WO2011138275A1 - Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO2011138275A1
WO2011138275A1 PCT/EP2011/056955 EP2011056955W WO2011138275A1 WO 2011138275 A1 WO2011138275 A1 WO 2011138275A1 EP 2011056955 W EP2011056955 W EP 2011056955W WO 2011138275 A1 WO2011138275 A1 WO 2011138275A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate
monomeric
stopper
reacted
trimerization catalyst
Prior art date
Application number
PCT/EP2011/056955
Other languages
English (en)
French (fr)
Inventor
Jens Krause
Manfred Schmidt
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to JP2013508454A priority Critical patent/JP2013525583A/ja
Priority to EP11717624A priority patent/EP2566905A1/de
Priority to RU2012152518/04A priority patent/RU2012152518A/ru
Priority to KR1020127031975A priority patent/KR20130103337A/ko
Priority to MX2012012904A priority patent/MX2012012904A/es
Priority to US13/696,448 priority patent/US20130109830A1/en
Priority to CN2011800229852A priority patent/CN102933631A/zh
Publication of WO2011138275A1 publication Critical patent/WO2011138275A1/de
Priority to ZA2012/09249A priority patent/ZA201209249B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7692Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing at least one isocyanate or isothiocyanate group linked to an aromatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/089Reaction retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/794Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aromatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention relates to cellular and non-cellular polyurethane (PUR) elastomers of NCO-functional prepolymers based on polyisocyanates with proportions of trimers, a process for their preparation and their use.
  • PUR polyurethane
  • Polyurethane elastomers are used in numerous wear-prone applications.
  • wear due to, for example, abrasion and / or lack of tear propagation resistance in dynamic applications, e.g. Rollers, wheels, gaskets, cellular buffer elements and cellular shoe soles, wear due to deformation and / or heat build-up after a certain number of repeated loads. These loads usually occur periodically. This leads to high permanent deformations, which make further use impossible.
  • the internal heat build-up (by non-elastic interactions) may be so high that the polyurethane heats up to burst under stress. It is also known that by increasing the functionality of the polyol above 2, the dynamic resistance increases, but at the same time the tear values decrease so much that the elastomer is destroyed by non-dynamic wear phenomena.
  • the object of the invention was therefore to provide an elastomer available which has a low functionality and at the same time shows a very good tear strength and a very good dynamic behavior.
  • the invention relates to a process for the preparation of polyurethane elastomers, which is characterized in that a) monomeric polyisocyanate is reacted by means of a trimerization catalyst in an amount of 0, 1 to 2000 ppm, based on monomeric polyisocyanate, wherein the reaction with the trimerization catalyst at a content of 0.01 to 5.0 wt .-% of reacted polyisocyanate, based on the total polyisocyanate, by means of a stopper, which is used in a molar ratio of stopper to trimerization catalyst of 1: 2 to 20: 1 is stopped .
  • the mixture of monomeric and reacted polyisocyanate from a) is reacted with polyols having OH numbers of 20 to 200 mg KOH / g and functionalities of 1.95 to 2.40 to give an NCO-terminated prepolymer
  • polyols having OH numbers of 20 to 200 mg KOH / g and functionalities of 1.95 to 2.40 to give an NCO-terminated prepolymer
  • the NCO- terminated prepolymer is reacted with chain extenders and / or crosslinkers to polyurethane elastomer, wherein the monomeric polyisocyanate and / or the polyols may optionally contain auxiliaries and / or additives.
  • Another object of the invention is a process for the preparation of NCO-terminated prepolymers, which is characterized in that a) monomeric polyisocyanate by means of a trimerization catalyst in an amount of
  • Another object of the invention is a process for the preparation of mixtures of monomeric and non-monomeric polyisocyanates, which is characterized in that a) monomeric polyisocyanate by means of a trimerization catalyst in an amount of 0, 1 to 2000 ppm, based on monomeric polyisocyanate, is reacted wherein the reaction with the trimerization catalyst at a proportion of 0.01 to 5.0 wt .-% of reacted polyisocyanate, based on the total polyisocyanate, by means of a stopper, in a molar ratio of stopper to Trimer Deutschenskatalysator of 1: 2 to 20: 1 is used is stopped, wherein the monomeric polyisocyanate may optionally contain auxiliaries and / or additives.
  • the invention also polyurethane elastomers, which are available from a) a mixture of monomeric and non-monomeric polyisocyanate in a proportion of 0.01 to 5.0 wt .-% of non-monomeric polyisocyanate, based on the total polyisocyanate, wherein the mixture is obtainable from monomeric polyisocyanate by means of a trimerization catalyst in an amount from 0, 1 to 2000 ppm, based on monomeric polyisocyanate, and by means of a stopper in a molar ratio of stopper to trimerization catalyst of 1: 2 to 20: 1, b) polyols having OH numbers of 20 to 200 mg KOH / g and Functionalities of 1.95 to 2.40 and c) chain extenders and / or crosslinkers, d) optionally in the presence of auxiliaries and / or additives.
  • NCO-terminated prepolymers which are obtainable from a) a mixture of monomeric and non-monomeric polyisocyanate in a proportion of 0.01 to 5.0 wt .-% of non-monomeric polyisocyanate, based on the total polyisocyanate wherein the mixture is obtainable from monomeric polyisocyanate by means of a trimerization catalyst in an amount of 0, 1 to 2000 ppm, based on monomeric polyisocyanate, and by means of a stopper in a molar ratio of stopper to trimerization catalyst from 1: 2 to 20: 1, and b) polyols having OH numbers of 20 to 200 mg KOH / g and functionalities of 1.95 to 2.40, d) optionally in the presence of auxiliaries and / or additives.
  • Another object of the invention are mixtures of monomeric and non-monomeric polyisocyanate in a proportion of 0.01 to 5.0 wt .-% of non-monomeric polyisocyanate, based on the total polyisocyanate, obtainable from a) monomeric polyisocyanate by means of a trimerization catalyst in one Amount of 0.1 to 2000 ppm, based on monomeric polyisocyanate, and by means of a stopper in a molar ratio of stopper to trimerization catalyst of 1: 2 to 20: 1.
  • the reaction is carried out by means of customary trimerization catalysts, as described in Houben-Weyl, Methods of Organic Chemistry, Volume E20, Part 2, Georg Thieme Verlag, Stuttgart, 1987, pp. 1739-1751, such as quaternary ammonium hydroxides, benzyldimethyl amine, triethylamine, Mannich bases of phenols or mixtures of these catalysts.
  • customary trimerization catalysts such as described in Houben-Weyl, Methods of Organic Chemistry, Volume E20, Part 2, Georg Thieme Verlag, Stuttgart, 1987, pp. 1739-1751, such as quaternary ammonium hydroxides, benzyldimethyl amine, triethylamine, Mannich bases of phenols or mixtures of these catalysts.
  • phenol Mannich bases are used, which can be obtained by reacting phenol or bisphenol A with dimethylamine and formaldehyde.
  • the trimerization catalyst can be dissolved in a solvent such as toluene, ethyl acetate, alcohol (eg, methanol, ethanol and 2-ethyl-1-hexanol), ethers or polyethers, phosphoric acid esters such as tris (2-chloroisopropyl) phosphate (TCPP) or Triethyl phosphate (TEP) are present.
  • a solvent such as toluene, ethyl acetate, alcohol (eg, methanol, ethanol and 2-ethyl-1-hexanol), ethers or polyethers, phosphoric acid esters such as tris (2-chloroisopropyl) phosphate (TCPP) or Triethyl phosphate (TEP) are present.
  • the reaction is stopped, preferably with Broenstedt or Lewis acids, such as hydrochloric acid, benzoyl chloride or organomercinic acids, e.g. Dibutyl phosphate.
  • Broenstedt or Lewis acids such as hydrochloric acid, benzoyl chloride or organomercinic acids, e.g. Dibutyl phosphate.
  • the polyurethane elastomers according to the invention have very good dynamic properties combined with good mechanical-physical properties.
  • the polyurethane elastomers according to the invention are preferably used as cast elastomers for the production of, for example, rollers, wheels and conveyor belts.
  • the polyurethane elastomer parts are produced by the casting process.
  • the NCO-terminated prepolymers are first prepared.
  • the NCO-terminated prepolymers are reacted either directly after their preparation with a chain extender / crosslinker, or they are cooled to low temperatures (storage temperature) for the purpose of subsequent chain extension / V ernetzung and stored.
  • the NCO-terminated prepolymers are first degassed by applying a reduced pressure at room temperature or at elevated temperature and then reacted - usually at elevated temperature - with the chain extender / V ernetzer.
  • the NCO-terminated prepolymer is preferably heated to a temperature of 60 ° C to 110 ° C and degassed with stirring under vacuum. Thereafter, the chain extender and / or crosslinker is added in liquid form, which is optionally heated to temperatures of typically at least 5 ° C above its melting point.
  • This reaction mixture is preferably poured into preheated molds (preferably 90 ° C to 120 ° C) and held at 90 ° C to 140 ° C for about 24 hours.
  • the NCO-functional prepolymers are preferably prepared from the following polyisocyanates: NDI (1,5-naphthalene diisocyanate), TDI (2,4- and 2,6-toluene diisocyanate or mixtures thereof), MDI (2,2'-, 2,4 ') and 4,4'-MDI or mixtures thereof), TODI (3,3'-dimethyl-4,4'-biphenyl diisocyanate), PPDI (1, 4-paraphenylene diisocyanate) and CHDI (cyclohexyl diisocyanate) and mixtures of the polyisocyanates and / or modified compounds of the polyisocyanates, such as uretonimines, polymers of isocyanates (polymeric MDI, such as Desmodur ® 44V20L from Bayer MaterialScience AG) or other modified isocyanates.
  • polyisocyanates such as uretonimines, polymers of isocyanates (polymeric MDI,
  • aliphatic isocyanates such as isophorone diisocyanate, ring-hydrogenated MDI (Desmodur ® W), and hexamethylene diisocyanate and derivatives of these isocyanates may be used or added.
  • the NCO-functional prepolymers are prepared with an excess of isocyanate.
  • the free isocyanate is removed, so that the content of free isocyanate is reduced to ⁇ 1% by weight, preferably to ⁇ 0.1% by weight.
  • the removal is usually carried out in vacuo (for example by thin layers of short and / or falling film evaporator).
  • this entrainment agents can be used. This can e.g. a solvent or gas, e.g. Be nitrogen.
  • NCO prepolymers thus obtained may be blended, and as Wegkom- ponentiges system, for example, with blocked amines, such as diaminodiphenylmethane blocked (eg Caytur ® 31) (partially in the literature also referred to as component system) verwen- be det.
  • blocked amines such as diaminodiphenylmethane blocked (eg Caytur ® 31) (partially in the literature also referred to as component system) verwen- be det.
  • polyols it is possible to use, for example, polyether, polyester, polycarbonate and polyetherester polyols having hydroxyl numbers (OH numbers) of 20 to 200 mg KOH / g, preferably 27 to 150, particularly preferably 27 to 120.
  • OH numbers hydroxyl numbers
  • Polyether polyols are prepared either by alkaline catalysis or by Doppelmetallcyanid- catalysis or optionally in stepwise reaction by alkaline catalysis and Doppelmetallcyamdkatalyse of a starter molecule and epoxides, preferably ethylene and / or propylene oxide and have terminal hydroxyl groups.
  • Suitable starters are the compounds with hydroxyl and / or amino groups known to those skilled in the art, as well as water. The functionality of the starter is at least 2 and at most 4. Of course, mixtures of multiple starters can be used.
