WO2011145205A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2011145205A1
WO2011145205A1 PCT/JP2010/058610 JP2010058610W WO2011145205A1 WO 2011145205 A1 WO2011145205 A1 WO 2011145205A1 JP 2010058610 W JP2010058610 W JP 2010058610W WO 2011145205 A1 WO2011145205 A1 WO 2011145205A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
current collector
secondary battery
side wall
Prior art date
Application number
PCT/JP2010/058610
Other languages
English (en)
French (fr)
Inventor
平 齋藤
武佐志 中兼
鈴木 覚
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011507491A priority Critical patent/JP5445872B2/ja
Priority to PCT/JP2010/058610 priority patent/WO2011145205A1/ja
Priority to US13/063,000 priority patent/US8758917B2/en
Priority to CN201080002578.0A priority patent/CN102356496B/zh
Publication of WO2011145205A1 publication Critical patent/WO2011145205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • secondary battery means a lithium-ion secondary battery, a metal lithium secondary battery, a nickel-metal hydride battery (Ni-MH), a nickel-cadmium battery (Ni-MH). It is a concept that includes so-called storage batteries such as Ni-Cd: (Nickel-Cadmium (rechargeable battery)) and storage elements such as electric double layer capacitors.
  • Patent Document 1 discloses a battery in which a plurality of long cylindrical battery elements and flat side surfaces of the long cylindrical shape are combined.
  • a lithium ion secondary battery is disclosed that is housed in a container and in which a heat dissipation member is disposed between the battery container and the battery element.
  • a lithium ion secondary battery As a secondary battery that is lightweight and can obtain a high energy density, there is a lithium ion secondary battery.
  • the lithium ion secondary battery is expected to be preferably used for a high-output power source mounted on a vehicle.
  • a typical configuration of a lithium ion secondary battery a configuration including positive and negative electrodes including an electrode active material capable of occluding and releasing lithium ions, a separator disposed between them, and a non-aqueous electrolyte is used. Can be mentioned.
  • an electrode body formed by stacking and winding a separator between positive and negative electrode sheets and a non-aqueous electrolyte solution together with a battery case (battery)
  • a battery case battery
  • Patent Document 2 Japanese Patent Application Publication No. 2007-18968
  • the energy density includes volume energy density (Wh / L) and weight energy density (Wh / kg) in comparison with size and weight.
  • the volume energy density indicates the capacity of the battery per unit volume.
  • the weight energy density indicates the capacity of the battery per unit weight.
  • the secondary battery is the same size, it is better that the volume energy density and the weight energy density are higher.
  • a space in which the battery element can be accommodated is reduced by the amount of disposing the heat dissipating member.
  • the energy density decreases. For this reason, it is desirable to ensure a large space in which battery elements can be accommodated in battery cases of the same size. For on-vehicle or portable applications, if the battery capacity and output are the same, a lighter one is desirable.
  • the lithium ion secondary battery is overcharged due to some abnormality, for example, and generates heat or generates gas at the end of overcharge.
  • the lithium ion secondary battery needs to improve safety against such an end-of-charge event. For this reason, for example, when an abnormality occurs on the system, safety measures such as stopping charging are taken.
  • an electrode body (rolled electrode body) formed by stacking positive and negative electrode sheets with a separator interposed therebetween and winding them in the longitudinal direction is accommodated in a case (battery container) together with a non-aqueous electrolyte.
  • a case battery container
  • a non-aqueous electrolyte a non-aqueous electrolyte
  • a secondary battery according to the present invention includes a wound positive electrode sheet and a negative electrode sheet which are stacked in a state where a strip-shaped separator is interposed, and wound; A battery case; and a positioning member for positioning the wound electrode body on the battery case.
  • the positive electrode sheet is a strip-shaped positive electrode current collector, except for an uncoated part set on the positive electrode current collector along an edge on one side in the width direction of the positive electrode current collector, and an uncoated part.
  • a positive electrode mixture layer coated with a positive electrode mixture containing a positive electrode active material is provided on both surfaces of the positive electrode current collector.
  • the negative electrode sheet includes a strip-shaped negative electrode current collector, an uncoated portion set on the negative electrode current collector along an edge on one side in the width direction of the negative electrode current collector, and a negative electrode except for the uncoated portion.
  • a negative electrode mixture layer coated with a negative electrode mixture containing a negative electrode active material is provided on both surfaces of the current collector so as to be wider than the positive electrode mixture layer.
  • the positive electrode sheet and the negative electrode sheet face each other so that the positive electrode mixture layer is covered with the negative electrode mixture layer, and the uncoated part of the positive electrode sheet and the uncoated part of the negative electrode sheet have a width of the separator. It is piled up so that it may protrude on the opposite side in the direction.
  • the wound electrode body is wound around a winding axis set in the width direction of the stacked positive electrode sheets.
  • the side wall on the uncoated portion side of the positive electrode sheet is thicker than the opposite side wall.
  • the side wall on the uncoated portion side of the positive electrode sheet is thicker than the side wall on the opposite side.
  • the safety of the secondary battery is higher than when the side walls of the battery case facing the side surface of the wound electrode body have the same thickness on both sides in the width direction of the positive electrode sheet.
  • the difference (AB) between the thickness A of the side wall on the uncoated portion side of the positive electrode sheet and the thickness B of the opposite side wall can be 0.05 mm or more.
  • the ratio A / B between the thickness A of the side wall on the uncoated portion side of the positive electrode sheet and the thickness B of the side wall on the opposite side may be (A / B) ⁇ 1.1.
  • the thermal conductivity of the positive electrode current collector may be smaller than that of the negative electrode current collector.
  • the battery case may include a bottomed rectangular cylindrical container body and a lid that closes the opening of the container body.
  • FIG. 1 is a diagram illustrating an example of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 4 is a view showing a fixed part of the wound electrode body and the electrode terminal.
  • FIG. 5 is a diagram showing a vehicle equipped with a lithium ion secondary battery.
  • FIG. 1 shows a lithium ion secondary battery 100 according to an embodiment of the present invention.
  • the lithium ion secondary battery 100 includes a wound electrode body 200 and a battery case 300.
  • FIG. 2 is a view showing a wound electrode body 200.
  • FIG. 3 shows a III-III cross section in FIG.
  • the wound electrode body 200 includes a positive electrode sheet 220, a negative electrode sheet 240, and separators 262 and 264.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are respectively strip-shaped sheet materials.
  • the positive electrode sheet 220 has a strip-shaped positive electrode current collector 221 (positive electrode core material).
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped aluminum foil having a predetermined width is used.
  • the positive electrode sheet 220 has an uncoated portion 222 and a positive electrode mixture layer 223.
  • the uncoated part 222 is set along the edge of one side in the width direction of the positive electrode current collector 221.
  • the positive electrode mixture layer 223 is a layer coated with a positive electrode mixture 224 containing a positive electrode active material.
  • the positive electrode mixture 224 is coated on both surfaces of the positive electrode current collector 221 except for the uncoated portion 222 set on the positive electrode current collector 221.
  • the positive electrode mixture 224 is a mixture in which a positive electrode active material, a conductive material, a binder, and the like are mixed.
  • a positive electrode active material a material used as a positive electrode active material of a lithium ion secondary battery can be used without any particular limitation. Examples of the positive electrode active material, LiNiO 2, LiCoO 2, LiMn lithium transition metal oxides such as 2 O 4.
  • the negative electrode sheet 240 has a strip-shaped negative electrode current collector 241 (negative electrode core material).
  • a metal foil suitable for the negative electrode can be suitably used.
  • a strip-shaped copper foil having a predetermined width is used.
  • the negative electrode sheet 240 has an uncoated portion 242 and a negative electrode mixture layer 243.
  • the uncoated portion 242 is set along the edge portion on one side in the width direction of the negative electrode current collector 241.
  • the negative electrode mixture layer 243 is a layer coated with a negative electrode mixture 244 containing a negative electrode active material.
  • the negative electrode mixture 244 is coated on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
  • the negative electrode mixture 244 is a mixture obtained by mixing a negative electrode active material, a conductive material, a binder, and the like.
  • a material used as a negative electrode active material of a lithium ion secondary battery can be used without particular limitation.
  • the negative electrode active material include natural graphite, artificial graphite, carbon-based materials such as natural graphite and amorphous carbon of artificial graphite, lithium transition metal oxide, lithium transition metal nitride, and the like.
  • a heat-resistant layer 245 (HRL: heat-resistant layer) is further formed on the surface of the negative electrode mixture layer 243.
  • the heat-resistant layer 245 is formed with a layer containing a metal oxide (for example, alumina).
  • a metal oxide for example, alumina
  • the heat resistant layer is formed on the surface of the negative electrode mixture layer 243, but the heat resistant layer may be formed on the surfaces of the separators 262 and 264, for example.
  • the separators 262 and 264 are members that separate the positive electrode sheet 220 and the negative electrode sheet 240.
  • the separators 262 and 264 are made of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
  • Preferable examples of the separators 262 and 264 include those having a single layer or a laminated structure made of a porous polyolefin resin. In this example, as shown in FIGS.
  • the width b1 of the negative electrode mixture layer 243 is slightly wider than the width a1 of the positive electrode mixture layer 223, and the widths c1 and c2 of the separators 262 and 264 are It is slightly wider than the width b1 of the composite material layer 243 (c1, c2>b1> a1).
  • Winded electrode body 200 The positive electrode sheet 220 and the negative electrode sheet 240 of the wound electrode body 200 are overlapped and wound with the separators 262 and 264 interposed therebetween.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked in the order of the positive electrode sheet 220, the separator 262, the negative electrode sheet 240, and the separator 264 in the length direction as shown in FIG. ing.
  • separators 262 and 264 are stacked on the positive electrode mixture layer 223 and the negative electrode mixture layer 243.
  • the width of the negative electrode mixture layer 243 is slightly wider than the positive electrode mixture layer 223, and the negative electrode mixture layer 243 is overlaid so as to cover the positive electrode mixture layer 223.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 are overlapped so as to protrude on opposite sides in the width direction of the separators 262 and 264.
  • the stacked sheet material (for example, the positive electrode sheet 220) is wound around a winding axis set in the width direction.
  • the side where the uncoated portion 222 of the positive electrode current collector 221 protrudes from the separators 262 and 264 is appropriately referred to as “positive electrode side”.
  • the side where the uncoated portion 242 of the negative electrode current collector 241 protrudes from the separators 262 and 264 is appropriately referred to as “negative electrode side”.
  • the wound electrode body 200 is wound while the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked. In this step, the sheets are stacked while the position of each sheet is controlled by EPC (edge position control) or the like. At this time, although the separators 262 and 264 are interposed, the negative electrode mixture layer 243 is overlaid so as to cover the positive electrode mixture layer 223.
  • EPC edge position control
  • the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
  • the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
  • the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
  • the container main body 320 and the lid 340 constituting the battery case 300 adopt a light metal (in this example, aluminum) such as aluminum or an aluminum alloy. Thereby, the weight energy efficiency can be improved.
  • the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200. Further, as shown in FIG. 2, the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200. In this embodiment, the wound electrode body 200 is accommodated in the internal space of the battery case 300. As shown in FIG. 1, the wound electrode body 200 is accommodated in the battery case 300 in a state of being flatly deformed in one direction orthogonal to the winding axis.
  • the side wall 300A on the uncoated portion 222 side of the positive electrode sheet 220 ( The side wall on the positive electrode side is thicker than the side wall 300B (side wall on the negative electrode side) on the opposite side (uncoated portion 242 of the negative electrode sheet 240).
  • the thickness difference (AB) between the side walls 300A and 300B is, for example, 0.05 mm or more.
  • the battery case 300 includes a bottomed rectangular tube-shaped container body 320 and a lid 340 that closes the opening of the container body 320.
  • the positive electrode side wall 300A is thicker than the negative electrode side wall 300B.
  • the positive side wall 300A is made thicker than the negative side wall 300B.
  • the container main body 320 can be molded by, for example, deep drawing molding or impact molding. Impact molding is a kind of cold forging, and is also referred to as impact extrusion or impact press.
  • the electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300.
  • the electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
  • the battery case 300 is provided with a safety valve 360.
  • the safety valve 360 is provided in the middle of the lid 340 between the electrode terminals 420 and 440.
  • the valve hole provided with the safety valve 360 is an ellipse having a short side of 5 mm and a long side of 15 mm.
  • the positioning member 400 is a member that positions the wound electrode body 200 on the battery case 300.
  • the electrode terminals 420 and 440 attached to the battery case 300 (in this example, the lid 340) are used as the positioning member 400.
  • the wound electrode body 200 is housed in the battery case 300 in a state of being flatly pushed and bent in one direction orthogonal to the winding axis.
  • the uncoated part 222 of the positive electrode sheet 220 and the uncoated part 242 of the negative electrode sheet 240 protrude on the opposite sides in the width direction of the separators 262 and 264.
  • one electrode terminal 420 is fixed to the uncoated part 222 of the positive electrode current collector 221, and the other electrode terminal 440 is fixed to the uncoated part 222 of the negative electrode current collector 241. .
  • the electrode terminals 420 and 440 of the lid 340 extend to the uncoated portion 222 of the wound electrode body 200 and the intermediate portions 222 a and 242 a of the uncoated portion 242. Yes.
  • the tip portions of the electrode terminals 420 and 440 are welded to intermediate portions of the uncoated portion 222 and the uncoated portion 242, respectively.
  • FIG. 4 is a side view showing a welding location between the uncoated portions 222 and 242 of the wound electrode body 200 and the electrode terminals 420 and 440.
  • the uncoated part 222 of the positive electrode current collector 221 and the uncoated part 242 of the negative electrode current collector 241 are spirally exposed on both sides of the separators 262 and 264.
  • these uncoated portions 222 and 242 are gathered together at their intermediate portions and welded to the tip portions of the electrode terminals 420 and 440, respectively.
  • ultrasonic welding is used for welding the electrode terminal 420 and the positive electrode current collector 221 due to the difference in materials.
  • resistance welding is used for welding the electrode terminal 440 and the negative electrode current collector 241.
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state of being flatly pushed and bent.
  • the wound electrode body 200 is accommodated in the flat internal space of the container body 320.
  • the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
  • the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
  • the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid body 340 (battery case 300).
  • an electrolytic solution is injected into the battery case 300 from a liquid injection hole provided in the lid 340.
  • an electrolytic solution in which LiPF 6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used. Yes.
  • a metal sealing cap is attached to the injection hole (for example, by welding) to seal the battery case 300.
  • the nonaqueous electrolyte solution conventionally used for a lithium ion secondary battery can be used without limitation.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
  • gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
  • the gaps 310 and 312 serve as a gas escape path.
  • the lithium ion secondary battery 100 having such a configuration has a high temperature when overcharge occurs.
  • the electrolyte solution is decomposed to generate gas.
  • the generated gas is smoothly exhausted to the outside through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200 and the safety valve 360.
  • the positive electrode current collector 221 and the negative electrode current collector 241 of the wound electrode body 200 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300. .
  • the positive electrode active material in the positive electrode mixture layer 223 of the lithium ion secondary battery 100 is a lithium transition metal oxide and is difficult to conduct electricity.
  • the positive electrode mixture layer 223 is ensured to be conductive by mixing a conductive material.
  • the heat-resistant layer 245 (see FIG. 3) is provided on the surface of the negative electrode mixture layer 243.
  • the heat-resistant layer 245 includes a metal oxide as a main component and has an insulating property. For this reason, the resistance of the positive electrode mixture layer 223 and the negative electrode mixture layer 243 is large. Therefore, even if the positive electrode mixture layer 223 and the negative electrode mixture layer 243 come into contact with each other in an overcharged state, a large current is difficult to flow at a stretch.
  • the temperature of the lithium ion secondary battery 100 gradually increases as overcharge proceeds.
  • the inventor for example, intentionally generates an overcharge state in the lithium ion secondary battery 100 and further disassembles the lithium ion secondary battery 100 in the middle of reaching the end of overcharge, thereby reaching the end of overcharge.
  • the state of the lithium ion secondary battery 100 was examined. As a result, the present inventors have discovered the following matters.
  • the width b1 of the negative electrode mixture layer 243 is wider than the width a1 of the positive electrode mixture layer 223 (b1> a1).
  • the negative electrode mixture layer 243 is opposed to cover the positive electrode mixture layer 223.
  • the short circuit at the end of overcharge is triggered by such a short circuit.
  • the side surface 300A on the positive electrode side of the battery case 300 has the highest temperature. The present inventor infers the reason why such an event occurs as follows.
  • the base material of the separators 262 and 264 is typically a porous polyolefin resin. For this reason, if the temperature increases uniformly, the separators 262 and 264 contract uniformly.
  • the positive electrode current collector 221 and the negative electrode current collector 241 among the constituent members of the wound electrode body 200 have a relatively high thermal conductivity. Thereby, the heat inside the wound electrode body 200 tends to escape to the outside through the positive electrode current collector 221 and the negative electrode current collector 241.
  • an aluminum foil is used for the positive electrode current collector 221, and a copper foil is used for the negative electrode current collector 241.
  • the thermal conductivity (unit: W ⁇ m ⁇ 1 ⁇ K ⁇ 1 ) near room temperature (about 20 ° C.) is about 240 for aluminum (Al) and about 400 for copper (Cu). That is, the negative electrode current collector 241 (copper foil) has a higher thermal conductivity than the positive electrode current collector 221 (aluminum foil). For this reason, the negative electrode side of the wound electrode body 200 is easier to cool and cool than the positive electrode side. On the other hand, the positive electrode side of the wound electrode body 200 tends to accumulate heat more easily than the negative electrode side. For this reason, the shrinkage of the separators 262 and 264 proceeds faster on the positive electrode side than on the negative electrode side.
  • the uncoated part 222 of the positive electrode sheet 220 is a metal foil, and its electrical resistance is much smaller than that of the positive electrode mixture layer 223 containing a lithium transition metal oxide. For this reason, the uncoated part 222 of the positive electrode sheet 220 and the negative electrode sheet 240 (negative electrode mixture layer 243) are in contact with each other as compared with the case where the positive electrode mixture layer 223 contacts the negative electrode sheet 240 (negative electrode mixture layer 243). In the case, a larger current flows.
  • a short circuit that occurs on the positive electrode side of the wound electrode body 200 causes a large current and causes a problem. Easy to cause.
  • the positive electrode mixture layer 223 and the negative electrode mixture layer 243 face each other with the separators 262 and 264 interposed therebetween.
  • the positive electrode mixture layer 223 has a higher electrical resistance than the positive electrode current collector 221. Therefore, even if the positive electrode mixture layer 223 and the negative electrode mixture layer 243 are in contact with each other, the current as large as when the uncoated portion 222 of the positive electrode sheet 220 and the negative electrode mixture layer 243 are in contact with each other on the positive electrode side is It is difficult to flow. Thereby, the negative electrode side of the wound electrode body 200 is unlikely to cause a malfunction at the end of overcharge.
  • the lithium ion secondary battery 100 having such a configuration becomes high temperature at the end of overcharge.
  • the electrolytic solution is decomposed to generate gas.
  • gas is generated in the wound electrode body 200.
  • the gas generated in the wound electrode body 200 passes through the gaps between the stacked positive electrode sheet 220, negative electrode sheet 240, separators 262, 264 in the width direction of each sheet material (X1, X2 in FIG. 1). It goes out to the gaps 310 and 312 on both sides of the rotating electrode body 200.
  • the short circuit between the positive electrode sheet 220 and the negative electrode sheet 240 starts from the positive electrode side of the wound electrode body 200, and therefore, high temperature gas is blown onto the inner wall of the battery case 300 on the positive electrode side. Thereby, at the end of overcharge, the side wall 300A on the positive electrode side of the battery case 300 becomes the highest temperature.
  • the lithium ion secondary battery 100 is an uncoated portion of the positive electrode sheet 220 in the vicinity of the edge 223a on the uncoated portion 222 side of the positive electrode mixture layer 223. Short circuit between 222 and the negative electrode current collector 241 starts. And this triggers the trouble of the last stage of overcharge.
  • the positive electrode side wall 300 ⁇ / b> A of the battery case 300 is easily exposed to a gas caused by a short circuit and becomes the highest temperature.
  • a heat dissipating member may be disposed on the positive electrode side wall 300A of the battery case 300, but simply disposing the heat dissipating member must reduce the size of the wound electrode body 200. Disappear. As a result, the volume energy density (Wh / L) of the lithium ion secondary battery 100 decreases, and the performance of the lithium ion secondary battery 100 decreases.
  • the lithium ion secondary battery 100 was created based on the above knowledge obtained by the present inventors.
  • the positive electrode sheet 220 is not coated.
  • the side wall 300A (positive electrode side wall) on the portion 222 side is thicker than the side wall 300B (negative electrode side wall) on the opposite side (uncoated portion 242 of the negative electrode sheet 240).
  • the thickness A of the side wall 300A on the uncoated portion 222 side of the positive electrode sheet 220 and the thickness B of the opposite side wall 300B are A> B.
  • the positive electrode side of the battery case 300 has high strength, heat capacity, and heat resistance. Therefore, even when a high-temperature gas is ejected toward the battery case 300 on the positive electrode side of the wound electrode body 200, damage and deformation of the battery case 300 can be suppressed to a low level.
  • the thickness of the battery case 300 is increased only on the positive electrode side. For this reason, the weight of the battery case 300 can be reduced and the internal space of the battery case 300 can be widened as compared with the case where the entire battery case 300 is thickened so that the positive electrode side has required heat resistance. Thereby, the weight energy density and volume energy density of a secondary battery can be improved.
  • the negative electrode side of the wound electrode body 200 is less likely to be a starting point of a short circuit than the positive electrode side, and the momentum of the high-temperature gas ejected from the wound electrode body 200 toward the battery case 300 is remarkably inferior.
  • the negative electrode current collector 241 has higher thermal conductivity than the positive electrode current collector 221, and heat is more easily radiated through the negative electrode current collector 241 on the negative electrode side than on the positive electrode side. For this reason, the temperature of the side wall 300B on the negative electrode side of the battery case 300 at the end of overcharge is lower than that on the positive electrode side. Thereby, even when the thickness of the battery case 300 on the negative electrode side is thinner than that on the positive electrode side, it is possible to prevent a problem from occurring at the end of overcharge.
  • the thickness B of the side wall opposite to the thickness A of the uncoated portion side of the positive electrode sheet is A> B
  • the durability and heat resistance on the positive electrode side can be improved compared to the negative electrode side. it can.
  • the difference (AB) between the thickness A of the side wall on the uncoated portion side of the positive electrode sheet and the thickness B of the side wall on the opposite side can be 0.05 mm or more, for example.
  • the strength and heat resistance can be improved with such a thickness difference.
  • the ratio A / B between the thickness A of the positive side wall 300A and the thickness B of the opposite side wall 300B may be (A / B) ⁇ 1.1.
  • the thickness A of the positive electrode side wall 300A may be 0.66 mm or more.
  • the ratio A / B of the thickness A of the side wall 300A on the positive electrode side and the thickness B of the side wall 300B on the opposite side, and the side wall thickness A on the uncoated part side of the positive electrode sheet You may prescribe
  • the thermal conductivity of the positive electrode current collector is smaller than that of the negative electrode current collector.
  • the negative electrode side of the wound electrode body 200 is more easily escaped and cooled than the positive electrode side, and the positive electrode side of the wound electrode body 200 is more likely to heat up and become hotter than the negative electrode side.
  • the shrinkage of the separators 262 and 264 tends to proceed faster on the positive electrode side than on the negative electrode side.
  • the positive electrode mixture layer 223 has a higher electrical resistance than the uncoated part 222 of the positive electrode sheet 220.
  • the thermal conductivity of the positive electrode current collector is smaller than that of the negative electrode current collector, so that the starting point of the short circuit at the end of the overcharge is on the positive electrode side of the wound electrode body 200.
  • This is a biasing factor.
  • the lithium ion secondary battery 100 is thick on the positive electrode side of the battery case 300, the positive electrode side of the battery case 300 has high strength, heat capacity, and heat resistance. For this reason, even when a high-temperature gas is ejected toward the battery case 300 on the positive electrode side of the wound electrode body 200, damage and deformation of the battery case 300 can be suppressed to a small level.
  • the lithium ion secondary battery 100 is suitable when the thermal conductivity of the positive electrode current collector is smaller than that of the negative electrode current collector, or when the negative electrode mixture layer is covered with the heat-resistant layer.
  • the inventor uses an aluminum battery case having a thickness of 0.5 mm as the battery case 300, and changes the thicknesses A and B (see FIG. 1) of the side walls 300A and 300B on both sides of the battery case 300, respectively.
  • a plurality of lithium ion secondary batteries were prepared. Then, each lithium ion secondary battery was intentionally placed in an overcharge end state, and the maximum temperature of the battery case 300 was measured.
  • the wound electrode body 200 has a width of 105 mm (d in FIG. 2), and the positive electrode mixture layer 223 has a width (a1 in FIG. 2) of 74 mm.
  • the width of the material layer 243 was 78 mm (b1 in FIG. 2), and the widths of the separators 262 and 264 were 85 mm (c1, c2 in FIG. 2).
  • the inner wall of the battery case 300 is covered with a pp film for insulation.
  • the wound electrode body 200 is disposed at the center of the battery case 300 in the width direction of the positive electrode sheet 220.
  • the test battery was charged through a predetermined conditioning step (preliminary charge), with a charging current of 20 A, an upper limit voltage of 100 V, and an environmental temperature of 25 ° C., and was charged until the end of overcharge.
  • a predetermined conditioning step preliminary charge
  • a charging current of 20 A an upper limit voltage of 100 V
  • an environmental temperature 25 ° C.
  • five identical samples are made and the average value is taken.
  • the other structure of each sample conforms to the structure of the lithium ion secondary battery 100 described above.
  • the maximum temperature (case maximum temperature) of the battery case 300 was obtained at the side walls 300A and 300B on the positive electrode side of the battery case 300.
  • Sample 1 had a thickness A of 0.7 mm and a thickness B of 0.6 mm, and the case maximum temperature was about 555 ° C.
  • Sample 2 had a thickness A of 0.75 mm, a thickness B of 0.55 mm, and a case maximum temperature of about 540 ° C.
  • Sample 3 had a thickness A of 0.8 mm, a thickness B of 0.5 mm, and a maximum case temperature of about 530 ° C.
  • Sample 4 had a thickness A of 0.65 mm and a thickness B of 0.65 mm, and the case maximum temperature was about 600 ° C.
  • Sample 5 had a thickness A of 0.6 mm and a thickness B of 0.7 mm, and the case maximum temperature was about 690 ° C.
  • Sample 6 had a thickness A of 0.55 mm and a thickness B of 0.7 mm, and the case maximum temperature was about 780 ° C.
  • Table 1 shows a part of the tests conducted by the present inventors.
  • the case maximum temperature is shown.
  • the damage which arises in the battery case 300 was able to be suppressed small.
  • the lithium ion secondary battery 100A according to the embodiment of the present invention has been variously described, but the secondary battery according to the present invention is not limited to the above embodiment.
  • the lithium ion secondary battery is exemplified as the secondary battery, but the structure of the lithium ion secondary battery 100A can be applied to other secondary batteries.
  • the container shape of the lithium ion secondary battery is not limited to a flat rectangular shape.
  • the side surface of the container is opposed to the container formed so that at least one side surface is opened in the winding axis direction of the wound electrode body.
  • the positive electrode sheet of the side walls of the battery case facing the side surface of the wound electrode body on both sides in the width direction of the positive electrode sheet (winding axis direction of the wound electrode body) with respect to the series of containers.
  • This can be realized by a special process of making the side wall of the uncoated portion side thicker than the side wall on the opposite side.
  • the secondary battery according to the present invention can improve the safety at the end of overcharge, and in the secondary battery of the same size, the volume energy density (Wh / L) and the weight energy density (Wh / kg) can be improved. For this reason, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. This is particularly useful as a vehicle-mounted secondary battery.
  • a plurality of secondary batteries can be combined to form an assembled battery.
  • the above secondary battery or an assembled battery obtained by combining a plurality of the above secondary batteries can be used.
  • a vehicle 1 equipped with a lithium ion secondary battery according to the present invention (which may be in the form of an assembled battery 1000 formed by connecting a plurality of such batteries in series) as a power source.
  • Examples of such vehicles include automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and fuel cell cars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明は、正負の電極シートを、セパレータを間に挟んで重ね合わせ、これらを長手方向に捲回してなる電極体(捲回電極体)を、非水電解液とともにケース(電池容器)に収容した二次電池について、安全性を向上させつつ、エネルギー密度を向上させることができる新たな構造を提案する。 本発明は、正極シート(220)の幅方向両側において捲回電極体(200)の側面と対向する電池ケース(300)の側壁(300A、300B)のうち、正極シート(220)の未塗工部(222)側の側壁(300A)(正極側の側壁)の方が、反対側の側壁(300B)(負極側の側壁)よりも厚い、換言すると、正極シート(220)の未塗工部(222)側の側壁(300A)の厚さAと、反対側の側壁(300B)の厚さBは、A>Bである、リチウムイオン二次電池(100)に関する。

Description

二次電池
 本発明は二次電池に関する。なお、本明細書において「二次電池」とは、リチウムイオン二次電池(lithium-ion secondary battery)、金属リチウム二次電池、ニッケル水素電池(Ni-MH: Nickel metal hydride)、ニッケルカドミウム電池(Ni-Cd: Nickel-Cadmium rechargeable battery)等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する概念である。
 二次電池は、車両搭載用電源やパソコンや携帯端末等の電源としての用途において重要性が高まっている。かかる二次電池について、例えば、日本国特許出願公開2001-185225号公報(特許文献1)には、長円筒形の電池要素が複数個、長円筒形の平坦な側面同士が合わさるように、電池容器内に収納され、該電池容器と電池要素との間に放熱部材が配置されたリチウムイオン二次電池が開示されている。
 また、軽量で高エネルギー密度が得られる二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、車両搭載用の高出力電源に好ましく用いられるものとして期待されている。リチウムイオン二次電池の代表的な構成として、リチウムイオンを吸蔵及び放出可能な電極活物質を備える正負の電極と、それらの間に配置されたセパレータと、非水電解液とを備えた構成が挙げられる。このようなリチウムイオン二次電池には、例えば、正負の電極シートの間にセパレータを挟んで重ね合わせて捲回してなる電極体(捲回電極体)を、非水電解液とともに電池ケース(電池容器)に収容した構成が知られている。この種の電池は、例えば、日本国特許出願公開2007-18968号公報(特許文献2)に開示されている。
日本国特許出願公開2001-185225号公報 日本国特許出願公開2007-18968号公報
 安全性が確保された上ではあるが、二次電池は、エネルギー密度を向上させることが望まれている。エネルギー密度には、サイズや重量との比較において、体積エネルギー密度(Wh/L)と重量エネルギー密度(Wh/kg)がある。ここで、体積エネルギー密度は、単位体積当りの電池の容量を示している。重量エネルギー密度は、単位重量当りの電池の容量を示している。
 つまり、二次電池は、同じ大きさであれば体積エネルギー密度や重量エネルギー密度が高い方がよい。例えば、特許文献1に開示されているように、電池容器と電池要素との間に放熱部材を配置する場合、放熱部材を配置した分だけ電池要素を収容できる空間が狭くなる。電池要素を収容できる空間が狭くなり、収容できる電池要素が小さくなるとエネルギー密度が低下する。このため、同じ大きさの電池ケースでは、電池要素を収容できる空間を大きく確保することが望ましい。また、車載や携帯される用途では、電池の容量や出力が同じであれば、軽い方が望ましい。
 また、リチウムイオン二次電池は、例えば、何らかの異常によって過充電の状態が生じ、過充電末期では、発熱したり、ガスが発生したりする。リチウムイオン二次電池は、かかる過充電末期の事象に対しても安全性を向上させる必要がある。このため、例えば、システム上で、異常が発生すると、充電を停止させるなどの安全対策が取られる。
 本発明は、正負の電極シートを、セパレータを間に挟んで重ね合わせ、これらを長手方向に捲回してなる電極体(捲回電極体)を、非水電解液とともにケース(電池容器)に収容した二次電池について、安全性を向上させつつ、エネルギー密度を向上させることができる新たな構造を提案する。
 本発明に係る二次電池は、帯状の正極シート及び帯状の負極シートが帯状のセパレータを介在させた状態で重ねられ、かつ、捲回された捲回電極体と;捲回電極体を収容した電池ケースと;捲回電極体を電池ケースに位置決めする位置決め部材と;を備えている。
 ここで、正極シートは、帯状の正極集電体と、正極集電体の幅方向片側の縁部に沿って正極集電体に設定された未塗工部と、未塗工部を除いて正極集電体の両面に、正極活物質を含む正極合材が塗工された正極合材層とを備えている。
 また、負極シートは、帯状の負極集電体と、負極集電体の幅方向片側の縁部に沿って負極集電体に設定された未塗工部と、未塗工部を除いて負極集電体の両面に、正極合材層よりも幅が広くなるように、負極活物質を含む負極合材が塗工された負極合材層とを備えている。
 また、正極シートと負極シートとは、正極合材層が負極合材層によって覆われるように対向し、かつ、正極シートの未塗工部と負極シートの未塗工部とが、セパレータの幅方向において互いに反対側にはみ出るように重ねられている。また、捲回電極体は、重ねられた正極シートの幅方向に設定された捲回軸周りに捲回されている。
 ここで、電池ケースは、正極シートの幅方向両側において捲回電極体の側面と対向する電池ケースの側壁のうち、正極シートの未塗工部側の側壁が反対側の側壁よりも厚い。
 この二次電池によれば、電池ケースの側壁のうち、正極シートの未塗工部側の側壁の方が、反対側の側壁よりも厚い。正極シートの幅方向両側において捲回電極体の側面と対向する電池ケースの側壁が同じ厚さの場合に比べて、二次電池の安全性が高い。
 この場合、正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBの差(A-B)は、0.05mm以上とすることができる。また、正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBとの比A/Bが、(A/B)≧1.1でもよい。
 また、正極集電体の熱伝導率は負極集電体よりも小さくてもよい。また、電池ケースは、有底四角筒状の容器本体と、容器本体の開口を塞ぐ蓋体とを備えていてもよい。
図1はリチウムイオン二次電池の一例を示す図である。 図2はリチウムイオン二次電池の捲回電極体を示す図である。 図3はリチウムイオン二次電池の捲回電極体を示す図である。 図4は捲回電極体と電極端子の固定部分を示す図である。 図5はリチウムイオン二次電池を搭載した車両を示す図である。
 以下、本発明の一実施形態に係る二次電池を図面に基づいて説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。
 図1は、本発明の一実施形態に係るリチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と、電池ケース300とを備えている。また、図2は、捲回電極体200を示す図である。図3は、図2中のIII-III断面を示している。
 捲回電極体200は、図2に示すように、正極シート220、負極シート240及びセパレータ262、264を有している。正極シート220、負極シート240及びセパレータ262、264は、それぞれ帯状のシート材である。
≪正極シート220≫
 正極シート220は、図2に示すように、帯状の正極集電体221(正極芯材)を有している。正極集電体221には、正極に適する金属箔が好適に使用され得る。この正極集電体221には、所定の幅を有する帯状のアルミニウム箔が用いられている。また、正極シート220は、未塗工部222と、正極合材層223とを有している。未塗工部222は正極集電体221の幅方向片側の縁部に沿って設定されている。正極合材層223は、正極活物質を含む正極合材224が塗工された層である。正極合材224は、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に塗工されている。
 ここで、正極合材224は、正極活物質や導電材やバインダなどを混ぜ合わせた合材である。正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を特に限定されることなく使用できる。正極活物質の例を挙げると、LiNiO、LiCoO、LiMn等のリチウム遷移金属酸化物が挙げられる。
≪負極シート240≫
 負極シート240は、図2に示すように、帯状の負極集電体241(負極芯材)を有している。負極集電体241には、負極に適する金属箔が好適に使用され得る。この負極集電体241には、所定の幅を有する帯状の銅箔が用いられている。また、負極シート240は、未塗工部242と、負極合材層243とを有している。未塗工部242は負極集電体241の幅方向片側の縁部に沿って設定されている。負極合材層243は、負極活物質を含む負極合材244が塗工された層である。負極合材244は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に塗工されている。
 ここで、負極合材244は、負極活物質や導電材やバインダなどを混ぜ合わせた合材である。負極活物質には、リチウムイオン二次電池の負極活物質として用いられる物質を特に限定されることなく使用できる。負極活物質の例を挙げると、天然黒鉛、人造黒鉛、天然黒鉛や人造黒鉛のアモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物等が挙げられる。また、この例では、図3に示すように、負極合材層243の表面には、さらに耐熱層245(HRL:heat-resistant layer)が形成されている。耐熱層245には、金属酸化物(例えば、アルミナ)を含む層が形成されている。なお、このリチウムイオン二次電池100では、負極合材層243の表面に耐熱層が形成されているが、例えば、セパレータ262、264の表面に耐熱層を形成してもよい。
≪セパレータ262、264≫
 セパレータ262、264は、正極シート220と負極シート240とを分離する部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264の好適な例として、多孔質ポリオレフィン系樹脂で構成された単層又は積層構造のものが挙げられる。この例では、図2及び図3に示すように、負極合材層243の幅b1は、正極合材層223の幅a1よりも少し広く、さらにセパレータ262、264の幅c1、c2は、負極合材層243の幅b1よりも少し広い(c1、c2>b1>a1)。
≪捲回電極体200≫
 捲回電極体200の正極シート220及び負極シート240は、セパレータ262、264を介在させた状態で重ねられ、かつ、捲回されている。
 この例では、正極シート220と負極シート240とセパレータ262、264は、図2に示すように、長さ方向を揃えて、正極シート220、セパレータ262、負極シート240、セパレータ264の順で重ねられている。この際、正極合材層223と負極合材層243には、セパレータ262、264が重ねられる。また、負極合材層243の幅は正極合材層223よりも少し広く、負極合材層243は正極合材層223を覆うように重ねられている。これにより、充放電時に、正極合材層223と負極合材層243との間で、リチウムイオン(Li)がより確実に行き来する。
 さらに、正極シート220の未塗工部222と負極シート240の未塗工部242とは、セパレータ262、264の幅方向において互いに反対側にはみ出るように重ねられている。重ねられたシート材(例えば、正極シート220)は、幅方向に設定された捲回軸周りに捲回されている。ここでは、説明の便宜を図るべく、正極集電体221の未塗工部222がセパレータ262、264からはみ出た側を、適宜、「正極側」という。また、負極集電体241の未塗工部242がセパレータ262、264からはみ出た側を、適宜、「負極側」という。
 なお、かかる捲回電極体200は、正極シート220と負極シート240とセパレータ262、264を重ねつつ捲回する。この工程において、各シートの位置をEPC(edge position control)等で制御しつつ各シートを重ねる。この際、セパレータ262、264が介在した状態ではあるが、負極合材層243は正極合材層223を覆うように重ねる。
≪電池ケース300≫
 また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
 車載用の二次電池では、燃費向上のため、重量エネルギー効率(単位重量当りの電池の容量)を向上させることが望まれる。このため、電池ケース300を構成する容器本体320と蓋体340は、アルミニウムやアルミニウム合金などの軽量金属(この例では、アルミニウム)を採用することが望まれる。これにより重量エネルギー効率を向上させることができる。
 この電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図2に示すように、当該電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300の内部空間には、捲回電極体200が収容されている。捲回電極体200は、図1に示すように、捲回軸に直交する一の方向において扁平に変形させられた状態で電池ケース300に収容されている。
 また、この実施形態では、正極シート220の幅方向両側において捲回電極体200の側面と対向する電池ケース300の側壁300A、300Bのうち、正極シート220の未塗工部222側の側壁300A(正極側の側壁)の方が、反対側(負極シート240の未塗工部242)の側壁300B(負極側の側壁)よりも厚い。換言すると、正極シート220の未塗工部222側の側壁300Aの厚さをAとし、反対側の側壁300Bの厚さをBとした場合に、かかる厚さA、BはA>Bの関係を有している。ここで、両側壁300A、300Bの厚さの差(A-B)は、例えば、0.05mm以上である。
 この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。このリチウムイオン二次電池100は、かかる有底四角筒状の容器本体320において、正極側の側壁300Aを、負極側の側壁300Bよりも厚くしている。この実施形態では、容器本体320を成形する際に正極側の側壁300Aを、負極側の側壁300Bよりも厚くしている。ここで、容器本体320は、例えば、深絞り成形やインパクト成形によって成形することができる。なお、インパクト成形は、冷間での鍛造の一種であり、衝撃押出加工やインパクトプレスとも称される。
 また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、電池ケース300には安全弁360が設けられている。この例では、安全弁360は、蓋体340のうち、電極端子420、440間の真ん中に設けられている。また、安全弁360が設けられている弁孔は、短辺が5mm、長辺が15mmの楕円である。
≪位置決め部材400≫
 位置決め部材400は、図1に示すように、捲回電極体200を電池ケース300に位置決めする部材である。この例では、電池ケース300(この例では、蓋体340)に取り付けられた電極端子420、440が、位置決め部材400として用いられている。捲回電極体200は、捲回軸に直交する一の方向において扁平に押し曲げられた状態で電池ケース300に収納されている。また、捲回電極体200は、セパレータ262、264の幅方向において、正極シート220の未塗工部222と負極シート240の未塗工部242とが互いに反対側にはみ出ている。このうち、一方の電極端子420は、正極集電体221の未塗工部222に固定されており、他方の電極端子440は、負極集電体241の未塗工部222に固定されている。
 なお、この例では、図1に示すように、蓋体340の電極端子420、440は、捲回電極体200の未塗工部222、未塗工部242の中間部分222a、242aに延びている。当該電極端子420、440の先端部は、未塗工部222、未塗工部242の中間部分にそれぞれ溶接されている。
 図4は、捲回電極体200の未塗工部222、242と電極端子420、440との溶接箇所を示す側面図である。図4に示すように、セパレータ262、264の両側において、正極集電体221の未塗工部222、負極集電体241の未塗工部242はらせん状に露出している。この実施形態では、これらの未塗工部222、242をその中間部分において、それぞれ寄せ集め、電極端子420、440の先端部に溶接している。この際、それぞれの材質の違いから、電極端子420と正極集電体221の溶接には、例えば、超音波溶接が用いられる。また、電極端子440と負極集電体241の溶接には、例えば、抵抗溶接が用いられる。
 このように、捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられている。かかる捲回電極体200は、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
 その後、電池ケース300内には、蓋体340に設けられた注液孔から電解液が注入される。電解液は、この例では、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔に金属製の封止キャップを取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液を特に限定なく使用することができる。
≪ガス抜け経路≫
 また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。
 かかる構成のリチウムイオン二次電池100は、過充電が生じた場合に温度が高くなる。リチウムイオン二次電池100の温度が高くなると、電解液が分解されてガスが発生する。発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312、及び、安全弁360を通して、スムーズに外部に排気される。かかるリチウムイオン二次電池100では、捲回電極体200の正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。
≪リチウムイオン二次電池100≫
 リチウムイオン二次電池100の正極合材層223中の正極活物質は、リチウム遷移金属酸化物であり、電気を通し難い。正極合材層223は導電材を混ぜることによって導電性が確保されている。また、この実施形態では、負極合材層243の表面に耐熱層245(図3参照)が設けられている。耐熱層245は金属酸化物を主成分としており、絶縁性を有している。このため、正極合材層223と負極合材層243との抵抗が大きい。それゆえ、過充電の状態で正極合材層223と負極合材層243が接触しても、大きな電流は一気に流れ難い。
 それでも、このリチウムイオン二次電池100は、過充電が進むことによって温度が徐々に高くなる。本発明者は、例えば、リチウムイオン二次電池100に過充電の状態を意図的に生じさせ、さらに過充電末期に至る途中でリチウムイオン二次電池100を分解することによって、過充電末期に至るリチウムイオン二次電池100の状態を調べた。その結果、本発明者は、以下の事項を発見した。
≪過充電末期に至るリチウムイオン二次電池100の状態≫
 このリチウムイオン二次電池100では、図2、図3に示すように、負極合材層243の幅b1は正極合材層223の幅a1よりも広い(b1>a1)。このリチウムイオン二次電池100では、セパレータ262、264を介在させた状態ではあるが、負極合材層243が正極合材層223を覆うように対向している。リチウムイオン二次電池100は、過充電によって温度が高くなった場合、セパレータ262、264の収縮が起こる。セパレータ262、264の収縮は、負極側に比べて正極側で早く進む。このため、正極シート220の未塗工部222と負極集電体241との短絡は、まず、正極合材層223の未塗工部222側の縁223a及びその近傍部位で生じる。過充電末期の不具合は、かかる短絡が引き金になる。また、過充電末期では、電池ケース300の正極側の側面300Aが最も高温になる。本発明者は、かかる事象が生じる理由を以下のように推察している。
≪セパレータ262、264の収縮≫
 セパレータ262、264の基材は、上述したように、典型的には多孔質ポリオレフィン系樹脂である。このため、仮に温度が均一に高くなれば、セパレータ262、264は均一に収縮する。しかしながら、このリチウムイオン二次電池100では、捲回電極体200の構成部材のうち正極集電体221と負極集電体241は熱伝導率が比較的大きい。これにより、捲回電極体200内部の熱は、正極集電体221と負極集電体241を通じて外部に逃げる傾向がある。
 上述したように、正極集電体221にアルミニウム箔が用いられており、負極集電体241に銅箔が用いられている。室温付近(約20℃)での熱伝導率(単位: W・m-1・K-1)は、アルミニウム(Al)が約240、銅(Cu)が約400である。つまり、負極集電体241(銅箔)は、正極集電体221(アルミニウム箔)に比べて熱伝導率が大きい。このため、捲回電極体200の負極側は、正極側よりも熱が逃げやすく冷めやすい。これに対して捲回電極体200の正極側は、負極側よりも熱がこもりやすく高温になりやすい。このため、セパレータ262、264の収縮は、負極側よりも正極側で早く進む。
≪正極と負極との短絡≫
 正極側では、正極合材層223の未塗工部222側の縁223aの近傍部位と負極集電体241とが、セパレータ262、264を介して対向している。上述したように、セパレータ262、264の収縮は、負極側よりも正極側で早く進む。セパレータ262、264の収縮が進むと、正極合材層223の未塗工部222側の縁223aの近傍部位で、正極シート220の未塗工部222と負極集電体241とが短絡する。
 過充電の状態では、リチウムイオン二次電池100の負極シート240(負極合材層243)に電子(e)が蓄えられており、正極シート220と負極シート240との電位差は大きい。また、正極シート220の未塗工部222は金属箔であり、リチウム遷移金属酸化物を含む正極合材層223に比べて電気抵抗が格段に小さい。このため、正極合材層223が負極シート240(負極合材層243)に接触した場合よりも、正極シート220の未塗工部222と負極シート240(負極合材層243)とが接触した場合の方が、より大きな電流が流れる。このように、捲回電極体200の正極側で起きる短絡(正極シート220の未塗工部222と負極シート240(負極合材層243)との短絡)は、大電流を生じさせ、不具合を引き起こしやすい。
 なお、負極側では、セパレータ262、264を介在して、正極合材層223と負極合材層243とが対向している。正極合材層223は正極集電体221よりも電気抵抗が大きい。このため、仮に、正極合材層223と負極合材層243とが接触した場合でも、正極側で正極シート220の未塗工部222と負極合材層243が接触した場合ほどの大きな電流は流れ難い。これにより、捲回電極体200の負極側は、過充電末期の不具合を引き起こしにくい。
≪電池ケースの最高温度位置≫
 また、かかる構成のリチウムイオン二次電池100は、過充電末期に高温になる。リチウムイオン二次電池100が高温になると、電解液が分解されてガスが発生する。この際、捲回電極体200に入り込んだ電解液も分解されるので、捲回電極体200の中でもガスが発生する。捲回電極体200の中で生じたガスは、重ねられた正極シート220、負極シート240、セパレータ262、264の隙間を各シート材の幅方向(図1中のX1,X2)に通って捲回電極体200の両側の隙間310、312に出て行く。
 このような状態において、正極シート220の未塗工部222と負極シート240(負極合材層243)とが短絡すると、短絡に伴う急激な温度上昇によって高温のガスが活発に発生する。発生した高温のガスは、捲回電極体200内において各シート材の隙間を幅方向(図1中のX1,X2)に進み、捲回電極体200の両側から電池ケース300の内壁に向かって噴出する。このため、高温のガスが、電池ケース300の内壁に吹き付けられる。この際、正極シート220と負極シート240の短絡は、捲回電極体200の正極側が起点となるので、正極側において、高温のガスが電池ケース300の内壁に吹き付けられる。これにより、過充電末期には、電池ケース300の正極側の側壁300Aが最も高温になる。
 本発明者はこのような独自の知見を得た。本発明者が得たかかる独自の知見によれば、リチウムイオン二次電池100は、正極合材層223の未塗工部222側の縁223aの近傍部位で、正極シート220の未塗工部222と負極集電体241との短絡が始まる。そして、これが、過充電末期の不具合を引き起こす引き金になる。また、電池ケース300のうち正極側の側壁300Aは、短絡によって生じるガスに曝されやすく最も高温になる。
 これに対しては、電池ケース300の正極側の側壁300Aに放熱部材を配設してもよいが、単純に放熱部材を配置するだけでは、捲回電極体200のサイズを小さくせざるを得なくなる。その結果、リチウムイオン二次電池100の体積エネルギー密度(Wh/L)が低下し、リチウムイオン二次電池100の性能が低下する。
 このリチウムイオン二次電池100は、かかる本発明者が得た上記の知見を基に創案された。このリチウムイオン二次電池100では、上述したように、正極シート220の幅方向両側において捲回電極体200の側面と対向する電池ケース300の側壁300A、300Bのうち、正極シート220の未塗工部222側の側壁300A(正極側の側壁)の方が、反対側(負極シート240の未塗工部242)の側壁300B(負極側の側壁)よりも厚い。換言すると、正極シート220の未塗工部222側の側壁300Aの厚さAと、反対側の側壁300Bの厚さBは、A>Bである。
 このため、このリチウムイオン二次電池100では、電池ケース300の正極側は、強度、熱容量及び耐熱性が高い。これにより、捲回電極体200の正極側において、高温のガスが電池ケース300に向かって噴出した場合でも、電池ケース300の損傷や変形を小さく抑えることができる。
 また、このリチウムイオン二次電池100では、正極側のみ、電池ケース300の肉厚を厚くしている。このため正極側に所要の耐熱性を持たせるべく、電池ケース300全体を厚くする場合に比べて、電池ケース300の重量を軽くできるとともに、電池ケース300の内部空間を広く確保することができる。これにより、二次電池の重量エネルギー密度や体積エネルギー密度を向上させることができる。
 なお、捲回電極体200の負極側は、正極側に比べて、短絡の起点になり難く、かつ、捲回電極体200から電池ケース300に向かって噴出す高温のガスの勢いも格段に劣る。また、負極集電体241は、正極集電体221よりも熱伝導率が高く、負極側では正極側に比べて、負極集電体241を通じて放熱され易い。このため、過充電末期における電池ケース300の負極側の側壁300Bの温度は正極側よりも低い。これにより、負極側の電池ケース300の肉厚が正極側よりも薄い場合でも、過充電末期に不具合が生じるのを防止できる。
 正極シートの未塗工部側の側壁の厚さAと反対側の側壁の厚さBは、A>Bであれば、負極側に比べて正極側の耐久性や耐熱性を向上させることができる。また、正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBの差(A-B)は、例えば、0.05mm以上にすることができる。例えば、電池ケース300がアルミニウム製である場合、この程度の肉厚の差で、強度や耐熱性を向上させることができる。電池ケース300の正極側の側壁300Aを、この程度の厚さの差で厚くすることによって、過充電末期における電池ケース300の損傷や変形を小さく抑えることができる。
 また、正極側の側壁300Aの厚さAと、反対側の側壁300Bの厚さBとの比A/Bを、(A/B)≧1.1にしてもよい。例えば、負極側の側壁300Bの厚さBが、0.6mmである場合、正極側の側壁300Aの厚さAを、0.66mm以上にするとよい。このように、正極側の側壁300Aの厚さAと、反対側の側壁300Bの厚さBとの比A/Bによって、正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBの差を規定してもよい。これにより、電池ケース300のサイズや材質によらず、電池ケース300の正極側の側壁300Aと、負極側の側壁300Bとにおいて、強度や耐熱性に適当な差を設けることができる。
 また、上述したように、このリチウムイオン二次電池100は、正極集電体の熱伝導率が負極集電体よりも小さい。このため、捲回電極体200の負極側は、正極側よりも熱が逃げ易く冷めやすく、捲回電極体200の正極側は、負極側よりも熱がこもりやすく高温になりやすい。これにより、過充電末期では、セパレータ262、264の収縮は、負極側よりも正極側で早く進む傾向がある。また、正極合材層223は、正極シート220の未塗工部222よりも電気抵抗が高い。このために、過充電末期においては、捲回電極体200の正極側で起こり得る、正極シート220の未塗工部222と負極合材層243との短絡が不具合の起点になる傾向がある。正極シート220の未塗工部222と負極合材層243との短絡が起きると、捲回電極体200の正極側から電池ケース300の側面に向かって高温のガスが噴出する。
 このように、このリチウムイオン二次電池100では、正極集電体の熱伝導率が負極集電体よりも小さいことが、過充電末期における短絡の起点を、捲回電極体200の正極側に偏らせる要因になっている。これに対して、このリチウムイオン二次電池100は、電池ケース300の正極側の肉厚が厚いので、電池ケース300の正極側は、強度、熱容量及び耐熱性が高い。このため、捲回電極体200の正極側において、高温のガスが電池ケース300に向かって噴出した場合でも、電池ケース300の損傷や変形を小さく抑えることができる。このように、このリチウムイオン二次電池100は、正極集電体の熱伝導率が負極集電体よりも小さい場合や、負極合材層が耐熱層で覆われている場合に適している。
 以下、本発明者が行った比較試験を例示する。
 本発明者は、電池ケース300に厚さ0.5mmのアルミニウム製の電池ケースを用い、かつ、それぞれ上記電池ケース300の両側の側壁300A、300Bの厚さA、B(図1参照)を変えたリチウムイオン二次電池を複数用意した。そして、各リチウムイオン二次電池について、それぞれ意図的に過充電末期の状態にして、電池ケース300の最高温度を測定した。
 ここで、電池ケース300の内寸は、高さ90mm、幅110mm、奥行き12mmの扁平な箱型の外形を有する容器が用いられている。これに対して、正極シート220の幅方向において、捲回電極体200の幅は105mm(図2中のd)、正極合材層223の幅(図2中a1)は74mmであり、負極合材層243の幅は78mm(図2中b1)であり、セパレータ262、264の幅は85mm(図2中c1,c2)であった。また、ここでは、電池ケース300の内壁は、ppフィルムで覆って絶縁した。また、正極シート220の幅方向において、捲回電極体200は、電池ケース300の中央に配置されている。かかる試験用の電池は、予め定められたコンディショニング工程(予備充電)を経て、充電電流を20A、上限電圧を100V、環境温度25℃とし、過充電末期まで充電した。また、各サンプルは、同じものを5つ作りその平均値を取っている。なお、各サンプルの他の構造は、上述したリチウムイオン二次電池100の構造に準じている。
 当該試験の結果の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 電池ケース300の最高温度(ケース最高温度)は、何れも電池ケース300の正極側の側壁300A、300Bで得られた。
・サンプル1は、厚さAが0.7mm、厚さBが0.6mmであり、ケース最高温度は約555℃であった。
・サンプル2は、厚さAが0.75mm、厚さBが0.55mmであり、ケース最高温度は約540℃であった。
・サンプル3は、厚さAが0.8mm、厚さBが0.5mmであり、ケース最高温度は約530℃であった。
・サンプル4は、厚さAが0.65mm、厚さBが0.65mmであり、ケース最高温度は約600℃であった。
・サンプル5は、厚さAが0.6mm、厚さBが0.7mmであり、ケース最高温度は約690℃であった。
・サンプル6は、厚さAが0.55mm、厚さBが0.7mmであり、ケース最高温度は約780℃であった。
 表1は、本発明者が行った試験の一部であるが、概ね正極シート220の幅方向において、上記の厚さAが厚さBよりも厚い(A>B)場合に、ケース最高温度を低下させることができた。また、電池ケース300に生じる損傷を小さく抑えることができた。
 以上、本発明の一実施形態に係るリチウムイオン二次電池100Aについて種々説明したが、本発明に係る二次電池は、上記の実施形態に限定されない。
 例えば、上述した実施形態では、二次電池としてリチウムイオン二次電池を例示したが、上記リチウムイオン二次電池100Aの構造は他の二次電池に適用できる。また、リチウムイオン二次電池100Aの各構成部材のサイズや、正極合材、負極合材、電解液、正極集電体221、負極集電体241、セパレータ262、264に用いられる材料などは、種々変更できる。また、リチウムイオン二次電池の容器形状は扁平な矩形のものに限定されない。例えば、本発明は、上述した実施形態のように、少なくとも一側面が開口するように成形された容器に対して、捲回電極体の捲回軸方向に、当該容器の側面が対向するように、捲回電極体を収容する場合に好適である。本発明では、当該一連の容器に対して、正極シートの幅方向(捲回電極体の捲回軸方向)の両側において、捲回電極体の側面と対向する電池ケースの側壁のうち、正極シートの未塗工部側の側壁を反対側の側壁よりも厚くするという特別な加工により具現化できる。
 以上のように、本発明に係る二次電池は、過充電末期における安全性を向上させることができるとともに、同サイズの二次電池において、体積エネルギー密度(Wh/L)や重量エネルギー密度(Wh/kg)を向上させることができる。このため、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。車載用の二次電池として、特に有益である。
 この場合、二次電池は、複数組み合わせて組電池を構成することができる。車載用としては、上記の二次電池又は上記の二次電池を複数組み合わせた組電池を用いることができる。図5に模式的に示すように、本発明に係るリチウムイオン二次電池(当該電池を複数個直列に接続して形成される組電池1000の形態であり得る。)を電源として備える車両1を提供する。かかる車両としては、例えば、自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車を挙げることができる。
1 車両
100 リチウムイオン二次電池
200 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
222a 中間部分
223 正極合材層
223a 正極合材層の未塗工部側の縁
224 正極合材
240 負極シート
241 負極集電体
242 未塗工部
243 負極合材層
244 負極合材
245 耐熱層
262 セパレータ
264 セパレータ
300 電池ケース
300A 側面
310,312 隙間
320 容器本体
322 合わせ目
340 蓋体
360 安全弁
400 位置決め部材
420 電極端子
440 電極端子
1000 組電池
A 距離:電池ケースの正極側の側壁(正極シートの未塗工部側の側壁)の厚さ
B 距離:電池ケースの負極側の側壁(反対側の側壁)の厚さ

Claims (7)

  1.  帯状の正極シート及び帯状の負極シートが帯状のセパレータを介在させた状態で重ねられ、かつ、捲回された捲回電極体と;
     前記捲回電極体を収容した電池ケースと;
    を備えた二次電池であって、
     前記正極シートは、
       帯状の正極集電体と、
       前記正極集電体の幅方向片側の縁部に沿って前記正極集電体に設定された未塗工部と、
       前記未塗工部を除いて前記正極集電体の両面に、正極活物質を含む正極合材が塗工された正極合材層と、
    を備えており;
     前記負極シートは、
       帯状の負極集電体と、
       前記負極集電体の幅方向片側の縁部に沿って前記負極集電体に設定された未塗工部と、
       前記未塗工部を除いて前記負極集電体の両面に、前記正極合材層よりも幅が広くなるように、負極活物質を含む負極合材が塗工された負極合材層と、
    を備えており;
     前記正極シートと前記負極シートとは、
       前記正極合材層が前記負極合材層によって覆われるように対向し、かつ、前記正極シートの未塗工部と前記負極シートの未塗工部とが、前記セパレータの幅方向において互いに反対側にはみ出るように重ねられており;
     前記捲回電極体は、重ねられた前記正極シートの幅方向に設定された捲回軸周りに捲回されており;
     前記電池ケースは、
       前記正極シートの幅方向両側において前記捲回電極体の側面と対向する前記電池ケースの側壁のうち、前記正極シートの未塗工部側の側壁が反対側の側壁よりも厚い;二次電池。
  2.  前記正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBの差(A-B)が、0.05mm以上である、請求項1に記載された二次電池。
  3.  前記正極シートの未塗工部側の側壁の厚さAと、反対側の側壁の厚さBとの比A/Bが、(A/B)≧1.1である、請求項1に記載された二次電池。
  4.  前記正極集電体の熱伝導率が前記負極集電体よりも小さい、請求項1から3までの何れか一項に記載された二次電池。
  5.  前記電池ケースは、有底四角筒状の容器本体と、前記容器本体の開口を塞ぐ蓋体とを備えた、請求項1から4までの何れか一項に記載された二次電池。
  6.  請求項1から5までの何れか一項に記載された二次電池を、複数組み合わせた組電池。
  7.  請求項1から5までの何れか一項に記載された二次電池、又は、請求項6に記載された組電池を搭載した、車両。
PCT/JP2010/058610 2010-05-21 2010-05-21 二次電池 WO2011145205A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011507491A JP5445872B2 (ja) 2010-05-21 2010-05-21 二次電池
PCT/JP2010/058610 WO2011145205A1 (ja) 2010-05-21 2010-05-21 二次電池
US13/063,000 US8758917B2 (en) 2010-05-21 2010-05-21 Secondary battery
CN201080002578.0A CN102356496B (zh) 2010-05-21 2010-05-21 二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058610 WO2011145205A1 (ja) 2010-05-21 2010-05-21 二次電池

Publications (1)

Publication Number Publication Date
WO2011145205A1 true WO2011145205A1 (ja) 2011-11-24

Family

ID=44991329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058610 WO2011145205A1 (ja) 2010-05-21 2010-05-21 二次電池

Country Status (4)

Country Link
US (1) US8758917B2 (ja)
JP (1) JP5445872B2 (ja)
CN (1) CN102356496B (ja)
WO (1) WO2011145205A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004177A (ja) * 2011-06-10 2013-01-07 Gs Yuasa Corp 非水電解質二次電池
WO2014024019A1 (en) * 2012-08-08 2014-02-13 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20150325832A1 (en) * 2013-01-29 2015-11-12 Kabushiki Kaisha Toyota Jidoshokki Battery
JP2015210921A (ja) * 2014-04-25 2015-11-24 株式会社豊田自動織機 蓄電装置の検査方法、及び蓄電装置
US11177542B2 (en) * 2018-12-29 2021-11-16 Contemporary Amperex Technology Co., Limited Secondary battery and battery module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094810B2 (ja) * 2013-07-17 2017-03-15 トヨタ自動車株式会社 非水電解質二次電池
JP6061145B2 (ja) * 2013-08-02 2017-01-18 トヨタ自動車株式会社 二次電池
JP6550848B2 (ja) * 2015-03-30 2019-07-31 三洋電機株式会社 角形二次電池
KR102410911B1 (ko) * 2017-10-11 2022-06-20 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차전지
CN113193171A (zh) * 2021-05-06 2021-07-30 合肥国轩高科动力能源有限公司 一种高安全三元锂离子电池及其制备方法
CN113659105B (zh) * 2021-08-17 2022-12-27 宁德新能源科技有限公司 电化学装置和电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338992A (ja) * 2005-06-01 2006-12-14 Nec Tokin Corp 角型リチウムイオン電池
JP2009259450A (ja) * 2008-04-14 2009-11-05 Toyota Motor Corp 電池およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172400C (zh) 1999-08-10 2004-10-20 三洋电机株式会社 非水电解液二次蓄电池及其制造方法
JP4496582B2 (ja) 1999-12-28 2010-07-07 株式会社ジーエス・ユアサコーポレーション リチウム二次電池
JP4247831B2 (ja) * 2003-11-27 2009-04-02 日立マクセル株式会社 密閉角形電池
JP4739958B2 (ja) 2004-01-09 2011-08-03 パナソニック株式会社 リチウムイオン二次電池
JP4821196B2 (ja) 2005-07-11 2011-11-24 トヨタ自動車株式会社 電池
US8697272B2 (en) * 2009-09-01 2014-04-15 Samsung Sdi Co., Ltd. Secondary battery having an insulating member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338992A (ja) * 2005-06-01 2006-12-14 Nec Tokin Corp 角型リチウムイオン電池
JP2009259450A (ja) * 2008-04-14 2009-11-05 Toyota Motor Corp 電池およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004177A (ja) * 2011-06-10 2013-01-07 Gs Yuasa Corp 非水電解質二次電池
WO2014024019A1 (en) * 2012-08-08 2014-02-13 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10505215B2 (en) 2012-08-08 2019-12-10 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20150325832A1 (en) * 2013-01-29 2015-11-12 Kabushiki Kaisha Toyota Jidoshokki Battery
US9991499B2 (en) * 2013-01-29 2018-06-05 Toyota Jidosha Kabushiki Kaisha Battery
JP2015210921A (ja) * 2014-04-25 2015-11-24 株式会社豊田自動織機 蓄電装置の検査方法、及び蓄電装置
US11177542B2 (en) * 2018-12-29 2021-11-16 Contemporary Amperex Technology Co., Limited Secondary battery and battery module

Also Published As

Publication number Publication date
US20130071710A1 (en) 2013-03-21
CN102356496B (zh) 2014-07-23
JPWO2011145205A1 (ja) 2013-07-22
US8758917B2 (en) 2014-06-24
CN102356496A (zh) 2012-02-15
JP5445872B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5445872B2 (ja) 二次電池
JP4920111B2 (ja) パウチ型二次電池
US9196895B2 (en) Sealed secondary battery
EP2254176B1 (en) Rechargeable battery
EP1998401B1 (en) Electrode assembley and secondary battery using the same
JP5614574B2 (ja) 二次電池
US11462772B2 (en) Electrode assembly comprising separator having insulation-enhancing part formed on edge portion of electrode
KR101546545B1 (ko) 파우치형 리튬이차전지
CN111799440A (zh) 非水电解质二次电池
US20140023913A1 (en) Prismatic secondary battery
KR102188429B1 (ko) 전극 활물질 미코팅부를 포함하는 젤리-롤형 전극조립체
KR20140012096A (ko) 리튬 이온 전지
CN111480250A (zh) 锂离子二次电池用正极和使用它的锂离子二次电池
KR101964713B1 (ko) 고정 부재를 포함하는 전지셀 활성화 트레이
JP2017098207A (ja) 電極体を有する二次電池
JP6681017B2 (ja) 電極体を有する二次電池
CN112563681B (zh) 非水电解质二次电池
CN111293344B (zh) 密闭型电池以及组电池
KR20140013134A (ko) 이차전지
JP2024018442A (ja) 二次電池および電極端子
JP2024031646A (ja) 電池
JP5920620B2 (ja) 密閉型二次電池
JP2023135233A (ja) 蓄電素子
KR20230000451A (ko) 전지 및 해당 전지의 제조 방법
JP2023066751A (ja) 電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002578.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011507491

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13063000

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851769

Country of ref document: EP

Kind code of ref document: A1