WO2011137776A1 - 一种散热装置 - Google Patents

一种散热装置 Download PDF

Info

Publication number
WO2011137776A1
WO2011137776A1 PCT/CN2011/074163 CN2011074163W WO2011137776A1 WO 2011137776 A1 WO2011137776 A1 WO 2011137776A1 CN 2011074163 W CN2011074163 W CN 2011074163W WO 2011137776 A1 WO2011137776 A1 WO 2011137776A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
plate
fluid tube
base
Prior art date
Application number
PCT/CN2011/074163
Other languages
English (en)
French (fr)
Inventor
郝明亮
赵钧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011137776A1 publication Critical patent/WO2011137776A1/zh
Priority to US13/338,713 priority Critical patent/US8737071B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a heat dissipation device.
  • a heat sink is a device used to rapidly dissipate the heat generated by a heat source in an electronic product.
  • heat sinks such as heat sink fins, or heat pipes, or fans, or liquid cooling.
  • the embodiment of the invention provides an efficient and reliable heat dissipation device.
  • Embodiments of the present invention provide a heat dissipating device including a hollow heat sink base and a set of fluid tubes.
  • the fluid tube is disposed within the heat dissipation base, and the fluid tube has a circulating cooling medium therein.
  • the heat sink base includes a heat absorption zone for absorbing heat. The heat dissipated heat is condensed at a position away from the heat absorbing zone in the heat sink base and on the fluid tube to release the absorbed heat.
  • the heat dissipating device in the embodiment of the invention improves the heat dissipating efficiency of the heat device by combining the fluid tube and the heat dissipating base, and at the same time reduces the risk of failure of the entire heat dissipating device due to failure of a single fluid tube or heat sink base. , thereby improving the reliability of the heat sink.
  • FIG. 1 is a perspective view of a heat dissipating device according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view of the heat sink of Figure 1 taken along the ⁇ - ⁇ direction; 3 is a cross-sectional view of a heat sink according to a second embodiment of the present invention;
  • FIG. 4 is a cross-sectional view of a heat sink according to a third embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a heat sink according to a fourth embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a heat sink according to a fifth embodiment of the present invention.
  • the heat dissipating device 100 includes a heat dissipating base 110 and a set of fluid tubes 130.
  • the fluid tube 130 is disposed within the heat dissipation base 110 and has a circulating cooling medium within the fluid tube 110.
  • the heat sink base 110 includes a heat absorption region 112 for contacting a heat source 170 (see Fig. 2) in an electronic device to absorb heat generated by the heat source 170.
  • the heat dissipation base 110 has a coolant 115 built therein, and the coolant 115 is vaporized at the heat absorption region 112 to absorb heat of the heat absorption region 112.
  • a cooling medium circulating in the fluid tube 130 is used to carry away the heat absorbed by the fluid tube 130.
  • the heat dissipation base 110 includes a bottom plate 114, a top plate 116 corresponding to the bottom plate 114, and a plurality of side plates 118 vertically connected between the bottom plates 114 and 116.
  • the bottom plate 114, the top plate 116 and the side plates 118 are sealingly connected to each other to form a closed steam chamber 113 in which the coolant 115 is accommodated.
  • the heat absorbing region 112 is formed on the bottom plate 114, which may be any region on the bottom plate 114, or may be a specific material disposed on the 114 and made of high thermal conductive material such as aluminum, copper, aluminum alloy or graphite. region.
  • the heat absorption region 112 is configured to contact the heat source 170 and absorb heat generated by the heat source 170, and conduct heat to the coolant 115 concentrated in the heat absorption region 112. After the heat absorbed by the coolant 115 reaches the heat required for the vaporization phase change, the coolant begins to gradually evaporate to form steam 117, and the vapor 117 diffuses and diffuses into the entire steam chamber 113, when the steam 117 will condense when encountering the lower temperature top plate 116, side plate 118, or fluid tube 130, and conduct heat to the surface of the object in contact with it during the condensation process, and heat the object by the object in contact therewith. go.
  • the steam chamber 113 can be evacuated to make the flow of the steam 117 smoother and at the same time It is better to dissipate heat by thermal radiation.
  • the bottom plate 114, the top plate 116 and the side plates 118 may be The capillary structure 119 is disposed on the inner wall to accelerate the speed of the liquid 117 after condensing.
  • the capillary structure 119 rapidly guides the condensed coolant to the heat absorbing zone 112 by capillary wicking to accelerate the speed of the phase change cycle of the coolant 115 to increase heat dissipation efficiency.
  • the capillary structure 119 may be a copper powder sintered layer, may be a groove or a small channel formed by etching, or may be a wire mesh, but is not limited to these manufacturing methods.
  • the fluid tube 130 is a cooling medium circulation passage made of a heat conductive material.
  • the fluid tube 130 is inserted into the vapor chamber 113 from the side plate 118 of the heat dissipation base 110.
  • the fluid tube 130 may also be the heat dissipation base 110.
  • the top plate 114 or the bottom plate is disposed in the steam chamber 113, and the fluid tube 130 in the present embodiment is disposed in a floating cavity 113 between the bottom plate 114 and the top plate 116 in a suspended manner.
  • the fluid tube 130 in this embodiment is arranged in a curved shape to reciprocately bend to increase the area of the fluid tube 130 in the vapor chamber 113 so that more heat can be absorbed.
  • the fluid tube 130 may also be disposed in a straight line penetrating the steam chamber 113 as needed, or a heat-concentrated region in the hot steam chamber 113 may be curved in a reciprocating curve, and in other regions, a straight line may be used. Increase the utilization of the fluid tube 130.
  • the fluid tube 130 may be disposed on the outer wall of the inner portion of the steam chamber 113 to provide a fluid tube capillary structure 132.
  • the fluid tube capillary structure 132 can be fabricated in the same manner as the capillary structure 119.
  • the fluid tube 130 may have a circular or elliptical shape, i.e., a flat shape, depending on the application and heat dissipation requirements.
  • the fluid tube 130 housed in the steam chamber 113 can also be directly supported on the inner surface of the bottom plate 114, so that the heat pipe 130 can be closer to the heat source 170, and the back of the condensed coolant 115 can be shortened.
  • the liquid distance increases the cycle speed of the phase change of the coolant 115, and further improves the heat dissipation efficiency of the heat sink 100.
  • the heat dissipation device may further include a set of heat dissipation fin sets 150.
  • the heat dissipation fin set 150 is disposed at a position of the heat dissipation base 110 away from the heat absorption area 112 for dissipating part of the heat absorbed by the heat dissipation base 110 through the heat absorption area 112 to the heat dissipation.
  • the heat dissipation fin group 150 is a heat dissipation structure which is made of a highly thermally conductive material and is regularly arranged.
  • a plurality of regularly arranged heat dissipation fins 152 are used.
  • the heat sink 152 is disposed on the outer surface 116a of the top plate 116 in a substantially vertical manner to rapidly dissipate heat on the top plate 116 and the side plate 118 to the periphery of the heat sink 152.
  • the heat sink 152 can also be disposed on the outer surface 118a of the side plate 118 or on the outer surfaces 116a, 118a of the top plate 116 and the side plate 118 as needed. .
  • the adjacent heat dissipation fins 152 may be connected to each other through the heat dissipation plate 154 to increase the heat dissipation area of the heat dissipation fin group 150, thereby improving heat dissipation efficiency.
  • the heat dissipation plate 154 between each two adjacent heat dissipation fins 152 may be only one, or may be provided in plurality as needed. In the embodiment, the heat dissipation plate 154 is wavy, but is not limited to the shape.
  • the heat dissipation plate 154 can be formed into a flat shape according to different requirements, or other structures that can increase the heat dissipation area and facilitate the heat dissipation fin group 150. .
  • An angle between the heat dissipation plate 154 and the heat dissipation fins 152 connected thereto may be 90 degrees, so that a plurality of heat dissipation holes 156 having a cross section approximately square are formed on the heat dissipation fins 150; the heat dissipation plate 154 and the same
  • the angle between the connected heat dissipation fins 152 may be any angle set according to requirements and satisfying the connection requirements with the heat sink 152, such as a connection angle of 60 degrees or 45 degrees, thereby forming on the heat dissipation fins 150.
  • a plurality of sections approximate a triangular vent. It can be understood that the heat dissipation fin set 150 is an optional arrangement. If the heat dissipation device 100 can reach the heat dissipation requirement through the heat dissipation base 110 and the fluid tube 130, the heat dissipation fin set 150 can be removed from the heat dissipation device 100. Removed to achieve volume reduction and cost savings.
  • the heat sink 100 is disposed on the heat source 170 through its heat dissipation base 110, and the heat absorption region 112 and the heat source 170 are in contact with each other such that the heat source can transfer heat to the heat absorption source.
  • the heat absorption region 112 of the heat dissipation base 110 transfers the absorbed heat to the coolant 115 concentrated in the heat absorption region 112, and the coolant 115 undergoes a phase change to become a vapor after absorbing sufficient heat.
  • the steam 117 will diffuse into the entire steam chamber 113, and when the vapor 117 encounters the lower temperature top plate 116, the side plate 118, and the fluid tube 130, condensation will occur, thereby becoming the liquid coolant 115 again, in the condensed During the process, the heat absorbed by the steam 117 is transferred to the top plate 116, the side plates 118, and the fluid tube 130, wherein a portion of the heat absorbed by the top plate 116 and the side plates 118 is transferred to the heat dissipation fin set 150 by heat conduction.
  • the heat sink 152 and the heat sink 154 are radiated to the peripheral environment by the heat sink 152 and the heat sink 154, and another heat will pass through the hot air convection and heat radiation through the top plate and the side plate itself.
  • the outer boundary is dissipated; and the heat absorbed by the fluid tube 130 will be carried away by the heat dissipating medium circulating in the fluid tube 130.
  • the coolant 115 formed after the condensation of the steam 117 will follow the fluid tube capillary structure 132 of the fluid tube 130 and dissipate heat.
  • the capillary structure 119 in the susceptor 110 is quickly returned to the heat absorbing region 112 and vaporized again; the above process is repeated continuously in the heat sink 110, so that the heat of the heat source 170 can be effectively radiated to a remote location.
  • the location of the heat source is at 170 to achieve the purpose of maintaining a suitable operating temperature.
  • the controllable purpose is to prevent the electronic device from being condensed by setting an appropriate temperature, and at the same time, the steam 117 in the steam chamber 113 can be quickly condensed, thereby increasing the speed of the vapor phase change, thereby improving the heat dissipation efficiency.
  • the fluid tube 130 and the heat dissipation base 110 adopt different heat dissipation mechanisms, the possibility of failure is extremely small, thereby greatly reducing the risk caused by the failure of the heat dissipation device 100 due to the environment and the use time, and improving The reliability of the heat sink 100.
  • a cross-sectional view of a heat dissipating device 200 includes a heat dissipating base 210, a set of fluid tubes 230, and a set of selectively disposed heat dissipating fins. Group 250.
  • the heat dissipation base 210 includes a heat absorption region 212 for contacting a heat source 170 in an electronic device to absorb heat generated by the heat source 170.
  • the fluid tube 230 is disposed within the heat dissipation base 210 and carries away the heat absorbed by the fluid tube 230 by a cooling medium circulating in the fluid tube 230.
  • the heat dissipation fin set 250 is disposed at a position of the heat dissipation base 210 away from the heat absorption area 212 for dissipating part of heat in the heat dissipation base 210 to the outer space of the heat dissipation fin set 250.
  • the heat dissipating device 200 provided by the second embodiment of the present invention has the same or similar structure as the heat dissipating device 100 provided by the first embodiment, wherein similar reference numerals (such as: 110 and 220 can be regarded as similar numerals) as described above.
  • the similar components are represented, and therefore the structures and functions of the same components in the first embodiment and the second embodiment will not be redundant herein. For details, refer to the description of the first embodiment.
  • the heat dissipating device 200 in the second embodiment is different from the heat dissipating device 100 in the first embodiment in that: the bottom plate 214 of the heat dissipating device 200 includes a liquid collecting plate 214a and is connected to the liquid collecting plate 214a at an angle.
  • the liquid collecting plate 214a and the returning plate 214b together form a taper whose radius gradually decreases in a vertically downward direction.
  • This structure allows the coolant 215 which is returned to the edge of the bottom plate 214, that is, the edge of the liquid plate 214a, to be accelerated under gravity to the liquid plate 214a, thereby preventing the evaporation of the coolant 215 in the heat absorbing zone 212 from being too fast.
  • the heat absorbing zone 212 may be caused by a "dry burning" risk, and in addition, the area of the bottom plate 214 other than the heat absorbing zone 212 may be remote from the electrons.
  • the component prevents the heat absorbed by the heat dissipation base 210 from reheating other electronic components other than the heat source by means of heat radiation, causing "thermal pollution".
  • the heat dissipating device 200 increases the liquid returning speed of the cooling liquid 215 in the heat dissipating base 210 by setting the bottom plate 214 into a taper shape, and at the same time prevents thermal pollution, thereby further improving the heat dissipating efficiency of the heat dissipating device 200. And reliability.
  • a cross-sectional view of a heat dissipating device 300 includes a heat dissipating base 310 and a set of fluid tubes 330.
  • the heat sink base 310 includes a heat absorption zone 312 for contacting a heat source 170 in an electronic device to absorb heat generated by the heat source 170.
  • the fluid tube 330 is disposed within the heat dissipation base 310 and carries away heat absorbed by the fluid tube 330 by a cooling medium circulating in the fluid tube 330.
  • the heat dissipating device 300 provided by the third embodiment of the present invention has the same or similar structure as that of the heat dissipating devices 100, 200 provided by the first and second embodiments, wherein similar reference numerals denote similar components, and thus The structures and functions of the same components in the third embodiment and the first embodiment and the second embodiment will not be redundant herein. For details, refer to the description of the first embodiment.
  • the heat dissipating device 300 in the third embodiment differs from the heat dissipating devices 100 and 200 in the first and second embodiments in that:
  • the heat dissipation base 310 further includes a heat dissipation fin set 320 integrally formed therewith, and the heat dissipation fin set 320 includes a plurality of hollow heat dissipation members 322 which are evenly spaced and regularly arranged.
  • Each of the hollow heat sinks 322 includes a plurality of risers 322a and a transverse plate 322b.
  • the vertical plates 322a of each of the hollow heat dissipating members 322 are connected end to end to form a closed ring with open ends, and one end of the closed ring formed by the plurality of the vertical plates 322a in each of the hollow heat dissipating members 322 is in a substantially vertical manner.
  • the horizontal plate 322b is coupled to the other end of the closed loop formed by the riser 322a such that a chamber 324 is formed between the horizontal plate 322b and the riser 322a.
  • a plurality of openings 316b are defined in the top plate 316 of the heat dissipation base 310 corresponding to the hollow heat sink 322, so that the chamber 324 of the hollow heat sink 322 and the steam chamber 313 of the heat dissipation base 310 pass through The openings 316b are in communication with each other.
  • the fluid tube 330 is inserted into the vapor chamber 313 from the side plate 318 of the heat dissipation base 310 and is in contact with the bottom plate 314 of the heat dissipation base 310.
  • a plurality of hollow heat dissipation fin sets 320 regularly arranged and communicating with the steam chamber 313 of the heat dissipation base 310 are disposed on the heat dissipation base 310, thereby expanding the steam.
  • the space of the cavity 313 simultaneously expands the area where the steam 317 can be attached for condensation, to further accelerate the phase change speed of the coolant 315, and improve the heat dissipation efficiency.
  • a heat dissipating capillary structure 326 is provided, and the heat dissipating capillary structure 326 is accelerated by siphoning After the condensation, the coolant 315 flows back to the heat absorption zone speed, which can increase the speed of the cyclic phase change of the coolant 315 and improve the efficiency of heat dissipation of the heat device.
  • a cross-sectional view of a heat dissipating device 400 includes a heat dissipating base 410 and a set of fluid tubes 430.
  • the heat sink base 410 includes a heat absorption zone 412 for contacting a heat source 170 in an electronic device to absorb heat generated by the heat source 170.
  • a heat dissipation fin set 420 is formed on the heat dissipation base 410, and the heat dissipation fin set 420 includes a plurality of regularly arranged hollow heat dissipation members 422.
  • the heat dissipating device 400 provided by the fourth embodiment of the present invention has the same or similar structure as that of the heat dissipating device 300 provided by the third embodiment, wherein similar elements denote similar components as described above, and thus for the third implementation The structures and functions of the same components in the fourth embodiment will not be described here. For details, refer to the description of the third embodiment.
  • the heat dissipating device 400 in the fourth embodiment is different from the heat dissipating device 300 in the third embodiment in that: the fluid tube 430 penetrates the heat dissipating fin set 420, and the fluid tube 430 is substantially vertical in this embodiment.
  • the fluid tube 430 can not only remove heat through the cooling medium, but also expose the heat to the outer space of the adjacent hollow heat sink 422 through heat radiation and heat conduction. Medium, thereby improving the heat dissipation efficiency of the entire heat sink.
  • the fluid tube 430 in the heat dissipation device 400 provided by the fourth embodiment of the present invention can also adopt a combination arrangement manner disposed on the heat dissipation fin group 420 and the steam chamber 413 at the same time. The method can further improve the heat dissipation efficiency and reliability of the bulk device 400.
  • a cross-sectional view of a heat dissipation device 500 includes a heat dissipation base 510 and a set of fluid tubes 530 .
  • the heat sink base 510 includes a heat absorption zone 512 for contacting a heat source 170 in an electronic device to absorb heat generated by the heat source 170.
  • a heat dissipation fin group 520 is formed on the heat dissipation base 510, and the heat dissipation fin group 520 includes a plurality of regularly arranged hollow heat dissipation members 522.
  • the heat dissipating device 500 provided by the fifth embodiment of the present invention has the same or similar structure as that of the heat dissipating device 300 provided by the third embodiment, wherein similar reference numerals denote similar components as described above, and thus for the fifth implementation Example and third embodiment The structure and function of the same components will not be redundant here.
  • the heat sink 500 in the fifth embodiment is different from the heat sink 300 in the third embodiment in that: the bottom plate 514 of the heat sink 500 includes a liquid collecting plate 514a and is connected to the liquid collecting plate 514a at an angle.
  • the upper return plate 514b, wherein the heat absorption zone 512 is located on the liquid collecting plate 514a.
  • the configuration of the bottom plate 514 of the heat dissipating device 500 is the same as that of the bottom plate 214 of the heat dissipating device 200 in the second embodiment of the present invention, and will not be redundant herein. Please refer to the bottom plate 214 in the second embodiment. description of.
  • the heat dissipating device provided by the invention combines the fluid tube and the heat dissipating base to improve the heat dissipating efficiency of the heat dissipating device, and at the same time reduces the risk of failure of the entire heat dissipating device due to the failure of a single fluid tube, thereby improving the heat dissipating device. reliability.

Description

一种散热装置
本申请要求于 2010 年 11 月 11 日提交中国专利局、 申请号为 201010539910.9、 发明名称为 "一种散热装置" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域, 尤其涉及一种散热装置。
背景技术
随着电子元件和及电子装置趋向微小化而运算速度不断的提高,所产生的 热量越来越大,而这些热量如果不能及时的扩散将会对电子元件的运作性能产 生严重的影响。散热器则是一种用来将电子产品中的热源产生的热量快速扩散 的装置。 目前,散热器的种类多种多样, 比如采用散热鳍片组,或者采用热管, 或者采用风扇, 或者采用液态冷却的方式。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 这些散热装置的散热效率较低, 而且这些散热装置比较容易失效, 可靠性 较低, 对电子产品的安全运作存在隐患。
发明内容
本发明实施例提供了一种高效可靠的散热装置。
本发明实施例提供一种散热装置,所述散热装置包括一个中空的散热基座 以及一组流体管。所述流体管穿置在所述散热基座内, 并且所述流体管内有循 环流动的冷却媒质。所述散热基座包括一个吸热区用以吸收热量。所述散热基 收的热量,并在所述散热基座内远离所述吸热区的位置处及所述流体管上凝结 以释放所吸收的热量。
本发明实施例中的散热装置,通过将流体管与散热基座的相互结合,从而 提高热装置的散热效率,同时可以降低由于单一的流体管或散热基座失效而导 致整个散热装置失效的风险, 从而提高散热装置的可靠性。
附图说明
图 1是本发明第一实施例提供的一种散热装置的立体示意图;
图 2是图 1中散热装置沿 Π-Π方向的剖视图; 图 3是本发明第二实施例提供的一种散热装置的剖视图;
图 4是本发明第三实施例提供的一种散热装置的剖视图;
图 5是本发明第四实施例提供的一种散热装置的剖视图;
图 6是本发明第五实施例提供的一种散热装置的剖视图。
具体实施方式
请参阅图 1 , 本发明第一实施例提供的一种散热装置 100的立体示意图, 该散热装置 100, 包括一个散热基座 110以及一组流体管 130。所述流体管 130 穿置在散热基座 110内, 并且在所述流体管 110内有循环流通的冷却媒质。 所 述散热基座 110包括一个吸热区 112用于与一电子装置中的热源 170 (参见图 2 )接触以吸收所述热源 170所产生的热量。 所述散热基座 110内置有冷却液 115, 所述冷却液 115可在所述吸热区 112处被汽化, 以吸收所述吸热区 112 的热量。所述流体管 130内循环流动的冷却媒质用以将流体管 130所吸收的热 量带走。
请参阅图 2, 所述散热基座 110包括一个底板 114, 一个与底板 114相对 应的顶板 116, 以及垂直连接在所述底板 114及 116之间的多个侧板 118。 所 述底板 114、 顶板 116及侧板 118之间密封连接, 从而共同构成了一个密闭的 蒸汽腔 113, 冷却液 115容置在所述蒸汽腔 113内。 所述吸热区 112形成在所 述底板 114上, 其可以是底板 114上的任意区域, 也可以是设置在 114上并采 用铝、 铜、 铝合金或者石墨等高导热材料制作而成的特定区域。 所述吸热区 112用以与所述热源 170接触并吸收所述热源 170所产生的热量, 并将热量传 导给汇聚在该吸热区 112内的冷却液 115。 当所述冷却液 115所吸收的热量达 到其可发生蒸发相变时所需的热量后,所述冷却液开始逐渐蒸发形成蒸汽 117 , 蒸汽 117弥漫扩散至整个蒸汽腔 113内, 当所述蒸汽 117在遇到温度较低的顶 板 116、 侧板 118、 或者流体管 130时将会凝结, 并在凝结的过程中将热量传 导至与其接触的物体的表面, 并由与其接触的物体将热量带走。 为了能降低所 述蒸汽腔 113内的气体流动的阻力、 热阻及降低冷却液沸腾温度点, 可将所述 蒸汽腔 113抽成真空状态, 从而使蒸汽 117的流动更加的顺畅, 同时也能使以 热辐射方式散发热量的效果更好。 此外, 为了能够使凝结后冷却液 115快速回 流至所述底板 114的吸热区 112内, 可在所述底板 114、 顶板 116及侧板 118 的内壁上设置毛细结构 119, 从而加快蒸汽 117凝结后回液的速度。 所述毛细 结构 119通过毛细虹吸的作用将凝结的冷却液快速的导引至所述吸热区 112从 而加快冷却液 115相变循环的速度以增加散热效率。所述毛细结构 119可以是 铜粉烧结层, 可以是采用刻蚀形成的沟槽或者小通道,也可以采用金属丝网但 不限于这些制作方式。
所述流体管 130为采用导热材料制作而成冷却媒质循环通道。本实施例中 所述流体管 130由所述散热基座 110的侧板 118穿入所蒸汽腔 113内,但并不 限于此种设置方式,所述流体管 130也可由所述散热基座 110的顶板 114或者 底板穿置在所述蒸汽腔 113内,且本实施方式中所述流体管 130采用悬空的方 式布置在所述底板 114及顶板 116之间的蒸汽腔 113内。本实施例中所述流体 管 130设置成往复弯曲的曲线状,以增大该流体管 130在所述蒸汽腔 113内的 面积,从而可以吸收更多热量。所述流体管 130也可以根据需要设置成贯穿所 述蒸汽腔 113的直线状,或者在热蒸汽腔 113内的热集中区域采用往复弯曲的 曲线状, 而在其他的区域内采用直线状, 从而提高流体管 130的利用率。 为了 使凝结在所述流体管 130外壁上的冷却液 115能够快速的流回吸热区 112, 所 述流体管 130位于所述蒸汽腔 113内部分的外壁上可设置流体管毛细结构 132, 该流体管毛细结构 132可采用与所述毛细结构 119相同的方法制作。根据不同 的应用场合及散热需求,所述流体管 130的横截面可以是圆形或者椭圆形即扁 形。 此外, 容置在所述蒸汽腔 113 内的流体管 130也可直接支撑在所述底板 114的内表面上, 以便所述热管 130可以更加的接近热源 170, 同时缩短凝结 的冷却液 115的回液距离,从而提高冷却液 115的相变的循环速度, 进一步提 高散热装置 100的散热效率。
为了提高所述散热装置 100的散热效率,所述散热装置还可以包括一组散 热鳍片组 150。 所述散热鳍片组 150设置在所述散热基座 110远离所述吸热区 112的位置处, 用以将散热基座 110通过所述吸热区 112所吸收的部分热量散 发至所述散热鳍片组 150的外部空间中。所述散热鳍片组 150为采用高导热材 料制作而成且规则排列的散热结构, 本实施例中采用多个规则排列的散热片 152构成。 所述散热片 152以大致垂直的方式设置在所述顶板 116的外表面 116a上,以将顶板 116及侧板 118上的热量快速的散发到所述散热片 152外围 的空气中, 可以理解的是, 所述散热片 152也可以根据需求设置在所述侧板 118的外表面 118a上,或者同时设置在所述顶板 116及侧板 118的外表面 116a、 118a上。 为了提升所述散热鳍片组 150的散热效率, 可使相邻的散热片 152 之间通过散热板 154相互连接, 以增加散热鳍片组 150的散热面积,从而提升 散热效率。每两个相邻的散热鳍片 152之间的散热板 154可以仅为一个,也可 以根据需求设置多个。 本实施例中所述散热板 154 为波浪状但并不限于该形 状, 所述散热板 154可以根据不同的需求设置成为平板状, 或者其它可以增加 散热面积并方便散热鳍片组 150制作的结构。所述散热板 154和与其连接的散 热鳍片 152之间的角度可以是 90度, 从而在所述散热鳍片 150上形成多个截 面近似于方形的散热孔 156; 所述散热板 154和与其连接的散热鳍片 152之间 的角度可以是根据需求且满足与散热片 152的连接要求而设置成的任意角度, 比如连接角度为 60度或者 45度,从而在所述散热鳍片 150上形成多个截面近 似于三角形的散热孔。 可以理解, 所述散热鳍片组 150为选择性设置的结构, 若散热装置 100通过散热基座 110及流体管 130已经可以达到散热需求,那么 散热鳍片组 150便可以从所述散热装置 100中去除,从而达到减小体积以及节 省成本的目的。
使用时,将所述散热装置 100通过其散热基座 110设置在所述热源 170上, 并使所述吸热区 112与所述热源 170相互接触以使热源可将热量传递给所述吸 热区 112。 所述散热基座 110的吸热区 112将所吸收的热量传递给汇聚在所述 吸热区 112内的冷却液 115 , 冷却液 115在吸收了足够的热量后便发生相变从 而变成蒸气 117, 蒸汽 117将扩散到整个蒸汽腔 113内, 当蒸气 117遇到温度 较低的顶板 116、 侧板 118以及流体管 130时便会发生凝结, 从而再次成为液 态的冷却液 115 , 在凝结的过程中, 蒸汽 117所吸收的热量将传递给顶板 116、 侧板 118以及流体管 130, 其中, 顶板 116及侧板 118所吸收到的的部分热量 将通过热传导的方式传递给散热鳍片组 150的散热片 152及散热板 154, 并由 所述的散热片 152及散热板 154散发到外围的环境中,另外一部热量将通过所 述顶板及侧板自身通过热空气对流及热辐射的方式散发之外界; 而流体管 130 所吸收的热量将由在所述流体管 130内循环流动的散热媒质带走。蒸汽 117凝 结后形成的冷却液 115将沿着所述流体管 130的流体管毛细结构 132以及散热 基座 110内毛细结构 119快速的回流到所述吸热区 112内并再次被汽化;上述 过程在所述散热装置 110内不断的重复,便可使热源 170的热量有效的散发到 远离的所述热源的位置 170处, 从而达到保持适合的工作温度的目的。 其中, 由于所述流体管 130内的冷却媒质在不断的循环流动, 因此, 可以保证所述流 体管 130的温度处于基本恒定的状态,从而可保证电子装置的温度恒定, 以达 到电子装置的温度可控目的, 并通过设置适当的温度以防止电子装置凝露, 同 时可使蒸汽腔 113内的蒸汽 117快速的凝结, 提高蒸汽相变的速度, 从而提高 散热效率。 同时, 由于流体管 130与散热基 110座采用不同的散热机制, 同时 失效的可能性极小,从而极大的降低了由于环境及使用时间而导致该散热装置 100失效而带来的风险, 提高散热装置 100的可靠性。
请参阅图 3 , 本发明第二实施例提供的一种散热装置 200的剖视图, 该散 热装置 200, 包括一个散热基座 210, —组流体管 230, 以及一组可选择性设 置的散热鳍片组 250。 所述散热基座 210包括一个吸热区 212用于与一电子装 置中的热源 170接触以吸收所述热源 170所产生的热量。所述流体管 230穿置 在散热基座 210内,并通过在流体管 230内循环流动的冷却媒质将所述流体管 230所吸收的热量带走。 所述散热鳍片组 250设置在所述散热基座 210远离所 述吸热区 212的位置处,用以将散热基座 210内的部分热量散发至所述散热鳍 片组 250的外部空间中。本发明第二实施例所提供的散热装置 200与第一实施 例所提供的散热装置 100的结构相同或者类似,其中如上所述,相似的标号(比 如: 110及 220可认为是相似的标号)代表的相似的部件, 因此对于第一实施 例及第二实施例中相同部件的结构及功能在此将不再冗述,具体请参阅第一实 施例的描述。 其中第二实施例中的散热装置 200 与第一实施例中的散热装置 100的不同在于: 所述散热装置 200的底板 214包括一个聚液板 214a以及以 一定角度连接在所述聚液板 214a上的回流板 214b, 其中所述吸热区 212位与 所述聚液板 214a上。 所述聚液板 214a及回流板 214b共同构成了一个半径沿 竖直向下的方向逐渐减小的锥形。这种结构可以使回流到底板 214边缘也就是 聚液板 214a边缘的冷却液 215在重力的作用下加速回流到聚液板 214a上,从 而防止出现由于吸热区 212内冷却液 215蒸发过快可能导致的吸热区 212 "干 烧"风险, 此外, 可以使底板 214上除了吸热区 212以外的其它区域远离电子 元件,防止散热基座 210所吸收的热量通过热辐射的方式再次加热热源以外的 其它的电子元件, 造成 "热污染"。 本发明第二实施例中散热装置 200通过将 底板 214设置成为锥形从而增加了散热基座 210内的冷却液 215的回液速度, 同时防止热污染从而进一步的提高了散热装置 200的散热效率及可靠性。
请参阅图 4, 本发明第三实施例提供的一种散热装置 300的剖视图, 该散 热装置 300, 包括一个散热基座 310以及一组流体管 330。 所述散热基座 310 包括一个吸热区 312用于与一电子装置中的热源 170接触以吸收所述热源 170 所产生的热量。 所述流体管 330穿置在散热基座 310内, 并通过在流体管 330 内循环流动的冷却媒质将所述流体管 330所吸收的热量带走。本发明第三实施 例所提供的散热装置 300与第一、 二实施例所提供的散热装置 100、 200中的 部分结构相同或者类似, 其中如上所述, 相似的标号代表的相似的部件, 因此 对于第三实施例与第一实施例及第二实施例中相同部件的结构及功能在此将 不再冗述, 具体请参阅第一实施例的描述。 其中第三实施例中的散热装置 300 与第一、 二实施例中的散热装置 100、 200的不同在于:
所述散热基座 310还包括与其一体成型的散热鳍片组 320, 所述散热鳍片 组 320包括多个间隔均匀且规则排列的空心散热件 322。 所述每一个空心散热 件 322包括多个竖板 322a及一个横板 322b。 所述每一个空心散热件 322的竖 板 322a依次首尾相连形成一个两端开口的闭合环, 每一个空心散热件 322中 由多个所述竖板 322a形成的闭合环的一端以大致垂直的方式连接在所述散热 基座 310的顶板 316上。所述横板 322b连接在所述竖板 322a形成的闭合环的 另一端, 从而在所述横板 322b与所述竖板 322a之间形成了一个容室 324。 所 述散热基座 310的顶板 316上对应所述空心散热件 322的容室 324开设有多个 开口 316b, 使所述空心散热件 322的容室 324与散热基座 310的蒸汽腔 313 通过所述开口 316b相互连通。所述流体管 330由所述散热基座 310的侧板 318 穿入所述蒸汽腔 313内, 并与所述散热基座 310的底板 314相互接触。本发明 的第三实施例中,在所述散热基座 310上设置多个规则排列并与所述散热基座 310的蒸汽腔 313相互连通的空心的散热鳍片组 320,从而使扩大了蒸汽腔 313 的空间, 同时扩大了蒸汽 317可附着以进行凝结的面积, 以进一步的加快冷却 液 315的相变的速度,提高了散热效率。 为了使凝结后的冷却液 315能够快速 的回流到所述吸热区 312, 在每一个所述空心散热件 322的竖板 322a及横板 322b的内侧表面上设置有散热件毛细结构 326,所述散热件毛细结构 326通过 虹吸作用加速凝结后冷却液 315流回所述吸热区速度,可提高冷却液 315循环 相变的速度, 提高热装置高散热的效率。
请参阅图 5 , 本发明第四实施例提供的一种散热装置 400的剖视图, 该散 热装置 400, 包括一个散热基座 410以及一组流体管 430。 所述散热基座 410 包括一个吸热区 412用于与一电子装置中的热源 170接触以吸收所述热源 170 所产生的热量。 所述散热基座 410上形成有散热鳍片组 420, 所述散热鳍片组 420包括多个规则排列的空心散热件 422。 本发明第四实施例所提供的散热装 置 400与第三实施例所提供的散热装置 300中的部分结构相同或者类似,其中 如上所述,相似的标号代表的相似的部件, 因此对于第三实施例及第四实施例 中相同部件的结构及功能在此将不再冗述, 具体请参阅第三实施例的描述。其 中第四实施例中的散热装置 400与第三实施例中的散热装置 300的不同在于: 所述流体管 430贯穿所述散热鳍片组 420, 本实施例中所述流体管 430以 大致垂直的方式贯穿所述每一空心散热件 422中相对的竖直板 422a, 通过流 体管 430内的冷却媒质将散热鳍片组 420内的部分热量带走。 本实施方式中, 所述流体管 430不仅可以通过冷却媒质带走热量,同时棵露在相邻的空心散热 件 422 的管体部分还可以通过热辐射及热传导的方式将热量散发到外部的空 间中, 从而提高了整个散热装置的散热效率。 可以理解的是, 本发明第四实施 例所提供的散热装置 400中的流体管 430也可同时采用设置在所述散热鳍片组 420上及蒸汽腔 413内的组合设置方式, 以这种组合的方式可进一步提高散装 置 400的散热效率及可靠性。
请参阅图 5 , 本发明第五实施例提供的一种散热装置 500的剖视图, 该散 热装置 500, 包括一个散热基座 510以及一组流体管 530。 所述散热基座 510 包括一个吸热区 512用于与一电子装置中的热源 170接触以吸收所述热源 170 所产生的热量。 所述散热基座 510上形成有散热鳍片组 520, 所述散热鳍片组 520包括多个规则排列的空心散热件 522。 本发明第五实施例所提供的散热装 置 500与第三实施例所提供的散热装置 300中的部分结构相同或者类似,其中 如上所述,相似的标号代表的相似的部件, 因此对于第五实施例及第三实施例 中相同部件的结构及功能在此将不再冗述, 具体请参阅第三实施例的描述。其 中第五实施例中的散热装置 500与第三实施例中的散热装置 300的不同在于: 所述散热装置 500的底板 514包括一个聚液板 514a以及以一定角度连接在所 述聚液板 514a上的回流板 514b, 其中所述吸热区 512位与所述聚液板 514a 上。 所述散热装置 500的底板 514的构造与本发明第二实施例中散热装置 200 的底板 214的构造及功能相同,在此将不再冗述,请参阅第二实施例中对所述 底板 214的描述。
本发明的提供的散热装置,通过将流体管与散热基座相互结合,从而提高 散热装置的散热效率,同时可以降低由于单一的流体管失效而导致整个散热装 置失效的风险, 从而提高散热装置的可靠性。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求
1、 一种散热装置, 其特征在于, 所述散热装置包括一个中空的散热基座 以及一组流体管,所述流体管穿置在所述散热基座内, 并且所述流体管内有循 环流动的冷却媒质; 所述散热基座包括至少一个吸热区用以吸收热量, 所述散 区所吸收的热量,并在所述散热基座内远离所述吸热区的位置处及所述流体管 上凝结以释放所吸收的热量。
2、 如权利要求 1所述的散热装置, 其特征在于, 所述散热基座包括一个 底板, 一个与底板相对应的顶板, 以及垂直连接在所述底板及顶板之间的多个 侧板,所述底板、顶板及侧板之间密封连接并共同构成至少一个密闭的蒸汽腔, 冷却液置于在所述蒸汽腔内。
3、 如权利要求 2所述的散热装置, 其特征在于, 在所述蒸汽腔的内壁上 设置有毛细结构, 用于使凝结后的冷却液回流到吸热区。
4、 如权利要求 3所述的散热装置, 其特征在于, 所述流体管穿置在所述 散热基座的蒸汽腔内, 并悬置在所述底板及顶板之间或者支撑在所述底板上。
5、 如权利要求 4所述的散热装置, 其特征在于, 所述流体管为往复弯曲 的曲线状或直线状,或者在热蒸汽腔内的热集中区域呈往复弯曲的曲线状而在 其他的区域内采用直线状。
6、 如权利要求 3所述的散热装置, 其特征在于, 所述流体管位于所述蒸 汽腔内部分的外壁上设置有流体管毛细结构。
7、 如权利要求 3所述的散热装置, 其特征在于, 所述散热装置还包括一 组散热鳍片组, 所述散热鳍片组设置在所述散热基座的顶板上, 用以将冷却液 凝结时所放出的部分热量散发至所述散热鳍片组的外部空间中。
8、 如权利要求 7所述的散热装置, 其特征在于, 所述散热鳍片组包括多 个规则排列的散热片, 所述散热片以垂直的方式设置在所述顶板的外表面上。
9、 如权利要求 8所述的散热装置, 其特征在于, 所述散热鳍片组还包括 多个散热板, 所述散热板连接在相邻的散热片之间。
10、 如权利要求 3或者权利要求 7所述的散热装置, 其特征在于, 所述散 热装置的底板包括一个聚液板以及以一定角度连接在所述聚液板上的回流板, 其中所述吸热区位于所述聚液板上。
11、 如权利要求 10所述的散热装置, 其特征在于, 所述聚液板及回流板 共同构成了一个半径沿竖直向下的方向逐渐减小的锥形。
12、 如权利要求 3所述的散热装置, 其特征在于, 所述散热基座还包括与 其一体成型的散热鳍片组,所述散热鳍片组包括多个间隔均匀且规则排列的空 心散热腔, 所述每一个空心散热腔由多个竖板及横板构成, 所述每一个空心散 热腔的竖板依次首尾相连形成一个两端开口的闭合环,每一个空心散热腔中由 多个所述竖板形成的闭合环的一端垂直连接在所述散热基座的顶板上,所述横 板连接在所述竖板形成的闭合环的另一端,所述横板与所述竖板之间形成了一 个容室, 所述散热基座的顶板上对应所述空心散热腔的容室开设有多个开口, 所述空心散热腔的容室通过所述开口与散热基座的蒸汽腔相互连通。
13、 如权利要求 12所述的散热装置, 其特征在于, 所述流体管穿置在所 蒸汽腔内, 并悬置在所述底板及顶板之间或者支撑在所述底板上。
14、 如权利要求 12所述的散热装置, 其特征在于, 所述流体管垂直贯穿 所述每一空心散热件中相对的竖直板。
15、 如权利要求 12所述的散热装置, 其特征在于, 所述散热装置的底板 包括一个聚液板以及以一定角度连接在所述聚液板上的回流板,其中所述吸热 区位与所述聚液板上。
16、 如权利要求 15所述的散热装置, 其特征在于, 所述聚液板及回流板 共同构成了一个半径沿竖直向下的方向逐渐减小的锥形。
PCT/CN2011/074163 2010-11-11 2011-05-17 一种散热装置 WO2011137776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/338,713 US8737071B2 (en) 2010-11-11 2011-12-28 Heat dissipation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010539910.9 2010-11-11
CN2010105399109A CN102130080B (zh) 2010-11-11 2010-11-11 一种散热装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/338,713 Continuation US8737071B2 (en) 2010-11-11 2011-12-28 Heat dissipation device

Publications (1)

Publication Number Publication Date
WO2011137776A1 true WO2011137776A1 (zh) 2011-11-10

Family

ID=44268095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074163 WO2011137776A1 (zh) 2010-11-11 2011-05-17 一种散热装置

Country Status (3)

Country Link
US (1) US8737071B2 (zh)
CN (1) CN102130080B (zh)
WO (1) WO2011137776A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135711A (zh) * 2011-11-23 2013-06-05 昆山广兴电子有限公司 散热装置
EP2677261B1 (en) * 2012-06-20 2018-10-10 ABB Schweiz AG Two-phase cooling system for electronic components
US9089074B2 (en) 2012-11-16 2015-07-21 International Business Machines Corporation Heat sink structure with radio frequency absorption
US20140138058A1 (en) * 2012-11-20 2014-05-22 Elwha Llc Heat pipe having a channeled heat transfer array
DE102013217829A1 (de) * 2013-09-06 2015-03-12 Siemens Aktiengesellschaft Integriertes Schaltungssystem mit einer ein Latentwärme-Speichermedium nutzenden Kühlvorrichtung
CN105703537A (zh) * 2014-11-28 2016-06-22 中兴杰达电能科技股份有限公司 利用汽化吸热的联轴机的散热结构
JP6476020B2 (ja) * 2015-03-10 2019-02-27 株式会社日立ハイテクサイエンス 誘導結合プラズマ発生装置及び誘導結合プラズマ分析装置
US9575521B1 (en) * 2015-07-30 2017-02-21 Dell Products L.P. Chassis external wall liquid cooling system
US10634397B2 (en) 2015-09-17 2020-04-28 Purdue Research Foundation Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
GB2543790A (en) * 2015-10-28 2017-05-03 Sustainable Engine Systems Ltd Pin fin heat exchanger
US10119766B2 (en) * 2015-12-01 2018-11-06 Asia Vital Components Co., Ltd. Heat dissipation device
TWM526264U (zh) * 2016-03-21 2016-07-21 Taiwan Microloops Corp 液冷式散熱裝置及其散熱結構
US10694641B2 (en) 2016-04-29 2020-06-23 Intel Corporation Wickless capillary driven constrained vapor bubble heat pipes for application in electronic devices with various system platforms
CN106686947B (zh) * 2016-12-30 2018-11-09 华为机器有限公司 散热器及通信产品
WO2018157249A1 (en) 2017-03-01 2018-09-07 Diebec Matrices Ltee Die block, steel-rule die assembly comprising the same, and method thereof
US10831249B2 (en) * 2017-03-02 2020-11-10 Huawei Technologies Co., Ltd. Heat conduction component and mobile terminal
US10045464B1 (en) * 2017-03-31 2018-08-07 International Business Machines Corporation Heat pipe and vapor chamber heat dissipation
US10488028B2 (en) * 2017-05-03 2019-11-26 Fluence Bioengineering, Inc. Systems and methods for a heat sink
CN108253399A (zh) * 2017-12-14 2018-07-06 天长市天新电子实业有限公司 一种led的高效散热结构
CN108253395A (zh) * 2018-03-02 2018-07-06 天长市天新电子实业有限公司 一种用于led的散热组件
CN108447835A (zh) * 2018-05-19 2018-08-24 芜湖中淇节能科技有限公司 一种复合式微电子散热装置
US11076510B2 (en) * 2018-08-13 2021-07-27 Facebook Technologies, Llc Heat management device and method of manufacture
US20210307202A1 (en) * 2018-12-12 2021-09-30 Magna International Inc. Additive manufactured heat sink
CN109764705A (zh) * 2019-03-04 2019-05-17 安徽理工大学 一种环境温度较高时对物品散热的便携装置
US10641556B1 (en) * 2019-04-26 2020-05-05 United Arab Emirates University Heat sink with condensing fins and phase change material
US11839057B2 (en) * 2019-07-12 2023-12-05 Samsung Electronics Co., Ltd Apparatus with housing having structure for radiating heat
CN110473850A (zh) * 2019-09-10 2019-11-19 南方科技大学 一种散热结构和散热系统
CN112635418A (zh) * 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 液冷散热器
CN113395866B (zh) * 2020-03-11 2023-04-28 苏州佳世达光电有限公司 散热装置
CN111611739B (zh) * 2020-05-27 2023-09-08 中车株洲电力机车研究所有限公司 一种翅片散热器的设计方法及其装置
EP3919850A1 (en) * 2020-06-03 2021-12-08 ABB Schweiz AG Loop heat pipe for low voltage drives
CN113916027A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 一种散热器及通信设备
CN112969331B (zh) * 2021-02-24 2022-06-07 李柯兴 一种电子工程用抗干扰设备
EP4050295A1 (en) * 2021-02-26 2022-08-31 Ovh Water block having hollow fins
CN116056432B (zh) * 2023-03-27 2023-06-30 广东荣天世纪信息科技有限公司 液冷式服务器系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280506A (ja) * 2001-03-22 2002-09-27 Hitachi Cable Ltd 箱型ヒートパイプ
CN2720630Y (zh) * 2003-11-25 2005-08-24 陈德荣 一种管内翅热管散热集热器
CN1668886A (zh) * 2002-05-15 2005-09-14 何思詠 具有多芯结构的蒸汽增强散热器
CN1783466A (zh) * 2004-12-04 2006-06-07 鸿富锦精密工业(深圳)有限公司 沸腾腔式散热装置
CN1946276A (zh) * 2006-10-31 2007-04-11 中南大学 用于电子冷却的脉动热管散热器
US20070258213A1 (en) * 2006-05-03 2007-11-08 International Business Machines Corporation Apparatuses for dissipating heat from semiconductor devices

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
US5529115A (en) * 1994-07-14 1996-06-25 At&T Global Information Solutions Company Integrated circuit cooling device having internal cooling conduit
US5390077A (en) * 1994-07-14 1995-02-14 At&T Global Information Solutions Company Integrated circuit cooling device having internal baffle
TW307837B (zh) * 1995-05-30 1997-06-11 Fujikura Kk
US6490160B2 (en) * 1999-07-15 2002-12-03 Incep Technologies, Inc. Vapor chamber with integrated pin array
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
US6550531B1 (en) * 2000-05-16 2003-04-22 Intel Corporation Vapor chamber active heat sink
US20020118511A1 (en) * 2001-02-28 2002-08-29 Dujari Prateek J. Heat dissipation device
CN2494037Y (zh) * 2001-07-19 2002-05-29 双鸿科技股份有限公司 改良型散热器
US6588498B1 (en) * 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
CN2560098Y (zh) * 2002-07-23 2003-07-09 华为技术有限公司 一种热管散热装置
US6994151B2 (en) * 2002-10-22 2006-02-07 Cooligy, Inc. Vapor escape microchannel heat exchanger
US20050173098A1 (en) * 2003-06-10 2005-08-11 Connors Matthew J. Three dimensional vapor chamber
CN2671302Y (zh) * 2003-07-01 2005-01-12 华为技术有限公司 散热模块
US6918431B2 (en) * 2003-08-22 2005-07-19 Delphi Technologies, Inc. Cooling assembly
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
US7077189B1 (en) * 2005-01-21 2006-07-18 Delphi Technologies, Inc. Liquid cooled thermosiphon with flexible coolant tubes
CN1909771A (zh) * 2005-08-02 2007-02-07 鸿富锦精密工业(深圳)有限公司 散热装置
US7342306B2 (en) * 2005-12-22 2008-03-11 International Business Machines Corporation High performance reworkable heatsink and packaging structure with solder release layer
CN2877208Y (zh) * 2006-01-19 2007-03-07 曜越科技股份有限公司 一种散热装置
US20070227703A1 (en) * 2006-03-31 2007-10-04 Bhatti Mohinder S Evaporatively cooled thermosiphon
US7556089B2 (en) * 2006-03-31 2009-07-07 Coolit Systems, Inc. Liquid cooled thermosiphon with condenser coil running in and out of liquid refrigerant
US7965511B2 (en) * 2006-08-17 2011-06-21 Ati Technologies Ulc Cross-flow thermal management device and method of manufacture thereof
US8091614B2 (en) * 2006-11-10 2012-01-10 International Business Machines Corporation Air/fluid cooling system
US7896106B2 (en) 2006-12-07 2011-03-01 Baker Hughes Incorporated Rotary drag bits having a pilot cutter configuraton and method to pre-fracture subterranean formations therewith
CN100570865C (zh) * 2007-02-28 2009-12-16 长春藤控股有限公司 散热装置
CN101466228A (zh) * 2007-12-19 2009-06-24 富准精密工业(深圳)有限公司 散热器
US7796389B2 (en) * 2008-11-26 2010-09-14 General Electric Company Method and apparatus for cooling electronics
KR20100101194A (ko) * 2009-03-04 2010-09-17 삼성전기주식회사 방열 패키지 기판 및 그 제조방법
CN201422221Y (zh) * 2009-03-24 2010-03-10 采融科技有限公司 散热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280506A (ja) * 2001-03-22 2002-09-27 Hitachi Cable Ltd 箱型ヒートパイプ
CN1668886A (zh) * 2002-05-15 2005-09-14 何思詠 具有多芯结构的蒸汽增强散热器
CN2720630Y (zh) * 2003-11-25 2005-08-24 陈德荣 一种管内翅热管散热集热器
CN1783466A (zh) * 2004-12-04 2006-06-07 鸿富锦精密工业(深圳)有限公司 沸腾腔式散热装置
US20070258213A1 (en) * 2006-05-03 2007-11-08 International Business Machines Corporation Apparatuses for dissipating heat from semiconductor devices
CN1946276A (zh) * 2006-10-31 2007-04-11 中南大学 用于电子冷却的脉动热管散热器

Also Published As

Publication number Publication date
CN102130080B (zh) 2012-12-12
US20120120604A1 (en) 2012-05-17
US8737071B2 (en) 2014-05-27
CN102130080A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2011137776A1 (zh) 一种散热装置
US7007746B2 (en) Circulative cooling apparatus
CN102034773A (zh) 构形树状式热管散热器
CN108801017B (zh) 发热源的散热装置
TWM517315U (zh) 散熱單元
TWM493087U (zh) 封閉循環式散熱模組
KR20120020797A (ko) 열 확산 기능을 가지는 복합방열기구
US9182177B2 (en) Heat transfer system with integrated evaporator and condenser
TWI691830B (zh) 散熱模組
US20080128109A1 (en) Two-phase cooling technology for electronic cooling applications
TWM461300U (zh) 散熱模組
CN219876709U (zh) 一种散热组件及电梯控制柜
KR100411852B1 (ko) 반도체 칩의 전열관식 냉각장치 및 이의 제조방법
KR102219184B1 (ko) 3차원 환상형 히트싱크
CN210399204U (zh) 一种空调
TWI507653B (zh) 散熱單元
JP3168932U (ja) 放熱装置
TWM446489U (zh) 導熱管結構
CN210320526U (zh) 一种空调
JP2012220108A (ja) 放熱装置及びその製造方法
CN210399138U (zh) 一种空调
JP2014013849A (ja) 電子装置用放熱構造
CN212256234U (zh) 一种用于cpu散热的热管散热器
CN210292106U (zh) 一种空调
KR20120034182A (ko) 열 확산 기능을 가지는 복합방열기구

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777195

Country of ref document: EP

Kind code of ref document: A1