WO2011142531A2 - 태양열 시스템 - Google Patents

태양열 시스템 Download PDF

Info

Publication number
WO2011142531A2
WO2011142531A2 PCT/KR2011/001906 KR2011001906W WO2011142531A2 WO 2011142531 A2 WO2011142531 A2 WO 2011142531A2 KR 2011001906 W KR2011001906 W KR 2011001906W WO 2011142531 A2 WO2011142531 A2 WO 2011142531A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
heating
hot water
storage tank
Prior art date
Application number
PCT/KR2011/001906
Other languages
English (en)
French (fr)
Other versions
WO2011142531A3 (ko
Inventor
김성갑
신현길
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP11780748.7A priority Critical patent/EP2570748A4/en
Priority to AU2011251139A priority patent/AU2011251139B2/en
Priority to JP2013510011A priority patent/JP5427315B2/ja
Priority to US13/697,045 priority patent/US9400122B2/en
Priority to CN201180034174.4A priority patent/CN102985763B/zh
Publication of WO2011142531A2 publication Critical patent/WO2011142531A2/ko
Publication of WO2011142531A3 publication Critical patent/WO2011142531A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/004Central heating systems using heat accumulated in storage masses water heating system with conventional supplementary heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/246Water level
    • F24H15/248Water level of water storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/25Temperature of the heat-generating means in the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • F24D17/0063Domestic hot-water supply systems with combination of different kinds of heating means solar energy and conventional heaters
    • F24D17/0068Domestic hot-water supply systems with combination of different kinds of heating means solar energy and conventional heaters with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/025Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0278Expansion vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/048Level sensors, e.g. water level sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/26Vertically distributed at fixed positions, e.g. multiple sensors distributed over the height of a tank, or a vertical inlet distribution pipe having a plurality of orifices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a solar system, and more particularly, to a solar system that improves system utilization efficiency, makes it possible to quickly use heat obtained from a heat collecting unit for heating and hot water loads, and enables stable system driving.
  • the solar system is composed of a heat collecting portion, a heat storage portion, a utilization portion, the heat collected from the heat collection portion is a heat storage unit to the heat storage unit by a heat exchanger, and the heat accumulated in the use portion as a heating and hot water supply source.
  • the auxiliary boiler may heat the water in the heat storage tank, and since heat exchange with the collector is heated under the heat storage tank, the water is sequentially heated. As a result of the slow speed, the overall system efficiency was low.
  • the present invention has been invented to improve the above problems, by comparing the heating water temperature before and after the heating load is carried out to control the flow rate of the heating circulation flow rate to lower the heating return temperature as possible, inflow into the heat storage tank according to the heating return temperature
  • the purpose of the present invention is to provide a solar system that can maximize the use of heating heat sources of heat accumulated by varying the formation of flow paths, thereby improving the system utilization efficiency.
  • the present invention increases the heat medium temperature by controlling the flow rate of the heat collector circulation flow rate, and by forming a flow path for heat exchange with the heat medium in the bottom and the top of the heat storage tank, it is possible to quickly use the heat obtained from the heat collecting portion for heating and hot water load
  • Another purpose is to provide a solar system that has been adapted.
  • the present invention by installing a pressure sensor in the heat collecting unit and a check valve in the heat medium supplement water tank to inform the alarm of automatic heating and leakage of heat medium at a certain pressure or less, and install a low water level sensor in the heat medium supplement water tank By supplementing, it can prevent operation error, install a bypass line with mixing valve at hot water outlet and water inlet to supply hot water of proper temperature, and alarm when the temperature of upper storage tank is over a certain temperature.
  • PV photovoltaic
  • a solar collector which absorbs solar heat and heats the heat medium housed therein;
  • the heat storage tank accommodates the heating water and is provided with a first heat storage heat exchanger and a second heat storage heat exchanger respectively connected to the solar heat collector via a heat storage pipe via the heat storage pipe, and have a diffuser configured to diffuse the heating water return therein. ;
  • a circulation pump connected to the heat storage pipe and circulating the pressure sensor and the heat medium for sensing the pressure in the heat storage pipe;
  • a heat medium supplement water tank connected through a pressure pump to supplement the heat medium lacking in the heat storage pipe;
  • An auxiliary boiler having a heating export port connected to a heating water supply pipe of the heat storage tank via a three-way valve for heating water supply control, and a heating return port connected to a diffuser of the heat storage tank via a three-way valve for heating water return control;
  • a check valve connected between the three-way valve for controlling the heating water supply and the heating return port of the auxiliary boiler;
  • a heating load connected to the heating outlet of the auxiliary boiler and the three-way valve for controlling the return and return of heating.
  • the diffuser is respectively installed in the middle and the bottom of the heat storage tank, the diffuser is installed in the middle and the bottom is respectively connected to the different outlet of the three-way valve inlet is connected to the heating return pipe, the three-way valve
  • the temperature of the heat storage tank and the temperature of the heating return is compared is characterized in that the opening is controlled to be introduced into a portion higher than the heating return.
  • a heat storage tank hot water heat exchanger in which a direct pipe is connected to an inlet is installed inside, and a hot water pipe connected to an outlet of the heat storage tank hot water heat exchanger is connected to a mixing valve via a hot water heat exchanger of the auxiliary boiler.
  • One side of the mixing valve is connected to the water pipe, while a temperature sensor is installed at each of the hot water inlet side, the outlet side, and the water inlet side of the mixing valve, and the mixing valve senses the temperature sensor installed at the inlet and outlet of the mixing valve. Characterized in that the outlet water temperature is controlled based on the temperature.
  • the upper temperature sensor, the middle temperature sensor and the lower temperature sensor for sensing the temperature at each position in the upper, middle and lower portions of the heat storage tank are installed, respectively, the inlet position of the heating return and the heat medium inlet position of the heat collecting pipe Characterized in that made to control.
  • the radiator is connected to the upper side of the heat storage tank through a heat dissipation pipe so as to circulate the heat of the heating water in the heat storage tank to the outside, and a one-way valve and a circulation pump are connected to one end of the heat dissipation pipe, It is characterized in that the generator is connected to be driven by the power supplied from the solar generator.
  • the present invention can reduce the heating return as much as possible through the control of the flow rate of the heating circulation flow, maximize the use of the heat source of heat accumulated heat, and have a quick response according to the heating and hot water load, thereby greatly improving the system efficiency.
  • it can detect the lack of heat medium to notify the user to replenish, it can not only maintain the hot water temperature constant, but also reduce the power consumption and minimize the operation of the auxiliary boiler.
  • FIG. 1 is a view showing an overall schematic diagram of a solar system according to the present invention
  • FIG. 2 is a diagram showing a schematic diagram of a solar heat collecting system in FIG. 1;
  • FIG. 3 is a diagram showing a schematic diagram of a solar heating system in FIG. 1;
  • FIG. 4 is a diagram illustrating a system of a solar hot water supply system in FIG. 1.
  • FIG. 1 is a view showing the overall schematic diagram of a solar system according to an embodiment of the present invention
  • the present invention is a solar collector 10, the heat absorbed by the solar collector 10 is largely absorbed by the solar energy and converted to heat
  • Heat medium supplement water tank (50) for replenishing the heat medium lacking in the heat storage pipe of the mixing valve (60) for supplying hot water at the set temperature, radiator for heat dissipation when the heat storage temperature of the heat storage tank 20 is above the set temperature ( 70) and a solar generator 80 that converts sunlight into electrical energy to supply driving power of the radiator 70.
  • FIG. 2 shows a schematic diagram of a solar heat collecting system in FIG. 1.
  • the first and second heat storage heat exchangers are installed between the heat collecting pipe 11 installed at the heat medium outlet side of the solar heat collector 10 installed outside the building and collecting the solar heat and the heat collecting pipe 12 installed at the heat medium inlet side.
  • 21 and 22 are connected in series, wherein the first heat storage heat exchanger 21 is installed at the top in the heat storage tank 20 and the second heat storage heat exchanger 22 is installed at the bottom in the heat storage tank 20. have.
  • the heat medium heated in the solar heat collector 10 is circulated to the first and second heat storage heat exchangers 21 and 22, whereby the heating water accommodated in the heat storage tank 20 is first and second heat storage. Heat exchange occurs in the heat exchangers 21 and 22 to be heated.
  • a three-way valve (V1) is connected to the heat collecting pipe (11) connecting the solar heat collector (10) and the first heat storage heat exchanger (21) installed on the heat storage tank (20), and the three-way valve (V1). ) Forms the flow path of the heat collecting pipe 11 as the second heat storage heat exchanger 22 via the first heat storage heat exchanger 21 or the second heat storage heat exchanger 22 without passing through the first heat storage heat exchanger 21. It changes to form immediately. Accordingly, the heat medium flowing through the heat collecting pipe 11 in the solar heat collector 10 is circulated to the solar heat collector 10 through the first and second heat storage heat exchangers 21 and 22 or the first heat storage heat exchanger 21. After passing through the second heat storage heat exchanger 22 without passing through) may be circulated to the solar heat collector (10).
  • the heat storage amount of the heat storage tank 20 is almost exhausted, that is, when the water temperature detected by the upper temperature sensor TC4 is below a predetermined temperature.
  • the response speed to the demand of calories becomes faster.
  • a temperature sensor TC1 for measuring the temperature of the solar collector 10 is connected to the heat collecting pipe 11, and a pressure sensor 13 for detecting the pressure in the heat collecting pipe 12 is connected to the heat collecting pipe 12.
  • the circulation pump 14 for circulating the heat medium between the solar collector 10 and the heat storage tank 20 through the heat collecting pipes 11 and 12 is connected.
  • the pressure sensor 13 is a controller for controlling the overall operation of the solar system by sensing the pressure in the heat collecting pipe 12 in order to prevent the pressure is higher than the set value when the temperature of the heat medium in the heat collecting pipe 12 is excessively increased ( (Not shown).
  • the controller determines the amount of heat acquired by the solar collector 10 through the temperature sensor TC1, and when the amount of heat gained is large, increases the rotational speed of the circulation pump 14 to increase the flow rate, thereby increasing the heat storage heat amount, and the amount of heat gained.
  • the rotation speed of the circulation pump 14 is reduced to reduce the flow rate, thereby preventing frequent on / off of the circulation pump 14, thereby increasing the water resistance of the circulation pump 14 and reducing power consumption.
  • one end of the heat collecting pipe 12 is connected to the heat medium supplement water tank 50 for supplementing the heat medium circulating through the heat collecting pipe 12 through the pressure pump 15.
  • the low water level sensor 51 is installed in the heat medium replenishing water tank 50 to transmit a detected signal to the controller, and the controller responds to the low water level detection signal received from the heat medium refilling water tank 50. Use to inform the user.
  • an upper temperature sensor TC2, a middle temperature sensor TC3, and a lower temperature sensor TC4 are installed at upper, middle, and lower portions of the heat storage tank 20, respectively, and the heating water temperature in the heat storage tank 20 at each position. It is configured to detect and deliver to the controller.
  • the radiator 70 is connected to the upper side of the heat storage tank 20 via a heat dissipation pipe, and a two-way valve 71 and a circulation pump 72 are connected to the middle of the heat dissipation pipe.
  • the radiator 70 is connected to the solar generator 80 is configured to be driven by the power supplied from the photovoltaic generator 80, not commercial power.
  • the controller when the upper temperature of the heat storage tank 20 is higher than a predetermined temperature by the upper temperature sensor TC2, the controller operates an alarm means and operates the radiator 70 and the circulation pump 72 installed on the heat storage tank 20. It is intended to dissipate the accumulated heat.
  • the radiator 70 and the circulation pump 72 are configured to be driven by the power supplied from the photovoltaic generator 80 so as to reduce power costs without using commercial power.
  • FIG. 3 shows a schematic diagram of a solar heating system in FIG. 1.
  • a heating water supply pipe 41 is connected to an outlet side installed at an upper side of the heat storage tank 20, and the auxiliary boiler 30 is connected to the heating water supply pipe 41 through a three-way valve V4 for heating water supply control.
  • the heating outlet of the connection is connected and one end of the heating load 40 is connected.
  • the heating return pipe 42 of the auxiliary boiler 30 and the other end of the heating load 40 are connected to the heating return pipe 42 via a three-way valve V3, and the three-way valve for controlling the heating return water return V3.
  • Heating return pipe 42 connected to the other end of the) is connected to the diffuser 23, 24 installed in the heat storage tank (20).
  • the diffusers 23 and 24 are configured to rapidly heat exchange by spraying the returned water into the heat storage tank 20 so as to rapidly diffuse, and as shown, the diffuser 23 is a central portion of the heat storage tank 20. And the diffuser 24 may be installed in the lower portion of the heat storage tank 20, in this case the heating water returned through the heating return pipe 42 through the three-way valve (V2) according to the temperature of the central diffuser The flow path can be changed to be supplied to 23 or the lower diffuser 24.
  • One end of the heating water supply pipe 41 or the heating return pipe 42 is provided with a circulation pump 44 for circulating the heating water.
  • a circulation pump 44 for circulating the heating water.
  • an example installed in the heating return pipe 42 is shown.
  • the heating flow path according to the temperature difference between the temperature in the heat storage tank and the heating return in the heating system system having such a structure will be described.
  • the controller determines that the temperature detected by each of the temperature sensors TC2 to TC4 in the heat storage tank 20 is higher than the heating temperature set by the user
  • the three-way valve V4 is configured to heat the heating load 40 in the heat storage tank 20. While the flow path is controlled to be formed in the) direction, the three-way valve V3 is controlled to form the flow path in the direction of the heat storage tank 20 in the heating load 40. Accordingly, the heating water discharged through the heating water supply pipe 41 of the heat storage tank 20 is directly returned to the heat storage tank 20 via the heating load 40 and is heat exchanged again, and the circulation operation is repeated.
  • the controller determines that the lower floor temperature is lower than the heating temperature set by the user and the upper floor temperature is higher than the heating temperature set by the user from the temperature detected by the temperature sensors TC2 to TC4 in the heat storage tank 20.
  • Three-way valve (V4) is controlled to form a flow path in the direction of the heating load 40 in the heat storage tank 20, while the three-way valve (V3) is controlled to form a flow path in the direction of the heat storage tank 20 in the heating load 40.
  • the three-way valve (V2) is controlled so that the flow path is formed in the direction of the central diffuser (23) from the three-way valve (V3). Accordingly, the heating water discharged through the heating water supply pipe 41 of the heat storage tank 20 is returned to the central position of the heat storage tank 20 through the heating load 40 and is heat exchanged again.
  • the controller determines that the temperature detected by each of the temperature sensors TC2 to TC4 in the heat storage tank 20 is lower than the heating temperature set by the user
  • the three-way valve V4 flows through the heat storage tank 20. While the flow path is controlled to be formed in the blocking direction, the three-way valve V3 is controlled to form the flow path in the direction of the auxiliary heat exchanger 30 from the heating load 40. Accordingly, the heating water heated by the heat exchange in the subsidiary heat exchanger 30 is returned to the subsidiary heat exchanger 30 through the heating load 40 again, and the circulation operation of the heat exchanged and discharged is repeated.
  • the heat storage tank 20 has a higher stratification of the upper water layer and a lower stratification in the inner water temperature.
  • the temperature passing through the heating load 40 and being returned and the temperature according to the height of the heat storage tank 20 are compared with each other.
  • the internal heat amount of the heat storage tank 20 may be maximally utilized.
  • the controller compares the heating water temperature before and after the heating load 40 through temperature sensors TC8 and TC9 installed at the front and rear ends of the heating load 40 to control the flow rate of the heating circulation flow rate, that is, the circulation pump operation accuracy (RPM). ).
  • a check valve 43 is connected between the other flow path hole of the heating water supply control three-way valve V4 and the heating return port of the auxiliary boiler 30.
  • the check valve 43 is supplied from the heat storage tank 20 to the auxiliary boiler 30 as needed by the heating water supplied through the heating water supply pipe 41 to enable heat exchange, but at this time, the heating load 40 and heating It is for preventing the heating water returned to the auxiliary boiler 30 through the three-way valve (V3) for receiving water to be introduced into the heating water supply pipe (41).
  • FIG. 4 shows a system diagram of a solar hot water supply system in FIG. 1.
  • the heat storage tank 20 has a heat storage tank hot water heat exchanger 25 in which a direct pipe 61 is connected to an inlet, and the other end of the hot water pipe 62 having one end connected to an outlet of the heat storage tank hot water heat exchanger 25.
  • the mixing valve 60 is connected through a hot water heat exchanger 32 installed in the auxiliary boiler 30.
  • the water pipe 61 is directly connected to the other side of the mixing valve 60 while the hot water valve 63 is connected to the other side.
  • temperature sensors TC5, TC6, and TC7 are respectively installed at the hot water inlet side, the outlet side, and the direct water inlet side of the mixing valve 60 to sense the temperature of the hot water and the direct water at each position.
  • the controller controls the opening degree of the mixing valve 60 by comparing the detected temperature of the temperature sensors TC5, TC6 and TC7 with the hot water temperature set by the user. That is, the mixing valve 60 adjusts the amount of hot water introduced through the hot water pipe 62 and the amount of direct water flowing through the direct water pipe 61 to supply hot water at a temperature set by the user. As a result, unexpected hot water discharge may be prevented to prevent burns.
  • the direct water pipe 61 is always in an open state.
  • the hot water heated in the heat storage tank 20 or the auxiliary boiler 30 receives hot water through the hot water pipe 62. It is supplied to the valve 63 and is discharged by the pressure of the direct water flowing through the straight pipe 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

본 발명은 태양열 시스템의 이용 효율을 높이고, 집열부에서 획득된 열을 난방 및 급탕 부하에 빠르게 이용할 수 있도록 하며, 안정적인 시스템 구동이 가능하도록 하는 태양열 시스템에 관한 것이다. 이를 실현하기 위한 본 발명은 태양열을 흡수하여 내부에 수용된 열매체를 가열하는 태양열집열기; 난방수가 수용됨과 아울러, 상기 태양열집열기에 축열배관을 매개로 연결되는 제1 축열 열교환기와 제2 축열 열교환기가 내측의 상부와 하부에 각각 설치되고, 난방환수를 내측에 확산시키는 디퓨저를 구비하고 있는 축열조; 상기 축열배관에 연결되어 축열배관내의 압력을 감지하는 압력센서와 열매체를 압송하여 순환시키는 순환펌프; 상기 축열배관에 부족한 열매체를 보충하기 위해 가압펌프를 매개로 연결된 열매체 보충수탱크; 상기 축열조의 난방수공급배관에 난방수공급제어용 삼방향밸브를 매개로 난방수출구가 연결되고 상기 축열조의 디퓨저에 난방수환수제어용 삼방향밸브를 매개로 난방환수구가 연결되는 보조보일러; 상기 난방수공급제어용 삼방향밸브와 상기 보조보일러의 난방환수구 사이에 연결되는 체크밸브; 상기 보조보일러의 난방수출구와 상기 난방수환수제어용 삼방향밸브에 연결되는 난방부하;를 포함하여 이루어져 있다.

Description

태양열 시스템
본 발명은 태양열 시스템에 관한 것으로, 더욱 상세하게는 시스템 이용 효율을 높이고, 집열부에서 획득된 열을 난방 및 급탕 부하에 빠르게 이용할 수 있도록 하며, 안정적인 시스템 구동이 가능하도록 하는 태양열 시스템에 관한 것이다.
일반적으로, 태양열 시스템은 집열부, 축열부, 이용부로 구성되며, 집열부에서 집열된 열을 열교환기로 축열부에 축열하고, 축열된 열을 이용부에서 난방 및 급탕열원으로 이용하는 시스템이다.
기존 태양열시스템은 가격이 고가인 반면에 시스템 이용 효율이 난방의 경우 40~50%로 미비하며, 시스템 과열 등의 고장이 빈번하게 발생한다는 문제점이 있다.
즉, 난방부하를 통과한 난방환수의 온도가 축열탱크 하부온도 보다 높게 유입될 경우 축열탱크 내부 온도성층화가 흐트러져 축열된 열량을 난방열원으로 충분히 활용하지 못하였고, 난방시스템 설계가 잘못될 경우 태양열 예열 난방 조건에서 보조 보일러가 축열탱크 내부의 물을 데우는 경우가 발생할 수 있으며, 집열기와의 열교환이 축열탱크 하부에서 이루어져 순차적으로 물을 데우게 되므로, 겨울철과 같이 상시로 열원이 필요한 경우, 실제 부하 대응속도가 느려짐으로써 전체 시스템 효율이 낮은 문제점이 있었다.
또한, 열매체 순환라인에 누설이 발생하여도 경보 시스템이 없고, 자연 감소분에 대해서도 소비자가 직접 보충을 해야 하는 문제점이 있으며, 여름철의 경우 축열된 물온도가 80℃ 이상으로 상승하여, 온수 사용시 화상의 위험이 있었다.
아울러, 시스템이 과열될 경우 집열부에 설치된 AC 전원 방열기로 집열된 열을 방열하여, 외부 전력사용량이 증가하는 문제점이 있었다.
본 발명은 상기한 문제점들을 개선하기 위하여 발명한 것으로,난방부하 통과 전후의 난방수 온도를 비교하여 난방 순환유량의 변유량 제어를 실시하여 난방환수 온도를 최대한 낮추고, 난방환수 온도에 따라 축열탱크로 유입되는 유로의 형성을 달리하여 축열된 열량의 난방열원 사용을 극대화시켜, 시스템 이용 효율을 높일 수 있도록 된 태양열 시스템을 제공하고자 함에 목적이 있다.
또, 본 발명은 집열기 열매체 순환유량의 변유량 제어로 열매체 온도를 높이고, 축열탱크 하부 및 상부에서 열매체와 열교환이 이루어지도록 유로를 형성시킴으로써, 집열부에서 획득된 열을 난방 및 급탕 부하에 빠르게 이용할 수 있도록 된 태양열 시스템을 제공하고자 함에 다른 목적이 있다.
또한, 본 발명은 집열부에 압력센서를 설치함과 아울러 열매체 보충수 탱크에 체크 밸브를 설치하여 일정압력 이하에서 열매체 자동보충 및 누설의 알람을 알리고, 열매체 보충수 탱크에 저수위센서를 설치하여 열매체 보충을 알림으로써 작동오류를 방지할 수 있도록 하고, 급탕 출구와 시수 입구에 믹싱밸브가 적용된 바이패스 라인을 설치하여 적정온도의 온수를 공급할 수 있도록 하며, 축열탱크 상부 온도가 일정온도 이상일 경우 알람을 알리는 한편, 축열탱크 상부에 설치된 태양광 PV(Photovoltaic) 모듈로 작동하는 DC 전원 방열기 및 순환펌프로 축열된 열량을 방열함으로써, 안정적인 시스템 구동이 가능하도록 된 태양열 시스템을 제공하고자 함에 또다른 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 태양열 시스템은,
태양열을 흡수하여 내부에 수용된 열매체를 가열하는 태양열집열기;
난방수가 수용됨과 아울러, 상기 태양열집열기에 축열배관을 매개로 연결되는 제1 축열 열교환기와 제2 축열 열교환기가 내측의 상부와 하부에 각각 설치되고, 난방환수를 내측에 확산시키는 디퓨저를 구비하고 있는 축열조;
상기 축열배관에 연결되어 축열배관내의 압력을 감지하는 압력센서와 열매체를 압송하여 순환시키는 순환펌프;
상기 축열배관에 부족한 열매체를 보충하기 위해 가압펌프를 매개로 연결된 열매체 보충수탱크;
상기 축열조의 난방수공급배관에 난방수공급제어용 삼방향밸브를 매개로 난방수출구가 연결되고 상기 축열조의 디퓨저에 난방수환수제어용 삼방향밸브를 매개로 난방환수구가 연결되는 보조보일러;
상기 난방수공급제어용 삼방향밸브와 상기 보조보일러의 난방환수구 사이에 연결되는 체크밸브;
상기 보조보일러의 난방수출구와 상기 난방수환수제어용 삼방향밸브에 연결되는 난방부하;를 포함하여 이루어져 있다.
상기에 있어서, 디퓨저는 축열조의 중부와 하부에 각각 설치되고, 상기 중부 및 하부에 설치되는 디퓨저는 유입구가 난방환수배관에 연결되어 있는 삼방향밸브의 서로 다른 출구에 각각 연결되어, 상기 삼방향밸브는 축열조의 높이별 온도와 난방환수의 온도가 비교되어 난방환수보다 높은 부위로 유입되도록 개방이 제어되도록 이루어진 것을 특징으로 한다.
상기에 있어서, 상기 축열조에는 직수관이 입구에 연결되는 축열조 온수열교환기가 내측에 설치되고, 상기 축열조 온수열교환기의 출구에 연결되는 온수배관에는 상기 보조보일러의 온수열교환기를 매개로 믹싱밸브가 연결되며, 상기 믹싱밸브의 일측에는 상기 직수관이 연결되는 한편, 상기 믹싱밸브의 온수 입구측과 출구 측 및 직수유입구측에는 각각 온도센서가 설치되어, 상기 믹싱밸브에서는 믹싱밸브의 입출구에 설치된 온도센서의 감지온도에 의거 출수온도가 제어되도록 이루어진 것을 특징으로 한다.
상기에 있어서, 상기 축열조의 상부와 중부 및 하부에 각 위치에서의 온도를 감지하는 상부온도센서, 중부온도센서 및 하부온도센서가 각각 설치되어, 난방환수의 유입위치와 집열배관의 열매체 유입위치를 제어하도록 이루어진 것을 특징으로 한다.
상기 축열조의 상측에는 축열조 내의 난방수를 외부로 순환시켜 방열시킬 수 있도록 방열배관을 매개로 방열기가 연결되고, 상기 방열배관의 일단에는 2방향밸브와 순환펌프가 연결되는 한편, 상기 방열기에는 태양광발전기가 연결되어 태양광발전기에서 공급되는 전원으로 구동되도록 이루어진 것을 특징으로 한다.
상기한 바와 같이 본 발명은 난방순환유량의 변유량 제어를 통해 난방환수를 최대한 낮출 수 있고 축열된 열량의 난방열원 사용을 극대화 하며 난방 및 급탕 부하에 따른 빠른 응답성을 갖도록 함으로써 시스템효율을 매우 높일 수 있고, 열매체의 부족상태를 감지하여 사용자에게 보충할 것을 알릴 수 있으며, 급탕온도를 일정하게 유지할 수 있을 뿐만 아니라 전력소비를 줄이고 보조보일러의 가동을 최소화할 수 있는 장점이 있다.
도 1은 본 발명에 따른 태양열 시스템의 전체 계통도를 나타내는 도면,
도 2는 도 1 중에서 태양열 집열 시스템 계통도를 나타내는 도면,
도 3은 도 1 중에서 태양열 난방 시스템 계통도를 나타내는 도면,
도 4는 도 1 중에서 태양열 급탕 시스템 계통도를 나타내는 도면이다.
이하 예시도면에 의거하여 본 발명의 바람직한 일실시예에 대한 구성 및 작용을 상세히 설명한다.
도 1은 본 발명의 일실시예에 따른 태양열시스템의 전체 계통도를 도시한 것으로서, 본 발명은 크게 태양에너지를 흡수하여 열로 변환하는 태양열집열기(10), 상기 태양열집열기(10)에서 흡수된 열을 축열하는 축열조(20), 상기 축열조(20)에서 예열된 난방수 또는 온수를 소정 온도로 가열하는 보조열교환기(30), 상기 축열된 열을 이용하는 난방부하(40), 상기 태양열집열기(10)의 축열배관에 부족한 열매체를 보충하기 위한 열매체 보충수탱크(50), 온수를 설정온도로 공급하기 위한 믹싱밸브(60), 상기 축열조(20)의 축열 온도가 설정온도 이상인 경우 방열하기 위한 방열기(70), 그리고 상기 방열기(70)의 구동전원을 공급하기 위해 태양광을 전기에너지로 변환하는 태양광 발전기(80)로 이루어진다.
이하에서는 시스템별 계통도에 의거 보다 상세히 설명한다.
도 2는 도 1 중에서 태양열 집열 시스템 계통도를 나타낸다.
건물 외부에 설치되어 태양열을 집열하는 태양열집열기(10)의 열매체 출구측에 설치되는 집열배관(11)과 열매체 입구측에 설치되는 집열배관(12) 사이에는 제1, 제2 축열열교환기(21,22)가 직렬로 연결되는데, 상기 제1 축열열교환기(21)는 축열조(20)내에서 상부에 설치되고 상기 제2 축열열교환기(22)는 축열조(20)내에서 하부에 설치되어 있다. 그리하여 상기 태양열집열기(10)에서 가열된 열매체가 상기 제1, 제2 축열열교환기(21,22)로 순환되고, 이에 따라 상기 축열조(20) 내에 수용되어 있는 난방수가 상기 제1, 제2 축열열교환기(21,22)에서 열교환이 이루어져 가열되게 된다.
또한, 태양열집열기(10)와 축열조(20)의 상부에 설치되는 제1 축열열교환기(21)를 연결하는 집열배관(11)에는 삼방향밸브(V1)가 연결되며, 상기 삼방향밸브(V1)는 집열배관(11)의 유로를 제1 축열열교환기(21)를 거쳐 제2 축열열교환기(22)로 형성하거나 혹은 제1 축열열교환기(21)를 거치지 않고 제2 축열열교환기(22)로 바로 형성하도록 변경하는 역할을 한다. 이에 따라 태양열집열기(10)에서 집열배관(11)을 통해 흐르는 열매체는 상기 제1, 제2 축열열교환기(21,22)를 거쳐 태양열집열기(10)로 순환되거나 상기 제1 축열열교환기(21)를 거치지 않고 상기 제2 축열열교환기(22)만을 거친 후 태양열집열기(10)로 순환될 수 있다.
축열조(20)에서 제1 축열열교환기(21)를 거쳐 열매체를 순환시키는 경우는 축열조(20)의 축열량이 거의 소진된 상태 즉 상부 온도센서(TC4)에서 감지되는 물 온도가 일정온도 이하에서 열량에 대한 수요가 있을 때 상부의 물온도를 신속하게 축열시키고자 할 때이며, 이로부터 열량의 수요에 대한 응답속도가 빠르게 된다.
상기 집열배관(11)에는 태양열집열기(10)의 온도를 측정할 수 있는 온도센서(TC1)가 연결되고, 집열배관(12)에는 집열배관(12)내의 압력을 감지하는 압력센서(13)가 연결됨과 아울러 집열배관(11,12)을 통해 태양열집열기(10)와 축열조(20)간에 열매체를 순환시키기 위한 순환펌프(14)가 연결되어 있다.
상기 압력센서(13)는 집열배관(12)내 열매체의 온도가 지나치게 상승하는 경우 압력이 설정치보다 높아지는 것을 방지하기 위하여 집열배관(12) 내의 압력을 감지하여 태양열 시스템의 전반적인 동작을 제어하는 콘트롤러(도시되지 않음)로 전달한다.
상기 콘트롤러는 온도센서(TC1)를 통해 태양열집열기(10)의 획득열량을 판단하여, 획득 열량이 많을 경우에는 순환펌프(14)의 회전수를 높여 유량을 크게 함으로써 축열열량을 높이고, 획득 열량이 적을 경우에는 순환펌프(14)의 회전수를 낮추어 유량을 적게 함으로써 순환펌프(14)의 빈번한 온/오프를 방지하여 순환펌프(14)의 내수성을 증대시키고 소비전력을 감소시킬 수 있다.
또한, 상기 집열배관(12)의 일단에는 집열배관(12)을 통해 순환되는 열매체가 부족한 경우 이를 보충하기 위한 열매체 보충수탱크(50)가 가압펌프(15)를 매개로 연결되어 있다. 열매체 보충수탱크(50) 내에는 저수위센서(51)가 설치되어 감지된 신호를 상기 콘트롤러로 전송하며, 상기 콘트롤러에서는 열매체 보충수탱크(50)로부터 수신되는 저수위감지신호에 대응하여 통상의 경보수단을 이용하여 사용자에게 알린다.
아울러, 상기 축열조(20)의 상부와 중부 및 하부에는 각각 상부온도센서(TC2), 중부온도센서(TC3) 및 하부온도센서(TC4)가 설치되어 각 위치에서의 축열조(20)내 난방수온도를 감지하여 상기 콘트롤러로 전달하도록 이루어져 있다.
그리고 상기 축열조(20)의 상측에는 방열배관을 매개로 방열기(70)가 연결되어 있음과 아울러, 상기 방열배관의 도중에는 2방향밸브(71)와 순환펌프(72)가 연결되어 있다. 또한 상기 방열기(70)에는 태양광 발전기(80)가 연결되어 상용전원이 아닌 태양광발전기(80)에서 공급되는 전원으로 구동되도록 이루어져 있다.
그리하여 상기 상부온도센서(TC2)에 의하여 축열조(20)의 상부 온도가 소정온도 이상일 경우 콘트롤러에서는 경보수단을 작동시키고, 축열조(20) 상부에 설치된 방열기(70) 및 순환펌프(72)를 작동시켜 축열된 열량을 방열하도록 되어 있다. 방열기(70) 및 순환펌프(72)는 태양광발전기(80)에서 공급되는 전원으로 구동되도록 함으로써 상용전원을 사용하지 않아 전력비용을 절감할 수 있도록 이루어져 있다.
도 3은 도 1 중에서 태양열 난방 시스템 계통도를 나타낸다.
축열조(20)의 상부 일측에 설치되는 출구측에는 난방수공급배관(41)이 연결되는데, 상기 난방수공급배관(41)에는 난방수공급제어용 삼방향밸브(V4)를 매개로 보조보일러(30)의 난방수출구가 연결됨과 아울러 난방부하(40)의 일단이 연결된다.
상기 보조보일러(30)의 난방수환수구와 상기 난방부하(40)의 다른 일단에는 삼방향밸브(V3)를 매개로 난방환수배관(42)이 연결되며, 상기 난방수환수제어용 삼방향밸브(V3)의 다른 일단에 연결되는 난방환수배관(42)에는 축열조(20)에 설치되는 디퓨저(23)(24)가 연결되어 있다.
상기 디퓨저(23)(24)는 환수되는 난방수를 축열조(20)내에 분사하여 빠르게 확산되도록 함으로써 신속하게 열교환이 이루어질 수 있도록 하는 것으로, 도시된 바와 같이 디퓨저(23)는 축열조(20)의 중부에 설치되고 디퓨저(24)는 축열조(20)의 하부에 설치될 수 있으며, 이 경우 난방환수배관(42)을 통해 환수되는 난방수는 그 온도에 따라 삼방향밸브(V2)를 통해 중부의 디퓨저(23) 또는 하부의 디퓨저(24)로 공급되도록 유로를 변경할 수 있다.
그리고 상기 난방수공급배관(41) 또는 난방환수배관(42)의 일단에는 난방수를 순환시키기 위한 순환펌프(44)가 설치된다. 도시된 예에서는 난방환수배관(42)에 설치된 예를 나타낸다.
이와 같은 구조로 이루어진 난방시스템 계통에서 축열조내 온도와 난방환수의 온도차에 따른 난방유로에 대하여 설명한다.
첫째, 축열조(20)내 온도가 사용자가 설정한 온도보다 높은 경우에 대하여 설명한다. 이때는 콘트롤러가 축열조(20)내 각 온도센서(TC2~TC4)로부터 감지되는 온도가 사용자가 설정한 난방온도보다 높다고 판단된 경우로써, 삼방향밸브(V4)는 축열조(20)에서 난방부하(40) 방향으로 유로가 형성되도록 제어되는 한편 삼방향밸브(V3)는 난방부하(40)에서 축열조(20) 방향으로 유로가 형성되도록 제어된다. 이에 따라 축열조(20)의 난방수공급배관(41)을 통해 출수되는 난방수는 난방부하(40)를 거쳐 바로 축열조(20)로 환수되어 다시 열교환된다음 출수되는 순환동작이 반복된다.
둘째, 축열조(20)내 하층온도가 사용자가 설정한 온도보다 낮지만 상층온도가 사용자가 설정한 온도보다 높은은 경우에 대하여 설명한다. 이때는 콘트롤러가 축열조(20)내 각 온도센서(TC2~TC4)로부터 감지되는 온도로부터 하층온도는 사용자가 설정한 난방온도보다 낮고 상층온도는 사용자가 설정한 난방온도보다 높다고 판단된 경우로써,
삼방향밸브(V4)는 축열조(20)에서 난방부하(40) 방향으로 유로가 형성되도록 제어되는 한편 삼방향밸브(V3)는 난방부하(40)에서 축열조(20) 방향으로 유로가 형성되도록 제어되고, 특히 삼방향밸브(V2)가 삼방향밸브(V3)에서 중부의 디퓨저(23) 방향으로 유로가 형성되도록 제어된다. 이에 따라 축열조(20)의 난방수공급배관(41)을 통해 출수되는 난방수는 난방부하(40)를 거쳐 축열조(20)의 중부 위치로 환수되어 다시 열교환된다음 출수되는 순환동작이 반복된다.
셋째, 축열조(20)내 온도가 사용자가 설정한 온도보다 낮은 경우에 대하여 설명한다. 이때는 콘트롤러가 축열조(20)내 각 온도센서(TC2~TC4)로부터 감지되는 온도가 사용자가 설정한 난방온도보다 낮다고 판단된 경우로써, 삼방향밸브(V4)는 축열조(20)로 흘러가는 유로가 차단되는 방향으로 유로가 형성되도록 제어되는 한편 삼방향밸브(V3)는 난방부하(40)에서 보조열교환기(30) 방향으로 유로가 형성되도록 제어된다. 이에 따라 보조열교환기(30)에서 열교환에 의해 가열되는 난방수는 난방부하(40)를 거쳐 다시 보조열교환기(30)로 환수되고, 다시 열교환되어 출수되는 순환동작이 반복된다.
이와 같이, 축열조(20)는 내부의 물온도가 상층부가 높고 하층부가 낮은 성층화를 이루고 있음으로, 난방부하(40)를 통과하고 환수되는 온도와 축열조(20)의 높이에 따른 온도를 상호 비교하여, 축열조(20)로 난방수를 유입시켜 가열하거나 외부의 보조열교환기(30)를 통해 가열하도록 함으로써, 축열조(20) 내부 열량을 최대한 활용할 수 있다.
또한, 콘트롤러에서는 난방부하(40) 전후단에 설치된 온도센서(TC8)(TC9)를 통해 난방부하(40) 통과 전후의 난방수 온도를 비교하여 난방순환유량의 변유량제어 즉 순환펌프 가동정도(RPM)를 조절한다.
또한, 상기 난방수공급제어용 삼방향밸브(V4)의 다른 유로구멍과 상기 보조보일러(30)의 난방환수구 사이에는 체크밸브(43)를 매개로 연결되어 있다. 상기 체크밸브(43)는 축열조(20)에서 난방수공급배관(41)을 통해 공급되는 난방수가 필요에 따라 보조보일러(30)로 공급되어 열교환을 가능하게 하지만, 이때 난방부하(40)와 난방수환수제어용 삼방향밸브(V3)를 거쳐 보조보일러(30)로 환수되는 난방수가 난방수공급배관(41)으로 유입되는 것을 방지하기 위한 것이다.
도 4는 도 1 중에서 태양열 급탕 시스템 계통도를 나타낸다.
축열조(20)에는 직수관(61)이 입구에 연결되는 축열조 온수열교환기(25)가 내측에 설치되고, 상기 축열조 온수열교환기(25)의 출구에 일단이 연결되는 온수배관(62)의 다른 일단에는 보조보일러(30)에 설치되는 온수열교환기(32)를 매개로 믹싱밸브(60)가 연결된다. 상기 믹싱밸브(60)의 다른 일측에는 상기 직수관(61)이 직접 연결되는 한편 또다른 일측에는 온수밸브(63)가 연결된다. 그리고, 상기 믹싱밸브(60)의 온수 입구측과 출구측 및 직수유입구측에는 각 위치에서 온수 및 직수의 온도를 감지하도록 온도센서(TC5)(TC6)(TC7)가 각각 설치되어 있다. 따라서 콘트롤러는 온도센서(TC5)(TC6)(TC7)의 감지온도와 사용자가 설정한 온수온도를 비교하여 믹싱밸브(60)의 개도를 제어한다. 즉 믹싱밸브(60)는 온수배관(62)을 통해 유입되는 온수량과 직수관(61)을 통해 유입되는 직수량의 유입량을 각각 조절하여 사용자가 설정한 온도의 온수를 공급하게 된다. 이에 따라 예기치 못한 고온의 온수배출이 방지되어 화상을 방지할 수 있게 된다.
상기 직수관(61)은 항상 개방된 상태에 있는데, 사용자가 가정에 설치된 온수밸브(63)를 개방하면 축열조(20) 또는 보조보일러(30)에서 가열된 온수가 온수배관(62)을 통해 온수밸브(63)로 공급되어 상기 직수관(61)을 통해 유입되는 직수의 압력에 의해 배출되게 된다.
**도면의 주요 부호에 대한 설명**
10 -- 태양열집열기,
11,12 -- 집열배관,
13 -- 압력센서,
14 -- 순환펌프,
15 -- 가압펌프,
20 -- 축열조,
21 -- 제1 축열열교환기,
22 -- 제2 축열열교환기,
23,24 -- 디퓨저,
25 -- 축열조 온수열교환기,
30 -- 보조열교환기,
40 -- 난방부하,
41 -- 난방수공급배관,
42 -- 난방환수배관,
43 -- 체크밸브,
50 -- 열매체 보충수탱크,
51 -- 저수위센서,
60 -- 믹싱밸브,
61 -- 직수관,
62 -- 온수배관,
63 -- 온수밸브,
70 -- 방열기,
71 -- 2방향밸브,
72 -- 순환펌프,
80 -- 태양광 발전기,
V1~V4 -- 삼방향밸브,
TC1~TC9 -- 온도센서.

Claims (7)

  1. 태양열을 흡수하여 내부에 수용된 열매체를 가열하는 태양열집열기;
    난방수가 수용됨과 아울러, 상기 태양열집열기에 축열배관을 매개로 연결되는 제1 축열 열교환기와 제2 축열 열교환기가 내측의 상부와 하부에 각각 설치되고, 난방환수를 내측에 확산시키는 디퓨저를 구비하고 있는 축열조;
    상기 축열배관에 연결되어 축열배관내의 압력을 감지하는 압력센서와 열매체를 압송하여 순환시키는 순환펌프;
    상기 축열배관에 부족한 열매체를 보충하기 위해 가압펌프를 매개로 연결된 열매체 보충수탱크;
    상기 축열조의 난방수공급배관에 난방수공급제어용 삼방향밸브를 매개로 난방수출구가 연결되고 상기 축열조의 디퓨저에 난방수환수제어용 삼방향밸브를 매개로 난방환수구가 연결되는 보조보일러;
    상기 난방수공급제어용 삼방향밸브와 상기 보조보일러의 난방환수구 사이에 연결되는 체크밸브;
    상기 보조보일러의 난방수출구와 상기 난방수환수제어용 삼방향밸브에 연결되는 난방부하;를 포함하여 이루어진 태양열 시스템.
  2. 제1항에 있어서, 디퓨저는 축열조의 중부와 하부에 각각 설치되고, 상기 중부 및 하부에 설치되는 디퓨저는 유입구가 난방환수배관에 연결되어 있는 삼방향밸브의 서로 다른 출구에 각각 연결되어, 상기 삼방향밸브는 축열조의 높이별 온도와 난방환수의 온도가 비교되어 난방환수보다 높은 부위로 유입되도록 유로가 제어되는 것을 특징으로 하는 태양열 시스템.
  3. 제1항 또는 제2항에 있어서, 상기 축열조에는 직수관이 입구에 연결되는 축열조 온수열교환기가 내측에 설치되고, 상기 축열조 온수열교환기의 출구에 연결되는 온수배관에는 상기 보조보일러의 온수열교환기를 매개로 믹싱밸브가 연결되며, 상기 믹싱밸브의 일측에는 상기 직수관이 연결되는 한편, 상기 믹싱밸브의 온수 입구측과 출구 측 및 직수유입구측에는 각각 온도센서가 설치되어, 상기 믹싱밸브에서는 믹싱밸브의 입출구에 설치된 온도센서의 감지온도에 의거 출수온도가 제어되도록 이루어진 것을 특징으로 하는 태양열 시스템.
  4. 제3항에 있어서, 상기 축열조의 상부와 중부 및 하부에 각 위치에서의 온도를 감지하는 상부온도센서, 중부온도센서 및 하부온도센서가 각각 설치되어, 난방환수의 유입위치와 집열배관의 열매체 유입위치를 제어하도록 이루어진 것을 특징으로 하는 태양열 시스템.
  5. 제3항에 있어서, 상기 축열조의 상측에는 축열조 내의 난방수를 외부로 순환시켜 방열시킬 수 있도록 방열배관을 매개로 방열기가 연결되고, 상기 방열배관의 일단에는 2방향밸브와 순환펌프가 연결되는 한편, 상기 방열기에는 태양광발전기가 연결되어 태양광발전기에서 공급되는 전원으로 구동되도록 이루어져, 태양열집열기의 출구측에 설치되는 온수온도감지센서의 감지온도가 사전에 설정된 온도보다 높은 경우 방열기로 순환시켜 과열을 방지하도록 이루어진 것을 특징으로 하는 태양열 시스템.
  6. 제1항에 있어서, 온수출구에 설치되는 믹싱밸브에는 직수관이 연결되어 온수출수온도를 제어할 수 있도록 이루어진 것을 특징으로 하는 태양열 시스템.
  7. 제1항에 있어서, 열매체 보충수 탱크에는 저수위센서가 설치되어, 열매체 자동보충과 누설 경보를 발생할 수 있도록 이루어진 것을 특징으로 하는 태양열 시스템.
PCT/KR2011/001906 2010-05-13 2011-03-20 태양열 시스템 WO2011142531A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11780748.7A EP2570748A4 (en) 2010-05-13 2011-03-20 SOLAR THERMAL SYSTEM
AU2011251139A AU2011251139B2 (en) 2010-05-13 2011-03-20 Solar thermal system
JP2013510011A JP5427315B2 (ja) 2010-05-13 2011-03-20 太陽熱システム
US13/697,045 US9400122B2 (en) 2010-05-13 2011-03-20 Solar thermal system
CN201180034174.4A CN102985763B (zh) 2010-05-13 2011-03-20 太阳能热系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100045039A KR101105561B1 (ko) 2010-05-13 2010-05-13 태양열 시스템
KR10-2010-0045039 2010-05-13

Publications (2)

Publication Number Publication Date
WO2011142531A2 true WO2011142531A2 (ko) 2011-11-17
WO2011142531A3 WO2011142531A3 (ko) 2012-01-19

Family

ID=44914781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001906 WO2011142531A2 (ko) 2010-05-13 2011-03-20 태양열 시스템

Country Status (7)

Country Link
US (1) US9400122B2 (ko)
EP (1) EP2570748A4 (ko)
JP (1) JP5427315B2 (ko)
KR (1) KR101105561B1 (ko)
CN (1) CN102985763B (ko)
AU (1) AU2011251139B2 (ko)
WO (1) WO2011142531A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546836A (zh) * 2016-01-29 2016-05-04 中国电建集团北京勘测设计研究院有限公司 采用非电辅助热源的太阳能集中间接热水系统
CN105588339A (zh) * 2016-01-29 2016-05-18 中国电建集团北京勘测设计研究院有限公司 带有非电辅助热水源的太阳能集中集热热水系统
CN115046240A (zh) * 2022-06-12 2022-09-13 湖北华辰九州能源有限公司 一种热电协同的长距离供热系统及其运行控制方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457051B (en) * 2008-01-31 2012-08-08 Faith Louise Ltd Heating system
KR101237781B1 (ko) * 2011-03-31 2013-02-28 김과한 태양열 보일러의 과승 제어 시스템
JP5869365B2 (ja) * 2012-02-24 2016-02-24 矢崎エナジーシステム株式会社 太陽熱利用給湯システム
KR101376058B1 (ko) * 2012-05-15 2014-03-19 경희대학교 산학협력단 자연순환형 태양열 온수시스템
CN102901230B (zh) * 2012-11-07 2015-01-21 嘉兴市同济阳光新能源有限公司 多功能太阳能热水系统
KR101281074B1 (ko) * 2012-11-14 2013-07-02 전영춘 태양에너지를 이용한 발전 및 난방 시스템
CN103175189A (zh) * 2013-04-10 2013-06-26 南京工业大学 太阳能锅炉软水预热系统
KR101480062B1 (ko) * 2013-05-16 2015-01-09 (주)동호엔지니어링 태양열을 이용한 공동주택용 개별 난방 및 급탕시스템
CA2914194C (en) * 2013-06-05 2018-05-01 Rheem Manufacturing Company Integrated renewable energy system
KR101422106B1 (ko) * 2013-06-18 2014-07-23 전영춘 태양에너지를 이용한 발전 및 난방 시스템
CN104279599A (zh) * 2013-07-03 2015-01-14 苏州苏宝新能源科技有限公司 一种热管式太阳能集中供热水系统
CN103363572A (zh) * 2013-08-01 2013-10-23 中天同圆太阳能高科技有限公司 太阳能供热装置
JP5751599B2 (ja) * 2013-09-09 2015-07-22 クラフトワーク株式会社 給湯冷暖房システム
US9631881B2 (en) * 2013-09-13 2017-04-25 John J. Bakewell Conditional system of climate control
KR101381406B1 (ko) * 2013-11-04 2014-04-04 주식회사 브이비엠 태양열과 이온전극 열원장치를 이용한 난방시스템
CN103629831B (zh) * 2013-12-02 2016-07-06 王强 非承压分体即热恒压启动强制内循环太阳能热水器
RU2554171C1 (ru) * 2014-02-18 2015-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения
KR101828122B1 (ko) * 2014-05-22 2018-02-12 김상남 축열식 연탄 겸용 화목보일러
CN104034053B (zh) * 2014-06-17 2015-09-02 李群玉 太阳能热水器
JP6466667B2 (ja) * 2014-08-27 2019-02-06 高砂熱学工業株式会社 太陽熱利用システム
CN104359142B (zh) * 2014-11-07 2017-03-01 长春工程学院 蓄热式太阳能、电能和燃煤热能联合供热热源系统
CN104482520A (zh) * 2014-11-28 2015-04-01 芜湖贝斯特新能源开发有限公司 太阳能锅炉系统和太阳能锅炉加热方法
KR101639375B1 (ko) * 2015-03-03 2016-07-13 이승순 태양열 열교환 시스템
EP3163215B1 (en) * 2015-10-29 2019-03-13 Kabushiki Kaisha Toshiba Solar heat collecting system, and apparatus and method of controlling the same
CN105465869A (zh) * 2015-12-23 2016-04-06 安徽建筑大学 多热源耦合供热系统
CN105737660A (zh) * 2016-04-25 2016-07-06 唐立刚 一种热交换装置及其热交换方法
CN105841360B (zh) * 2016-05-06 2018-01-30 中国科学院电工研究所 一种基于跨季节水体储热的太阳能中温供热系统
CN106247425B (zh) * 2016-08-31 2022-02-01 中国电建集团西北勘测设计研究院有限公司 一种太阳能集热器辅助供暖节能装置
ES2627209B2 (es) * 2017-03-31 2018-01-08 Universidad De Málaga Acumulador, sistema y procedimiento para proporcionar agua caliente sanitaria
KR101924875B1 (ko) * 2017-04-20 2018-12-04 경희대학교 산학협력단 태양열 축열 순환시스템
CN107120711B (zh) * 2017-05-03 2019-09-06 中冶西北工程技术有限公司 太阳能供热装置
KR101981222B1 (ko) * 2017-10-26 2019-05-22 박병일 태양열 난방 장치 및 시스템
CN107726651B (zh) * 2017-11-13 2023-06-23 北京众信科源科技有限公司 一种恒温加热装置和控制方法
CN107816813B (zh) * 2017-11-30 2023-12-12 珠海格力电器股份有限公司 太阳能集热装置的控制方法
US11268706B2 (en) * 2017-12-21 2022-03-08 University Of Central Florida Research Foundation, Inc. Photovoltaic-assisted heat pump water heater system and method
CN108266782A (zh) * 2018-01-10 2018-07-10 中国科学院理化技术研究所 一种供暖系统
CN108220158A (zh) * 2018-04-10 2018-06-29 吉林奇星生物质能科技开发有限公司 一种自动控制太阳能加热沼气发生设备及控制方法
CN108443943A (zh) * 2018-05-09 2018-08-24 山东恒威电力设备有限公司 一种新型相变蓄能系统
KR102096616B1 (ko) * 2018-07-24 2020-04-02 광운대학교 산학협력단 계통 연계 및 독립형으로 운전이 가능한 소규모 태양광/태양열 융복합 시스템
CN108775720A (zh) * 2018-08-10 2018-11-09 南京工业大学 一种智能精恒温控制太阳能热水系统
CN108954808B (zh) * 2018-08-23 2024-01-30 芜湖美的厨卫电器制造有限公司 加热系统和电热水器
CN108981199A (zh) * 2018-09-13 2018-12-11 广州中国科学院工业技术研究院 能量利用模块及能量利用系统
US11205896B2 (en) 2018-11-21 2021-12-21 Black & Decker Inc. Solar power system
KR102022568B1 (ko) * 2019-04-09 2019-09-18 정선우 과열방지시스템이 구비된 태양열 집열장치
US11287144B2 (en) * 2019-07-31 2022-03-29 Rheem Manufacturing Company Water heaters with real-time hot water supply determination
BR112022002188A2 (pt) * 2019-08-08 2022-05-03 Sowillo Energy Ltd Gerenciamento de calor integrado para um edifício
US11486379B2 (en) 2019-09-12 2022-11-01 Cal Poly Corporation Self-regulating bimetallic diaphragm pump
KR102199280B1 (ko) * 2019-11-14 2021-01-07 (주)에프티에너지 개방형과 밀폐형으로 전환가능한 수축열시스템 및 이의 운전방법
KR102198997B1 (ko) 2020-01-20 2021-01-06 (주)동호엔지니어링 지열 및 태양광 결합형 히트펌프 장치 및 방법
CN113418225B (zh) * 2021-06-17 2022-11-18 杭州裕达自动化科技有限公司 太阳能热水节能改造系统
CN113566263B (zh) * 2021-07-27 2022-06-03 宁夏煦热能源科技有限公司 全自动无人值守太阳能供热系统
KR102615368B1 (ko) * 2022-04-26 2023-12-19 김대현 다이렉트 솔라 하이브리드 pvt를 이용한 난방 및 온수 공급 시스템
PL442548A1 (pl) * 2022-10-18 2024-04-22 Grzegorz Bachórz Instalacja, zwłaszcza do podgrzewania wody oraz sposób montowania instalacji, zwłaszcza do podgrzewania wody

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034738A (en) * 1974-03-21 1977-07-12 Sunworks, Inc. Solar heating system
US4027821A (en) * 1975-07-18 1977-06-07 International Telephone And Telegraph Corporation Solar heating/cooling system
AT341719B (de) * 1975-10-01 1978-02-27 Interliz Anstalt Zentralheizungsanlage
JPS52135350U (ko) * 1976-04-09 1977-10-14
US4052000A (en) * 1976-04-19 1977-10-04 Allen K. Cooper Solar energy augmented water heating system
JPS57115629A (en) * 1981-01-07 1982-07-19 Matsushita Electric Ind Co Ltd Floor heater by solar heat
DE3104224A1 (de) * 1981-02-06 1982-08-19 Siemens AG, 1000 Berlin und 8000 München Heizungsanlage
US4527618A (en) * 1982-09-29 1985-07-09 Solar Decisions, Inc. Solar energy storage and distribution system with heat pump assist
JPS59100353A (ja) 1982-11-30 1984-06-09 Sharp Corp 太陽熱集熱装置
JPS63123955U (ko) 1987-02-03 1988-08-12
JPH11201559A (ja) 1998-01-16 1999-07-30 Shiroki Corp 太陽熱利用給湯装置
DE20001539U1 (de) * 2000-01-31 2000-04-20 Ikarus Solargroshandlung Raine Heizung
JP2002267259A (ja) 2001-03-13 2002-09-18 Sunpot Co Ltd 温水供給システム
JP2002297259A (ja) 2001-03-30 2002-10-11 Fujitsu Ltd 電子装置
JP4033184B2 (ja) * 2004-09-29 2008-01-16 松下電器産業株式会社 多機能給湯機
US7458520B2 (en) * 2005-04-19 2008-12-02 Masco Corporation Of Indiana Electronic proportioning valve
KR100734562B1 (ko) 2006-10-24 2007-07-03 주식회사 윤익물산 태양열 보일러 직렬 연결 시스템
CN100498130C (zh) * 2007-04-18 2009-06-10 哈尔滨工业大学 三套管蓄能型太阳能与空气源热泵集成系统
CN201262482Y (zh) * 2007-08-15 2009-06-24 李尚平 太阳能预热开水系统
DE112009000754A5 (de) * 2008-01-28 2010-12-30 Hg Baunach Gmbh & Co Kg Heizungsanlage
US8242920B1 (en) * 2008-07-10 2012-08-14 D2M International Pty Ltd. Method and apparatus for leak detection
CN201359324Y (zh) * 2008-12-31 2009-12-09 珠海慧生能源技术发展有限公司 超音频采暖系统
KR101058575B1 (ko) * 2009-03-23 2011-08-23 이한출 태양열을 이용한 난방장치
US8820315B2 (en) * 2010-02-25 2014-09-02 Trathom Corporation Solar heating system with overheating protection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2570748A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546836A (zh) * 2016-01-29 2016-05-04 中国电建集团北京勘测设计研究院有限公司 采用非电辅助热源的太阳能集中间接热水系统
CN105588339A (zh) * 2016-01-29 2016-05-18 中国电建集团北京勘测设计研究院有限公司 带有非电辅助热水源的太阳能集中集热热水系统
CN115046240A (zh) * 2022-06-12 2022-09-13 湖北华辰九州能源有限公司 一种热电协同的长距离供热系统及其运行控制方法

Also Published As

Publication number Publication date
CN102985763A (zh) 2013-03-20
JP5427315B2 (ja) 2014-02-26
KR101105561B1 (ko) 2012-01-17
CN102985763B (zh) 2015-02-11
WO2011142531A3 (ko) 2012-01-19
US9400122B2 (en) 2016-07-26
EP2570748A2 (en) 2013-03-20
JP2013528775A (ja) 2013-07-11
AU2011251139B2 (en) 2013-10-17
US20130074827A1 (en) 2013-03-28
AU2011251139A1 (en) 2013-01-24
EP2570748A4 (en) 2016-03-09
KR20110125485A (ko) 2011-11-21

Similar Documents

Publication Publication Date Title
WO2011142531A2 (ko) 태양열 시스템
EP1875138B1 (en) Hot water installations
WO2012002636A2 (ko) 난방 및 급탕 탱크 분리형 태양열 시스템
WO2014051268A1 (ko) 삼방밸브 또는 믹싱밸브를 이용한 배열회수시스템의 급탕온도 제어구조 및 온수탱크 열교환기를 이용한 배열회수시스템의 급탕온도 제어구조
ES2606049T3 (es) Método para operar una planta térmica solar
CN102032613B (zh) 一种供暖和热水两用型热水装置
CN201196455Y (zh) 一种多热源自动供热水系统
KR102413006B1 (ko) 지역 냉난방 시스템 및 이를 이용하는 운영 방법
CN203258724U (zh) 一种多能源供热系统
KR101168551B1 (ko) 공동주택의 단위세대별 축열탱크가 구비된 태양열 온수시스템에서 집열 열원 공급 및 과열 방지방법
KR101168538B1 (ko) 공동 축열탱크가 구비된 공동주택 태양열 온수시스템 및 그 제어방법
CN107062349B (zh) 锅炉供暖系统和锅炉供暖主系统
CN102345929B (zh) 非饮用水加热单元
CN202853103U (zh) 一种具有采暖热水炉多机并联系统的装置
WO2016155033A1 (zh) 一种双向循环加热方法及具有双向循环系统的加热锅炉
KR101168542B1 (ko) 공동주택의 단위세대별 축열탱크가 구비된 태양열 온수시스템 및 그 제어방법
WO2016143924A1 (ko) 태양열 온수시스템
KR100435832B1 (ko) 태양열보일러시스템
KR100435831B1 (ko) 태양열보일러시스템
JP2013108736A (ja) 密閉式強制循環太陽熱給湯システム
CN201159526Y (zh) 氮化硅加热式热水器
CN205037591U (zh) 一种太空能全自动一体机热水器
KR20100096632A (ko) 보일러 장치
KR200431547Y1 (ko) 태양열이용시설의 난방 겸용을 위한 보일러 연계 배관 및제어 시스템
JP2012097979A (ja) 熱源装置、熱源制御方法及び熱源制御プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034174.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780748

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013510011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13697045

Country of ref document: US

Ref document number: 2011780748

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011251139

Country of ref document: AU

Date of ref document: 20110320

Kind code of ref document: A