcc=ΔG)に相当し、理論値より算出した値である。図2のグラフの縦軸は各元素を1質量%添加したときのBCC駆動力の変化量を示し、オーステナイトからフェライトに変態しにくくなる場合はプラス、変態しやすくなる場合はマイナスの値で表される。図2からわかるように、Si量が増加することで、オーステナイト相の安定性が大きく低下する。一方、その他の元素、特にNiおよびMnの添加は、中温域においてオーステナイト相を安定させる。
 すなわち、本発明のオーステナイト系鋳鉄は、高温での耐酸化性を維持できる程度にSiを含有させつつ、Mn、CuおよびCrを複合的に添加することで、比較的少ないNi添加量で常温はもちろん中温域でもオーステナイト相を安定化できる。そのため、本発明のオーステナイト系鋳鉄では、Ni含有量が比較的少なくても、中温域でのオーステナイト相の安定性と、高温での優れた耐酸化性と、を両立させられるのである。
 ところで、オーステナイト系鋳鉄における中温域でのオーステナイト率の減少は、これまで着目されていなかった現象である。これは、オーステナイト系鋳鉄は、700℃以上の高温域で長時間放置されても、フェライト相の増加に起因する割れ、変形などが生じなかったためである。つまり、700℃以上の高温域では、長時間保持しても、組成に大きく影響されることなくオーステナイト相が安定であると推測される。このことは、BCC変態駆動力を温度に対して理論計算すると明確になる。図3は、各種オーステナイト系鋳鉄(図中の符号は後述の試験片No.と同一)のオーステナイト相の安定性を示すグラフであって、理論計算により得られたBCC変態駆動力(ΔG)の温度依存性を示す。このグラフにおいてΔGが正の値では、オーステナイト相が、理論上は安定であると言える。図3のグラフには組成の異なる6種類のオーステナイト系鋳鉄のΔG変化を示すが、いずれのオーステナイト系鋳鉄も、温度が高いほどΔGの値は大きくなり、700℃以上ではΔG>0となる。また、実際に試験片C4を700℃で300時間熱処理後、オーステナイト率を後述の方法で計算すると、オーステナイト率は87%となり高かった。したがって、中温域でのオーステナイト相の安定性を高められた本発明のオーステナイト系鋳鉄は、中温域~高温域で長時間保持しても割れなどが生じにくい。
 また、上記の組成範囲内にある本発明のオーステナイト系鋳鉄は、耐力、引張強さ、伸びなどの機械的特性も、十分に発揮される。
 なお、本発明において「オーステナイト相」は、完全にオーステナイト単相である必要はない。つまり、本発明でいう「オーステナイト相を主相とする」および「オーステナイト相が安定」とは、X線回折(XRD)でオーステナイト100%となり、かつ、オーステナイト中にマルテンサイトやパーライトといったものからなる層状組織を含んでいないオーステナイト単相のみからなる場合はもちろん、その他、若干のマルテンサイト相などを含む場合も許容し得る趣旨である。したがって、オーステナイト率を規定するのであれば、XRD測定により得られる回折ピークのうちオーステナイト相からのピークの面積とフェライト相からのピークの面積との合計を100%としたときに、オーステナイト相からのピークの面積(つまりオーステナイト率)が50%超、60%以上、70%以上、80%以上、90%以上さらには95%以上であればよい。なお、ピークの面積は、XRD測定結果から算出できる。
 また、本発明は、上述したオーステナイト系鋳鉄としてのみならず、そのオーステナイト系鋳鉄からなるオーステナイト系鋳物としても把握できる。本発明のオーステナイト系鋳物の一例として、排気系部品などの高温環境下に曝される部材が挙げられる。
 さらに本発明は、そのオーステナイト系鋳物の製造方法としても把握できる。すなわち、本発明は、前述した組成範囲の溶湯を調製する溶湯調製工程と、
 該溶湯を鋳型に注湯する注湯工程と、
 該鋳型に注湯された溶湯を冷却して凝固させる凝固工程と、
 からなり、上述した本発明のオーステナイト系鋳鉄からなる鋳物が得られることを特徴とするオーステナイト系鋳物の製造方法であってもよい。
 ところで、本発明のオーステナイト系鋳鉄(または鋳物)の用途を拡大する上で、鋳造時に種々の改質元素を添加することも多い。たとえば、基地組織中に晶出する黒鉛の粒数を増加させ、また、その形状を球状化するために、助剤が添加されることが多い。そこで、本発明のオーステナイト系鋳物の製造方法は、前述した組成範囲の溶湯からなる元湯を調製する元湯調製工程と、
 晶出または析出する黒鉛の核となる接種剤と該黒鉛の球状化を促進する球状化剤との少なくとも一種を含む助剤を該元湯に直接または間接に添加する助剤添加工程と、
 該助剤添加工程後または該助剤添加工程中の溶湯を鋳型に注湯する注湯工程と、
 該鋳型に注湯された溶湯を冷却して凝固させる凝固工程と、
 からなり、基地中に略球状の黒鉛が晶出または析出した前述のオーステナイト系鋳鉄からなる鋳物が得られることを特徴とするものであってもよい。
 本発明のオーステナイト系鋳鉄は、Ni含有量が比較的少ないが、高温下での耐酸化性および中温域でのオーステナイト相の安定性に優れる。
Fe-C-Si-Ni-Mn-Cu-Cr合金における各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数を示すグラフであって、耐酸化性を酸化減量の変化値で評価した結果である。 Fe-C-Si-Ni-Mn-Cu-Cr合金における各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数を示すグラフであって、オーステナイト相の安定性をBCC変態駆動力の変化値で評価した結果である。 各種オーステナイト系鋳鉄のオーステナイト相の安定性を温度に対して示すグラフである。 Fe-C-Si-Ni-Mn-Cu-Cr合金における各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数を示すグラフであって、ビッカース硬さを試験片の板厚に対するビッカース硬さの変化値で評価した結果である。 比較例のオーステナイト系鋳鉄のX線回折ピークを示す。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄のオーステナイト相の安定性を示すグラフである。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄の酸化減量を示すグラフである。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄の0.2%耐力を示すグラフである。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄の引張強度を示すグラフである。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄の破断伸びを示すグラフである。 本発明のオーステナイト系鋳鉄および従来から汎用されている鋳鉄の熱疲労寿命を示すグラフである。