  • mixtures of several polyether polyols can be used as polyether polyols.
  • polyether polyols based on C p preference is given to using polyether polyols based on C p, for example polytetrahydrofuran become.
  • C3-polyols based on 1,3-propylene glycol preference is given to using so-called C3-polyols based on 1,3-propylene glycol.
  • Polyester polyols are prepared in a conventional manner by polycondensation of alipahtic and / or aromatic polycarboxylic acids having 4 to 16 carbon atoms, optionally from their anhydrides and optionally from their low molecular weight esters, including ring esters, being used as the reaction component predominantly low molecular weight polyols having 2 to 12 carbon atoms come.
  • the functionality of the synthesis components for polyester polyols is preferably 2, but in individual cases may be greater than 2, wherein the components are used with functionalities greater than 2 only in small amounts, so that the arithmetic number average functionality of polyester polyols in the range of 2 to 2.5, preferably 2 to 2.1.
  • Polyetheresterpolyole be prepared for example by concomitant use of polyether polyols in the Polyesterpolyolsynthese.
  • Polycarbonate polyols are prepared according to the prior art e.g. from carbonic acid derivatives, e.g. Dimethyl or diphenyl carbonate or phosgene and polyols obtained by polycondensation.
  • carbonic acid derivatives e.g. Dimethyl or diphenyl carbonate or phosgene
  • chain extenders and / or crosslinkers e.g. aromatic aminic substances, e.g. Diethyltoluenediamine (DETDA), 3,3'-dichloro-4,4'-diaminodiphenylmethane (MBOCA), 3,5-diamino-4-chloro-isobutylbenzoate, 4-methyl-2,6-bis (methylthio) -l , 3-diaminobenzene (Ethacure 300), trimethylene glycol di-p-aminobenzoate (Polacure 740M) and 4,4'-diamino-2,2'-dichloro-5,5'-diethyldiphenylmethane (MCDEA) and 4,4 '- Diamino-diphenylmethane (MDA) or salt-blocked MDA (Caytur 21, 31, etc.
  • aromatic aminic substances e.g. Diethyltoluenediamine (DETDA), 3,
  • Aliphatic aminic chain extenders and / or crosslinkers may also be used or co-used.
  • chain extenders and / or crosslinkers from the group of polyols such as 1,2-ethanediol, 1, 2-propanediol, 1, 3-propanediol, 1, 4-butanediol, glycerol, trimethylolpropane and mixtures thereof can be used. Particular preference is given to using 1,4-butanediol as chain extender.
  • auxiliaries and additives such as catalysts, stabilizers, UV protectants, hydrolysis protectants, emulsifiers, preferably incorporable dyes and color pigments, cell regulators and fillers can be used.
  • catalysts are trialkylamines, diazabicyclooctane, tin dioctoate, dibutyltin dilaurate, N-alkylmorpholine, lead, zinc, calcium, magnesium octoate, the corresponding naphthenates and p-nitrophenolate.
  • stabilizers are Broenstedt and Lewis acids, such as hydrochloric acid, benzoyl chloride, Organomineralklaren, for example, dibutyl phosphate, adipic acid, malic acid, succinic acid, racemic acid or citric acid.
  • Lewis acids such as hydrochloric acid, benzoyl chloride, Organomineralklaren, for example, dibutyl phosphate, adipic acid, malic acid, succinic acid, racemic acid or citric acid.
  • UV protectants and hydrolysis protectants are 2,6-dibutyl-4-methylphenol and sterically hindered carbodiimides.
  • Incorporatable dyes are those which have Zerewitinoff-active hydrogen atoms, so can react with NCO groups.
  • polyurethane elastomers prepared according to the invention are preferred for the production of cast elastomers such as rollers, wheels, rollers, hydrocyclones, sieves, pigs and cellular and non-cellular elastomers for buffer elements.
  • Polyester molecular weight ethylene butylene adipates Mono 2000 g / mol based on, Desmophen ® 2001 KS from Bayer MaterialScience AG
  • the MDI was initially introduced at 60 ° C., admixed with 200 ppm based on MDI, catalyst and stirred for 1 hour 30 minutes. Thereafter, the reaction was treated with a 1.5 molar excess of stoppers.
  • the NCO content was determined to be 32.9% by weight. 34.218 parts by weight of this mixture were added at 60 ° C with 65.682 parts by weight of polyester polyol at 60 ° C and reacted with stirring for 3 hours at 80 ° C with each other.
  • the NCO content of the prepolymer was determined to be 8.42% by weight.
  • the prepolymer contained undissolved particles and could be processed by hand into an elastomer.
  • Prepolymer 2 (according to the invention):
  • prepolymer 1 A portion of prepolymer 1 was removed and filtered so that undissolved particles are no longer present. Particles may be annoying when machined.
  • the NCO content was determined to be 8.40% by weight.
  • Prepolymer 3 (according to the invention):
  • the MDI was initially charged at 60 ° C., admixed with 50 ppm, based on MDI, catalyst, and stirred for 1 hour 30 minutes. Thereafter, the reaction was treated with a 1.5 molar excess of stoppers.
  • the NCO content was determined to be 33.5% by weight. 33.72 parts by wt. MDI were added at 60 ° C with 66.28 wt. Parts Polyesterpolyol at 60 ° C and reacted with stirring for 3 hours at 80 ° C with each other.
  • the NCO content of the prepolymer was determined to be 8.50% by weight.
  • the prepolymer contained no undissolved particles.
  • Prepolymer 4 (not according to the invention):
  • Polyurethane elastomer prepoly- prepolyPrepolyPrepolymer4 mer 1 mer 2 mer 3
  • Table 2 Dynamic results of the polyurethane elastomers Cylinders made of polyurethane elastomer with a diameter of 18 mm and a height of 25 mm were tested in each case. The cylinder was pulsed with a force of 1, 2 kN and a fixed frequency at an amplitude of 0.8 kN. The test was stopped at a deformation of 60%.
  • the systems according to the invention have a unique combination of advantageous properties with respect to prepolymer viscosity, casting time, mechanical and mechanical-dynamic properties.

Abstract

Die vorliegende Erfindung betrifft zellige und nicht-zellige Polyurethan(PUR)-Elastomere aus NCO- funktionellen Prepolymeren auf Basis von Polyisocyanaten mit Anteilen von Nicht-Monomeren, ein Verfahren zu ihrer Herstellung und ihre Verwendung.

Description

Polyurethanelastomere, ein Verfahren zu ihrer Herstellung und ihre Verwendung
Die vorliegende Erfindung betrifft zellige und nicht-zellige Polyurethan(PUR)-Elastomere aus NCO- funktionellen Prepolymeren auf Basis von Polyisocyanaten mit Anteilen von Trimeren, ein Verfahren zu ihrer Herstellung und ihre Verwendung.
Polyurethanelastomere werden in zahlreichen verschleißanfälligen Anwendungen eingesetzt. Neben dem Verschleiß durch beispielsweise Abrieb und/oder mangelnde Weiterreißfestigkeit gibt es in dynamischen Anwendungen, wie z.B. Rollen, Rädern, Dichtungen, zelligen Pufferelementen und zelligen Schuhsohlen, den Verschleiß durch Verformung und/oder Hitzeaufbau nach einer bestimmten Anzahl von wiederholten Belastungen. Diese Belastungen erfolgen meist periodisch. Hierbei kommt es zu hohen bleibenden Verformungen, welche eine weitere Verwendung unmöglich machen. Auch kann der innere Hitzeaufbau (durch nicht-elastische Wechselwirkungen) so hoch sein, dass das Polyurethan sich derart aufheizt, dass es unter der Belastung zerplatzt. Es ist des Weiteren bekannt, dass durch Erhöhung der Funktionalität des Polyols über 2 die dynamische Beständigkeit steigt, allerdings sinken gleichzeitig die Weiterreißwerte so stark, dass das Elastomer durch nicht dynamische Verschleißerscheinungen zerstört wird.
Aufgabe der Erfindung war es daher ein Elastomer zur Verfügung zu stellen, welches eine niedrige Funktionalität aufweist und gleichzeitig eine sehr gute Weiterreißfestigkeit und ein sehr gutes dynamisches Verhalten zeigt.
Überraschenderweise wurde nun gefunden, dass die mechanischen Eigenschaften (z.B. Abrieb, Reißspannung, Weiterreißwiderstand, Reißdehnung) von Polyurethanen durch Einsatz von speziellen NCO-Prepolymeren auf Basis von im Folgenden näher spezifizierten Polyisocyanaten ohne Änderung der mechanisch-physikalischen Eigenschaften mit gleichzeitig verbesserten dynamischen Eigenschaften hergestellt werden können.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethanelastomeren, welches dadurch gekennzeichnet ist, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung mit dem Trimerisierungskatalysator bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20:1 eingesetzt wird, gestoppt wird, b) das Gemisch aus monomerem und umgesetztem Polyisocyanat aus a) mit Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1,95 bis 2,40 zu einem NCO-terminierten Prepolymer umgesetzt wird, c) das NCO-terminierte Prepolymer mit Kettenverlängerern und/oder Vernetzern zum Polyurethanelastomer umgesetzt wird, wobei das monomere Polyisocyanat und/oder die Polyole gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten können.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von NCO-terminierten Prepolymeren, welches dadurch gekennzeichnet ist, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von
0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung mit dem Trimerisierungskatalysator bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 eingesetzt wird, gestoppt wird, b) das Gemisch aus monomerem und umgesetztem Polyisocyanat aus a) mit Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1,95 bis 2,40 zu einem NCO-terminierten Prepolymer umgesetzt wird, wobei das monomere Polyisocyanat und/oder die Polyole gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten können.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Gemischen aus monomeren und nicht monomeren Polyisocyanaten, welches dadurch gekennzeichnet ist, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung mit dem Trimerisierungskatalysator bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20:1 eingesetzt wird, gestoppt wird, wobei das monomere Polyisocyanat gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten kann.
Gegenstand der Erfindung sind auch Polyurethanelastomere, die erhältlich sind aus a) einem Gemisch aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, wobei das Gemisch erhältlich ist aus monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 , b) Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1 ,95 bis 2,40 und c) Kettenverlängerern und/oder Vernetzern, d) gegebenenfalls in Gegenwart von Hilfs- und/oder Zusatzstoffen.
Ein weiterer Gegenstand der Erfindung sind NCO-terminierte Prepolymere, die erhältlich sind aus a) einem Gemisch aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, wobei das Gemisch erhältlich ist aus monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1, und b) Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1 ,95 bis 2,40, d) gegebenenfalls in Gegenwart von Hilfs- und/oder Zusatzstoffen.
Ein weiterer Gegenstand der Erfindung sind Gemische aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, erhältlich aus a) monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0,1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1.
Die Umsetzung wird mittels üblicher Trimerisierungskatalysatoren, wie sie im Houben-Weyl, Methoden der Organischen Chemie, Band E20, Teil 2, Georg Thieme Verlag, Stuttgart, 1987, S. 1739-1751 beschrieben sind, durchgeführt, wie z.B. quartäre Ammoniumhydroxide, Benzyldimethyl- amin, Triethylamin, Mannichbasen von Phenolen oder auch Gemischen dieser Katalysatoren. Vorzugsweise kommen Phenol-Mannichbasen zur Anwendung, die durch Umsetzen von Phenol oder Bisphenol-A mit Dimethylamin und Formaldehyd erhalten werden können. D e r Trimerisierungskatalysator kann in einem Lösungsmittel, wie z.B. Toluol, Ethylacetat, Alkohol (z.B. Methanol, Ethanol und 2-Ethyl-l-hexanol), Ether oder Polyether, Phosphorsäureester, wie z.B. Tris(2-chlorisopropyl)-phosphat (TCPP) oder Triethylphosphat (TEP) vorliegen.
Nach der gewünschten Umsetzung wird die Reaktion gestoppt, vorzugsweise mit Broenstedt- oder Lewis-Säuren, wie beispielsweise Salzsäure, Benzoylchlorid oder Organomineralsäuren, wie z.B. Dibutylphosphat.
Die erfindungsgemäßen Polyurethanelastomere weisen sehr gute dynamische Eigenschaften auf bei gleichzeitig guten mechanisch-physikalischen Eigenschaften.
Die erfindungsgemäßen Polyurethanelastomere werden vorzugsweise als Gießelastomere zur Herstellung von beispielsweise Rollen, Rädern und Transportriemen verwendet.
Vorzugsweise werden die Polyurethanelastomerteile nach dem Gießverfahren hergestellt. Hierbei werden zuerst die NCO-terminierten Prepolymere hergestellt. Die NCO-terminierten Prepolymere werden entweder direkt nach deren Herstellung mit einem Kettenverlängerer/Vernetzer umgesetzt, oder sie werden auf tiefe Temperaturen (Lagertemperatur) zum Zwecke einer späteren Kettenverlängerung/V ernetzung abgekühlt und gelagert.
Besonders günstig bei der Synthese über NCO-terminierte Prepolymere ist, dass ein Teil der Reaktionswärme bereits bei der Synthese des NCO-terminierten Prepolymers anfällt und dass dadurch die Exothermie beim eigentlichen Polymeraufbau zum Elastomer kleiner ausfällt. Dies wirkt sich günstig auf die Geschwindigkeit des Molekulargewichtsaufbaus aus und ermöglicht längere Gießzeiten, stellt also einen Verarbeitungsvorteil dar.
In einer besonders bevorzugten Ausführungsform werden die NCO-terminierten Prepolymere durch Anlegen eines verminderten Druckes bei Raumtemperatur oder bei erhöhter Temperatur zunächst entgast und dann - meist bei erhöhter Temperatur - mit dem Kettenverlängerer/V ernetzer umgesetzt.
Im erfindungsgemäßen Verfahren wird das NCO-terminierte Prepolymer vorzugsweise auf eine Temperatur von 60°C bis 110°C erwärmt und unter Rühren unter Vakuum entgast. Danach wird der Kettenverlängerer und/oder Vernetzer in flüssiger Form zugegeben, wobei dieser gegebenenfalls auf Temperaturen von typischerweise mindestens 5°C oberhalb seines Schmelzpunktes erwärmt wird. Dieses Reaktionsgemisch wird vorzugsweise in vorgewärmte Formen (bevorzugt 90°C bis 120°C) gegossen und für etwa 24 Stunden bei 90°C bis 140°C gehalten. Bevorzugt werden die NCO-funktionellen Prepolymere aus folgenden Polyisocyanaten hergestellt: NDI (1,5-Naphthalindiisocyanat), TDI (2,4- und 2,6-Toluylendiisocyanat oder Mischungen daraus), MDI (2,2'-, 2,4'- und 4,4'-MDI oder Mischungen daraus), TODI (3,3'-Dimethyl-4,4'-biphenyldiiso- cyanat), PPDI (1 ,4-Paraphenylendiisocyanat) und CHDI (Cyclohexyldiisocyanat) sowie Gemische aus den Polyisocyanaten und/oder modifizierten Verbindungen der Polyisocyanate, wie z.B. Uretonimine, Polymere der Isocyanate (polymeres MDI, wie beispielsweise Desmodur® 44V20L von Bayer MaterialScience AG) oder andere modifizierte Isocyanate. Alternativ, aber weniger bevorzugt können aliphatische Isocyanate, wie z.B. Isophorondiisocyanat, kernhydriertes MDI (z.B. Desmodur® W) und Hexamethylendiisocyanat sowie Derivate dieser Isocyanate eingesetzt oder beigemischt werden.
In einer speziellen Ausführungsform werden die NCO-funktionellen Prepolymere mit einem Über- schuss an Isocyanat hergestellt. In einem weiteren Schritt wird das freie Isocyanat entfernt, so dass der gehalt an freiem Isocyanat auf < 1 Gew.-%, bevorzugt auf < 0,1 Gew.-% reduziert wird. Das Entfernen erfolgt üblicherweise im Vakuum (beispielsweise durch Dünnschichten über Kurz- und/oder Fallfilmverdampfer). Gegebenenfalls können hierzu Schleppmittel eingesetzt werden. Dies kann z.B. ein Lösungsmittel oder auch ein Gas, wie z.B. Stickstoff sein.
Diese so erhaltenen NCO-Prepolymere können beispielsweise mit blockierten Aminen, wie z.B. blockiertem Diaminodiphenylmethan (z.B. Caytur® 31 ) vermischt werden und als zweikom- ponentiges System (teilweise in der Literatur auch als einkomponentiges System bezeichnet) verwen- det werden.
Als Polyole können beispielsweise Polyether-, Polyester-, Polycarbonat- und Polyetheresterpolyole mit Hydroxylzahlen (OH-Zahlen) von 20 bis 200 mg KOH/g, bevorzugt 27 bis 150, besonders bevorzugt 27 bis 120 eingesetzt werden.
Polyetherpolyole werden entweder mittels alkalischer Katalyse oder mittels Doppelmetallcyanid- katalyse oder gegebenenfalls bei stufenweiser Reaktionsführung mittels alkalischer Katalyse und Doppelmetallcyamdkatalyse aus einem Startermolekül und Epoxiden, bevorzugt Ethylen- und/oder Propylenoxid hergestellt und weisen endständige Hydroxylgruppen auf. Als Starter kommen hierbei die dem Fachmann bekannten Verbindungen mit Hydroxyl- und/oder Aminogruppen, sowie Wasser in Betracht. Die Funktionalität der Starter beträgt hierbei mindestens 2 und höchstens 4. Selbstverständlich können auch Gemische von mehreren Startern verwendet werden. Des Weiteren sind als Polyetherpolyole auch Gemische von mehreren Polyetherpolyolen einsetzbar. Alternativ können bevorzugt auch Polyetherpolyole auf C pBasis, wie z.B. Polytetrahydrofuran eingesetzt werden. Weiterhin können auch sogenannte C3-Polyole auf Basis von 1,3-Propylenglycol eingesetzt werden.
Polyesterpolyole werden in an sich bekannter Weise durch Polykondensation aus alipahtischen und/oder aromatischen Polycarbonsäuren mit 4 bis 16 Kohlenstoffatomen, gegebenenfalls aus deren Anhydriden sowie gegebenenfalls aus deren niedermolekularen Estern, inklusive Ringestern hergestellt, wobei als Umsetzungskomponente überwiegend niedermolekulare Polyole mit 2 bis 12 Kohlenstoffatomen zum Einsatz kommen. Die Funktionalität der Aufbaukomponenten für Polyesterpolyole liegt hierbei bevorzugt bei 2, kann aber im Einzelfall auch größer als 2 sein, wobei die Komponenten mit Funktionalitäten von größer 2 nur in geringen Mengen verwendet werden, so dass die rechnerische zahlenmittlere Funktionalität der Polyesterpolyole im Bereich von 2 bis 2,5, bevorzugt 2 bis 2,1 liegt.
Polyetheresterpolyole werden beispielsweise durch Mitverwendung von Polyetherpolyolen bei der Polyesterpolyolsynthese hergestellt.
Polycarbonatpolyole werden entsprechend dem Stand der Technik z.B. aus Kohlensäurederivaten, z.B. Dimethyl- oder Diphenylcarbonat oder Phosgen und Polyolen mittels Polykondensation erhalten.
Als Kettenverlängerer und/oder Vernetzer können z.B. aromatische aminische Substanzen, wie z.B. Diethyltoluoldiamin (DETDA), 3 ,3 '-Dichloro-4,4'-diamino-diphenylmethan (MBOCA), 3,5- Diamino-4-chloro-isobutylbenzoat, 4-Methyl-2,6-bis(methylthio)-l,3-diaminobenzol (Ethacure 300), Trimethylenglykol-di-p-aminobenzoat (Polacure 740M) und 4,4'-Diamino-2,2'-dichloro-5,5'- diethyldiphenylmethan (MCDEA) und 4,4 '-Diamino-diphenylmethan (MDA) oder mit Salzen blockiertes MDA (Caytur 21 , 31 etc. der Firma Chemtura) eingesetzt werden. Aliphatische aminische Kettenverlängerer und/oder Vernetzer können ebenfalls eingesetzt oder mitverwendet werden. Ebenso können Kettenverlängerer und/oder Vernetzer aus der Gruppe der Polyole, wie beispielsweise 1,2-Ethandiol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,4-Butandiol, Glycerin, Trimethylolpropan sowie Mischungen derselben eingesetzt werden. Besonders bevorzugt wird 1 ,4- Butandiol als Kettenverlängerer eingesetzt.
Weiterhin können Hilfs- und Zusatzstoffe, wie etwa Katalysatoren, Stabilisatoren, UV- Schutzmittel, Hydrolyseschutzmittel, Emulgatoren, bevorzugt einbaufähige Farbstoffe sowie Farbpigmente, Zellregler und Füllstoffe eingesetzt werden. Beispiele für Katalysatoren sind Trialkylamine, Diazabicyclooctan, Zinndioctoat, Dibutylzinn- dilaurat, N-Alkylmorpholin, Blei-, Zink-, Kalzium-, Magnesiumoctoat, die entsprechenden Naphthenate und p-Nitrophenolat. Beispiele für Stabilisatoren sind Broenstedt- und Lewis-Säuren, wie etwa Salzsäure, Benzoylchlorid, Organomineralsäuren, z.B. Dibutylphosphat, weiterhin Adipinsäure, Äpfelsäure, Bernsteinsäure, Traubensäure oder Zitronensäure.
Beispiele für UV-Schutzmittel und Hydrolyseschutzmittel sind 2,6-Dibutyl-4-methylphenol und sterisch gehinderte Carbodiimide.
Einbaufähige Farbstoffe sind solche, die über zerewitinoff-aktive Wasserstoffatome verfügen, also mit NCO-Gruppen reagieren können.
Eine Übersicht ist in G. Oertel, Polyurethane Handbook, 2nd edition, Carl Hanser Verlag, München, 1994, Kap. 3.4., enthalten. Die erfindungsgemäß hergestellten Polyurethanelastomere werden bevorzugt zur Herstellung von Gießelastomeren wie beispielsweise Rollen, Rädern, Walzen, Hydrozyklonen, Sieben, Molchen sowie zelligen und nicht-zelligen Elastomeren für Pufferelemente.
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.
Beispiele
Verwendete Verbindungen:
Katalysator: Accelerator 960-1 der Firma Huntsman (2,4,6-tris(dimethylaminomethyl)phenol)
MDI: Desmodur® 44M von Bayer MaterialScience AG (monomeres 4,4'-Diphenylmethandi- isocyanat); NCO-Gehalt: 33,6 Gew.-%
Polyesterpolyol: Molekulargewicht 2000 g/mol auf Basis von Monoethylen-butylenglykol-adipaten, Desmophen® 2001 KS von Bayer MaterialScience AG
Stopper: Benzoylchlorid
BDO: 1,4-Butandiol Prepolymer 1 (erfindungsgemäß) :
Das MDI wurde bei 60°C vorgelegt, mit 200 ppm, bezogen auf MDI, Katalysator versetzt und 1 Stunde 30 Minuten gerührt. Danach wurde die Reaktion mit einem 1 ,5 molaren Überschuss an Stopper versetzt. Der NCO-Gehalt wurde zu 32,9 Gew. -% bestimmt. 34,218 Gew. -Teile dieser Mischung wurden bei 60 °C mit 65,682 Gew. -Teilen Polyesterpolyol bei 60°C versetzt und unter Rühren für 3 Stunden bei 80°C miteinander umgesetzt. Der NCO-Gehalt des Prepolymers wurde zu 8,42 Gew.-% bestimmt. Das Prepolymer enthielt ungelöste Partikel und konnte per Hand zu einem Elastomer verarbeitet werden.
Prepolymer 2 (erfindungsgemäß):
Ein Teil von Prepolymer 1 wurde entnommen und gefiltert, so dass keine ungelösten Partikel mehr vorhanden sind. Partikel können bei maschineller Verarbeitung unter Umständen störend sein. Der NCO-Gehalt wurde zu 8,40 Gew.-% bestimmt.
Prepolymer 3 (erfindungsgemäß):
Das MDI wurde bei 60°C vorgelegt, mit 50 ppm, bezogen auf MDI, Katalysator versetzt und lh30min gerührt. Danach wurde die Reaktion mit einem 1 ,5 molaren Überschuss an Stopper versetzt. Der NCO-Gehalt wurde zu 33,5 Gew.-% bestimmt. 33,72 Gew. -Teile MDI wurden bei 60°C mit 66,28 Gew. -Teilen Polyesterpolyol bei 60°C versetzt und unter Rühren für 3 Stunden bei 80°C miteinander umgesetzt. Der NCO-Gehalt des Prepolymers wurde zu 8,50 Gew.-% bestimmt. Das Prepolymer enthielt keine ungelösten Partikel. Prepolymer 4 (nicht erfindungsgemäß):
33,61 Gew. -Teile MDI wurden bei 60 °C mit 66,39 Gew. -Teilen Polyesterpolyol bei 60 °C versetzt und unter Rühren für 3 Stunden bei 80 °C miteinander umgesetzt. Der NCO-Gehalt des Prepolymers wurde zu 8,37 Gew.- % bestimmt. Das Prepolymer enthielt keine ungelösten Partikel. Polyurethanelastomer:
Jeweils 100 Gewichtsteile Prepolymer wurden bei 80 °C mit 1 ,4-Butandiol umgesetzt (Mengen sind in Tabelle 1 angegeben) und in eine heiße Form bei 120 °C gegossen. Die mechanischen Eigenschaften wurden nach 7 Tagen gemessen.
Tabellel : Verarbeitungsdetails und mechanische Ergebnisse der jeweiligen Polyurethanelastomere
Polyurethanelastomer aus: Prepoly- PrepolyPrepolyPrepolymer4 mer 1 mer 2 mer 3
Vergleich
NCO-Gehalt [Gew.-%] 8,37 8,42 8,4 8,5
1 ,4-Butandiol [Gew.-T.] 8,55 8,60 8,60 8,69
Topfzeit [sec] 225 300 300 240
Entformungszeit [min.] 45 70 70 45
Mechanische
Eigenschaften:
Härte bei 20°C DIN 53505 Shore A 92 91 91 92
Härte bei -5°C DIN 53505 Shore A 95 95 95 95
Härte bei 80°C DIN 53505 Shore A 89 88 88 89
10% Modulus DIN 53504 [MPa] 3.3 3.2 3.4 3.4
100% Modulus DIN 53504 [MPa] 7.5 7.6 7.8 7.8
200% Modulus DIN 53504 [MPa] 10.5 1 1 10.8 1 1.1
300% Modulus DIN 53504 [MPa] 14.7 15.7 14.8 15.4
Reißspannung DIN 53504 [MPa] 54 49 57 55
Bruchdehnung DIN 53504 [%] 557 515 570 562
Weiterreißfestigkeit DIN 53515 [kN/m] 1 19 1 16 1 17 120
Weiterreißfestigkeit
(angeritzt) DIN 53515 [kN/m] 65 63 72 66
Rückprallelastizität DIN 53512 [%] 47 42 45 45
Abrieb DIN 53516 [mm3] 30 30 30 30
Druckverformungsrest
24h/70°C DIN 53517 [%] 18 17 17 18 Aus der Tabelle 1 wird deutlich, dass sich die mechanischen Eigenschaften im Rahmen der Messgenauigkeit durch die partielle Umsetzung nicht ändern.
Tabelle 2: Dynamische Ergebnisse der Polyurethanelastomere Es wurden jeweils Zylinder aus Polyurethanelastomer mit einem Durchmesser von 18 mm und einer Höhe von 25 mm getestet. Der Zylinder wurde mit einer Kraft von 1 ,2 kN sowie einer festgelegten Frequenz bei einer Amplitude von 0,8 kN pulsierend gestaucht. Der Test wurde bei einer Verformung von 60% gestoppt.
Figure imgf000011_0001
: Test wurde nach 16000 Zyklen gestoppt. 60%-Verformung wurde noch nicht erreicht. Aus den Testresultaten wird deutlich, dass eine partielle Umsetzung die dynamische Performance um den Faktor 2-3 steigert, ohne dass die mechanisch-physikalischen Eigenschaften oder die Verarbeitung negativ beeinflusst wird. Selbst bei einer geringen Umsetzung werden Elastomere mit guten mechanisch-physikalischen Eigenschaften und sehr guten dynamischen Eigenschaften erhalten, ohne dass jedoch Partikel entstehen, die gegebenenfalls vor einer maschinellen Verarbeitung filtriert werden müssen.
Die erfindungsgemäßen Systeme weisen eine einzigartige Kombination vorteilhafter Eigenschaften bezüglich Prepolymerviskosität, Gießzeit, mechanischen und mechanisch-dynamischen Eigenschaften auf.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyurethanelastomeren, dadurch gekennzeichnet, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 eingesetzt wird, gestoppt wird, b) das Gemisch aus monomerem und umgesetztem Polyisocyanat aus a) mit Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1,95 bis 2,40 zu einem
NCO-terminierten Prepolymer umgesetzt wird, c) das NCO-terminierte Prepolymer mit Kettenverlängerern und/oder Vernetzern zum Polyurethanelastomer umgesetzt wird, wobei das monomere Polyisocyanat und/oder die Polyole gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten können.
2. Verfahren zur Herstellung von NCO-terminierten Prepolymeren, dadurch gekennzeichnet, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren
Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 eingesetzt wird, gestoppt wird, b) das Gemisch aus monomerem und umgesetztem Polyisocyanat aus a) mit Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1,95 bis 2,40 zu einem NCO-terminierten Prepolymer umgesetzt wird, wobei das monomere Polyisocyanat und/oder die Polyole gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten können.
3. Verfahren zur Herstellung von Gemischen aus monomerem und nicht monomerem Polyisocyanat, dadurch gekennzeichnet, dass a) monomeres Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, umgesetzt wird, wobei die Umsetzung bei einem Anteil von 0,01 bis 5,0 Gew.-% an umgesetztem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, mittels eines Stoppers, der in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 eingesetzt wird, gestoppt wird, wobei das monomere Polyisocyanat gegebenenfalls Hilfs- und/oder Zusatzstoffe enthalten kann.
4. Polyurethanelastomere erhältlich aus a) einem Gemisch aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat,, wobei das Gemisch erhältlich ist aus monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 , b) Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1,95 bis 2,40 und c) Kettenverlängerern und/oder Vernetzern, d) gegebenenfalls in Gegenwart von Hilfs- und/oder Zusatzstoffen.
5. NCO-terminierte Prepolymere erhältlich aus a) einem Gemisch aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat,, wobei das Gemisch erhältlich ist aus monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0, 1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1 , und b) Polyolen mit OH-Zahlen von 20 bis 200 mg KOH/g und Funktionalitäten von 1 ,95 bis 2,40, d) gegebenenfalls in Gegenwart von Hilfs- und/oder Zusatzstoffen.
6. Gemische aus monomerem und nicht monomerem Polyisocyanat mit einem Anteil von 0,01 bis 5,0 Gew.-% an nicht monomerem Polyisocyanat, bezogen auf das gesamte Polyisocyanat, erhältlich aus a) monomerem Polyisocyanat mittels eines Trimerisierungskatalysators in einer Menge von 0,1 bis 2000 ppm, bezogen auf monomeres Polyisocyanat, und mittels eines Stoppers in einem molaren Verhältnis von Stopper zu Trimerisierungskatalysator von 1 :2 bis 20: 1.
7. Verwendung der Polyurethanelastomere zur Herstellung von Gießelastomeren wie beispielsweise Rollen, Rädern, Walzen, Hydrozyklonen, Sieben, Molchen sowie zelligen und nicht-zelligen Elastomeren für Pufferelemente.
PCT/EP2011/056955 2010-05-07 2011-05-02 Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung WO2011138275A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013508454A JP2013525583A (ja) 2010-05-07 2011-05-02 ポリウレタンエラストマー、その製造方法およびその使用
EP11717624A EP2566905A1 (de) 2010-05-07 2011-05-02 Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung
RU2012152518/04A RU2012152518A (ru) 2010-05-07 2011-05-02 Полиуретановые эластомеры, способ их получения и их применение
KR1020127031975A KR20130103337A (ko) 2010-05-07 2011-05-02 폴리우레탄 엘라스토머, 그의 제조 방법, 및 그의 용도
MX2012012904A MX2012012904A (es) 2010-05-07 2011-05-02 Elastomeros de poliuretano, un procedimiento para producirlos y uso de los mismos.
US13/696,448 US20130109830A1 (en) 2010-05-07 2011-05-02 Polyurethane elastomers, a method for producing same, and use thereof
CN2011800229852A CN102933631A (zh) 2010-05-07 2011-05-02 聚氨酯弹性体、生产它们的方法和它们的用途
ZA2012/09249A ZA201209249B (en) 2010-05-07 2012-12-06 Polyurethane elastomers, a method for producing same,and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010019701 2010-05-07
DE102010019701.7 2010-05-07

Publications (1)

Publication Number Publication Date
WO2011138275A1 true WO2011138275A1 (de) 2011-11-10

Family

ID=44202056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/056955 WO2011138275A1 (de) 2010-05-07 2011-05-02 Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung

Country Status (9)

Country Link
US (1) US20130109830A1 (de)
EP (1) EP2566905A1 (de)
JP (1) JP2013525583A (de)
KR (1) KR20130103337A (de)
CN (1) CN102933631A (de)
MX (1) MX2012012904A (de)
RU (1) RU2012152518A (de)
WO (1) WO2011138275A1 (de)
ZA (1) ZA201209249B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997590A (zh) * 2021-11-09 2022-02-01 衡水众一机械设备有限公司 一种新型热塑型材料制作水力旋流器的新型制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645979A (en) * 1966-02-02 1972-02-29 Bayer Ag Process for copolymerization of aromatic and aliphatic polyisocyanates to form polyisocyanurates
EP0425710A1 (de) * 1989-05-16 1991-05-08 Nippon Polyurethane Industry Co. Ltd. Verfahren zur herstellung modifizierter organischer polyisocyanate
EP1454933A1 (de) * 2003-03-05 2004-09-08 Degussa AG Verfahren zur Herstellung von geruchsarmen und lagerstabilen monomerhaltigen Polyisocyanuraten auf Basis von Isophorondiisocyanat
US20070142607A1 (en) * 2005-12-15 2007-06-21 Bayer Materialscience Llc Weather resistant polyurethane elastomer
DE102006004527A1 (de) * 2006-02-01 2007-08-09 Bayer Materialscience Ag Polyurethan-Gießelastomere aus NCO-Prepolymeren auf Basis von 2,4-MDI, ein Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548771A1 (de) * 1995-12-23 1997-06-26 Basf Ag Mikrozelluläres, harnstoffgruppenhaltiges Polyurethanelastomer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645979A (en) * 1966-02-02 1972-02-29 Bayer Ag Process for copolymerization of aromatic and aliphatic polyisocyanates to form polyisocyanurates
EP0425710A1 (de) * 1989-05-16 1991-05-08 Nippon Polyurethane Industry Co. Ltd. Verfahren zur herstellung modifizierter organischer polyisocyanate
EP1454933A1 (de) * 2003-03-05 2004-09-08 Degussa AG Verfahren zur Herstellung von geruchsarmen und lagerstabilen monomerhaltigen Polyisocyanuraten auf Basis von Isophorondiisocyanat
US20070142607A1 (en) * 2005-12-15 2007-06-21 Bayer Materialscience Llc Weather resistant polyurethane elastomer
DE102006004527A1 (de) * 2006-02-01 2007-08-09 Bayer Materialscience Ag Polyurethan-Gießelastomere aus NCO-Prepolymeren auf Basis von 2,4-MDI, ein Verfahren zu ihrer Herstellung und ihre Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. OERTEL: "Polyurethane Handbook", 1994, CARL HANSER VERLAG
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. E20, 1987, GEORG THIEME VERLAG, pages: 1739 - 1751

Also Published As

Publication number Publication date
ZA201209249B (en) 2014-05-28
RU2012152518A (ru) 2014-06-20
JP2013525583A (ja) 2013-06-20
EP2566905A1 (de) 2013-03-13
MX2012012904A (es) 2012-12-17
US20130109830A1 (en) 2013-05-02
CN102933631A (zh) 2013-02-13
KR20130103337A (ko) 2013-09-23

Similar Documents

Publication Publication Date Title
EP2014693B1 (de) Polyurethan- und Polyurethanharnstoffelastomere auf Basis von Polycarbonatpolyolen
EP1981923A1 (de) Polyurethan-giesselastomere aus nco-prepolymeren auf basis von 2,4&#39;-mdi, ein verfahren zu ihrer herstellung und ihre verwendung
DE102008045223A1 (de) Polyurethan-/Polyharnstoff-Elastomere auf Basis von 2,4&#39;-Diphenylmethandiisocyanat-Prepolymeren und ihre Herstellung
EP2448987B1 (de) Verfahren zur herstellung eines polyurethan-polymers mit sekundären hydroxyl-endgruppen umfassenden polyesterpolyolen
WO2011095440A1 (de) Polyisocyanat-polyadditionsprodukte, ein verfahren zu ihrer herstellung und ihre verwendung
EP1861446B1 (de) Polyurethanschuhsohlen
DE102005040465A1 (de) Polyurethane, deren Herstellung und Verwendung
EP3307709B1 (de) Verfahren zur herstellung von polymeren carbodiimiden unter zusatz von cäsiumsalzen, polymere carbodiimide und deren verwendung
DE1926661A1 (de) Verfahren zur Herstellung von Polyurethan-Kunststoffen
EP1024156A1 (de) Polyurethan-Giesselastomere auf Basis von Duroldiisocyanat
DE2843739A1 (de) Aktivierte isocyanat-vorpolymere und verfahren zur herstellung von elastomeren polyurethankunststoffen
EP2465886A1 (de) Polyisocyanat-Polyadditionsprodukte, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP2643377B1 (de) Polyurethanelastomerformteile aus diphenylmethandiisocyanat basierten nco-prepolymeren und metallsalzkomplexen und ein verfahren zu ihrer herstellung
WO2013164135A1 (de) Verfahren zur verbesserung der hydrolysestabilität in polyurethan(pu)-basierten systemen
EP2660258A1 (de) Neue Carbodiimid-haltige Zusammensetzungen, ein Verfahren zu deren Herstellung und deren Verwendung
DE102008012971A1 (de) Polyurethan-Prepolymer und hieraus hergestellte Polyurethan/Polyurea-Elastomere
WO2011138275A1 (de) Polyurethanelastomere, ein verfahren zu ihrer herstellung und ihre verwendung
DE102007054003A1 (de) Polyurethane mit verbessertem Quellungsverhalten und ihre Herstellung
EP3378880B1 (de) Poröse materialien auf basis eines polyurethan-polyisocyanuratgemisches oder eines polyharnstoff-polyisocyanuratgemisches und deren herstellung und verwendung
DE102007037641A1 (de) Verfahren zur Herstellung von Urethangruppen und Isocyanatgruppen enthaltenden Prepolymeren
WO2019201953A1 (de) Hochelastisches schuhsohlenmaterial und dessen verwendung
WO2012020027A1 (de) Lichtechte polyurethane und ihre verwendung
WO2023083877A1 (de) Verfahren zur herstellung von aromatischen polymeren carbodiimiden
EP2151458A1 (de) Kunststoffformteile aus Polyurethan und deren Verwendung
DD282919A5 (de) Verfahren zur herstellung von polyurethanharnstoff-elastomeren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022985.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11717624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/012904

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9639/DELNP/2012

Country of ref document: IN

Ref document number: 2011717624

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127031975

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012152518

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13696448

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028446

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028446

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121106