WO2011145237A1 - インペラの製造方法 - Google Patents

インペラの製造方法 Download PDF

Info

Publication number
WO2011145237A1
WO2011145237A1 PCT/JP2011/000668 JP2011000668W WO2011145237A1 WO 2011145237 A1 WO2011145237 A1 WO 2011145237A1 JP 2011000668 W JP2011000668 W JP 2011000668W WO 2011145237 A1 WO2011145237 A1 WO 2011145237A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
heat treatment
impeller
brazing material
brazing
Prior art date
Application number
PCT/JP2011/000668
Other languages
English (en)
French (fr)
Inventor
宏 中嶋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011145237A1 publication Critical patent/WO2011145237A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/41Hardening; Annealing
    • F05D2230/411Precipitation hardening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/142Gold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys

Definitions

  • the present invention relates to a method for manufacturing an impeller (rotary blade) used in a centrifugal compressor and other rotating machines.
  • the impeller 10 of the centrifugal compressor has a disk 11 whose one surface is fixed to the rotating main shaft of the centrifugal compressor and is rotated, and a shape facing the curved surface of the disk 11. And a large number of blades 13 provided so as to partition the curved surfaces of the disk 11 and the cover 12 in a spiral shape.
  • the impeller 10 is a so-called three-piece type in which the disk 11, the cover 12, and the blade 13 are individually manufactured, joined to each other, and assembled. The cover 12 and the blade 13 are integrally manufactured.
  • the impeller 10 shown in FIGS. 4 and 5 is a two-piece type, and shows an example in which a disk 11 and a cover 12 made integrally with a blade 13 are joined by a brazing portion 14. Yes.
  • Patent Document 1 discloses a method of manufacturing an impeller by brazing. Patent Document 1 has started quenching at a temperature slightly lower than the liquid phase of the brazing material, but with this, the strength of the brazed joint is insufficient, and as a result, cracks occur in the brazed joint. It was made to solve the problem of the previous brazing method. Patent Document 1 proposes a brazing thermal cycle whose representative example is shown in FIG. In FIG. 6, the assembly to be brazed to the liquid or liquidus temperature of the brazing material, about 1850 degrees Fahrenheit (1010 ° C.) over about 6 hours is heated and held at that temperature for about 1 hour.
  • brazing assembly is cooled to about 1300 degrees Fahrenheit (704.4 ° C) over about 2 hours, and then the assembly is lowered to a temperature of about 350 degrees Fahrenheit (176.7 ° C) over 1 hour. Gas quenching.
  • Patent Document 1 states that, due to this thermal cycle, the rotor blade assembly did not exhibit heat-induced distortion, and all the brazed joints were solid and cracked.
  • the impeller can be manufactured by brazing without causing cracks.
  • the impeller when used in a centrifugal compressor or other rotating machine, it is required that the mechanical strength of the joint portion by brazing is high.
  • the brazing method (thermal cycle) of Patent Document 1 is sufficiently considered especially for the toughness of the joint portion.
  • the present invention has been made based on such a technical problem, and an object thereof is to provide a method for obtaining an impeller by brazing while ensuring toughness of a joint portion.
  • Patent Document 1 describes an alloy containing JIS SUS630 as a stainless steel constituting each member of an impeller and 80% to 85% gold (Au) and 15% to 20% nickel (Ni) as a brazing material. (Hereinafter sometimes abbreviated as Ni—Au alloy) is recommended. In the present specification, “%” means “mass%”.
  • the brazing material As a factor affecting the toughness of the joint portion, there is a relationship between the brazing material and the member to be joined by the brazing material (base material). That is, when the tensile strength of the base material is large, the tensile strength of the brazing material is small, and the difference in tensile strength between the two is large, the toughness of the joint portion is lowered. This is because when the impact load is applied to the joint part, if the base material is not deformed or the deformation is small, the impact energy is not absorbed or small by the base material, so that the energy applied to the brazed part increases, It is because it is easy to lead to the fracture of a part.
  • JIS SUS630 disclosed as preferred in Patent Document 1 includes chromium (Cr); 15.5% to 17.5%, nickel (Ni); 3.0% to 5.0%, copper (Cu); 3 Precipitation hardening type stainless steel containing 0.0% to 5.0% as a main element, and it is used after being subjected to heat treatment that is subjected to solution heat treatment followed by age hardening heat treatment (or precipitation hardening heat treatment). .
  • the heating temperature of the age hardening heat treatment differs depending on whether the hardness (tensile strength) is important or the toughness is important. That is, when the hardness is important, the heating temperature is set low (470 to 490 ° C.
  • the heating temperature is set high (610 to 630 ° C. H1150 (see Table 1). ))
  • the tensile strength when the temperature of age-hardening heat treatment is increased with emphasis on toughness is about 900 MPa, but the tensile strength when emphasis on hardness exceeds 1300 MPa.
  • the tensile strength after brazing of the Ni—Au alloy disclosed as preferable in Patent Document 1 is 760 to 780 MPa.
  • the tensile strength exceeds 1300 MPa, and the difference from the tensile strength of the Ni—Au alloy becomes large, so a decrease in the toughness of the joint portion cannot be ignored. Further, if the temperature of the age hardening heat treatment is increased with emphasis on toughness, the tensile strength can be reduced to about 900 MPa as described above, so that the difference from the tensile strength of the Ni—Au alloy can be made relatively small. However, when the temperature of the age hardening heat treatment is increased, the proof stress decreases with a decrease in tensile strength, and the base material does not satisfy the mechanical properties required for the impeller.
  • a heat treatment is performed on an assembly in which a brazing material made of an Au alloy containing Ni is arranged at a joint portion of at least two impeller constituent members.
  • This heat treatment includes a solution heat treatment and an age hardening heat treatment.
  • brazing is also performed by melting and solidifying the brazing material, and in the age hardening heat treatment, the solution heat treatment has already been performed and at least two impeller components are joined by the brazing material.
  • the impeller component is composed of Cr; 15.5% to 17.5%, Ni; 3.0% to 5.0%, Cu; 3.0% to 5.0%. It consists of precipitation hardening type stainless steel.
  • the brazing material is made of an Au alloy containing 15% to 20% Ni and has a thickness of 200 to 1000 ⁇ m.
  • the cooling rate during cooling of the age hardening heat treatment is set to 0.5 to 10 ° C./min.
  • the thickness of the brazing material is preferably 250 to 450 ⁇ m, and the cooling rate during cooling of the age hardening heat treatment is preferably 0.5 to 2.0 ° C./min.
  • the impeller can be obtained by brazing while ensuring the toughness of the joint portion by specifying the thickness of the brazing material and specifying the cooling rate during cooling of the age hardening heat treatment.
  • FIG. 5 is a cross-sectional view along the blade of the impeller shown in FIG. 4.
  • 10 is a graph showing a heat treatment pattern disclosed in Patent Document 1.
  • FIGS. 4 and 5 a two-piece impeller shown in FIGS. 4 and 5 will be described as an example.
  • the present invention can also be applied when manufacturing a three-piece impeller.
  • SUS630 is a precipitation hardened stainless steel that improves the strength of steel by dissolving Cu in a matrix (matrix) by solution heat treatment and then precipitating fine Cu-Ni intermetallic compounds by subsequent age hardening heat treatment. It is. In addition to the following elements, elements that improve specific characteristics of SUS630 may be included.
  • the material for the disk 11 and the cover 12 is processed into the shape of the disk 11 and the cover 12 by forging and cutting, respectively. Since the cover 12 is integrally provided with the blade 13, a cutting process for forming the blade 13 is performed.
  • ⁇ Assembly> The manufactured disk 11 and the cover 12 integrated with the blade 13 are brought into contact with each other on the joining surface side to obtain an assembly.
  • the cover 12 has the blade 13 side opposed to the joining surface side of the disk 11.
  • a brazing material is disposed on the abutting surface.
  • a jig can be used so as to maintain a distance between the abutting surfaces of the disk 11 and the cover 12.
  • the brazing material used in the present embodiment is an alloy containing Ni based on Au.
  • This gold brazing material contains 15 to 20% Ni, with the balance being Au and inevitable impurities. By setting it as this composition range, the wettability with respect to a base material is favorable, and high joint strength can be obtained.
  • a material having a melting point (liquidus temperature) of 930 to 1050 ° C. which is lower than the holding temperature of the solution heat treatment is used.
  • This gold brazing material preferably has a chemical composition of 16-19% Ni-81-84% Au, more preferably 17.5-18.5% Ni-81.5-82.5% Au.
  • This brazing filler metal typically has a composition of 18% Ni—Au and has a melting point of about 1000 ° C.
  • the tensile strength of the gold brazing material after brazing is 760 to 780 MPa.
  • the form of the brazing material disposed on the abutting surfaces of the disk 11 and the cover 12 is arbitrary. For example, any of those known in brazing may be used, such as a thin piece, a thin strip, a linear material, a powder, or a paste. However, it is necessary to satisfy the thickness of the brazing material after brazing that is set in order to ensure the toughness of the joint portion.
  • the assembly is inserted into a heating furnace to perform heat treatment.
  • the heat treatment is composed of two stages of a solution heat treatment and an age hardening heat treatment.
  • Table 1 shows standards for SUS630 heat treatment (from JIS G4303).
  • the solution heat treatment selects the temperature at which the assembly is held (holding temperature) from the range of 1020 to 1060 ° C. based on this standard.
  • the time required until the holding temperature (temperature rising time) and the time for holding at the holding temperature (holding time) are arbitrary, but the temperature rising time is from 3 to 8 hours, and the holding time is 0.5 to 3 Select from a range of hours.
  • the cooling rate at the time of cooling in the solution heat treatment can be arbitrarily determined on the assumption that the object of dissolving Cu in the matrix can be achieved, but it is 1 to 10 ° C./min, preferably 3 to 5 ° C./min. . Since the gold brazing material used in this embodiment has a melting point of 930 to 1050 ° C., the brazing material is melted and solidified in the course of the solution heat treatment to braze the disk 11 and the cover 12. Thereby, brazing and solid solution treatment can be combined. In order to turn the structure into martensite, it is necessary to lower it to the Mf point (martensite transformation end temperature), which depends on the composition and the cooling rate, but is 100 to 140 ° C., which is below this temperature. There is a need.
  • Mf point martensite transformation end temperature
  • the age hardening heat treatment employs H1150 (610 to 630 ° C.) shown in Table 1 as the holding temperature. This is because the tensile strength of the brazing filler metal is about 760 to 780 MPa, and the tensile strength of the cover 12 and the disk 11 is made close to that of the brazing filler metal.
  • the proof stress in the case of age hardening heat treatment at the temperature of H1150 shown in Table 1 does not satisfy the value required for the impeller. Therefore, in the present embodiment, the cooling rate of the age hardening heat treatment is regulated to 0.5 ° C./min or more in order to suppress a decrease in yield strength.
  • SUS630 which is a precipitation hardening type stainless steel, improves the strength of the steel by precipitating a Cu-Ni intermetallic compound during the age hardening heat treatment. large.
  • the precipitation form of the precipitates depends on the holding temperature of the age hardening heat treatment, and the higher the holding temperature, the more fine precipitates are deposited, and the lower the holding temperature, the larger the precipitates and the fewer the number of precipitates. If it does so, tensile strength and yield strength will fall.
  • the present inventors have found that when the cooling rate of the age hardening heat treatment is 0.5 ° C./min or more, the absorbed energy obtained by the Charpy impact test (hereinafter, Charpy absorbed energy) can be increased.
  • the upper limit of the cooling rate of the age hardening heat treatment is set to 10 ° C./min.
  • the cooling rate is preferably 0.5 to 5.0 ° C./min, more preferably 0.5 to 2.0 ° C./min, and further preferably 0.7 to 2.0 ° C./min.
  • the thickness of the brazing material is set to 200 to 1000 ⁇ m in order to ensure the toughness of the joint portion. This thickness is the thickness after brazing. If the thickness of the brazing material is less than 200 ⁇ m, the Charpy absorbed energy is small and the toughness of the joint portion after brazing is insufficient. Accordingly, the lower limit of the thickness of the brazing material is 200 ⁇ m, but the preferable lower limit is 250 ⁇ m, and the more preferable lower limit is 300 ⁇ m. In consideration of toughness, it can be said that the brazing material is thicker and more preferable.
  • the brazing material made of Ni—Au alloy is inferior in rigidity, so that there is a risk of falling between the joined disk 11 and the cover 12 during rotation. Therefore, in the present embodiment, the thickness of the brazing material is set to 1000 ⁇ m or less.
  • Age hardening heat treatment conditions Holding temperature: 620 ° C., holding time: 1.5 hours Cooling rate: 0.1 ° C./min, 0.5 ° C./min, 0.7 ° C./min 1.0 ° C./min, 1.5 ° C./min, 2.0 °C / min
  • Brazing material thickness 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, 500 ⁇ m
  • the Charpy absorbed energy of the brazed joint was obtained under the above conditions.
  • the steel pieces were subjected to solution heat treatment and age hardening heat treatment, and then subjected to a tensile test (based on JIS Z2201, Z2241) to measure tensile strength ( ⁇ B) and yield strength ( ⁇ Y).
  • ⁇ B tensile strength
  • ⁇ Y yield strength
  • Table 2 and FIG. 3 Charge absorbed energy only. Looking at the thickness of the brazing material, only a Charpy absorption energy of 10 J or less is obtained at a thickness of 100 ⁇ m, whereas a Charpy absorption energy of 15 J or more is obtained at a thickness of 200 ⁇ m.
  • the effect of improving the Charpy absorbed energy by setting the thickness to 200 ⁇ m or more is remarkable. Further, when looking at the cooling rate of the age hardening heat treatment, the Charpy absorbed energy is remarkably improved at 0.5 ° C./min compared to the case of 0.1 ° C./min. As described above, when the brazing filler metal thickness is 200 ⁇ m or more and the cooling rate of the age hardening heat treatment is 0.5 ° C./min or more, the Charpy absorbed energy is remarkably improved. In particular, when the thickness of the brazing material is 500 ⁇ m or more, Charpy absorbed energy exceeding 27 J, which is the Charpy absorbed energy of a welded joint required by the API (American Petroleum Institute) standard, is obtained.
  • tensile strength ( ⁇ B) and yield strength ( ⁇ Y) a tensile strength of 690 MPa or more and a yield strength of 810 MPa or more were obtained even when the cooling rate of the age hardening heat treatment was 0.5 ° C./min or more. That is, it was a level satisfying the mechanical properties required for the impeller. Based on the above results, the inventors specified the thickness of the brazing material and the cooling rate of the age hardening heat treatment as in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 本発明は、少なくとも2つのインペラ構成部材の接合部分にNiを含有するAu合金からなるろう材を配置した組付け体に熱処理を施すインペラの製造方法に関する。この方法は、組付け体に固溶化熱処理を施し、ろう材を溶融、凝固させる工程と、固溶化熱処理が施されるとともに、ろう材により少なくとも2つのインペラ構成部材が接合された組付け体に時効硬化熱処理を施す工程とを備える。インペラ構成部材は析出硬化型であるJIS SUS630からなり、ろう材は、15質量%~20質量%のNiを含有するAu合金からなるとともに、200~1000μmの厚さを有する。そして、時効硬化熱処理の冷却時の冷却速度を0.5~10℃/分とする。

Description

インペラの製造方法
 本発明は、遠心圧縮機、その他の回転機械に用いられるインペラ(回転翼)の製造方法に関する。
 例えば遠心圧縮機のインペラ10は、図4、5に示すように、遠心圧縮機の回転主軸に固着し回転される片面が先薄に湾曲するディスク11と、ディスク11の湾曲面と対峙する形状のカバー12と、ディスク11とカバー12の湾曲面間を渦形に仕切るように設けられる多数のブレード13とにより構成されている。
 このインペラ10は、ディスク11と、カバー12と、ブレード13とを、個別に製作し相互に接合し組付ける3ピース型と呼ばれるもの、カバー12とブレード13とを一体に作製し、これとは個別に作製されたディスク11とを接合する2ピース型と呼ばれるものがある。3ピース型及び2ピース型のいずれのインペラ10も、接合は溶接又はろう付けにより行われる。接合を溶接又はろう付けのいずれかで行うかは、インペラ10のサイズ、強度等によって定められる。なお、図4、5に示すインペラ10は、2ピース型を示しており、ディスク11と、ブレード13と一体に作製されたカバー12とが、ろう付け部14により接合されている例を示している。
 特許文献1には、ろう付けによりインペラを製造する方法が開示されている。
 特許文献1は、ろう材の液相よりもわずかに低い温度で焼入れ処理を始めていたが、これではろう付け接合部の強度が不十分であり、その結果、ろう付け接合部にクラックが入ることがある、というそれまでのろう付け方法の問題を解消するためになされたものである。
 特許文献1は、図6に代表例が示されるろう付け熱サイクルを提案している。図6において、ろう材の液相または液相線温度、約華氏1850度(1010℃)まで約6時間かけてろう付けされる組立品を加熱し、その温度で約1時間保持する。さらに、ろう付け組立品を約2時間かけて約華氏1300度(704.4℃)まで冷却し、その後、組立品を約華氏350度(176.7℃)の温度まで1時間かけて下げてガス焼入れする。この熱サイクルにより、回転翼組立品は熱誘導歪みを示さず、ろう付け接合部すべてが堅固であり、クラックが生じなかったことを、特許文献1は述べている。
特表2003-531731号公報
 以上のように、特許文献1によると、クラックを生じさせることなくインペラをろう付け方により作製できる。しかし、インペラが遠心圧縮機、その他の回転機械で使用される際には、ろう付けによる継手部分の機械的強度が高いことが要求される。しかるに、特許文献1のろう付け方法(熱サイクル)は、継手部分の特に靭性に十分な配慮がなされているとは言えない。
 本発明は、このような技術的課題に基づいてなされたもので、継手部分の靭性を確保しながらインペラをろう付け方により得る方法を提供することを目的とする。
 特許文献1は、インペラの各部材を構成するステンレス鋼としてJIS SUS630を、また、ろう材として80%~85%の金(Au)と15%~20%のニッケル(Ni)とを含有する合金(以下、Ni-Au合金と略記することがある)を推奨している。なお、本願明細書において、%は「質量%」を意味する。
 ところで、継手部分の靭性に影響を及ぼす要因として、ろう材により接合される部材(母材)とろう材の引張強度の関係がある。つまり、母材の引張強度が大きく、かつ、ろう材の引張強度が小さく両者の引張強度の差が大きいと継手部分の靭性が低くなる。これは、継手部分に衝撃荷重が加わった際に、母材が変形しないかまたは変形が小さければ、衝撃エネルギは母材に吸収されないか小さいので、ろう付け部分に加わるエネルギが大きくなり、ろう付け部分の破断に繋がりやすいためである。
 特許文献1に好ましいとして開示されているJIS SUS630は、クロム(Cr);15.5%~17.5%、ニッケル(Ni);3.0%~5.0%、銅(Cu);3.0%~5.0%を主要元素とする析出硬化型のステンレス鋼であり、固溶化熱処理を施した後に時効硬化熱処理(又は析出硬化熱処理)を施すという熱処理を行って使用に供される。JIS SUS630は、硬度(引張強度)を重視する場合と靭性を重視する場合とで時効硬化熱処理の加熱温度が異なる。つまり、硬度を重視する場合には加熱温度を低く(470~490℃ H900(表1参照))設定し、靭性を重視する場合には加熱温度を高く設定(610~630℃ H1150(表1参照))する。靭性を重視して時効硬化熱処理の温度を高くした場合の引張強度は900MPa程度であるが、硬度を重視した場合の引張強度は1300MPaを超える。
 以上に対して、特許文献1で好ましいとして開示されるNi-Au合金のろう付け後の引張強度は760~780MPaである。
 硬度を重視して時効硬化熱処理の加熱温度を低くすると、引張強度が1300MPaを超えてしまい、Ni-Au合金の引張強度との差異が大きくなるので、継手部分の靭性の低下が無視できなくなる。
 また、靭性を重視して時効硬化熱処理の温度を高くすると、以上のように引張強度を900MPa程度にできるので、Ni-Au合金の引張強度との差異を比較的小さくできる。しかし、時効硬化熱処理の温度を高くすると、引張強度の低下に伴って耐力も低下してしまい、インペラに要求される機械的性質を母材が満足しなくなる。
 JIS SUS630と15~20%Ni-80~85%Au合金(ろう材)の組み合わせはインペラを作製するのに好ましいものであるが、以上説明したように、継手部分の靭性及び母材の機械的性質(耐力)の2つの特性を満足することは容易ではない。
 そこでなされた本発明のインペラの製造方法は、少なくとも2つのインペラ構成部材の接合部分にNiを含有するAu合金からなるろう材を配置した組付け体に熱処理を施す。この熱処理は、固溶化熱処理と時効硬化熱処理からなる。固溶化熱処理においては、ろう材の溶融、凝固によるろう付けもなされ、時効硬化熱処理においては、すでに固溶化熱処理が施されるとともに、少なくとも2つのインペラ構成部材がろう材により接合された組付け体に対して時効硬化が施される。
 本発明の製造方法は、インペラ構成部材が、Cr;15.5%~17.5%、Ni;3.0%~5.0%、Cu;3.0%~5.0%を主要元素とする析出硬化型のステンレス鋼からなる。また、ろう材は、15%~20%のNiを含有するAu合金からなるとともに、200~1000μmの厚さを有している。
 また、本発明の製造方法は、時効硬化熱処理の冷却時の冷却速度を0.5~10℃/分とする。
 本発明のインペラの製造方法は、詳しくは後述するが、ろう材の厚さを特定するとともに、時効硬化熱処理の冷却時の冷却速度を特定することにより、継手部分の靭性を確保するものである。
 本発明において、ろう材の厚さは250~450μmであり、また、時効硬化熱処理の冷却時の冷却速度は0.5~2.0℃/分であることが好ましい。
 本発明によれば、ろう材の厚さを特定するとともに、時効硬化熱処理の冷却時の冷却速度を特定することにより、継手部分の靭性を確保しながらインペラをろう付けにより得ることができる。
本実施形態におけるインペラの製造工程を示すフローチャートである。 本実施形態における固溶化熱処理、時効硬化熱処理のパターンを示す図である。 ろう材の厚さ、時効硬化熱処理の冷却速度を変動させて作製した試験片を用いてシャルピ衝撃試験を行って得られた吸収エネルギの結果を示すグラフである。 遠心圧縮機のインペラの平面図である。 図4に示すインペラのブレード沿いの断面図である。 特許文献1に開示されている熱処理パターンを示すグラフである。
 以下、実施形態に基づいてこの発明を詳細に説明する。
 本実施形態は、図4、図5に示す2ピース型のインペラを例にして説明する。ただし、3ピース型のインペラを製造する場合にも本発明を適用できることは言うまでもない。
<カバー用、ディスク用の素材>
 図1に示すように、ディスク11用、カバー12用の素材が各々用意される。この素材は、棒状の鋼材として提供される。この素材は、基本的にはSUS630で規定される以下の化学組成(質量%)を有している。SUS630は、固溶化熱処理によりCuを基地(マトリックス)中に固溶させ、その後の時効硬化熱処理により微細なCu-Ni金属間化合物を析出させることにより鋼の強度を向上させる析出硬化型のステンレス鋼である。なお、以下の元素以外に、SUS630の特定の特性を向上させる元素を含んでいてもよい。
<SUS630 化学組成>
 Cr;15.5%~17.5%(好ましくは15.5%~17.0%)
 Ni;3.0%~5.0%(好ましくは3.5%~4.5%)
 Cu;3.0%~5.0%(好ましくは3.0%~4.0%)
 Nb+Ta;0.15%~0.40%(好ましくは0.3%~0.4%)
 C;0.07%以下
 Si;1.0%以下
 Mn;1.0%以下
 P;0.004%以下
 S;0.03%以下
 残部;Feおよび不可避不純物
<鍛造-切削>
 ディスク11用、カバー12用の素材は、各々鍛造、切削により、ディスク11、カバー12の形状に加工される。カバー12はブレード13を一体的に備えているものであるから、ブレード13形成のための切削加工が施される。
<組付け>
 各々作製されたディスク11とブレード13一体のカバー12を、各々の接合面側を突き合わせて組付け体を得る。なお、カバー12はブレード13側をディスク11の接合面側に対向させる。この突合せ面には、ろう材を配置させる。この際、ろう付け後のろう材の厚さを確保するために、ディスク11とカバー12の突合せ面における間隔を保持するように治具を用いることができる。
<ろう材>
 本実施の形態で用いられるろう材は、AuをベースとしてNiを含む合金である。この金ろう材は、15~20%のNiを含み、残部がAu及び不可避不純物からなる。この組成範囲とすることにより、母材に対する濡れ性が良好であり、かつ、高い接合強度を得ることができる。この金ろう材は、融点(液相線温度)が固溶化熱処理の保持温度よりも低い930~1050℃のものを用いる。この金ろう材は、好ましくは16~19%Ni-81~84%Au、より好ましくは17.5~18.5%Ni-81.5~82.5%Auの化学組成を有する。この金ろう材は、典型的には18%のNi-Auの組成を有し、約1000℃の融点を有している。この金ろう材のろう付け後の引張強度は、760~780MPaである。
 ディスク11とカバー12の突合せ面に配置されるろう材の形態は任意である。例えば、薄片、薄帯、線状材、粉末、ペーストの形態など、ろう付けにおいて公知のいずれのものであってもよい。ただし、継手部分の靭性を確保するために設定されるろう付け後のろう材の厚さを満足できるものである必要がある。
<熱処理>
 ディスク11とカバー12をろう材を介して組み付けた後に、組付け体を加熱炉内に挿入して熱処理を行う。熱処理は、図2に示すように、固溶化熱処理と時効硬化熱処理の2段からなる。
 SUS630の熱処理に関する規格(JIS G4303より)を表1に示す。
 本実施形態において、固溶化熱処理はこの規格に基づいて、組付け体が保持される温度(保持温度)を1020~1060℃の範囲から選択する。保持温度までにかかる時間(昇温時間)、保持温度で保持する時間(保持時間)は任意であるが、昇温時間は3~8時間の範囲から、また、保持時間は0.5~3時間の範囲から選択する。固溶化熱処理の冷却時の冷却速度は、Cuを基地中に固溶させるという目的を達成できることを前提に任意に定めうるが、1~10℃/分、好ましくは3~5℃/分とする。
 本実施形態で用いる金ろう材は、融点が930~1050℃のものであるから、固溶化熱処理の過程で、ろう材は溶融・凝固してディスク11とカバー12をろう付けする。これにより、ろう付けと固溶体化処理を兼用できる。なお、組織をマルテンサイト化するためにはMf点(マルテンサイト変態終了温度)まで低下させる必要があり、その温度は組成及び冷却速度に依存するが100-140℃であり、この温度以下にする必要がある。
 固溶化熱処理が終わると、次に、時効硬化熱処理を行う。
 時効硬化熱処理は、保持温度として表1に示すH1150(610~630℃)を採用する。これは、金ろう材の引張強度が760~780MPa程度であり、カバー12、ディスク11の引張強度を金ろう材のそれに近づけるためである。ただし、表1で示されるH1150の温度で時効硬化熱処理した場合の耐力では、インペラとして要求される値を満足しない。そこで本実施形態では、耐力の低下を抑制するために時効硬化熱処理の冷却速度を0.5℃/分以上に規定する。
 析出硬化型のステンレス鋼であるSUS630は、時効硬化熱処理時にCu-Ni金属間化合物を析出させることにより鋼の強度を向上させるが、この析出物が微細に分散しているほど析出硬化の効果が大きい。この析出物の析出形態は、時効硬化熱処理の保持温度に左右され、保持温度が高いほど微細な析出物が多く析出し、保持温度が低くなると析出物は大きくなり、析出する数も減る。そうすると、引張強度、耐力が低下する。ところが、時効硬化熱処理の冷却速度を0.5℃/分以上にすると、シャルピ衝撃試験で得られる吸収エネルギ(以下、シャルピ吸収エネルギ)を大きくできることを本発明者等は知見した。この冷却速度を速くすればシャルピ吸収エネルギを大きくできるが、あまり冷却速度を早くしすぎると母材に割れが生じるおそれがある。そこで本実施形態では、時効硬化熱処理の冷却速度の上限を10℃/分とする。この冷却速度は、好ましくは0.5~5.0℃/分、より好ましくは0.5~2.0℃/分、さらに好ましくは0.7~2.0℃/分とする。
Figure JPOXMLDOC01-appb-I000001
<ろう材厚さ>
 本実施形態において、継手部分の靭性を確保するためにろう材の厚さが200~1000μmに設定される。なお、この厚さはろう付け後における厚さである。
 ろう材の厚さが200μm未満になると、シャルピ吸収エネルギが小さく、ろう付けした後の継手部分の靭性が不足する。したがってろう材の厚さの下限を200μmとするが、好ましい下限は250μm、さらに好ましい下限は300μmである。
 靭性を考慮するとろう材は厚いほど好ましいといえるが、Ni-Au合金からなるろう材は剛性が劣るので、接合されているディスク11とカバー12の間に回転中に倒れが生じるおそれがある。したがって、本実施の形態では、ろう材の厚さを1000μm以下とする。
<実験例>
 SUS630からなる2つの鋼片を突き合わせて金ろう材でろう付けしてシャルピ衝撃試験用の試験片(JIS Z2242準拠)を作製した。用いた鋼片の化学組成、ろう材の組成、固溶化熱処理の条件、時効硬化熱処理の条件、ろう材の厚さを下記するが、時効硬化熱処理の冷却速度、ろう材の厚さを変動させている。なお、ろう材は下記厚さの薄帯を用い、当初の厚さが保持されるように2つの鋼片の間隔を維持しながら熱処理を行った。
鋼片の化学組成(JIS SUS630準拠):
 Cr;15.5%、Ni;4.3%、Cu;3.5%、Nb+Ta;0.35%
 C;0.05% Si;0.25%、Mn;0.8%、P;0.0035%、S;0.007%
 残部;Feおよび不可避不純物
ろう材の組成:18%Ni-82%Au
固溶化熱処理の条件
 保持温度;1000~1040℃、保持時間;1.5時間、冷却速度;5.0℃/分
時効硬化熱処理の条件:
 保持温度;620℃、保持時間;1.5時間
 冷却速度;0.1℃/分,0.5℃/分,0.7℃/分
      1.0℃/分,1.5℃/分,2.0℃/分
ろう材厚さ:50μm,100μm,200μm,300μm,500μm
 以上の条件でろう付け継手部のシャルピ吸収エネルギを求めた。また、鋼片に固溶化熱処理、時効硬化熱処理を施した後に、引張試験(JIS Z2201,Z2241準拠)を行って引張強度(σB)、耐力(σY)を測定した。その結果を表2及び図3(シャルピ吸収エネルギのみ)に示す。
 ろう材の厚さについて観ると、100μmの厚さでは10J以下のシャルピ吸収エネルギしか得られないのに対して、200μmにすると15J以上のシャルピ吸収エネルギが得られており、ろう材の厚さを200μm以上にすることによるシャルピ吸収エネルギの向上効果には顕著性がある。また、時効硬化熱処理の冷却速度について観ると、0.1℃/分の場合に比べて0.5℃/分にすると、シャルピ吸収エネルギが顕著に向上している。このように、ろう材の厚さが200μm以上の場合に、時効硬化熱処理の冷却速度を0.5℃/分以上にすると、シャルピ吸収エネルギが顕著に向上する。特に、ろう材の厚さを500μm以上にすると、API(American Petroleum Institute)規格で要求される溶接継手のシャルピ吸収エネルギである27Jを超えるシャルピ吸収エネルギが得られる。
 また、引張強度(σB)、耐力(σY)について観ると、時効硬化熱処理の冷却速度を0.5℃/分以上にしても、690MPa以上の引張強度および810MPa以上の耐力が得られた。つまり、インペラに要求される機械的性質を満足するレベルであった。
 以上の結果に基づいて、本発明者らは、ろう材の厚さ、時効硬化熱処理の冷却速度を本発明のように特定した。
Figure JPOXMLDOC01-appb-I000002
 10…インペラ、11…ディスク、12…カバー、13…ブレード、14…ろう付け部

Claims (7)

  1.  少なくとも2つのインペラ構成部材の接合部分にNiを含有するAu合金からなるろう材を配置した組付け体に熱処理を施すインペラの製造方法であって、
     前記組付け体に固溶化熱処理を施し、前記ろう材を溶融、凝固させる工程Xと、
     前記固溶化熱処理が施されるとともに、前記ろう材により少なくとも2つの前記インペラ構成部材が接合された前記組付け体に時効硬化熱処理を施す工程Yとを備え、
     前記インペラ構成部材は、Cr;15.5質量%~17.5質量%、Ni;3.0質量%~5.0質量%、Cu;3.0質量%~5.0質量%を主要元素とする析出硬化型のステンレス鋼からなり、
     前記ろう材は、15質量%~20質量%のNiを含有するとともに、200~1000μmの厚さを有し、
     前記時効硬化熱処理の冷却時の冷却速度が0.5~10℃/分である、
    ことを特徴とするインペラの製造方法。
  2.  前記ろう材の厚さが、250~500μmである、
     請求項1に記載のインペラの製造方法。
  3.  前記時効硬化熱処理の冷却時の冷却速度が、0.5~2.0℃/分である、
     請求項1に記載のインペラの製造方法。
  4.  前記固溶化熱処理の保持温度は1020~1060℃であり、かつ前記時効硬化熱処理の保持温度は610~630℃である、請求項1に記載のインペラの製造方法。
  5.  前記工程Yに先立ち、前記組付け体の組織をマルテンサイト化するための処理を行う、請求項1に記載のインペラの製造方法。
  6.  前記ステンレス鋼は、
     Cr;15.5質量%~17.5質量%、Ni;3.0質量%~5.0質量%、Cu;3.0質量%~5.0質量%、Nb+Ta;0.15質量%~0.40質量%、C;0.07質量%以下、Si;1.0質量%以下、Mn;1.0質量%以下、P;0.004質量%以下、S;0.03質量%以下、残部;Feおよび不可避不純物からなる、請求項1に記載のインペラの製造方法。
  7.  前記インペラは遠心圧縮機に用いられる、請求項1に記載のインペラの製造方法。
PCT/JP2011/000668 2010-05-17 2011-02-07 インペラの製造方法 WO2011145237A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-112752 2010-05-17
JP2010112752A JP5422482B2 (ja) 2010-05-17 2010-05-17 インペラの製造方法

Publications (1)

Publication Number Publication Date
WO2011145237A1 true WO2011145237A1 (ja) 2011-11-24

Family

ID=44991360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000668 WO2011145237A1 (ja) 2010-05-17 2011-02-07 インペラの製造方法

Country Status (2)

Country Link
JP (1) JP5422482B2 (ja)
WO (1) WO2011145237A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422584B2 (ja) * 2011-02-22 2014-02-19 三菱重工業株式会社 インペラの製造方法
JP5422583B2 (ja) * 2011-02-22 2014-02-19 三菱重工業株式会社 インペラの製造方法
WO2012114404A1 (ja) * 2011-02-22 2012-08-30 三菱重工業株式会社 インペラの製造方法
JP5738169B2 (ja) * 2011-12-22 2015-06-17 三菱重工業株式会社 機械部品の製造方法及びこの製造方法によって製造されたインペラを備えた回転機械
ITCO20130067A1 (it) 2013-12-17 2015-06-18 Nuovo Pignone Srl Girante con elementi di protezione e compressore centrifugo
CN111408805B (zh) * 2020-03-05 2021-09-17 西安陕鼓动力股份有限公司 一种钎焊及性能热处理同炉的叶轮制造工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202701A (ja) * 1992-01-28 1993-08-10 Mitsubishi Heavy Ind Ltd 接合方法
JP3291827B2 (ja) * 1993-03-18 2002-06-17 株式会社日立製作所 羽根車及びディフューザ、並びにその製作方法
JP2003328989A (ja) * 2002-05-16 2003-11-19 Hitachi Industries Co Ltd 羽根車の製作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291872B2 (ja) * 1993-10-28 2002-06-17 ジェイエスアール株式会社 化学増幅型感放射線性樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202701A (ja) * 1992-01-28 1993-08-10 Mitsubishi Heavy Ind Ltd 接合方法
JP3291827B2 (ja) * 1993-03-18 2002-06-17 株式会社日立製作所 羽根車及びディフューザ、並びにその製作方法
JP2003328989A (ja) * 2002-05-16 2003-11-19 Hitachi Industries Co Ltd 羽根車の製作方法

Also Published As

Publication number Publication date
JP2011241704A (ja) 2011-12-01
JP5422482B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
US9815134B2 (en) Impeller brazing method
JP5501617B2 (ja) 鋼組成物、その形成方法、及びそれから形成した物品
JP6057363B1 (ja) Ni基超耐熱合金の製造方法
JP5318311B2 (ja) ろう付け方法およびそれから製造された製品
WO2011145237A1 (ja) インペラの製造方法
JP5988008B2 (ja) オーステナイト系ステンレス鋼板
JP2011502786A (ja) チタンアルミニウム合金からなるワークピース領域を有するワークピースの接合方法および材料溶着方法
KR101832654B1 (ko) NiIr기 내열 합금 및 그 제조 방법
JP2012144807A (ja) ゴルフクラブヘッドの合金およびその製造方法
WO2009136636A1 (ja) ガスタービン用リング状ディスク
JP2012507632A (ja) 超高強度ステンレス合金ストリップ、同ストリップの製造方法及びゴルフクラブヘッドを製造するために同ストリップを利用する方法
JP4941267B2 (ja) オーステナイト系高合金溶接継手およびオーステナイト系高合金溶接材料
JP6810694B2 (ja) タービン動翼の製造方法
JP5703177B2 (ja) 溶接用Ni基合金および溶加材
JP6189737B2 (ja) 蒸気タービン低圧ロータ及びその製造方法
JP2004107777A (ja) オーステナイト系耐熱合金とその製造方法および蒸気タービン部品
CN101934405A (zh) 一种钎焊方法
JP6485692B2 (ja) 高温強度に優れた耐熱合金およびその製造方法と耐熱合金ばね
WO2016111249A1 (ja) オーステナイト系耐熱鋼およびタービン部品
TWI585212B (zh) 鎳基合金及其製造方法
JPS63157839A (ja) 蒸気タ−ビンロ−タ
JP5354202B2 (ja) チタンクラッド鋼刃物及びその製造方法
JP4510542B2 (ja) 刃物及びその製造方法
JP5422583B2 (ja) インペラの製造方法
JP2017218634A (ja) マルエージング鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783176

Country of ref document: EP

Kind code of ref document: A1