 以下に、本発明のオーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。
 <オーステナイト系鋳鉄>
  <組成>
 本発明のオーステナイト系鋳鉄は、基本元素と残部であるFeとからなり、基本元素はC、Si、Cr、Mn、NiおよびCuの6種の元素よりなる。以下、これらの各元素の作用または機能と、好適な組成について説明する。
 Cは、Feの溶融温度を下げ、溶湯(元湯を含む)の流動性を高める。このため、鉄系鋳造には不可欠な元素である。鋳鉄は、Fe-C系合金中のCがγ鉄中の最大固溶限を超えて共晶凝固を伴うものであるから、C量の下限は基本的に1%であり、固溶限を超えるCが黒鉛として晶出する。ただし、C量が過少では、溶湯の流動性が低下して好ましい鋳造性が得られない。そこで、C量は2.0%以上(最大固溶限以上)、2.1%以上さらには2.2%以上とするのがよく、好ましくは2.3%以上さらに好ましくは2.4%以上である。C量が過多では、基地組織が減少してオーステナイト系鋳鉄の機械的特性等が低下する。特にC量は、オーステナイト系鋳鉄の硬さ、ひいてはオーステナイト系鋳鉄の加工性に影響する。また、鋳造時に引け巣などの鋳造欠陥が発生し易くなる。そこで、C量は3.0%以下、好ましくは2.9%以下、2.8%以下、2.7%以下さらに好ましくは2.6%以下、であると好ましい。
 Siは、準安定系共晶温度を下げ、γFe-黒鉛の共晶を促進し、黒鉛の晶出に寄与する。またSiは、晶出する黒鉛の表面付近にケイ素酸化物からなる不働態皮膜を形成し鋳鉄の耐酸化性を高める。特に、高温での耐酸化性を向上する効果が高いことは、既に述べたとおりである。しかし、Si量が過少であると、耐酸化性の向上効果が十分に得られない。そのため、Si量は4.0%以上さらには4.1%以上とするとよい。さらに高い耐酸化性が必要であれば、4.2%以上、4.3%以上さらには4.5%以上とするとよい。既に詳説したとおり、Siが過多であると中温域においてフェライトが生成されやすいため、Si量を5.4%以下さらには5.3%以下とする。さらに、Si量過多では、熱疲労強度および室温での伸びが低下する傾向にあるため、5.1%以下さらには5.0%以下であると好ましい。
 なお、C含有量(%)およびSi含有量(%)から算出される炭素当量(%):Ceq=C+Si/3により溶湯の流動性を規定することもできる。一般的な鋳造設備の出湯温度は、1500~1550℃に設定されている。しかし、量産性を考慮すると、鋳型に連続注湯中に発生する温度低下が100℃以上であること、また、助剤の添加による温度低下が100℃程度あることから、流動性確保のためには融点を1350℃以下に抑えるのが望ましい。本発明のオーステナイト系鋳鉄の組成範囲における状態図は未知であるが、鋳鉄で一般的に使用されるFe-C状態図の2.4質量%Siにおける切断平衡状態図を用いて考えると、Cが4.0%以下であれば融点は1350℃以下となる。Cが1.2%未満では、炭素は固溶状態のため、冷却速度によっては黒鉛が晶出しない恐れがある。以上のことから、Ceqを2.0~4.8%とすると、湯流れが良く鋳巣の形成も抑制される。さらに好ましいCeqは、共晶点近傍で最も融点が低くなること、および、量産における合金元素の添加量の管理巾がC:±0.3%程度、Si:±0.5%程度であること、を考慮して、3.6~4.6%である。
 Crは、鋳鉄基地中で炭素と結合して炭化物を析出させ、基地の析出強化により鋳鉄の高温耐力を向上させる。また、鋳鉄の表面付近に緻密なクロム酸化物からなる不働態皮膜を形成して耐酸化性を向上させ得る。そのため、Cr量は0.8%以上さらには0.9%以上とするとよい。さらなる耐酸化性が求められる場合には、1.0%以上、1.3%以上さらには1.4%以上とするとよい。しかし、Crが過多になると、熱疲労強度が低下するだけでなく、炭化物が増加して硬くなり靱性や加工性が低下して好ましくない。そこで、Cr量は2.0%以下とし、1.9%以下さらには1.7%以下、1.6%以下、1.5%以下であると好ましい。
 Mnは、オーステナイト組織の安定化に有効な他、流動性悪化、脆化の原因となるSの除去等にも有効な元素である。また、Mnが過少であるとマルテンサイトが生成されやすいため、Mn量の下限は基本的に1.5%である。しかし、1.5%を超えてMnを含んでも、Si含有量が多くNi含有量が少ない場合には、中温域でフェライトが生成しやすくなる。そのため、Mn量は、3.9%以上さらには4.0%以上であるとよい。一方、Mn量が過多であると、Mn炭化物が増加して、鋳鉄の靱性等の低下や耐熱性の低下を招く。また、ブローホール等のガス欠陥も発生し易くなり好ましくない。また、熱疲労強度も低下する。Mn量は、5.6%以下さらには5.2%以下、5.0%以下であるのが好ましい。
 Niは、基地組織のオーステナイト化に有効な元素である。しかし前述の通り、Niが過少であると中温域で安定したオーステナイト相を得ることが難しい。そのため、Ni量は、17%以上さらには19%以上とするとよい。さらに、Niの添加により硬さを低減して熱疲労強度を向上させることができるため、Ni量は19.5%以上さらには20%以上であると好ましい。しかし、本発明のオーステナイト系鋳鉄では、Ni量を低減することで、オーステナイト系鋳鉄の低廉化を図る。Ni量は、22%以下さらには21.5%以下、21%以下であると好ましい。
 またMnは、図2からわかるように、中温域でのオーステナイト相の安定性を、Niと同程度に向上させる効果がある元素である。そのため、NiおよびMnの添加量の合計量(Ni+Mn)を規定するのであれば、21%以上27%以下であるのが好ましい。Ni+Mnを21.5%以上、23%以上さらには24%以上とすることで、Si添加量が比較的多くても、中温域でのオーステナイト相の安定性を確保できるため好ましい。一方、Si添加量が上記の範囲にあれば、Ni+Mnを26%以下さらには25.5%以下に低減することも可能である。
 Cuは、Niと同様に基地に固溶してオーステナイト組織を安定化させるとともに、基地組織の結晶粒を微細化して高温耐力を向上させる。また、耐酸化性や耐食性の向上のみならず、熱疲労強度の向上にも有効な元素である。そのため、Cu量は0.9%以上、好ましくは1.0%以上さらに好ましくは1.2%以上であるとよい。しかし、Cuが過多になるとCuの包晶組織が出現して黒鉛球状化が妨げられ、鋳鉄の強度等を低下させる。また、Cuが過多になるとCuの包晶組織が出現し、高温時の伸び性能が悪化するので好ましくない。さらには、Cuの過剰な添加は、高温(たとえば700℃)でのオーステナイト相の安定性を低下させる傾向にある。そこで、Cu量は1.6%以下、好ましくは1.5%以下さらに好ましくは1.4%以下であるとよい。
 ところで、図4は、Fe-C-Si-Ni-Mn-Cu-Cr合金における各元素の添加質量%を変数とした多変量解析を行った際の偏回帰係数に基づいて、厚さ25mm、12mm、5mmおよび3mmの試験片毎に、それぞれの試験片の硬さの上昇値と試験片の板厚との相関を示すグラフである。なお、硬さの測定方法は、後述の方法と同様である。硬さの上昇値は、Fe-3%C-4%Siの硬さを基準とし、より硬い場合にはプラス、硬さが低い場合にはマイナス、の値で表される。図4からわかるように、Cr、MnおよびSiの添加は、オーステナイト系鋳鉄の硬さを上昇させ、脆化の原因となる。一方、NiおよびCrの添加は、オーステナイト系鋳鉄の硬さを低下させ、延性が向上する。
 本発明のオーステナイト系鋳鉄では、延性を向上させるためにMn添加量を抑えている点も特徴的である。しかし前述の通り、Mnの添加が過少であると、中温域でのオーステナイト相の安定性は低下する。中温域でのオーステナイト相の安定性は、図2からわかるように、NiおよびCuを添加することで保たれる。さらに、NiおよびCuの添加は、延性を向上させる。つまり、本発明のオーステナイト系鋳鉄では、NiおよびCuを添加することで、Mn添加量を低減させたことによる中温域でのオーステナイト相の安定性の低下が補われ、延性がさらに向上する。
 本発明のオーステナイト系鋳鉄は、各添加元素の含有量を適切な範囲とすることで、適度な硬度を有する。オーステナイト系鋳鉄の硬さを規定するのであれば、ビッカース硬さでHv130~250さらにはHv140~220、Hv150~200であるのが好ましい。Hvが250を超えると、熱疲労強度のみならず伸びや引張り強さが低下するため好ましくない。また、適度な硬さおよび十分な伸びを示すオーステナイト系鋳鉄は、加工性に優れる。
  <微量改質元素>
 オーステナイト系鋳鉄(鋳物)の金属組織、耐酸化性、耐腐食性、常温域または高温域における強度、靱性等の機械的特性、電気的特性等、種々の特性を改善するために、微量な元素を含有させると好ましい。このような改質元素を含むオーステナイト系鋳鉄も、基本元素が上述した範囲内にある限り、当然に本発明の範囲内である。
 微量改質元素は、たとえば、マグネシウム(Mg)、希土類元素(R.E.)、アルミニウム(Al)、カルシウム(Ca)、バリウム(Ba)、ビスマス(Bi)、アンチモン(Sb)、スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、モリブデン(Mo)、バナジウム(V)、タングステン(W)、ニオブ(Nb)または窒素(N)等である。これら各元素の含有量は、オーステナイト系鋳鉄に要求される特性によって適宜調整される。もっとも、コストや基本元素の組成への影響等の観点から、微量改質元素は含有総量で1%以下、0.8%さらには0.6%以下程度が好ましい。
 添加した微量改質元素は、融点がFeより低いために鋳造中に消失等することもある。このため各元素の含有量は必ずしもその元素の添加総量とは一致しない。従って、鋳造組織の改善等に有効である限り、その微量改質元素の含有量は検出可能な最低レベルでもよい。
 代表的な微量改質元素は、Fe基地中における黒鉛の晶出を促進する接種剤やその晶出した黒鉛の球状化を促進する球状化剤に含まれる各元素である。接種剤や球状化剤等の助剤は、溶湯調製時に配合されたり、鋳造時に適宜添加されたりする。しかし、その含有元素や各元素の含有量は一定ではなく、多種多様である。すなわち、所望する鋳造組織(特に、晶出する黒鉛形状やその粒数)等を得るために試行錯誤されているのが実情である。従って、微量改質元素の種類やその含有量を明確に特定することは困難である。そして、微量改質元素の種類や含有量に拘ることは本発明の本旨に沿わない。
 もっとも、MgやR.E.(特に、セリウム(Ce))は、晶出する黒鉛の球状化剤として周知である。そこで本発明のオーステナイト系鋳鉄の場合でも、鋳鉄全体を100%として、微量改質元素として0.01~0.1%のMgおよび/または0.005~0.05%のCeを含むと好ましい。
 ここでMgは、高温の溶湯中から消失し易いため、鋳鉄全体を100%として、その下限が0.02%さらには0.03%となる程度に添加量が調整されると好ましい。Mg含有量の上限は、基本元素の組成に影響しない限り特に限定されないが、事実上、鋳鉄全体を100%として、0.07%さらには0.06%である。
 R.E.であるCeは高価であり、また、少量(0.001%以上)でも球状化の効果が得られるので、Ceの上限は、鋳鉄全体を100%として0.03%さらには0.01%であると好ましい。Ceの下限は、球状化剤としての効果が得られる範囲であれば特に限定されないが、事実上、その下限は鋳鉄全体を100%として0.007%さらには0.008%である。
  <不可避不純物>
 不可避的不純物として、たとえば、リン(P)や硫黄(S)がある。Pは黒鉛の球状化に有害であり、また、結晶粒界に析出して耐酸化性と室温伸びを低下させる。Sも黒鉛球状化に有害である。従って、これらの各不可避不純物は0.05%以下、0.03%以下、0.02%以下さらには0.01%以下とするのが好ましい。
 <オーステナイト系鋳鉄鋳物の製造方法>
 本発明は、オーステナイト系鋳物の製造方法であるから、前述したような溶湯調製工程、注湯工程および凝固工程を備える。もっとも、自動車部品等の高い信頼が要求される部材を鋳物で製造する場合、本発明のオーステナイト系鋳鉄が球状黒鉛鋳鉄であることが要求される。そこで、オーステナイト相からなる基地中に、多数の球状黒鉛を微細に晶出させることが望まれ、接種剤や球状化剤等の助剤の配合や添加がされる。
 これらの助剤は、たとえば、溶湯調製工程の段階から予め配合される。しかし、それら助剤の消失や時間の経過に伴い助剤の効果が低減するフェイディング現象を防ぎ、助剤を有効に機能させるために、基本元素からなる元湯を先ず調製しておき(元湯調製工程)、その元湯に助剤を直接または間接に配合または添加する助剤添加工程を備えるとより好適である。
 ここで「直接」に添加する場合とは、鋳型への注湯前の元湯に助剤を添加する場合等である。また、「間接」に添加等する場合とは、予め鋳型のキャビティへ助剤を投入しておく場合等である。たとえば、接種の場合であれば、取鍋接種、鋳型内接種、ワイヤー接種等のいずれでもよい。球状化処理の場合も同様である。
 結局、通常の鋳物は、溶解炉、保持炉から溶湯(元湯)を取鍋へ注入し、その溶湯を鋳型へ注湯して鋳造されるから、助剤の添加はそれらいずれの段階で行われてもよいし、また、助剤は粉末状、粒状、ワイヤー状等のいずれでもよい。なお、助剤は、接種剤や球状化剤が代表的であるが、それ以外の添加剤であってもよい。
 接種剤は、構成元素的に観て、たとえば、Si、Ca、Bi、Ba、Al、Sn、CuまたはR.E.の一種以上からなると好ましい。具体的には、Si-Ca-Bi-Ba-Al系、Si-Ca-Bi-Al-R.E.系、Si-Ca-Al-Ba系、Si-Sn-Cu系などの接種剤がある。接種剤の添加量または配合量は、消失やフェイディング現象等を考慮して決定される。そこでたとえば、元湯全体を100%としたときの添加総量が0.05~1%となるようにすると好ましい。
 黒鉛球状化剤は、構成元素的に観て、たとえば、MgおよびR.E.の一種以上からなると好ましい。具体的には、Mg-R.E.系、Mg単体、ミッシュメタル(Mm)等のR.E.単体、Ni-Mg系、Fe-Si-Mg系などの球状化剤がある。球状化剤の添加量または配合量も、消失やフェイディング現象等を考慮して決定される。たとえば、元湯全体を100%としたときのMg残留量(作成された鋳鉄中に残存しているMg量)が0.01~0.1%、より好ましくは0.03~0.08%となるように添加されると好ましい。
 なお、晶出する黒鉛の形状や粒数が所望範囲内である限り、いずれの接種剤や球状化剤をどの程度添加するかは任意である。
 <オーステナイト系鋳鉄鋳物>
 本発明のオーステナイト系鋳物は、上述した本発明のオーステナイト系鋳鉄からなる所望形状の部材であるが、その形状や肉厚等を問わないことはいうまでもない。
 ここで、鋳物の肉厚、形状、大きさ、方案等が、オーステナイト系鋳物の組織や鋳造欠陥等に影響を及ぼすことも考えられるが、本発明のオーステナイト系鋳物の場合、基地が安定したオーステナイト相となることが確認されている。また、鋳物の肉厚が薄くて溶湯が部分的に急冷凝固されるような場合でも、助剤の添加方法や時期を適宜調整することで、所望の球状黒鉛鋳鉄が得られることを本発明者は確認済みである。
 オーステナイト系鋳物の組織は、基地組織と共晶組織に大別される。本発明の基地組織はFeのオーステナイト相からなる。本発明の共晶組織は黒鉛である。
 一般的に、晶出する黒鉛の形態により鋳鉄は種々分類されるが、球状黒鉛鋳鉄であれば、他の鋳鉄と比較して機械的特性等、あらゆる特性に優れるので好ましい。そこで本発明のオーステナイト系鋳物も、球状黒鉛鋳鉄からなると好適である。
 球状黒鉛鋳鉄の組織は、黒鉛の球状化率と黒鉛の粒数によって一般的に指標される。特性に優れた実用的なオーステナイト系鋳物は、先ず、基地中に晶出または析出した黒鉛の球状化率が70%以上、75%以上さらには80%以上である。次に、晶出または析出した黒鉛の粒数が多い方が望ましい。たとえば、鋳物の肉厚が5mm以下の部分において、粒径10μm以上の黒鉛粒数が50個/mm以上、75個/mm以上さらには100個/mm以上であると好適である。なお、球状黒鉛は基地中に微細分散しているのが好ましい。また、鋳物の肉厚が5mm以下の部分において、粒径5μm以上の黒鉛粒数が150個/mm以上、200個/mm以上、250個/mm以上さらには300個/mm以上であると好適である。なお、球状黒鉛は基地中に微細分散しているのが好ましい。
 なお、黒鉛の球状化率は、JIS G 550210.7.4や旧JIS G 5502(NIK法)の黒鉛球状化率判定試験法により測定される。また、黒鉛の粒数は単位面積あたりの黒鉛の粒数を計測することにより測定される。
 本発明のオーステナイト系鋳物は従来よりも低廉であることから、現在、オーステナイト系鋳鉄が使用されている部材等に使用することで、低コストでの作製が可能となる。したがって、利用分野も自動車分野やエンジン分野には限られず、多種多様な部材に本発明のオーステナイト系鋳物が利用され得る。特に、本発明のオーステナイト系鋳物は、上述のように、中温域でのオーステナイト相の安定性および高温下における耐酸化性に優れる。そのため、本発明のオーステナイト系鋳鉄の具体的な用途としては、たとえば、自動車等の排気系部品である。これらの部品は、排気ガスにより500~600℃の中温環境下に長時間曝されるのみならず、排気ガス中の硫黄酸化物、窒素酸化物等にも曝されるからである。なかでも、現在D-2相当またはD-5S相当のオーステナイト系鋳鉄が主に使用されているターボチャージャーのハウジングに用いるのが望ましい。本発明のオーステナイト系鋳鉄は、D-2材よりも耐酸化性に優れ、D-5S材よりもNi含有量が少ないにもかかわらずD-5S材に匹敵する耐酸化性および優れたオーステナイト相の安定性を示すため、D-2またはD-5S材に代わる材料として有望である。なお、室温程度の常温域および700℃以上の高温域で使用される部材にも利用され得ることは当然である。
 以上、本発明のオーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明のオーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物の実施例を挙げて、本発明を具体的に説明する。
 <試験片の製造方法>
  <溶湯調製工程>
 C、Si、Cr、Mn、NiおよびCu(基本元素)と残部Feを含む原料を種々配合、混合し、それを高周波炉で大気溶解して47kgの溶湯を得た。
  <注湯工程>
 この溶湯を予め用意しておいた鋳型に注湯した。鋳型は砂型を使用した。このとき、約1550℃で出湯し、約1450℃で注湯した。
  <凝固工程>
 注湯後の溶湯は、自然冷却で凝固させ、所定の形状の試験片(すなわち鋳放しの鋳物)を得た。
 なお、各試験片を鋳造する際、接種剤および球状化剤等の助剤の添加も行った。接種材の添加は、大阪特殊合金製カルバロイ(Si-Ca-Al-Ba含有)または東洋電化社製トヨバロンBIL(Si-Ca-Ba-Bi-Al含有)を元湯に対して0.4質量%添加して行った。いずれの接種剤を添加しても、後述の結果に大きな違いは見られなかった。球状化剤の添加は、元湯100%に対して、Mg単体0.04質量%または0.07質量%、R.E.(ミッシュメタルを使用)0.05質量%およびSb単体0.0005質量%を、元湯に添加して行った。なお、Mg量が多いのは消失等を考慮したためである。
 ここで用いた鋳型は、幅50mm×全長180mmで、高さ(厚み)が〔1〕50mm(長さ50mm)→〔2〕25mm(長さ45mm)→〔3〕12mm(長さ40mm)→〔4〕5mm(長さ25mm)→〔5〕3mm(長さ20mm)の5段階で順に変化する段付板状の鋳物が得られる砂型である。また、これとは別に、JIS B号およびJIS D号のYブロックを鋳込みにより作製した。
 上記製造方法により、配合組成が異なるA1~A9、B1、B2、C1~C8(比較例)、D1およびE1の試験片を製造した。配合組成を表1および表2(A1~A9およびR1)、表4および表5(B1、B2、D1、C1~C6およびR2)、表7(R3~R6、C7、C8およびE1)に示した。
 なお、R1~R6は、従来から汎用されている鋳鉄から同様の手順で作製した試験片であり、R1およびR4はD-2(ASTM)相当、R2はNiMn137(JIS)相当、R3はD-5S(ASTM)相当、R5はHiSiMoFCD(一般名称)相当、R6はFCD450(JIS)相当、である。
 <試験片の測定>
  <1.合金組成の分析>
 各試料の厚さ25mmの部分から採取した試料について、湿式分析により組成分析して、鋳鉄全体の分析組成を得た。こうして得た基本元素組成を「分析組成」として各表に示した。表7には基本組成のみが示されているが、助剤として添加されたMg等も微量であるが検出された。なお、合金組成のうち「-」は、未配合、未分析もしくは未測定、分析不可もしくは測定不可のいずれかを示す。
  <2.組織評価>
 はじめに、試験片C8の厚さ25mmの部分から採取した試料について、X線管球としてCoを用いたX線回折(XRD)測定を行った。XRD測定は、鋳放し材およびそれを600℃の大気中で100時間保持した熱処理材について行った。結果を図5に示した。さらに、表1および表2、表4および表5、に示した各試験片についても同様に、XRD測定を行った。なお、熱処理は、各試験片(鋳放し材)を500℃または600℃の大気中で100時間、200時間または300時間保持して行った。
 それぞれのXRD測定結果より、オーステナイト相およびフェライト相のそれぞれのピークの積分強度を用いてオーステナイト率を算出した。積分強度は、2θ=90°付近のオーステナイト相の存在を示す(220)面のピークと、2θ=77°付近のフェライト相の存在を示す(200)面のピークと、から一般的な方法で算出した。オーステナイト率は、(220)面のピークの積分強度をIγ、(200)面のピークの積分強度をIα、としたときに、Iγ/(Iγ+Iα)の百分率(単位は%)である。結果を表3、表6および図6に示した。
 なお、試験片R3およびR4は、鋳放し材はもちろん、いずれの熱処理条件であっても、オーステナイト率100%を維持した。試験片R5は、鋳放し材、熱処理材、ともにオーステナイト率は0%であった。
 表7に示す各試験片については、顕微鏡写真により組織観察を行った。顕微鏡観察は、各試験片の断面を研磨して行った。光学顕微鏡写真により、共晶黒鉛の晶出形態を調べ、黒鉛の球状化率を測定した。黒鉛球状化率は、旧JIS G 5502(NIK法)の判定試験法により求めた。また、同様の試料について、ビッカース硬さ(Hv20kgf)を常温にて測定した。球状化率およびビッカース硬さを、表8に示した。
  <3.耐酸化試験>
 耐酸化性は、JIS Z 2282に基づき酸化減量を測定することで、表7に示した各試験片を評価した。具体的には、先ず、鋳込みにより作製したJIS B号およびJIS D号のYブロックからそれぞれ採取したφ20mm×20mmの各試験片を750℃、800℃または850℃の大気雰囲気中に100時間保持した。この加熱処理後の試験片の表面に、ショット球径が0.4mmの鉄球を、表面の酸化皮膜が無くなるまで投射した。ここで、酸化減量は、単位面積あたりの試験片の質量減少量である。酸化減量は上記加熱処理直後(ショット前)の試験片の質量から、ショット後の試験片の質量を差し引いたものである。850℃で熱処理した場合の酸化減量(2つの数平均値)を表9および図7に示した。
 なお、各試験片から落とされた酸化被膜を観察すると、試験片E1は、酸化物が粉末状になって試験片表面から除去された。しかし、試験片R4は、酸化被膜が塊のまま剥がれ落ちた。
  <4.引張試験>
 表7に示す各試験片について、JIS G 0567に準じて室温(RT:25℃)、600℃または800℃において試験を行い、耐力、引張強さおよび伸びを測定した。結果を表8および図8~図10に示した。なお、試料には、鋳込んだJIS B号Yブロックの垂直断面長方形の部分からφ6mmの丸棒試験片を作製して使用した。
  <5.熱応力試験>
 試験片R4、C7、C8およびE1の熱疲労強度または熱疲労寿命を、鋳込んだJIS B号Yブロックから採取したφ8mmの丸棒試験片を用いて測定した。この試験は、所定の拘束率の試験片の温度を800℃と200℃に繰り返し変更して、応力が10%低下するサイクル数と、応力が25%低下するサイクル数と、応力が50%低下するサイクル数と、分離破断するサイクル数(破断サイクル数)と、を調べた。この結果を表9および図11に示した。なお、応力の低下する割合は、引張側のピーク応力がサイクル数=2の時のピーク応力を基準とした。
 <評価>
 図5に示したように、試験片C8は、鋳放しの状態ではほぼ100%オーステナイト相(γ相)からなるが、600℃の大気中で100時間保持したことで、オーステナイト(γFe)のほとんど全部がフェライト(αFe)に変態した。これは、Si含有量が5.1%であって850℃での耐酸化性に優れたが、Ni量が過少かつMn量も不足したことに起因すると考えられる。
 試験片A1~A9は、いずれも、熱処理後のオーステナイト率が50%を超えた。つまり、汎用材であるD-2(試験片R1)と同等あるいはそれ以上のオーステナイト相の安定性を示すことがわかった。特に、600℃で300時間保持した後のオーステナイト率は、試験片A1~A9のいずれも60%以上であった。
 Ni含有量に関しては、試験片B1、B2およびC1ならびに試験片D1およびC2のオーステナイト率の計算結果(表6)から、16%以下では、中温域でのオーステナイト相の安定性(特に長時間熱処理をした場合の安定性)が大きく低下することがわかった。また、試験片C3はNiを分析組成で16.1%しか含まないが、オーステナイト相の安定性は高かった。これは、Si含有量を目標組成で3.2%まで低下させたためである。つまり、Ni含有量が17%未満の範囲では、Si含有量を低減させて耐酸化性を犠牲にしないと、オーステナイト相の安定性を維持できないことがわかった。
 特に、Ni量が19.5~21.5%である試験片A1、A3、A4、A6~A9、B1およびD1は、中温域(500℃または600℃)で長時間(300時間)保持した後のオーステナイト率がいずれの場合も60%以上であって、中温域でのオーステナイト相の安定性が特に優れていた。
 試験片A2、A5~A7、B1およびB2は、いずれも、Si含有量が目標組成で5.1%であった。Si含有量が高いと中温域でのオーステナイト相の安定性は低下しやすい傾向にあるが、試験片B2では、NiとMnとの添加量の合計(Ni+Mn)を21%以上としたことでオーステナイト相の安定性が保たれた。さらに、試験片A2、A5~A7およびB1のように、Ni+Mnを23%以上さらには24%以上とすることで、中温域におけるオーステナイト相の安定性はさらに向上した。また、試験片A3、A4およびD1の結果より、Ni+Mnを27%以下さらには26%以下にまで低減できることがわかった。
 また、試験片E1は、試験片A9と同じ目標組成であった。図7に示したように、850℃での熱処理後の試験片E1は、汎用材で最も耐酸化性に優れるD-5S(試験片R3)と同等の酸化減量であった。また、図1より、850℃における耐酸化性はSi添加量が大きく影響することから、試験片A9と同程度またはそれ以上のSi含有量である試験片A1、A2およびA5~A8の850℃における耐酸化性は、試験片R3と同程度あるいはそれ以上に優れると予測できる。さらに、図1より、Si添加量が1%減少した場合の酸化減量の増加は約43mg/cmである。そのため、試験片A3は、Si含有量が分析組成で4.16%であっても、酸化減量はたかだか35mg/cm程度であると予測される。つまり、試験片A1~A9は、Ni含有量を少なく抑えても、C、Si、Cr、MnおよびCuの含有量を適切な範囲とすることで、Niを多量に含むD-5S(試験片R3)に匹敵する耐酸化性および優れたオーステナイト相の安定性を示すことがわかった。
 また、試験片B1、B2およびD1は、Si含有量が分析組成で4.2%以上さらには5.1%以上であるため、850℃における耐酸化性は、表6に示すように十分に高かった。
 さらに、試験片E1の機械的特性(耐力、引張強度および破断伸び)および熱疲労寿命に関しても、それぞれ高い特性を示し、試験片A1~A9、B1、B2およびD1についても同様であることが推測される。したがって、試験片A1~A9、B1、B2およびD1のオーステナイト系鋳鉄は、高温下での耐酸化性および中温域でのオーステナイト相の安定性だけでなく、機械的特性および熱疲労寿命の観点からも、たとえばVNTターボのハウジング等として使用可能な範囲にあると言える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <試験片F1~F3の製造>
 上記の製造方法と同様にして、配合組成が異なるF1~F3の試験片を製造した。
 <試験片F1~F3の測定>
 上記の手順と同様にして、合金組成の分析、組織評価、ビッカース硬さ測定、および引張試験を行った。結果を表10~12に示した。なお、引張試験は、室温を23℃とし、耐力、引張強さおよび伸びに加えて、絞りも算出した。
 <評価>
 F1~F3のいずれの試験片も、伸びおよび絞りの値が大きく延性に優れ、加工に適した硬さであった。
 試験片F1よりもSi量、Cr量およびMn量が少なく、Ni量およびCu量が多い試験片F3は、試験片F1よりも硬さが低減された。一方、試験片F1よりもSi量、Cr量およびMn量が多く、Ni量およびCu量が少ない試験片F2は、試験片F1よりも硬さが上昇した。これは、図4からも明らかであるように、本発明の合金系では、Crの添加が硬さの向上に、NiおよりCuの添加が硬さの低減に、それぞれ寄与する傾向にあるためである。
 以上の結果から、各合金元素の含有量が適切な範囲にある試験片A1~A9、B1、B2、D1およびE1のオーステナイト系鋳鉄は、加工に適した硬さおよび延性を示すことがわかった。
 特に、C量を2.2~2.8%、Si量を4.3~5.1%、Cr量を1~2%、Mn量を4~5%、Ni量を19~21%、Cu量を1~1.6%とすることで、高温下での耐酸化性および中温域でのオーステナイト相の安定性、さらには機械的特性をバランスよく発揮できるオーステナイト系鋳鉄が得られることがわかった。
 また、E1およびF1~F3の結果より、Si量を4.4~5.1%さらには4.4~4.9%、Cr量を1.2~1.8%さらには1.2~1.6%、Mn量を4.0~4.9%さらには4.0~4.5%、Ni量を19~21%さらには19.5~21%,Cu量を1.1~1.6%さらには1.2~1.6%とすることで、オーステナイト相の安定性はもちろん、加工性にも優れたオーステナイト系鋳鉄が得られることがわかった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (12)

  1.  炭素(C)、ケイ素(Si)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)および銅(Cu)からなる基本元素と、
     残部が鉄(Fe)と不可避不純物および/または特性改善に有効な微量の微量改質元素と、
     からなり、常温域でオーステナイト相を主相とするFe合金からなる基地で組織された鋳鉄であるオーステナイト系鋳鉄であって、
     前記基本元素は、前記鋳鉄全体を100質量%(以下単に「%」と表示する。)としたとき、下記の条件を満足する組成範囲内にあることを特徴とするオーステナイト系鋳鉄。
      C  : 2.0~3.0 %
      Si : 4.0~5.4 %
      Cr : 0.8~2.0 %
      Mn : 3.9~5.6 %
      Ni :  17~22  %
      Cu : 0.9~1.6 %
  2.  前記Cは2.1~3.0%である請求項1記載のオーステナイト系鋳鉄。
  3.  前記Cuは1~1.6%である請求項1または2記載のオーステナイト系鋳鉄。
  4.  前記MnおよびNiの合計が21~27%である請求項1~3のいずれかに記載のオーステナイト系鋳鉄。
  5.  前記Niは19.5~21.5%である請求項1~4のいずれかに記載のオーステナイト系鋳鉄。
  6.  前記Cは2.2~2.8%、前記Siは4.3~5.1%、前記Crは1~2%、前記Mnは4~5%、前記Niは19~21%、前記Cuは1~1.6%である請求項1~5のいずれかに記載のオーステナイト系鋳鉄。
  7.  鋳造後に大気中600℃300時間保持した後のオーステナイト率が60%以上である請求項1~6のいずれかに記載のオーステナイト系鋳鉄。
  8.  請求項1~6のいずれかに記載した組成範囲の溶湯を調製する溶湯調製工程と、
     該溶湯を鋳型に注湯する注湯工程と、
     該鋳型に注湯された溶湯を冷却して凝固させる凝固工程と、
     からなり、請求項1~7のいずれかに記載のオーステナイト系鋳鉄からなる鋳物が得られることを特徴とするオーステナイト系鋳物の製造方法。
  9.  前記注湯工程の前または該注湯工程中に、晶出または析出する黒鉛の核となる接種剤と該黒鉛の球状化を促進する球状化剤との少なくとも一種を含む助剤を該元湯に直接または間接に添加する助剤添加工程を含む請求項8記載のオーステナイト系鋳物の製造方法。
  10.  請求項8または9に記載の製造方法により得られることを特徴とするオーステナイト系鋳物。
  11.  請求項1~10のいずれかに記載のオーステナイト系鋳鉄からなることを特徴とする排気系部品。
  12.  可変ノズルターボのハウジングである請求項11に記載の排気系部品。
     
     
PCT/JP2011/002755 2010-05-21 2011-05-18 オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法 WO2011145339A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012515755A JP5488941B2 (ja) 2010-05-21 2011-05-18 オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法
US13/695,719 US9567657B2 (en) 2010-05-21 2011-05-18 Austenitic cast iron, austenitic-cast-iron cast product and manufacturing process for the same
PL11783276T PL2573199T3 (pl) 2010-05-21 2011-05-18 Żeliwo austenityczne, produkt odlewniczy z żeliwa austenitycznego i sposób wytwarzania produktu odlewniczego
EP11783276.6A EP2573199B1 (en) 2010-05-21 2011-05-18 Austenitic cast iron, cast product of austenitic cast iron, and process for production of the cast product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010117389 2010-05-21
JP2010-117389 2010-05-21

Publications (1)

Publication Number Publication Date
WO2011145339A1 true WO2011145339A1 (ja) 2011-11-24

Family

ID=44991457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002755 WO2011145339A1 (ja) 2010-05-21 2011-05-18 オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法

Country Status (5)

Country Link
US (1) US9567657B2 (ja)
EP (1) EP2573199B1 (ja)
JP (1) JP5488941B2 (ja)
PL (1) PL2573199T3 (ja)
WO (1) WO2011145339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923554A (zh) * 2019-12-12 2020-03-27 中国第一汽车股份有限公司 一种高强度商用车缸体熔炼方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592684B1 (ko) 2014-04-14 2016-02-15 현대자동차주식회사 피로 수명 및 크립 저항성이 우수한 오스테나이트계 내열 주철
CN104846265B (zh) * 2015-04-27 2017-10-17 沈阳铸锻工业有限公司 一种超低温奥氏体耐磨球铁材质及其制备方法
KR101959677B1 (ko) * 2018-06-25 2019-03-18 이종문 재귀반사 기능을 갖는 가드레일의 레일 및 이를 이용한 충격 흡수와 승월 방지 구조를 갖는 가드레일
US11667995B2 (en) * 2021-09-21 2023-06-06 Ford Global Technologies, Llc Cast iron alloy for automotive engine applications with superior high temperature oxidation properties
US12023759B2 (en) 2022-04-11 2024-07-02 Hrl Laboratories, Llc Methods for tailoring the magnetic permeability of soft magnets, and soft magnets obtained therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137818A (en) * 1977-05-09 1978-12-01 Toyota Motor Corp Exhaust manifold
JPS5658945A (en) * 1979-10-18 1981-05-22 Hitachi Zosen Corp High toughness nodular graphite cast iron
JPS5827951A (ja) 1981-08-13 1983-02-18 Ishikawajima Harima Heavy Ind Co Ltd 耐熱性球状黒鉛オ−ステナイト鋳鉄
JPS59113160A (ja) * 1982-12-18 1984-06-29 Toyota Motor Corp 耐熱亀裂性にすぐれたオ−ステナイト球状黒鉛鋳鉄
JPH05302141A (ja) 1992-04-28 1993-11-16 Toshiba Corp 高断熱性耐食鋳鉄
WO2009028736A1 (ja) 2007-08-31 2009-03-05 Kabushiki Kaisha Toyota Jidoshokki オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物および排気系部品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055755A (en) * 1961-06-30 1962-09-25 Int Nickel Co Austenitic ductile iron having high notch ductility at low temperature
US3598576A (en) * 1968-08-13 1971-08-10 Meehanite Metal Corp Method of making nodular iron
BR8200106A (pt) * 1982-01-11 1983-09-13 Metal Leve Sa Processo para fabricacao de porta-aneis por metalurgia do po,a partir de ligas ferrosas austeniticas
DD255550A1 (de) * 1986-10-27 1988-04-06 Giesserei Anlagenbau Und Gusse Gusseisen mit austenitischer gefuegegrundmasse und globulargraphit
DE10049598C2 (de) * 2000-10-06 2003-07-17 Federal Mogul Burscheid Gmbh Verfahren zur Herstellung eines Gußeisenwerkstoffes
CN1826421A (zh) * 2003-07-18 2006-08-30 日立金属株式会社 奥氏体系耐热球状石墨铸铁

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137818A (en) * 1977-05-09 1978-12-01 Toyota Motor Corp Exhaust manifold
JPS5658945A (en) * 1979-10-18 1981-05-22 Hitachi Zosen Corp High toughness nodular graphite cast iron
JPS5827951A (ja) 1981-08-13 1983-02-18 Ishikawajima Harima Heavy Ind Co Ltd 耐熱性球状黒鉛オ−ステナイト鋳鉄
JPS59113160A (ja) * 1982-12-18 1984-06-29 Toyota Motor Corp 耐熱亀裂性にすぐれたオ−ステナイト球状黒鉛鋳鉄
JPH05302141A (ja) 1992-04-28 1993-11-16 Toshiba Corp 高断熱性耐食鋳鉄
WO2009028736A1 (ja) 2007-08-31 2009-03-05 Kabushiki Kaisha Toyota Jidoshokki オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物および排気系部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923554A (zh) * 2019-12-12 2020-03-27 中国第一汽车股份有限公司 一种高强度商用车缸体熔炼方法

Also Published As

Publication number Publication date
US20130045127A1 (en) 2013-02-21
PL2573199T3 (pl) 2018-06-29
JPWO2011145339A1 (ja) 2013-07-22
EP2573199A1 (en) 2013-03-27
US9567657B2 (en) 2017-02-14
JP5488941B2 (ja) 2014-05-14
EP2573199A4 (en) 2016-05-11
EP2573199B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5384352B2 (ja) オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物および排気系部品
JP5806468B2 (ja) オーステナイトダクタイル鋳鉄
US8333923B2 (en) High strength gray cast iron
JP5488941B2 (ja) オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法
WO2013100148A1 (ja) 強度及び靭性に優れた球状黒鉛鋳鉄及びその製造方法
JP4825886B2 (ja) フェライト系球状黒鉛鋳鉄
JP2009540115A (ja) 高温耐酸化性に優れる鋳鉄合金
JP2010144216A (ja) 球状黒鉛鋳鉄
KR102148756B1 (ko) 내열 구상흑연주철, 이의 제조 방법 및 이를 포함하는 엔진 배기계
EP2623623B1 (en) Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JP6481692B2 (ja) 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5475380B2 (ja) オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物
JP4233056B1 (ja) 球状黒鉛鋳鉄及びその製造方法
JP2002206143A (ja) 高強度低熱膨張鋳物鋼及び高強度低熱膨張鋳物鋼からなるガスタービンの翼環用及びシールリング保持環用リング形状部品
JP2021008649A (ja) オーステナイト系ステンレス鋳鋼
TW202022133A (zh) 鉻鐵合金
CN117448692B (zh) 高锰低镍奥氏体耐热钢及其应用
CN114058934A (zh) 球墨铸铁和由其形成的发动机排气系统部件
JP2022094117A (ja) 低熱膨張合金
KR20070028809A (ko) 엔진 배기매니폴드용 구상흑연주철의 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515755

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011783276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695719

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE