WO2011136327A1 - 透明基板の製造方法 - Google Patents
透明基板の製造方法 Download PDFInfo
- Publication number
- WO2011136327A1 WO2011136327A1 PCT/JP2011/060367 JP2011060367W WO2011136327A1 WO 2011136327 A1 WO2011136327 A1 WO 2011136327A1 JP 2011060367 W JP2011060367 W JP 2011060367W WO 2011136327 A1 WO2011136327 A1 WO 2011136327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic resin
- transparent substrate
- solvent
- coating layer
- heat treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/482—Drying adhesives, e.g. solvent based adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/52—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/45—Joining of substantially the whole surface of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73117—Tg, i.e. glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7318—Permeability to gases or liquids
- B29C66/73181—Permeability to gases or liquids permeable
- B29C66/73183—Permeability to gases or liquids permeable to liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/733—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
- B29C66/7336—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
- B29C66/73365—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/735—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
- B29C66/7352—Thickness, e.g. very thin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/74—Joining plastics material to non-plastics material
- B29C66/746—Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
- B29C66/7465—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83421—Roller, cylinder or drum types; Band or belt types; Ball types band or belt types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83421—Roller, cylinder or drum types; Band or belt types; Ball types band or belt types
- B29C66/83423—Roller, cylinder or drum types; Band or belt types; Ball types band or belt types cooperating bands or belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91431—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
- B29C66/91643—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
- B29C66/91645—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/94—Measuring or controlling the joining process by measuring or controlling the time
- B29C66/944—Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/94—Measuring or controlling the joining process by measuring or controlling the time
- B29C66/949—Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10174—Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0036—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/06—Interconnection of layers permitting easy separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133305—Flexible substrates, e.g. plastics, organic film
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/4835—Heat curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/485—Multi-component adhesives, i.e. chemically curing as a result of the mixing of said multi-components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73111—Thermal expansion coefficient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7315—Mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7316—Surface properties
- B29C66/73161—Roughness or rugosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/733—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
- B29C66/7334—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive
- B29C66/73341—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive at least one of the parts to be joined being glossy or reflective
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0089—Impact strength or toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
- B29L2007/002—Panels; Plates; Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
- B29L2009/005—Layered products coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3475—Displays, monitors, TV-sets, computer screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
- B32B2038/168—Removing solvent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/02—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2315/00—Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
- B32B2315/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2398/00—Unspecified macromolecular compounds
- B32B2398/20—Thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/0007—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
Definitions
- the present invention relates to a method for producing a transparent substrate.
- display devices such as flat panel displays (FPDs: for example, liquid crystal display devices and organic EL display devices) and solar cells have become lighter and thinner due to the development of video communication technology.
- FPDs flat panel displays
- glass substrates are often used as substrates used in display devices and solar cells.
- the glass substrate is excellent in transparency, solvent resistance, gas barrier properties, and heat resistance.
- the glass constituting the glass substrate is reduced in thickness, the weight is reduced and the flexibility is excellent, but the impact resistance becomes insufficient and the handling becomes difficult.
- a flexible substrate obtained by applying and drying a resin solution on the glass surface for example, see Patent Documents 1 and 2), or a resin film can be attached to the glass surface.
- a flexible substrate see, for example, Patent Document 3
- Patent Document 3 has been proposed.
- a flexible substrate satisfying sufficient impact resistance has not been obtained in a manufacturing process of a display device that requires high reliability under high temperature and high humidity.
- the flexible substrate obtained by applying and drying the resin solution on the glass surface has a problem that the resin solution is foamed during the application process and the drying process, resulting in poor appearance.
- a flexible substrate with a resin film affixed to the glass surface has a problem that sufficient stress resistance cannot be obtained because the stress necessary to increase the impact resistance of the glass is not sufficiently applied to the glass.
- the film is likely to be wrinkled.
- the wrinkle of the film causes a problem that the film is broken when a treatment is performed so as not to generate the wrinkle.
- the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for producing a transparent substrate excellent in flexibility, flexibility, impact resistance and appearance. .
- the method for producing a transparent substrate of the present invention comprises a step A of applying a thermoplastic resin (A) composition solution on a support substrate having solvent permeability to form a coating layer, and at least one surface of an inorganic glass. And the coating layer are bonded together via an adhesive composition to form a laminate, and the laminate is subjected to a first heat treatment, and the amount of residual solvent in the coating layer is reduced to a predetermined amount.
- the amount of solvent in the coating layer when forming the coating layer is 7% by weight or more.
- the amount of residual solvent in the coating layer is reduced to 15% by weight or less by the first heat treatment.
- the contraction stress of the said application layer at the time of peeling the said support base material is 10 Mpa or less.
- the stress applied to the inorganic glass after the second heat treatment is 10 MPa to 30 MPa.
- the temperature of the first heat treatment is (bp A ⁇ 60) ° C. to (bp) with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution. bp A +40) ° C.
- the temperature of the second heat treatment is (bp A ⁇ 20) ° C. to 250 ° C.
- the said adhesive composition contains a solvent and the boiling point of the solvent in this adhesive bond layer is more than the boiling point of the solvent contained in the said thermoplastic resin (A) composition solution.
- the said adhesive composition contains a solvent and the solvent in this adhesive bond layer shows solubility with respect to the thermoplastic resin (A) contained in a thermoplastic resin (A) composition solution.
- the said adhesive composition contains the component which is compatible with the thermoplastic resin (A) contained in a thermoplastic resin (A) composition solution.
- the adhesive composition includes a solvent, a thermoplastic resin (B) that is compatible with the thermoplastic resin (A) composition solution, a thermosetting monomer, and a curing reaction catalyst.
- the said thermoplastic resin (B) has a reactive group at the terminal.
- the storage elastic modulus in 90 degreeC of the said support base material is 1.0 * 10 ⁇ 7 > Pa or more.
- the inorganic glass has a thickness of 100 ⁇ m or less.
- a coating layer containing a solvent formed on a support substrate having solvent permeability (that is, a semi-dried coating layer) and an inorganic glass are bonded together via an adhesive composition.
- FIG. 1 is a schematic view schematically showing a method for producing a transparent substrate according to a preferred embodiment of the present invention.
- the thermoplastic resin (A) composition solution is applied on the support substrate 10 to form the coating layer 20, and at least one surface of the inorganic glass 30 (in the illustrated example, inorganic).
- the coating layer 20 are bonded to each other via the adhesive composition 40 to form a laminated body, and the laminated body is subjected to a first heat treatment to remain in the coated layer.
- Step C for reducing the solvent to a predetermined amount
- Step D for peeling the support substrate 10 from the laminate, performing a second heat treatment, drying the coating layer 20, and forming the thermoplastic resin layer 21. including.
- the coating layer 20 is in a semi-dried state containing a solvent in the steps A to C, and in the subsequent step D, the drying of the solvent is completed with the support substrate 10 peeled off.
- the thermoplastic resin layer 21 is formed.
- a transparent substrate having the resin layer 21 can be obtained.
- FIG. 2 is a schematic view schematically showing a method for producing a transparent substrate according to another preferred embodiment of the present invention.
- FIG. 2 shows an embodiment in which one side of the inorganic glass 30 and the coating layer 20 are bonded together via an adhesive composition 40.
- Process A Step A is a step of forming a coating layer by applying a thermoplastic resin (A) composition solution on a supporting substrate.
- the support substrate preferably has solvent resistance to the solvent of the thermoplastic resin (A) composition solution and the solvent contained in the adhesive composition described below.
- the material constituting such a support base include polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
- the support substrate has solvent permeability.
- the said support base material has solvent permeability with respect to the solvent of the said thermoplastic resin (A) composition solution. More preferably, it has solvent permeability with respect to the solvent of the said thermoplastic resin (A) composition solution and the solvent contained in the below-mentioned adhesive composition. If such a support base material is used, when the first heat treatment is performed in the subsequent step (step C) and the solvent is volatilized, the solvent permeates the support base material, so that the coating layer foams during the first heat treatment. Can prevent.
- a material constituting such a support substrate for example, polyethylene terephthalate (PET) that is not subjected to surface treatment such as silicon treatment can be given.
- PET polyethylene terephthalate
- the presence / absence of “solvent permeability” can be determined, for example, as follows. That is, the inside of a glass bottle (diameter 3.5 cm ⁇ height 7.5 cm) containing 10 g of solvent was replaced with nitrogen, and the mouth of the glass bottle was sealed with a supporting substrate, and then the glass bottle with the solvent ((the boiling point of the solvent )-(35 to 45)) When the glass substrate and / or the support substrate does not form dew condensation when heated on a hot plate at 2 ° C. for 2 hours, the support will be “solvent permeable” to the solvent. It is judged to have “sex”.
- the storage elastic modulus at 90 ° C. of the support substrate is preferably 1.0 ⁇ 10 7 Pa or more, and more preferably 1.0 ⁇ 10 7 Pa to 1.0 ⁇ 10 10 Pa. If it is such a range, the said coating layer can be hold
- the thickness of the support substrate is preferably 25 ⁇ m to 120 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m. If it is such a range, the said coating layer can be hold
- thermoplastic resin (A) composition solution contains a thermoplastic resin (A) and a solvent.
- thermoplastic resin (A) examples include polyether sulfone resins, polycarbonate resins, epoxy resins, acrylic resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resins, norbornene resins, etc. Cycloolefin resin; polyimide resin, polyamide resin, polyimide amide resin, polyarylate resin, polysulfone resin, polyetherimide resin, and the like.
- the glass transition temperature of the thermoplastic resin (A) is preferably 150 ° C. to 350 ° C., more preferably 170 ° C. to 330 ° C., and particularly preferably 190 ° C. to 300 ° C.
- any suitable solvent can be adopted as the solvent contained in the thermoplastic resin (A) composition solution as long as the thermoplastic resin (A) can be dissolved.
- the solvent include aromatic solvents such as toluene and xylene; ketone solvents such as cyclopentanone and methyl isobutyl ketone; ether solvents such as tetrahydrofuran and propylene glycol methyl ether; halogen solvents such as dichloromethane and trichloroethane. Is mentioned. These solvents may be used alone or in combination of two or more.
- thermoplastic resin (A) concentration of the thermoplastic resin (A) composition solution can be set to any appropriate concentration as long as the coating operation can be performed satisfactorily.
- thermoplastic resin (A) composition solution examples include air doctor coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, and cast coating.
- Coating methods such as spray coating, slot orifice coating, calendar coating, electrodeposition coating, dip coating, and die coating; relief printing methods such as flexographic printing; intaglio printing methods such as direct gravure printing methods and offset gravure printing methods; offset printing And printing methods such as lithographic printing methods such as stencil printing and stencil printing methods such as screen printing.
- the thickness of the coating layer in step A is preferably 15 ⁇ m to 40 ⁇ m, more preferably 20 ⁇ m to 30 ⁇ m.
- the amount of solvent in the coating layer at the time of forming the coating layer (that is, the amount of solvent in the coating layer in step A) is preferably 7% by weight or more, more preferably 7% by weight to 50% by weight, The amount is preferably 8% to 40% by weight, and most preferably 11% to 30% by weight.
- the amount of solvent in the coating layer in step A is less than 7% by weight, solvent cracks occur in the coating layer due to contact with the solvent in the adhesive composition during the first heat treatment in the subsequent step (step C). There is a risk.
- the amount of solvent in the coating layer in step A can be adjusted by controlling, for example, the type and amount of solvent in the thermoplastic resin (A) composition solution. Moreover, after apply
- the support base material coated with the thermoplastic resin (A) composition solution having a solvent amount of 70% by weight or more is placed at an environmental temperature of 20 ° C. to 100 ° C. for 30 seconds to 10 minutes, A coating layer having a solvent amount of 7% by weight or more can be formed.
- Process B Step B is a step of forming a laminate by bonding at least one surface of the inorganic glass and the coating layer via an adhesive composition.
- any appropriate inorganic glass can be adopted as long as it is plate-shaped.
- the inorganic glass may be long or a single sheet.
- examples of the inorganic glass include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition.
- category by an alkali component an alkali free glass and a low alkali glass are mentioned.
- the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the inorganic glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
- the thickness of the inorganic glass is preferably 100 ⁇ m or less, more preferably 20 ⁇ m to 90 ⁇ m, and particularly preferably 30 ⁇ m to 80 ⁇ m.
- the thickness of the inorganic glass can be reduced by forming a thermoplastic resin layer on one side or both sides of the inorganic glass.
- the transmittance of the inorganic glass at a wavelength of 550 nm is preferably 85% or more.
- the refractive index ng of the inorganic glass at a wavelength of 550 nm is preferably 1.4 to 1.65.
- the density of the inorganic glass is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is the inorganic glass of the said range, a lightweight transparent substrate will be obtained.
- the inorganic glass is a mixture of a main raw material such as silica or alumina, an antifoaming agent such as sodium nitrate or antimony oxide, and a reducing agent such as carbon at a temperature of 1400 ° C to 1600 ° C. Then, after forming into a thin plate shape, it is produced by cooling.
- the method for forming the inorganic glass sheet include a slot down draw method, a fusion method, and a float method.
- the inorganic glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
- the inorganic glass a commercially available one may be used as it is, or a commercially available inorganic glass may be polished to have a desired thickness.
- examples of commercially available inorganic glasses include “7059”, “1737” or “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 ”,“ D263 ”or“ AF45 ”manufactured by Schott Corporation.
- the above-mentioned inorganic glass is preferably subjected to coupling treatment on one side or both sides in advance. If the inorganic glass is subjected to a coupling treatment, a transparent substrate having excellent adhesion between the inorganic glass and the adhesive layer can be obtained.
- the coupling agent used for the coupling treatment include an epoxy terminal coupling agent, an amino group-containing coupling agent, a methacrylic group-containing coupling agent, and a thiol group-containing coupling agent.
- the adhesive composition preferably includes a component that is compatible with the thermoplastic resin (A). If such an adhesive composition is used, a transparent substrate having excellent adhesion between the adhesive layer and the thermoplastic resin layer can be obtained.
- the adhesive composition preferably contains a thermoplastic resin (B) that is compatible with the thermoplastic resin (A).
- the thermoplastic resin (B) include polyether resin, polycarbonate resin, epoxy resin, acrylic resin, polyester resin such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resin, norbornene resin Examples thereof include resins such as polyimide resins, polyamide resins, polyimide amide resins, polyarylate resins, polysulfone resins, and polyetherimide resins.
- resin different from the said thermoplastic resin (A) is used as said thermoplastic resin (B).
- the thermoplastic resin (B) preferably has a highly reactive functional group at the terminal.
- a highly reactive functional group examples thereof include a hydroxyl group, a phenolic hydroxyl group, an acrylic group, a methacryl group, an allyl group, a vinyl group, a thiol group, an alkoxysilyl group, an isocyanate group, an amino group, and a carboxylic acid group.
- a phenolic hydroxyl group is preferable.
- the content of the thermoplastic resin (B) can be set to any appropriate value depending on the desired viscosity of the adhesive composition.
- the viscosity at 25 ° C. of the adhesive composition is preferably 0.1 mPa ⁇ s to 1000000 mPa ⁇ s, more preferably 0.2 mPa ⁇ s to 500000 mPa ⁇ s, and particularly preferably 0.3 mPa ⁇ s to 300,000 mPa ⁇ s. If it is such a range, it will be excellent in the workability
- the adhesive composition preferably includes a thermosetting monomer and a curing reaction catalyst. If a thermosetting monomer and a curing reaction catalyst are included, a transparent substrate excellent in adhesion between the inorganic glass and the adhesive layer and between the adhesive layer and the thermoplastic resin layer can be obtained.
- thermosetting monomer examples include epoxy monomers, oxetane monomers, acrylic monomers, and silicone monomers. These thermosetting monomers may be used alone or in combination of two or more. Among these, an epoxy monomer or an oxetane monomer is preferable. With such a thermosetting monomer, for example, when the thermoplastic resin (B) has a phenolic hydroxyl group, it is possible to form a strong interaction with the thermoplastic resin (B). A transparent substrate excellent in adhesion between the inorganic glass and the adhesive layer and between the adhesive layer and the thermoplastic resin layer can be obtained.
- the content of the thermosetting monomer is preferably 10% by weight to 50% by weight, more preferably 12% by weight to 40% by weight, and particularly preferably 15% by weight with respect to the thermoplastic resin (B). % By weight to 35% by weight. Within such a range, it is possible to obtain a transparent substrate that is excellent in the adhesion between the inorganic glass and the adhesive layer, and between the adhesive layer and the thermoplastic resin layer, and that is less colored.
- the curing reaction catalyst is preferably an imidazole catalyst, a tin catalyst or a titanium catalyst. These catalysts may be used alone or in combination of two or more.
- the imidazole catalyst examples include 2-methylimidazole, 1,3-dimethylimidazole, 2-ethyl 4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, and 2-phenyl.
- Examples include -4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl 4-methylimidazole, and the like.
- tin-based catalyst examples include dibutyltin dilaurate, dibutyltin diacetate, dioctyltin dilaurate, and bis (acetoxydibutyltin) oxide.
- titanium-based catalyst examples include “TA-25” and “TC-750” manufactured by Matsumoto Fine Chemical Co., Ltd.
- the content of the curing reaction catalyst is preferably 1% by weight to 10% by weight, more preferably 2% by weight to 8% by weight, and particularly preferably 3% by weight to 5% by weight with respect to the thermoplastic resin (B). % By weight. Within such a range, it is possible to obtain a transparent substrate that is excellent in the adhesion between the inorganic glass and the adhesive layer, and between the adhesive layer and the thermoplastic resin layer, and that is less colored.
- the above adhesive composition preferably contains a solvent.
- the solvent contained in the adhesive composition preferably exhibits solubility in the thermoplastic resin (A). If the adhesive composition contains such a solvent, the adhesive composition can easily penetrate into the coating layer, and a transparent substrate having excellent adhesion between the adhesive layer and the thermoplastic resin layer can be obtained. .
- a solvent similar to the solvent contained in the thermoplastic resin (A) composition solution can be preferably used.
- the boiling point of the solvent contained in the adhesive composition is preferably equal to or higher than the boiling point of the solvent contained in the thermoplastic resin (A) composition solution. If the boiling point of the solvent contained in the adhesive composition is equal to or higher than the boiling point of the solvent contained in the thermoplastic resin (A) composition solution, the first heat treatment and the second heat treatment in the subsequent steps (steps C and D) In the heat treatment, the volatilization of the solvent contained in the adhesive composition is difficult to be hindered by the solvent contained in the thermoplastic resin (A) composition solution. Can be obtained.
- any appropriate method can be adopted as a method of bonding the inorganic glass and the coating layer through an adhesive composition.
- the method of laminating for example, while supplying an adhesive composition between a supporting substrate and an inorganic glass formed with a coating layer between two rolls provided with a certain gap, The method of making it pass is mentioned.
- the adhesive composition to be supplied may be in a solution state or a sheet state.
- Process C Step C is a step of applying a first heat treatment to the laminate obtained in Step B.
- the first heat treatment By the first heat treatment, the residual solvent in the coating layer can be reduced to a predetermined amount. At the same time, the solvent in the adhesive composition is reduced.
- the adhesive composition contains a thermosetting monomer, the curing reaction of the thermosetting monomer proceeds.
- the first heat treatment method includes a heat treatment using an air circulating thermostatic oven, a heater using microwaves or far infrared rays, a roll heated for temperature adjustment, a heat pipe roll, a metal belt, or the like.
- the temperature of the first heat treatment is preferably (bp A ⁇ 60) ° C. to (bp A +40) with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution. More preferably (bp A ⁇ 60) ° C. to (bp A +20) ° C., particularly preferably (bp A ⁇ 50) ° C. to (bp A +20) ° C., and most preferably (bp A ⁇ 45). ) ° C. to (bp A ) ° C. If it is such a temperature range, it can prevent that the said coating layer and adhesive composition foam during the 1st heat processing. Note that in the first heat treatment, the temperature may be increased stepwise.
- the time of the first heat treatment is preferably 1 minute to 30 minutes, more preferably 5 minutes to 20 minutes.
- the amount of residual solvent in the coating layer is reduced to 15% by weight or less by the first heat treatment. More preferably, it is reduced to 3 to 15% by weight, particularly preferably 4 to 14% by weight, and most preferably 5 to 13% by weight.
- the amount of residual solvent in the coating layer after the first heat treatment is more than 15% by weight, the stacked body is unable to withstand the tension applied to the stacked body in the post-process (step D). There is a risk of breaking.
- Process D Step D is a step of performing a second heat treatment after peeling off the support substrate from the laminate.
- the coating layer can be dried to form a thermoplastic resin layer.
- drying and / or curing of the adhesive composition can be completed to form an adhesive layer.
- the shrinkage stress is applied to the coating layer in the laminate by volatilization of the solvent in the coating layer by the first heat treatment in the step C.
- the shrinkage stress of the coating layer when peeling the support substrate is preferably 10 MPa or less, and more preferably 8 MPa or less. If it is such a range, it can prevent that a wrinkle generate
- the same method as the first heat treatment can be adopted as the second heat treatment method.
- the temperature of the second heat treatment is preferably (bp A ⁇ 20) ° C. to 250 ° C. with respect to the boiling point (bp A ) of the solvent most contained in the thermoplastic resin (A) composition solution, More preferably, it is (bp A ⁇ 10) ° C. to 200 ° C., and particularly preferably (bp A ) ° C. to 180 ° C.
- the time of the second heat treatment can be set to the same time as the time of the first heat treatment.
- the shrinkage stress of the thermoplastic resin layer obtained by drying the coating layer can be applied to the inorganic glass by performing the second heat treatment.
- a transparent substrate having an inorganic glass to which stress is applied in this way is excellent in flexibility, flexibility and impact resistance.
- the stress applied to the inorganic glass after the second heat treatment is preferably 10 MPa to 30 MPa, more preferably 12 MPa to 30 MPa, particularly preferably 15 MPa to 30 MPa. Within such a range, it is possible to obtain a transparent substrate in which the inorganic glass and the adhesive layer are sufficiently adhered, and which is excellent in flexibility, flexibility and impact resistance.
- the breakage of the inorganic glass is caused by the concentration of tensile stress in the crack when the inorganic glass receives an external force in the tensile direction, but the inorganic glass of the transparent substrate obtained by the production method of the present invention is Since the stress due to the shrinkage of the coating layer and the adhesive layer is added, the tensile stress that the cracks receive is reduced. As a result, it is possible to prevent the inorganic glass from progressing and breaking even with a greater external force in the tensile direction, and to obtain a transparent substrate having excellent flexibility, flexibility, and impact resistance.
- FIG. 3 is a schematic cross-sectional view of a transparent substrate obtained by the production method of the present invention.
- the transparent substrate 200 includes an inorganic glass 30 and a thermoplastic resin layer 21 disposed on one side or both sides of the inorganic glass 30 (preferably both sides as in the illustrated example), and the inorganic glass 30 and the thermoplastic resin layer 21.
- the adhesive layer 41 is further provided between the two.
- the transparent substrate of the present invention can be provided with any appropriate other layer on the opposite side of the thermoplastic resin layer from the inorganic glass, if necessary.
- the other layers include a transparent conductive layer and a hard coat layer.
- the total thickness of the transparent substrate is preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less, and particularly preferably 80 ⁇ m to 130 ⁇ m.
- the fracture diameter when the transparent substrate is cracked and bent is preferably 40 mm or less, and more preferably 30 mm or less.
- the light transmittance of the transparent substrate at a wavelength of 550 nm is preferably 80% or more, and more preferably 85% or more.
- the transparent substrate has a reduction rate of light transmittance of 5% or less after heat treatment at 180 ° C. for 2 hours. This is because with such a reduction rate, a practically acceptable light transmittance can be ensured even if the heat treatment necessary in the FPD manufacturing process is performed.
- the surface roughness Ra of the transparent substrate (substantially, the surface roughness Ra of the thermoplastic resin layer or the other layer) is preferably 50 nm or less, more preferably 30 nm or less, particularly preferably 10 nm or less. It is.
- the waviness of the transparent substrate is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
- the transparent substrate has a linear expansion coefficient of preferably 15 ppm / ° C. or less, more preferably 10 ppm / ° C. or less, and particularly preferably 1 ppm / ° C. to 10 ppm / ° C.
- the said transparent substrate shows the outstanding dimensional stability (For example, the linear expansion coefficient of the above ranges) by providing the said inorganic glass. More specifically, in addition to the fact that the inorganic glass itself is rigid, the thermoplastic resin layer is restrained by the inorganic glass, whereby the dimensional variation of the thermoplastic resin layer can be suppressed. As a result, the transparent substrate as a whole exhibits excellent dimensional stability.
- the light transmittance of the thermoplastic resin layer at a wavelength of 550 nm is preferably 80% or more.
- the refractive index (n r ) at a wavelength of 550 nm of the thermoplastic resin layer is preferably 1.3 to 1.7.
- the thickness of the thermoplastic resin layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 8 ⁇ m to 60 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m. If it is such a range, a thermoplastic resin layer can fully reinforce inorganic glass.
- the elastic modulus of the thermoplastic resin layer is preferably 1.5 GPa to 10 GPa, more preferably 1.8 GPa to 9 GPa, and particularly preferably 2 GPa to 8 GPa.
- the fracture toughness value of the thermoplastic resin layer is preferably 1.5 MPa ⁇ m 1/2 to 10 MPa ⁇ m 1/2 , more preferably 2 MPa ⁇ m 1/2 to 6 MPa ⁇ m 1/2 , and particularly preferably 2.5MPa ⁇ m 1/2 ⁇ 8MPa ⁇ m 1/2.
- a thermoplastic resin layer having sufficient tenacity is formed, and the thermoplastic resin layer prevents the progress and breakage of cracks in the inorganic glass, thereby obtaining a transparent substrate having good flexibility. Can do.
- thermoplastic resin layer containing such a thermoplastic resin (A) is formed on both surfaces of the inorganic glass, even if the inorganic glass breaks inside the transparent substrate, the thermoplastic resin layer is difficult to break, Since the thermoplastic resin layer prevents the inorganic glass from scattering and the shape of the transparent substrate is maintained, contamination of facilities in the manufacturing process of the display element and the solar cell can be prevented, and the yield can be improved.
- the thickness of the adhesive layer is preferably 0.001 ⁇ m to 20 ⁇ m, more preferably 0.001 ⁇ m to 15 ⁇ m, and particularly preferably 0.01 ⁇ m to 10 ⁇ m. If it is such a range, there will be little influence with respect to the transparency of a transparent substrate, and sufficient adhesive force can be expressed also under a high temperature, high humidity condition.
- the transparent conductive layer can function as an electrode or an electromagnetic wave shield when the transparent substrate is used as a substrate for a lighting element, a display element or a solar cell.
- Examples of materials that can be used for the transparent conductive layer include metals such as copper and silver; metal oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO); and conductive materials such as polythiophene and polyaniline.
- Examples of the polymer include a composition containing carbon nanotubes.
- the hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the transparent substrate.
- any appropriate material can be adopted as the material constituting the hard coat layer.
- the material constituting the hard coat layer include an epoxy resin, an acrylic resin, a silicone resin, and a mixture thereof. Among these, an epoxy resin excellent in heat resistance is preferable.
- the hard coat layer can be obtained by curing these resins with heat or active energy rays.
- the thickness was measured using an Anritsu digital micrometer “KC-351C type”.
- the solvent permeability of the PET base material used as the supporting base material in Examples and Comparative Examples was determined as follows.
- Example 1 10 g of polyether sulfone modified with terminal hydroxyl group (Sumika Excel 5003P: manufactured by Sumitomo Chemical Co., Ltd.) was heated and dissolved in 90 g of cyclopentanone to obtain a 10 wt% solution.
- the surface of one side of inorganic glass was washed with methyl ethyl ketone, then subjected to corona treatment, and an epoxy coupling agent (KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.) 2% aqueous solution was applied. Dry at 10 ° C. for 10 minutes. The same treatment was performed on the other surface of the inorganic glass.
- an epoxy coupling agent KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.
- thermoplastic resin (A) solution obtained by dissolving 10 g of the polymer obtained in Production Example 1 in 90 g of cyclopentanone was used as a solvent-permeable PET (Lumilar: Toray Industries, Inc., thickness 75 ⁇ m) group. It apply
- the inorganic glass and the coating layer were bonded together while supplying the adhesive composition between the inorganic glass and the coating layer formed on the PET substrate.
- Such an operation was performed on both sides of the inorganic glass to obtain a laminate (PET substrate / coating layer / adhesive composition / inorganic glass / adhesive composition / coating layer / PET substrate).
- the obtained laminate was heat-treated at 90 ° C. for 4 minutes, 130 ° C. for 4 minutes, and 150 ° C. for 4 minutes.
- the amount of residual solvent in the coating layer after the heat treatment was 6% by weight.
- the PET substrates on both sides are peeled off, and further subjected to a heat treatment at 150 ° C. for 12 minutes.
- a transparent substrate (thermoplastic resin layer (30 ⁇ m) / adhesive layer (2.5 ⁇ m) / inorganic glass (total thickness 115 ⁇ m)) 50 ⁇ m) / adhesive layer (2.5 ⁇ m) / thermoplastic resin layer (30 ⁇ m)).
- the inorganic glass was exposed from the width direction edge part (length 10 cm x width 1 cm) of the transparent substrate.
- Example 2 A transparent substrate was obtained in the same manner as in Example 1 except that 0.05 g of dibutyltin dilaurate was further added to the adhesive composition.
- Example 1 A transparent substrate was obtained in the same manner as in Example 1 except that the amount of the solvent in the coating layer when forming the coating layer was 6 wt% (the concentration of the thermoplastic resin layer (A) was 94 wt%).
- Comparative Example 2 instead of a PET substrate having solvent permeability (Lumirror: manufactured by Toray Industries, Inc., thickness 75 ⁇ m), a silicon-treated non-solvent PET substrate (MRF: manufactured by Mitsubishi Plastics, Inc., thickness 38 ⁇ m) is used. A transparent substrate was obtained in the same manner as in Example 1 except that it was used.
- MRF silicon-treated non-solvent PET substrate
- Example 3 A transparent substrate was obtained in the same manner as in Example 1 except that the PET base material was peeled off immediately after forming the laminate (that is, before the heat treatment).
- the polyarylate film was coated with 8 g of 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (Celoxide 2021P: manufactured by Daicel Chemical Industries), 3-ethyl-3 ⁇ Adhesive containing 2 g of [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (Aron oxetane OXT-221: manufactured by Toagosei Co., Ltd.) and 0.4 g of a photopolymerization initiator (SP-170: manufactured by Adeka) After laminating using the composition, the adhesive composition was cured by UV irradiation to obtain a transparent substrate (polyarylate film layer / adhesive layer / inorganic glass / adhesive layer / polyarylate film layer). .
- SP-170 photopolymerization initiator
- a leveling agent BYK307, manufactured by BYK Chemie
- 3.81 g of 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate Celoxide 2021P: manufactured by Daicel Chemical Industries
- -Ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane Aronoxetane OXT-221: manufactured by Toagosei Co., Ltd.
- 1.09 g of 2-methylimidazole, epoxy-terminated coupling agent KBM403: manufactured by Shin-Etsu Chemical Co., Ltd. 9.05 g was added to obtain a first casting solution.
- one surface of inorganic glass is washed with methyl ethyl ketone, then subjected to corona treatment, and a casting solution to which a coupling agent or the like is added is applied, and then at 100 ° C. for 10 minutes, further 170 Drying was performed at a temperature of 20 ° C. for 20 minutes to form a first thermoplastic resin layer having a thickness of 1 ⁇ m. The same treatment was performed on the other surface of the inorganic glass.
- a second casting solution prepared by dissolving 90 g of the polymer obtained in Production Example 1 in 600 g of cyclopentanone was applied onto the first thermoplastic resin layer and dried at 90 ° C. for 15 minutes. Further, the second casting solution is applied to the back surface of the first thermoplastic resin layer and dried at 85 ° C. for 10 minutes, and then both surfaces are dried at 130 ° C. for 10 minutes and further at 170 ° C. for 20 minutes.
- a second thermoplastic resin having a thickness of 36.5 ⁇ m was obtained, and a transparent substrate having a total thickness of 125 ⁇ m (second thermoplastic resin layer / first thermoplastic resin layer / inorganic glass / first thermoplastic resin layer) / Second thermoplastic resin layer).
- the inorganic glass was exposed from the width direction edge part (length 10 cm x width 1 cm) of the transparent substrate.
- the transparent substrate obtained above was evaluated by the following method. The results are shown in Table 1.
- (1) Adhesion test It evaluated by the cross-cut peel test of JISK5400. In other words, the transparent substrate and the laminate obtained were cut on the surface of the outermost layer on one side in 10 mm squares with a 1 mm interval, and 100 grids were made. Then, the adhesion was evaluated by the number of grids of the resin layer peeled from the inorganic glass.
- Appearance The appearance of the obtained transparent substrate was visually confirmed. When foaming, cracks, and wrinkles were not confirmed on the transparent substrate, it was determined to be acceptable (indicated by ⁇ in Table 1).
- the transparent substrates of Examples 1 and 2 were subjected to the first heat treatment on the laminate having the supporting base, the adhesive composition, and the coating layer containing a predetermined amount of solvent. After that, the support base material was peeled off and the second heat treatment was performed, whereby the adhesion was excellent, the shrinkage stress of the resin layer was large, and the fracture diameter was small. These show that the transparent substrate obtained by the production method of the present invention is excellent in flexibility, flexibility and impact resistance. On the other hand, in the transparent substrate of Comparative Example 4, the shrinkage stress of the resin layer (polyarylate film layer) was small. Such a transparent substrate is inferior in flexibility and impact resistance because sufficient stress is not applied to the inorganic glass.
- the transparent substrate obtained by the production method of the present invention can be used for a display element, a solar cell, or a lighting element.
- the display element include a liquid crystal display, a plasma display, an organic EL display, and electronic paper.
- an illumination element an organic EL element etc. are mentioned, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Theoretical Computer Science (AREA)
- Laminated Bodies (AREA)
- Liquid Crystal (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
好ましい実施形態においては、上記塗布層形成時における該塗布層中の溶剤量が、7重量%以上である。
好ましい実施形態においては、上記第1の熱処理により、上記塗布層中の残存溶剤量を15重量%以下まで減少させる。
好ましい実施形態においては、上記支持基材を剥離する際の上記塗布層の収縮応力が、10MPa以下である。
好ましい実施形態においては、上記第2の熱処理後に無機ガラスに付加される応力が、10MPa~30MPaである。
好ましい実施形態においては、上記第1の熱処理の温度が、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bpA)に対して、(bpA-60)℃~(bpA+40)℃である。
好ましい実施形態においては、上記第2の熱処理の温度が、上記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bpA)に対して、(bpA-20)℃~250℃である。
好ましい実施形態においては、上記接着剤組成物が溶剤を含み、該接着剤層中の溶剤の沸点が、上記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点以上である。
好ましい実施形態においては、上記接着剤組成物が溶剤を含み、該接着剤層中の溶剤が、熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)に対して溶解性を示す。
好ましい実施形態においては、上記接着剤組成物が、熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)と相溶性を示す成分を含む。
好ましい実施形態においては、上記接着剤組成物が、溶剤、上記熱可塑性樹脂(A)組成物溶液と相溶性を示す熱可塑性樹脂(B)、熱硬化性モノマーおよび硬化反応触媒を含む。
好ましい実施形態においては、上記熱可塑性樹脂(B)が、末端に反応基を有する。
好ましい実施形態においては、上記支持基材の90℃における貯蔵弾性率が、1.0×107Pa以上である。
好ましい実施形態においては、上記無機ガラスの厚みが、100μm以下である。
工程Aは、支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程である。
工程Bは、無機ガラスの少なくとも一方の面と上記塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程である。
工程Cは、工程Bで得られた積層体に第1の熱処理を施す工程である。第1の熱処理により、上記塗布層中の残存溶剤を所定量まで減少させることができる。また、同時に、接着剤組成物中の溶剤も減少する。さらに、接着剤組成物が熱硬化性モノマーを含む場合、当該熱硬化性モノマーの硬化反応が進む。
工程Dは上記積層体から、上記支持基材を剥離した後、第2の熱処理を行う工程である。第2の熱処理により、塗布層を乾燥して、熱可塑性樹脂層を形成させることができる。また、同時に、接着剤組成物の乾燥および/または硬化が完了して、接着剤層を形成させることができる。
図3は、本発明の製造方法により得られる透明基板の概略断面図である。この透明基板200は、無機ガラス30と、無機ガラス30の片側または両側(好ましくは図示例のように両側)に配置された熱可塑性樹脂層21とを備え、無機ガラス30と熱可塑性樹脂層21との間に接着剤層41をさらに備える。
スクリュー管瓶(アズワン社製、型番「No.7L」、品番「5-098011」、直径3.5cm×高さ7.5cm)にシクロペンタノン10gを入れた。その後、当該スクリュー管瓶内を窒素置換し、当該スクリュー管瓶を5cm角のPET基材で封をした。このとき、スクリュー管瓶とPET基材とは、接着剤(セメダイン社製、品番「AX-083」)で接着させた。次いで、当該スクリュー管瓶を90℃に加熱したホットプレート上に置き、2時間加熱した。加熱終了後、PET基材およびスクリュー管瓶の内側の状態を目視観察した。
目視観察の結果、PET基材および/またはスクリュー管瓶の内側に溶剤の結露が生じていた場合は、当該PET基材は溶剤透過性がないと判断した。一方、結露が生じなかった場合は、当該PET基材は溶剤透過性があると判断した。
攪拌装置を備えた反応容器中、4,4’-(1,3-ジメチルブチリデン)ビスフェノール7.65g(0.028mol)、4,4’-(1-フェニルエチリデン)ビスフェノール12.35g(0.043mol)、ベンジルトリエチルアンモニウムクロライド0.444g、p-ターシャリーブチルフェノール0.022gを1M水酸化ナトリウム溶液185gに溶解させた。この溶液に、テレフタル酸クロライド14.4g(0.071mol)をクロロホルム246gに溶解させた溶液を攪拌しながら一度に加え、室温で120分間攪拌した。その後、重合溶液を静置分離してポリマーを含んだクロロホルム溶液を分離し、ついで酢酸水で洗浄し、イオン交換水で洗浄した後、メタノールに投入してポリマーを析出させた。析出したポリマーを濾過し、減圧下で乾燥することで、白色のポリマー27gを得た。
末端水酸基変性されたポリエーテルサルホン(スミカエクセル 5003P:住友化学社製)10gをシクロペンタノン90gに加熱して溶かし、10重量%の溶液を得た。得られた溶液に、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)0.6g、1、2-ジメチルイミダゾール0.4g、およびエポキシ末端カップリング剤(KBM403:信越化学工業社製)2.5g添加し、接着剤組成物を得た。
別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、エポキシカップリング剤(KBM403:信越化学工業社製)2%水溶液を塗布し、100℃で10分間乾燥させた。同様の処理を無機ガラスのもう一方の面についても行った。
その後、製造例1で得られたポリマー10gをシクロペンタノン90gに溶かした10重量%の熱可塑性樹脂(A)溶液を、溶剤透過性を有するPET(ルミラー:東レ株式会社製、厚み75μm)基材上に塗布し、90℃で8分間溶剤を揮発させて塗布層を形成させた。塗布層中の溶剤量は、23重量%(熱可塑性樹脂(A)の濃度:77重量%)であった。
上記無機ガラスと上記PET基材上に形成された塗布層との間に上記接着剤組成物を供給しながら、無機ガラスと塗布層とを貼り合わせた。このような操作を無機ガラスの両面に行って、積層体(PET基材/塗布層/接着剤組成物/無機ガラス/接着剤組成物/塗布層/PET基材)を得た。
得られた積層体に、90℃で4分間、130℃で4分間、150℃で4分間の熱処理を行った。当該熱処理後の塗布層中の残存溶剤量は6重量%であった。
その後、両面のPET基材を剥離して、さらに150℃で12分間の熱処理を行い、総厚み115μmの透明基板(熱可塑性樹脂層(30μm)/接着剤層(2.5μm)/無機ガラス(50μm)/接着剤層(2.5μm)/熱可塑性樹脂層(30μm))を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
接着剤組成物にジブチル錫ジラウレート0.05gをさらに加えた以外は、実施例1と同様にして透明基板を得た。
塗布層形成時における、塗布層中の溶剤量を、6重量%(熱可塑性樹脂層(A)の濃度94重量%)とした以外は、実施例1と同様にして透明基板を得た。
溶剤透過性を有するPET(ルミラー:東レ株式会社製、厚み75μm)基材に代えて、シリコン処理された溶剤透過性を有さないPET(MRF:三菱樹脂株式会社製、厚み38μm)基材を用いた以外は、実施例1と同様にして透明基板を得た。
積層体形成直後に(すなわち、熱処理前に)、PET基材を剥離した以外は、実施例1と同様にして透明基板を得た。
製造例1で得られたポリマー90gをシクロペンタノン600gに溶かしたキャスティング溶液を、PET(ルミラー:東レ株式会社製、厚み75μm)基材上に塗布し、さらに残存溶剤量が5%以下になるまで乾燥した後、基材を剥離して、ポリアリレートフィルムを得た。
別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、エポキシカップリング剤(KBM403:信越化学工業社製)で処理した。同様の処理を無機ガラスのもう一方の面についても行った。
上記無機ガラスの両面に、上記ポリアリレートフィルムを、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレート(セロキサイド2021P:ダイセル化学工業社製)8g、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)2g、光重合開始剤(SP-170:アデカ社製)0.4gを含む接着剤組成物を用いて貼り合わせた後、UV照射して接着剤組成物を硬化させて、透明基板(ポリアリレートフィルム層/接着剤層/無機ガラス/接着剤層/ポリアリレートフィルム層)を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
末端水酸基変性されたポリエーテルサルホン(スミカエクセル 5003P:住友化学社製)36.2gをシクロペンタノン172gおよびN,N-ジメチルホルムアミド10.8gの混合溶剤に溶かし、ポリエーテルサルホンが16.5重量%の溶液を得た。さらに該溶液にレベリング剤(BYK307 ビックケミー社製)0.027g、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレート(セロキサイド2021P:ダイセル化学工業社製)1.81g、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(アロンオキセタン OXT-221:東亞合成社製)1.45g、2-メチルイミダゾール1.09g、エポキシ末端カップリング剤(KBM403:信越化学工業社製)9.05g添加し、第1のキャスティング溶液を得た。
別途、無機ガラス(厚み50μm、長さ10cm×幅4cm)の片面表面をメチルエチルケトンで洗浄後、コロナ処理を行い、カップリング剤等を添加したキャスティング溶液を塗布し、100℃で10分間、さらに170℃で20分間乾燥させ、厚みが1μmの第1の熱可塑性樹脂層を形成した。同様の処理を無機ガラスのもう一方の面についても行った。
その後、製造例1で得られたポリマー90gをシクロペンタノン600gに溶かした第2のキャスティング溶液を、第1の熱可塑性樹脂層上に塗布し、90℃で15分間乾燥させた。さらに裏面にも第2のキャスティング溶液を第1の熱可塑性樹脂層上に塗布し、85℃で10分間乾燥させ、その後、両面を130℃で10分間、さらに170℃で20分間乾燥させ、片側の厚みが36.5μmの第2の熱可塑性樹脂を得て、総厚み125μmの透明基板(第2の熱可塑性樹脂層/第1の熱可塑性樹脂層/無機ガラス/第1の熱可塑性樹脂層/第2の熱可塑性樹脂層)を得た。なお、上記透明基板の幅方向端部(長さ10cm×幅1cm)は無機ガラスを露出させた。
上記で得られた透明基板を下記の方法で評価した。結果を表1に示す。
(1)密着性試験
JIS K 5400の碁盤目剥離試験により評価した。すなわち、得られた透明基板および積層体の片面最外層の表面上10mm角中に1mm間隔にカッターで切れ目を入れ、100個の碁盤目を作り、粘着テープをその上に貼り付けた後、剥離し、無機ガラスから剥離した樹脂層の碁盤目の数により密着性を評価した。
(2)外観
得られた透明基板の外観を目視にて確認した。透明基板に、発泡、クラック、シワが確認されない場合は合格(表1中、○で示す)とした。
(3)破断直径
(a)実施例および比較例で得られた透明基板を評価用試料として準備した。
(b)薄板ガラス露出部分の長辺中央に5mm以下のクラックを入れた。
(c)評価用試料の長辺を屈曲させ、クラックの進展を観察し、ガラスが破断した際の、屈曲した辺(長辺)を円周とする円の直径を破断直径とした。
(4)収縮応力
幅30mm×長さ125mmの短冊状無機ガラス(厚み100μm)の片面に、実施例および比較例と同様の方法で樹脂層を形成させ、カールしたサンプルの曲率半径Rを測定した。
補正項を導入したStonryの下記式(C.A.Klien,J.Appl.Phys., 88 5487 (2000))に、曲率半径R;薄板ガラスのヤング率(70GPa)、ポアソン比(0.2)および厚み(100μm);樹脂のヤング率、ポアソン比および厚みを代入して、樹脂層の収縮応力(すなわち、無機ガラスに付加される応力)を求めた。
20 塗布層
30 無機ガラス
40 接着剤組成物
21 熱可塑性樹脂層
41 接着剤層
100、100´ オーブン
200 透明基板
Claims (14)
- 溶剤透過性を有する支持基材上に熱可塑性樹脂(A)組成物溶液を塗布して、塗布層を形成する工程Aと、
無機ガラスの少なくとも一方の面と該塗布層とを、接着剤組成物を介して貼り合わせて、積層体を形成する工程Bと、
該積層体に第1の熱処理を施し、該塗布層中の残存溶剤量を所定量まで減少させる工程Cと、
該積層体から該支持基材を剥離した後、第2の熱処理を行い、該塗布層を乾燥して、熱可塑性樹脂層を形成する工程Dとを含む、
透明基板の製造方法。 - 前記塗布層形成時における該塗布層中の溶剤量が、7重量%以上である、請求項1に記載の透明基板の製造方法。
- 前記第1の熱処理により、前記塗布層中の残存溶剤量を15重量%以下まで減少させる、請求項1または2に記載の透明基板の製造方法。
- 前記支持基材を剥離する際の前記塗布層の収縮応力が、10MPa以下である、請求項1から3のいずれかに記載の透明基板の製造方法。
- 前記第2の熱処理後に無機ガラスに付加される応力が、10MPa~30MPaである、請求項1から4のいずれかに記載の透明基板の製造方法。
- 前記第1の熱処理の温度が、前記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bpA)に対して、(bpA-60)℃~(bpA+40)℃である、請求項1から5のいずれかに記載の透明基板の製造方法。
- 前記第2の熱処理の温度が、前記熱可塑性樹脂(A)組成物溶液に最も多く含まれる溶剤の沸点(bpA)に対して、(bpA-20)℃~250℃である、請求項1から6のいずれかに記載の透明基板の製造方法。
- 前記接着剤組成物が溶剤を含み、該接着剤層中の溶剤の沸点が、前記熱可塑性樹脂(A)組成物溶液に含まれる溶剤の沸点以上である、請求項1から7のいずれかに記載の透明基板の製造方法。
- 前記接着剤組成物が溶剤を含み、該接着剤層中の溶剤が、前記熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)に対して溶解性を示す、請求項1から8のいずれかに記載の透明基板の製造方法。
- 前記接着剤組成物が、前記熱可塑性樹脂(A)組成物溶液に含まれる熱可塑性樹脂(A)と相溶性を示す成分を含む、請求項1から9のいずれかに記載の透明基板の製造方法。
- 前記接着剤組成物が、溶剤、前記熱可塑性樹脂(A)組成物溶液と相溶性を示す熱可塑性樹脂(B)、熱硬化性モノマーおよび硬化反応触媒を含む、請求項1から10のいずれかに記載の透明基板の製造方法。
- 前記熱可塑性樹脂(B)が、末端に反応基を有する、請求項11に記載の透明基板の製造方法。
- 前記支持基材の90℃における貯蔵弾性率が、1.0×107Pa以上である、請求項1から12のいずれかに記載の透明基板の製造方法。
- 前記無機ガラスの厚みが、100μm以下である、請求項1から13のいずれかに記載の透明基板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11775108.1A EP2565170A4 (en) | 2010-04-30 | 2011-04-28 | PROCESS FOR PRODUCING TRANSPARENT SUBSTRATE |
CN201180021854.2A CN102869632B (zh) | 2010-04-30 | 2011-04-28 | 透明基板的制造方法 |
KR1020127028339A KR101381087B1 (ko) | 2010-04-30 | 2011-04-28 | 투명 기판의 제조 방법 |
KR1020137032933A KR20140005376A (ko) | 2010-04-30 | 2011-04-28 | 투명 기판의 제조 방법 |
US13/640,444 US9254627B2 (en) | 2010-04-30 | 2011-04-28 | Manufacturing method for transparent substrate |
US14/542,138 US20150072155A1 (en) | 2010-04-30 | 2014-11-14 | Manufacturing method for transparent substrate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-105140 | 2010-04-30 | ||
JP2010105140 | 2010-04-30 | ||
JP2010-252704 | 2010-11-11 | ||
JP2010252704A JP5615134B2 (ja) | 2010-04-30 | 2010-11-11 | 透明基板の製造方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/640,444 A-371-Of-International US9254627B2 (en) | 2010-04-30 | 2011-04-28 | Manufacturing method for transparent substrate |
US14/542,138 Division US20150072155A1 (en) | 2010-04-30 | 2014-11-14 | Manufacturing method for transparent substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011136327A1 true WO2011136327A1 (ja) | 2011-11-03 |
Family
ID=44861621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/060367 WO2011136327A1 (ja) | 2010-04-30 | 2011-04-28 | 透明基板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9254627B2 (ja) |
EP (2) | EP2565170A4 (ja) |
JP (1) | JP5615134B2 (ja) |
KR (2) | KR20140005376A (ja) |
CN (2) | CN104589736A (ja) |
TW (2) | TW201442859A (ja) |
WO (1) | WO2011136327A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014228615A (ja) * | 2013-05-21 | 2014-12-08 | 大日本印刷株式会社 | 保護板用基板、電極付き表示装置用前面保護板、及び表示装置 |
US20150072125A1 (en) * | 2012-04-02 | 2015-03-12 | Nitto Denko Corporation | Transparent sheet and method for manufacturing same |
US20150140343A1 (en) * | 2012-05-29 | 2015-05-21 | Nitto Denko Corporation | Adhesive, and transparent substrate using same |
US20150175858A1 (en) * | 2012-05-29 | 2015-06-25 | Nitto Denko Corporation | Adhesive, and transparent substrate using same |
JP2021154664A (ja) * | 2020-03-30 | 2021-10-07 | 日東電工株式会社 | 複層構造体 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6170288B2 (ja) * | 2012-09-11 | 2017-07-26 | 富士フイルム株式会社 | 転写材料、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置 |
KR102147509B1 (ko) | 2013-03-14 | 2020-08-25 | 코닝 인코포레이티드 | 연성 유리 및 고분자 복합 구조의 제조 및 절단을 위한 방법 및 장치 |
DE102013214422A1 (de) * | 2013-07-24 | 2015-01-29 | Schott Ag | Verbundelement und dessen Verwendung |
KR102355043B1 (ko) * | 2014-03-28 | 2022-01-25 | 엘지디스플레이 주식회사 | 디스플레이 장치 및 이를 제조하는 벤딩 장치 |
JP2016105183A (ja) * | 2016-01-07 | 2016-06-09 | 大日本印刷株式会社 | 薄膜素子用基板、薄膜素子、有機エレクトロルミネッセンス表示装置、および電子ペーパー |
JP6170224B1 (ja) * | 2016-05-10 | 2017-07-26 | 住友化学株式会社 | 透明樹脂フィルムの製造方法、及び透明樹脂フィルムを有する積層体の製造方法 |
KR102696454B1 (ko) * | 2016-12-02 | 2024-08-22 | 삼성디스플레이 주식회사 | 저곡률로 굽힘이 가능한 플렉시블 글라스 물품 및 그 제조 방법 |
JP7268445B2 (ja) * | 2019-03-29 | 2023-05-08 | 大日本印刷株式会社 | フロストガラス調有機ガラスの製造方法。 |
MX2022000677A (es) * | 2019-07-19 | 2022-02-23 | Tokuyama Corp | Metodo de recubrimiento. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329715A (ja) | 1998-04-02 | 1999-11-30 | Cambridge Display Technol Ltd | 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法 |
JP2004273594A (ja) * | 2003-03-06 | 2004-09-30 | Nippon Zeon Co Ltd | 電気絶縁層の形成方法及びその利用 |
JP2007010834A (ja) | 2005-06-29 | 2007-01-18 | Sumitomo Chemical Co Ltd | ディスプレイ用基板及びそれを用いたディスプレイ素子 |
JP2008107510A (ja) | 2006-10-25 | 2008-05-08 | Nitto Denko Corp | 表示素子用基板およびその製造方法 |
JP2009282509A (ja) * | 2008-04-24 | 2009-12-03 | Nitto Denko Corp | 表示素子用基板およびその製造方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60157856A (ja) * | 1984-01-27 | 1985-08-19 | 旭硝子株式会社 | 積層安全ガラス |
JPS61252161A (ja) | 1985-05-01 | 1986-11-10 | 三菱化学株式会社 | 溝付樹脂基板の製造方法 |
US5629052A (en) | 1995-02-15 | 1997-05-13 | The Procter & Gamble Company | Method of applying a curable resin to a substrate for use in papermaking |
JPH10230578A (ja) * | 1997-02-18 | 1998-09-02 | Nippon Denshi Seiki Kk | 積層物の製作方法 |
JPH10279329A (ja) | 1997-03-31 | 1998-10-20 | Nissan Motor Co Ltd | 赤外線遮蔽ガラス |
EP1759832A1 (en) | 1998-05-14 | 2007-03-07 | E.I.Du pont de nemours and company | Glass laminates for threat resistant window systems |
KR20010101433A (ko) | 1999-01-11 | 2001-11-14 | 암라인, 립퍼 | 평면 광원 |
EP1048628A1 (de) | 1999-04-30 | 2000-11-02 | Schott Glas | Polymerbeschichtete Dünnglasfoliensubstrate |
ATE248782T1 (de) * | 1999-01-11 | 2003-09-15 | Schott Displayglas Gmbh | Polymerbeschichtete dünnglasfoliensubstrate |
GB0031603D0 (en) | 2000-12-23 | 2001-02-07 | Pilkington Plc | Automotive glazing |
WO2002076724A1 (en) | 2001-03-26 | 2002-10-03 | Eikos, Inc. | Coatings containing carbon nanotubes |
EP1486935A4 (en) | 2002-02-25 | 2007-04-04 | Matsushita Electric Ind Co Ltd | SHOCK RESISTANT FILM FOR FLAT SCREENS AND FLAT SCREEN THEREFOR |
JP4409301B2 (ja) * | 2003-01-31 | 2010-02-03 | 旭硝子株式会社 | 低反射ガラス板の製造方法 |
WO2005123809A1 (ja) | 2004-06-22 | 2005-12-29 | Nitto Denko Corporation | 耐熱性樹脂、その製造方法およびこの樹脂を用いた基板処理装置の除塵用基板 |
TWI337187B (en) | 2004-11-15 | 2011-02-11 | Lg Chemical Ltd | Biaxial-optical polynorbornene-based film and method of manufacturing the same, integrated optical compensation polarizer having the film and method of manufacturing the polarizer, and liquid crystal display panel containing the film and/or polarizer |
WO2006091875A2 (en) | 2005-02-24 | 2006-08-31 | University Of Virginia Patent Foundation | Amorphous steel composites with enhanced strengths, elastic properties and ductilities |
US20070057400A1 (en) | 2005-09-09 | 2007-03-15 | General Electric Company | Polycarbonate useful in making solvent cast films |
JP4565507B2 (ja) | 2006-01-30 | 2010-10-20 | 日東電工株式会社 | 位相差板の製造方法、位相差板、位相差板付偏光板、液晶パネル、および液晶表示装置 |
CN101157524B (zh) | 2006-09-29 | 2012-07-25 | 横滨橡胶株式会社 | 玻璃与热熔组合物的复合体及其制备方法 |
TW200920769A (en) | 2007-11-15 | 2009-05-16 | Nat Univ Tsing Hua | Flexible substrate, its preparation and light emitting device containing the same |
WO2009104695A1 (ja) | 2008-02-22 | 2009-08-27 | 住友化学株式会社 | 透明導電性基板の製造方法 |
US20090253834A1 (en) | 2008-04-08 | 2009-10-08 | E. I. Du Pont De Nemours And Company | Adhesive compositions useful in flexible circuit substrate applications and methods relating thereto |
EP2273475A1 (en) | 2008-04-17 | 2011-01-12 | Asahi Glass Company, Limited | Glass laminate, display panel with support, method for producing glass laminate and method for manufacturing display panel with support |
KR101436770B1 (ko) | 2008-04-24 | 2014-09-03 | 닛토덴코 가부시키가이샤 | 투명 기판 |
JP5238594B2 (ja) | 2008-04-24 | 2013-07-17 | 日東電工株式会社 | 表示素子用基板およびその製造方法 |
EP2899170B1 (en) * | 2008-11-07 | 2016-08-31 | Nitto Denko Corporation | Transparent substrate and method for production thereof |
CN101579959A (zh) * | 2009-07-03 | 2009-11-18 | 徐林波 | 一种玻塑复合板材及其制造方法和应用 |
-
2010
- 2010-11-11 JP JP2010252704A patent/JP5615134B2/ja active Active
-
2011
- 2011-04-28 KR KR1020137032933A patent/KR20140005376A/ko not_active Application Discontinuation
- 2011-04-28 KR KR1020127028339A patent/KR101381087B1/ko active IP Right Grant
- 2011-04-28 WO PCT/JP2011/060367 patent/WO2011136327A1/ja active Application Filing
- 2011-04-28 EP EP11775108.1A patent/EP2565170A4/en not_active Withdrawn
- 2011-04-28 EP EP14197914.6A patent/EP2899169A1/en not_active Withdrawn
- 2011-04-28 CN CN201410746255.2A patent/CN104589736A/zh active Pending
- 2011-04-28 US US13/640,444 patent/US9254627B2/en not_active Expired - Fee Related
- 2011-04-28 CN CN201180021854.2A patent/CN102869632B/zh active Active
- 2011-04-29 TW TW103126680A patent/TW201442859A/zh unknown
- 2011-04-29 TW TW100115238A patent/TWI496124B/zh active
-
2014
- 2014-11-14 US US14/542,138 patent/US20150072155A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329715A (ja) | 1998-04-02 | 1999-11-30 | Cambridge Display Technol Ltd | 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法 |
JP2004273594A (ja) * | 2003-03-06 | 2004-09-30 | Nippon Zeon Co Ltd | 電気絶縁層の形成方法及びその利用 |
JP2007010834A (ja) | 2005-06-29 | 2007-01-18 | Sumitomo Chemical Co Ltd | ディスプレイ用基板及びそれを用いたディスプレイ素子 |
JP2008107510A (ja) | 2006-10-25 | 2008-05-08 | Nitto Denko Corp | 表示素子用基板およびその製造方法 |
JP2009282509A (ja) * | 2008-04-24 | 2009-12-03 | Nitto Denko Corp | 表示素子用基板およびその製造方法 |
Non-Patent Citations (2)
Title |
---|
C.A. KLIEN, J. APPL. PHYS., vol. 88, 2000, pages 5487 |
See also references of EP2565170A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150072125A1 (en) * | 2012-04-02 | 2015-03-12 | Nitto Denko Corporation | Transparent sheet and method for manufacturing same |
US20150140343A1 (en) * | 2012-05-29 | 2015-05-21 | Nitto Denko Corporation | Adhesive, and transparent substrate using same |
US20150175858A1 (en) * | 2012-05-29 | 2015-06-25 | Nitto Denko Corporation | Adhesive, and transparent substrate using same |
JP2014228615A (ja) * | 2013-05-21 | 2014-12-08 | 大日本印刷株式会社 | 保護板用基板、電極付き表示装置用前面保護板、及び表示装置 |
JP2021154664A (ja) * | 2020-03-30 | 2021-10-07 | 日東電工株式会社 | 複層構造体 |
WO2021199985A1 (ja) * | 2020-03-30 | 2021-10-07 | 日東電工株式会社 | 複層構造体 |
EP4129650A4 (en) * | 2020-03-30 | 2023-09-06 | Nitto Denko Corporation | MULTI-LAYER STRUCTURE |
Also Published As
Publication number | Publication date |
---|---|
EP2565170A4 (en) | 2014-06-18 |
EP2565170A1 (en) | 2013-03-06 |
KR20130024902A (ko) | 2013-03-08 |
CN104589736A (zh) | 2015-05-06 |
TWI496124B (zh) | 2015-08-11 |
TW201442859A (zh) | 2014-11-16 |
TW201218147A (en) | 2012-05-01 |
KR101381087B1 (ko) | 2014-04-02 |
US9254627B2 (en) | 2016-02-09 |
JP2011245843A (ja) | 2011-12-08 |
US20150072155A1 (en) | 2015-03-12 |
KR20140005376A (ko) | 2014-01-14 |
EP2899169A1 (en) | 2015-07-29 |
CN102869632B (zh) | 2015-05-06 |
CN102869632A (zh) | 2013-01-09 |
US20130032277A1 (en) | 2013-02-07 |
JP5615134B2 (ja) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5615134B2 (ja) | 透明基板の製造方法 | |
US20200198302A1 (en) | Transparent sheet and method for manufacturing same | |
US10221090B2 (en) | Transparent substrate | |
WO2009131073A1 (ja) | 透明基板 | |
TWI436886B (zh) | Transparent substrate | |
EP2857474A1 (en) | Adhesive, and transparent substrate using same | |
JP5439019B2 (ja) | 表示素子用基板およびその製造方法 | |
JP5567314B2 (ja) | 透明基板およびその製造方法 | |
JP5883085B2 (ja) | 透明基板の製造方法 | |
TW201406902A (zh) | 接著劑及使用其之透明基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180021854.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11775108 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13640444 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2011775108 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011775108 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127028339 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |