WO2011135993A1 - 積層ポリエステルフィルム - Google Patents

積層ポリエステルフィルム Download PDF

Info

Publication number
WO2011135993A1
WO2011135993A1 PCT/JP2011/058795 JP2011058795W WO2011135993A1 WO 2011135993 A1 WO2011135993 A1 WO 2011135993A1 JP 2011058795 W JP2011058795 W JP 2011058795W WO 2011135993 A1 WO2011135993 A1 WO 2011135993A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polyester film
laminated polyester
group
film according
Prior art date
Application number
PCT/JP2011/058795
Other languages
English (en)
French (fr)
Inventor
開俊啓
神田俊宏
藤田真人
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to US13/643,182 priority Critical patent/US20130095325A1/en
Priority to KR1020127028187A priority patent/KR101768459B1/ko
Priority to EP11774777.4A priority patent/EP2565034B1/en
Priority to CN2011800196420A priority patent/CN102844188A/zh
Publication of WO2011135993A1 publication Critical patent/WO2011135993A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0809Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups
    • C08G18/0814Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups containing ammonium groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]

Definitions

  • the present invention relates to a polyester film having a coating layer having excellent antistatic properties, easy adhesion properties and adhesion weather resistance for various topcoats.
  • Biaxially stretched polyester film excels in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, gas barrier properties, chemical resistance, etc., packaging materials, plate making materials, display materials, transfer materials, building materials, It is used for window paste materials, membrane switches, antireflection films used for flat displays, optical films such as diffusion sheets and prism sheets, and transparent touch panels.
  • window paste materials e.g., a paste, a paste, a paste, a film, and insulatively graft copolymer, and the like.
  • Patent Documents 1 and 2 As one method for improving the adhesiveness of a biaxially stretched polyester film, a method is known in which various resins are applied to the surface of the polyester film and an application layer having an easy adhesion property is provided.
  • Patent Documents 1 and 2 such an existing easily-adhesive coating layer may still not have sufficient adhesion depending on the type of the topcoat layer.
  • the solventless topcoat has a low penetration and swelling effect on the easy-adhesion layer compared to the solvent-based topcoat, and therefore has poor adhesion. It tends to be enough.
  • a method of imparting superior adhesiveness by providing an easy-adhesion layer having a specific composition has been proposed and improved (Patent Documents 3 to 5).
  • polyester films have been increasingly applied to applications such as automobiles and building materials, and particularly when used outdoors, not only adhesiveness but also adhesion weathering that maintains adhesion over a long period of time. Performance is required. Further, since static electricity generated in the film processing process causes contamination of foreign matters during processing, the polyester film is required to have not only adhesiveness but also antistatic performance. Therefore, a coating layer having adhesion weather resistance and antistatic properties as described above is required. However, any conventional easy adhesion coating layer and easy adhesion coating layer having antistatic properties still have sufficient effects. It is not done.
  • the solution subject is providing the polyester film which has a coating layer which has the outstanding antistatic property, easy-adhesion property, and adhesion weather resistance with respect to topcoat agent. It is in.
  • the present inventors have found that the above problems can be solved by providing a coating layer containing a specific type of compound, and the present invention has been completed.
  • the gist of the present invention is a laminated polyester film having a coating layer, the coating layer comprising an antistatic agent (A), a compound (B) having an isocyanate-based reactive group and a urethane bond, and an isocyanate-based reaction at the terminal.
  • the present invention resides in a laminated polyester film formed from a coating liquid containing a urethane resin (C) having no group and one or more crosslinking agents (D).
  • the present invention it is possible to provide a polyester film having a coating layer excellent in antistatic property, easy adhesion and adhesion weather resistance with respect to the top coat, and the industrial value of the present invention is high.
  • the base film used in the present invention is made of polyester.
  • polyesters include dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexyldicarboxylic acid or esters thereof.
  • It is a polyester produced by melt polycondensation with glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol.
  • Polyesters composed of these acid components and glycol components can be produced by arbitrarily using a commonly used method. For example, a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or a direct esterification of an aromatic dicarboxylic acid and a glycol, to form a substantially bisglycol of an aromatic dicarboxylic acid A method is employed in which an ester or a low polymer thereof is formed and then polycondensed by heating under reduced pressure. Depending on the purpose, an aliphatic dicarboxylic acid may be copolymerized.
  • polyester of the present invention examples include polyethylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and the like. It may be a polymerized polyester and may contain other components and additives as necessary.
  • particles can be contained for the purpose of ensuring the running property of the film and preventing scratches.
  • examples of such particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, calcium phosphate, kaolin, talc, aluminum oxide, titanium oxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide.
  • organic particles such as crosslinked polymer particles and calcium oxalate, and precipitated particles during the polyester production process can be used.
  • the particle size and content of the particles used are selected according to the application and purpose of the film, but the average particle size is usually in the range of 0.01 to 5.0 ⁇ m. If the average particle size exceeds 5.0 ⁇ m, the surface roughness of the film becomes too rough, or the particles are likely to fall off from the film surface. When the average particle size is less than 0.01 ⁇ m, the surface roughness is too small and sufficient slipperiness may not be obtained.
  • the particle content is usually in the range of 0.0003 to 1.0% by weight, preferably 0.0005 to 0.5% by weight, based on the polyester. When the particle content is less than 0.0003% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 1.0% by weight, the transparency of the film is poor.
  • the film may be enough.
  • it when it is particularly desired to ensure transparency, smoothness, etc. of the film, it can also be configured so as not to substantially contain particles. Further, various stabilizers, lubricants, antistatic agents and the like can be appropriately added to the film.
  • a film forming method of the film of the present invention a generally known film forming method can be adopted, and there is no particular limitation.
  • a sheet obtained by melt extrusion is first stretched 2 to 6 times at 70 to 145 ° C. by a roll stretching method to obtain a uniaxially stretched polyester film, and then perpendicular to the previous stretching direction in a tenter.
  • a film can be obtained by stretching 2 to 6 times in the direction at 80 to 160 ° C. and further performing heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the heat treatment zone and / or the cooling zone at the heat treatment outlet is preferable.
  • the polyester film in the present invention has a single layer or multilayer structure.
  • the surface layer and the inner layer, or both the surface layer and each layer can be made of different polyesters depending on the purpose.
  • the polyester film of the present invention has a coating layer on at least one surface, but even if a similar or other coating layer or functional layer is provided on the opposite surface of the film, it is naturally included in the concept of the present invention.
  • the coating layer may be provided by various known coating methods, but it is desirable to provide a coating layer during film formation, so-called in-line coating, particularly by coating stretching method in which stretching is performed after coating.
  • In-line coating is a method of coating within the process of manufacturing a polyester film. Specifically, it is a method of coating at any stage from melt extrusion of polyester to biaxial stretching and then heat setting and winding. is there. Normally, it is coated on either a substantially amorphous unstretched sheet obtained by melting and quenching, then a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In particular, as a coating stretching method, a method of stretching in the transverse direction after coating on a uniaxially stretched film is excellent.
  • biaxial stretching of the polyester film is achieved by stretching the film in the lateral direction while holding the film edge with a tenter, so that the film is constrained in the longitudinal / lateral direction.
  • High temperature can be applied while maintaining Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer is improved, and the coating layer and the polyester film are firmly adhered.
  • the uniformity of the coating layer, the improvement of the film-forming property, and the adhesion between the coating layer and the film often produce favorable characteristics.
  • the coating solution to be used is preferably an aqueous solution or an aqueous dispersion for safety reasons in terms of handling, working environment, and may contain an organic solvent if water is the main medium.
  • an antistatic agent (A) a compound having an isocyanate-based reactive group and a urethane bond (B), and a urethane resin having no isocyanate-based reactive group at the terminal (C ), And one or more crosslinking agents (D).
  • the antistatic agent (A) in the present invention is not particularly limited as long as it is a compound capable of imparting antistatic properties.
  • a high molecular weight ionic compound is preferably used from the viewpoints of adhesiveness and antistatic performance.
  • the high molecular weight ionic compound include an anionic compound and a cationic compound, and the cationic compound is particularly preferable from the viewpoint of adhesiveness and antistatic performance.
  • the number average molecular weight of the high molecular weight ionic compound is usually 5,000 to 60,000, preferably 10,000 to 60,000.
  • the high molecular weight cationic compound examples include a high molecular weight cationic compound obtained by homopolymerization or copolymerization of a compound having a quaternary ammonium salt and at least one double bond in the molecule. From the viewpoint of thermal stability, it is particularly preferable to use a compound containing a quaternary ammonium salt in the main chain structure of a high molecular weight cationic compound.
  • the content of the antistatic agent (A) in the coating solution is not limited and can be appropriately selected within the range where the desired characteristics are obtained. However, in view of adhesiveness and antistatic properties, the total amount in the coating solution is not limited.
  • the ratio to the solid content is preferably 5 to 60% by weight, more preferably 10 to 50% by weight.
  • the compound (B) having an isocyanate-based reactive group and a urethane bond is a compound having at least one isocyanate-based reactive group and a urethane bond in the molecule.
  • a compound obtained by reacting a hydroxyl group-containing compound and diisocyanate, a compound obtained by reacting a hydroxyl group-containing compound and polyisocyanate, or a compound obtained by reacting a polyol and polyisocyanate, and an isocyanate group that has not reacted with a hydroxyl group The compound which has at the terminal is mentioned.
  • blocked isocyanate which protected this terminal isocyanate with the blocking agent.
  • the compound (B) may be a urethane resin having an isocyanate group at the terminal, which is produced by reacting an excess polyisocyanate with a polyol. It is possible to use the raw material components used in
  • a compound having a core-shell structure produced by a method described in, for example, JP-A-2008-45072 can also be used as the compound (B). That is, for example, resin emulsion particles having a core-shell structure in which compound (B) is used as a core and the outside is covered with another resin can be used as compound (B) of the present invention. It is preferable from the viewpoint of the stability of the coating solution and the adhesiveness of the resulting coating layer. Moreover, it is good also as urethane resin (C) in this invention using the urethane resin mentioned later for resin of this shell part.
  • the blocking agent to be used is not particularly limited, and one or more types can be appropriately selected from known ones.
  • the blocking agent include phenolic, alcoholic, active methylene, mercaptan, acid amide, lactam, acid imide, imidazole, urea, oxime, and amine compounds.
  • phenol compounds such as phenol, cresol and ethylphenol
  • alcohol compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol and ethanol
  • active methylene compounds such as dimethyl malonate and acetylacetone
  • Mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, acid amide compounds such as acetanilide and acetic acid amide, lactam compounds such as ⁇ -caprolactam and ⁇ -valerolactam; acid imide compounds such as succinimide and maleic acid imide Oxime compounds such as acetoaldoxime, acetone oxime, methyl ethyl ketoxime, amine compounds such as diphenylaniline, aniline, ethyleneimine, Examples thereof include sodium sulfite.
  • the compound (B) in the present invention preferably has a tetramethylene to decamethylene structure (4 to 10 carbon atoms) in the resin structure, particularly from the viewpoint of adhesion weather resistance.
  • the tetramethylene to decamethylene structure mentioned here may be a derivative obtained by modifying the tetramethylene to decamethylene structure, such as a methyl group introduced into the side chain.
  • the compound (B) may be used alone or in combination of two or more.
  • the urethane resin (C) having no isocyanate-based reactive group at the terminal (hereinafter sometimes simply referred to as a urethane resin) is obtained by a polyisocyanate component and a polyol component by a known method for synthesizing an aqueous urethane resin.
  • the ionicity of the synthesized resin can be any of cation, anion, and nonionic, but the terminal does not have an isocyanate-based reactive group.
  • the usual polyisocyanate component is used as the component of the polyisocyanate, and is not particularly specified. However, in order to avoid yellowing of the coating film due to ultraviolet rays, an aromatic compound is used. Aliphatic or alicyclic diisocyanates are preferred over diisocyanates.
  • Aliphatic diisocyanates such as 1,6-diisocyanate and 2,4,4-trimethylhexamethylene-1,6-diisocyanate are exemplified, and isophorone diisocyanate, cyclohexyl diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated trimethyl
  • alicyclic diisocyanates such as xylylene diisocyanate. These diisocyanates are used individually by 1 type or in mixture of 2 or more types.
  • adduct modified products carbodiimide modified products, allophanate modified products, burette modified products, uretdione modified products, uretoimine, such as allophanate modified polyisocyanates obtained from hexamethylene diisocyanate and monools having 1 to 6 carbon atoms.
  • Modified products, isocyanurate modified products, and the like can also be used.
  • aromatic diisocyanates 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene-1,4-diisocyanate, xylene-1,3-diisocyanate, 4,4′-diphenylmethane diisocyanate, 2, 4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, m-phenylene diisocyanate, p -Phenylene diisocyanate, naphthylene-1,4-diisocyanate and the like are exemplified.
  • Polyester polyols, polyesteramide polyols, polyether polyols, polyether ester polyols, polycarbonate polyols, acrylic polyols, polyalkylene polyols, polyolefin polyols, etc. are used as polyols in the synthesis of such urethane resins, and these polyols may be used in combination.
  • the polyol component is usually preferably 300 to 5000 in terms of polystyrene-reduced number average molecular weight by gel permeation chromatography (GPC).
  • a chain extender is usually used, and the chain extender to be used is not particularly limited, but an amine compound such as diamine or polyamine is used as a chain extender than a diol compound. It is advantageous in terms of physical properties such as water resistance, solvent resistance and contamination resistance because it is easily highly crosslinked.
  • examples thereof include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • the urethane resin (C) in the present invention it is desirable that the urethane resin (C) has a tetramethylene to decamethylene structure in order to express the adhesion weather resistance performance in the present invention particularly well.
  • the urethane resin (C) having a tetramethylene to decamethylene structure can be obtained by using, for example, a polyisocyanate component, a polyol component, a chain extender or the like having a tetramethylene to decamethylene structure as a component.
  • a polyol having a tetramethylene to decamethylene structure it is industrially easy to use a polyol having a tetramethylene to decamethylene structure.
  • the polyol having a tetramethylene to decamethylene structure may be a derivative obtained by modifying the tetramethylene to decamethylene structure, for example, a methyl group introduced into the side chain.
  • the urethane resin (C) in the present invention preferably has a glass transition point (hereinafter sometimes referred to as Tg) of 10 ° C. or less, more preferably 0 ° C. or less, and still more preferably ⁇ 10 ° C. or less.
  • Tg glass transition point
  • the measurement of Tg here refers to the temperature at which E ′′ is maximized by preparing a dry film of urethane resin (C) and performing dynamic viscoelasticity measurement.
  • the compound (B) and the urethane resin (C) may use a solvent as a medium, but preferably use water as a medium.
  • a forced emulsification type using an emulsifier a self-emulsification type in which a hydrophilic group or an ionic group is introduced into a polyurethane resin, or a water-soluble type.
  • the self-emulsifying type that introduces nonionic hydrophilic groups such as ethylene oxide chains into the polyurethane resin skeleton, or introduces ionic groups into the skeleton to form ionomers is the storage stability of the liquid and the water resistance of the resulting coating layer. It is preferable because of its excellent adhesiveness.
  • examples of the ionic group to be introduced include a carboxyl group, sulfonic acid, phosphoric acid, phosphonic acid, quaternary ammonium, and the like, and carboxyl group and quaternary ammonium are preferable.
  • a method for introducing a carboxyl group into a urethane resin various methods can be taken in each stage of the polymerization reaction. For example, at the time of prepolymer synthesis, a resin having a carboxyl group can be used as a copolymerization component, or a component having a carboxyl group can be used as one component such as a polyol, polyisocyanate, or chain extender.
  • a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
  • dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin.
  • the carboxyl group may be neutralized with a neutralizing agent.
  • the neutralizing agent an ordinary one is arbitrarily used.
  • organic amines such as ethylamine, trimethylamine, triethylamine, triisopropylamine, triethanolamine, triisopropanolamine, morpholine, N-methylmorpholine are preferably used, and inorganic alkalis such as sodium hydroxide and potassium hydroxide, and ammonia are also illustrated.
  • inorganic alkalis such as sodium hydroxide and potassium hydroxide, and ammonia are also illustrated.
  • a highly volatile one that is easily dissociated by heat or an amino alcohol that reacts with a polyisocyanate curing agent is more preferred.
  • the carboxyl group from which the neutralizing agent has been removed in the drying step after coating can be used as a crosslinking reaction point by another crosslinking agent.
  • another crosslinking agent it is possible to further improve the durability, solvent resistance, water resistance, blocking resistance, and the like of the obtained coating layer, as well as excellent stability in a liquid state before coating.
  • a tertiary amino group is introduced at the stage of synthesizing the urethane prepolymer, and the tertiary amino group is neutralized with an acid or a quaternizing agent.
  • a cationic aqueous urethane resin is obtained by quaternizing with and dispersing in water. Examples of introducing a tertiary amino group include the use of a chain extender having a tertiary amino group.
  • chain extender examples include N-methyldiethanolamine, N N-alkyl dialkanolamines such as ethyldiethanolamine, N-alkyldiaminoalkylamines such as N-methyldiaminoethylamine and N-ethyldiaminoethylamine, and triethanolamine.
  • the content of the compounds (B) and (C) in the coating layer solution is not particularly limited and can be appropriately selected within the range where the desired properties are obtained. However, if the amount is too small, the effect is obtained. Hateful. Therefore, the ratio of the compound (B) to the total solid content in the coating solution is preferably from 5 to 90% by weight, more preferably from 5 to 70% by weight, and particularly preferably from 5 to 50% by weight.
  • the urethane resin (C) is preferably 10 to 90% by weight, more preferably 20 to 60% by weight, and particularly preferably 20 to 50% by weight as a ratio to the total solid content in the coating solution. .
  • crosslinking agent (D) in the present invention examples include different types of isocyanate compounds, oxazoline compounds, epoxy compounds, melamine compounds, carbodiimide compounds, alkoxysilane compounds, silane coupling agents, organometallic complexes, and the like from the above (B).
  • crosslinking agents at least one kind is used, but from the viewpoint of adhesion weather resistance, it is preferable to use at least one selected from the group of oxazoline compounds, epoxy compounds, melamine compounds, and carbodiimide compounds.
  • the oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer, for example, alkyl acrylate, alkyl methacrylate (the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, (meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, Unsaturated carboxylic acids such as styrenesulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; acrylamide, methacryl
  • a polymer having an oxazoline group in the side chain is preferable, and such a polymer can be easily obtained by polymerization of an addition polymerizable oxazoline group-containing monomer with another monomer.
  • an addition polymerizable oxazoline group-containing monomer with another monomer.
  • an acrylic monomer as another monomer
  • “Epocross WS-500”, “Epocross WS-300”, which are polymer type crosslinking agents in which an oxazoline group is branched to an acrylic resin Nippon Shokubai Co., Ltd.
  • Examples of the epoxy compound include polyepoxy compounds, diepoxy compounds, glycidylamine compounds, etc.
  • examples of the polyepoxy compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, and diglycerol polyglycidyl ether.
  • Triglycidyl tris (2-hydroxyethyl) isocyanate Triglycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, diepoxy compounds such as neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcindi Glycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl Ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, monoepoxy compound, for example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, glycidyl amine compound, N , N, N ′, N ′,-tetrag
  • polyfunctional epoxy compounds are preferred, and polyfunctional epoxy compounds having at least two glycidyl ether structures are more preferred.
  • An example of a commercially available product is “Denacol EX-521” (manufactured by Nagase ChemteX Corporation), which is polyglycerol polyglycidyl ether.
  • the melamine compound is not particularly limited, but melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a methylolated melamine with a lower alcohol, or a mixture thereof, etc. Can be used. Moreover, as a melamine compound, the condensate which consists of a monomer, a dimer or more multimer, a mixture thereof, etc. can be used. As the lower alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be used.
  • the functional group is an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule.
  • the imino group type methylated melamine resin, the methylol group type melamine resin, the methylol group type Examples thereof include a methylated melamine resin and a fully alkyl type methylated melamine resin.
  • methylol group-type methylated melamine resin is preferable, and “Beccamin J-101” (manufactured by Dainippon Ink & Chemicals, Inc.) and the like can be cited as examples of commercially available products.
  • the carbodiimide compound refers to a compound having two or more carbodiimide groups (—N ⁇ C ⁇ N—) in the molecule, for example, as disclosed in JP-A-10-316930 and JP-A-11-140164.
  • an organic polyisocyanate particularly preferably an organic diisocyanate, is used as a main synthetic raw material.
  • Diisocyanates include hexamethylene diisocyanate (HDI), hydrogenated xylylene diisocyanate (H6XDI), xylylene diisocyanate (XDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), 1,12-diisocyanate dodecane (DDI).
  • NBDI Norbornane diisocyanate
  • OCDI 2,4-bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane
  • HMDI 4,4′-dicyclohexylmethane diisocyanate
  • TMXDI tetramethylxylylene diisocyanate
  • IPDI isophorone diisocyanate
  • the carbodiimide compound has a structure in which a terminal isocyanate group is sealed with a hydrophilic group, which is obtained by decarbonization condensation reaction of diisocyanates.
  • a hydrophilic group-containing carbodiimide resin obtained by modifying a carbodiimide resin with a compound containing a hydrophilic group.
  • the modifier include polyalkylene oxides such as PEG (polyethylene glycol) and PPG (polypropylene glycol).
  • Examples of commercially available carbodiimide resins containing hydrophilic groups include “Carbodilite SV-02”, “Carbodilite V-02”, “Carbodilite V-02-L2” and “Carbodilite V” which are aqueous solutions having an active ingredient concentration of 40% by mass.
  • the amount of the crosslinking agent (D) in the coating solution is not limited, but is preferably 10 to 80% by weight, more preferably 10% by weight based on the total solid content in the coating solution. -50% by weight, particularly preferably 10-30% by weight. If it is out of this range, there is a tendency that the adhesion weather resistance is lowered.
  • the content is less than this ratio, the effect of preventing blocking tends to be insufficient. If the content is too large, the blocking prevention effect is high, but the transparency of the coating layer may be reduced, the continuity of the coating layer may be impaired, and the coating strength may be reduced. May decrease. Specifically, it is preferably 15% by weight or less, more preferably 10% by weight or less. By this method, it becomes possible to achieve both easy adhesion performance and anti-blocking performance.
  • the particles for example, inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles can be used.
  • silica particles are preferred from the viewpoint of dispersibility in the coating layer and transparency of the resulting coating film. If the particle size is too small, the effect of preventing blocking is difficult to obtain, and if it is too large, dropping off from the coating film tends to occur.
  • the average particle size is preferably about 1/2 to 10 times the thickness of the coating layer. Furthermore, if the particle size is too large, the transparency of the coating layer may be inferior, so the average particle size is preferably 300 nm or less, and more preferably 150 nm or less.
  • the average particle diameter of the particles described here can be obtained by measuring the 50% average diameter of the number average of the particle dispersion with Microtrac UPA (Nikkiso Co., Ltd.).
  • the coating solution for providing an easily adhesive coating layer may contain components other than those described above as necessary.
  • surfactants other binders, antifoaming agents, coatability improvers, thickeners, antioxidants, ultraviolet absorbers, foaming agents, dyes, pigments and the like. These additives may be used alone or in combination of two or more as necessary.
  • a coating technique as shown in “Coating system” published by Yuji Harasaki, Tsuji Shoten, published in 1979 can be used. Specifically, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, cast coater, spray coater, curtain coater, calendar coater And techniques such as an extrusion coater and a bar coater.
  • the coating amount of the coating layer provided on the polyester film is usually 0.002 to 1.0 g / m 2 , preferably 0.005 to 0.5 g / m 2 , more preferably when viewed as the final coating. Is 0.01 to 0.2 g / m 2 . If the coating amount is less than 0.002 g / m 2, sufficient adhesion performance may not be obtained.
  • the laminated polyester film of the present invention preferably has a surface resistivity of 1 ⁇ 10 12 ⁇ or less, more preferably 1 ⁇ 10 10 ⁇ or less.
  • the surface resistivity mentioned here can be measured by a method described in, for example, JIS: C-2318.
  • Adhesiveness An active energy ray-curable resin composition as shown below was applied on the polyester film coating layer so that the thickness after curing was 3 ⁇ m, and high pressure was applied using an ultraviolet irradiation device UVC-402 manufactured by USHIO INC.
  • the active energy ray-curable resin composition is cured by irradiating ultraviolet rays with a mercury lamp at 160 W / cm, an irradiation distance of 100 mm, and a conveyor speed of 3 m / min.
  • the active energy ray-cured resin layer of the obtained laminated film is cross-cut so that there are 100 grids in a 1-inch width, and a rapid peel test is performed with cello tape (registered trademark). Evaluated.
  • the judgment criteria are as follows. 5: 0 ⁇ number of cross-cuts ⁇ 10 4: 11 ⁇ number of cross-cuts ⁇ 20 3: 21 ⁇ number of cross-cuts ⁇ 40 2: 41 ⁇ number of cross-cuts ⁇ 80 1: 81 ⁇ Number of cross-cuts peeled / active energy ray curable resin composition: 70 parts by weight of Kayrad DPHA (manufactured by Nippon Kayaku Co., Ltd.), 30 parts by weight of Kayrad R128H (manufactured by Nippon Kayaku Co., Ltd.), IRGACURE 651 (Ciba Specialty Chemicals Co., Ltd.) A composition comprising 5 parts by weight.
  • Adhesive weather resistance The polyester film surface of the laminated film obtained in the same manner as in the above (1) is attached to a glass plate, and the glass plate is put on a container containing boiling water so that the active energy ray-curable resin layer is below, and the active energy ray The cured resin layer is exposed to steam for 5 minutes to apply a wet heat load, and then irradiated with ultraviolet rays using a UVC-402 with a high-pressure mercury lamp at 160 W / cm, an irradiation distance of 100 mm, and a conveyor speed of 1 m / min.
  • the active energy ray-cured resin layer of the obtained laminated film was cross-cut so that there were 100 grids in a 1-inch width, and rapid peeling with cello tape (registered trademark).
  • a test was conducted, and the adhesion was evaluated by the peeled area.
  • the criterion is the same as (1).
  • polyester raw materials used in Examples and Comparative Examples are as follows.
  • (AS1) a high molecular compound having a number average molecular weight of 21,000, obtained by copolymerizing a structural unit of the following formula 1, a structural unit of the following formula 2, and a structural unit of the following formula 3 at a weight ratio of 80/10/10. .
  • AS2 Poly (trimethylammonium ethyl methacrylate) monomethyl sulfate homopolymer (polymer compound having a number average molecular weight of about 30000).
  • the surface is composed of 80 parts of isophorone diisocyanate, 20.2 parts of hexamethylene diisocyanate trimer, 229 parts of polyhexamethylene carbonate having a number average molecular weight of 1000, 2.6 parts of trimethylolpropane, and 16.1 parts of dimethylolpropionic acid.
  • the core-shell structure is coated with a urethane resin that is neutralized with triethylamine and chain-extended with diethylenetriamine.
  • UB1 consisting of 78.7 parts of 4,4′-dicyclohexylmethane diisocyanate, 570 parts of terminal OH-modified polyhexamethylene carbonate having a number average molecular weight of 1000, and 15.5 parts of N-methyl-N, N-diethanolamine.
  • An aqueous dispersion of a polyurethane resin having a Tg of ⁇ 20 ° C. obtained by reacting a prepolymer with dimethyl sulfate.
  • Polyester 1 and polyester 2 are blended at a weight ratio of 95/5, dried thoroughly, melted by heating to 280-300 ° C, extruded into a sheet form from a T-shaped die, and the surface using an electrostatic adhesion method
  • An unstretched polyethylene terephthalate film was prepared by cooling and solidifying while closely contacting a mirror surface cooling drum having a temperature of 40 to 50 ° C. This film was stretched 3.7 times in the longitudinal direction while passing through a heating roll group at 85 ° C. to obtain a uniaxially oriented film.
  • the coating composition as shown in Table 1 was applied to one side of this uniaxially oriented film.
  • the film was guided to a tenter stretching machine, and the coating composition was dried using the heat, stretched 4.0 times in the width direction at 100 ° C., and further subjected to heat treatment at 230 ° C., resulting in a film thickness of 100 ⁇ m.
  • the coating film which provided the coating layer of the quantity of 0.04 g / m ⁇ 2 > on the biaxially-oriented polyethylene terephthalate film was obtained.
  • the properties of this film are also shown in Table 1.
  • the film of the present invention can be suitably used as a biaxially stretched polyester film for outdoor use that requires excellent antistatic properties, easy adhesion and adhesion weather resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 反射防止フィルムや、光学フィルムなどに使用されるポリエステルフィルムであって、各種上塗り剤に対して、易接着性及び接着耐候性の優れた塗布層を有するポリエステルフィルムを提供する。 塗布層を有する積層ポリエステルフィルムであって、該塗布層が、帯電防止剤(A)、イソシアネート系反応基とウレタン結合を有する化合物(B)、末端にイソシアネート系反応基を有さないウレタン樹脂(C)および1種以上の架橋剤(D)を含有する塗布液から形成されてなる。

Description

積層ポリエステルフィルム
 本発明は、各種の上塗り剤に対して、優れた帯電防止性、易接着性及び接着耐候性を併せ持つ塗布層を有するポリエステルフィルムに関するものである。
 二軸延伸ポリエステルフィルムは、透明性、寸法安定性、機械的特性、耐熱性、電気的特性、ガスバリヤー性、耐薬品性などに優れ、包装材料、製版材料、表示材料、転写材料、建材、窓貼り材料などを始め、メンブレンスイッチや、フラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム、透明タッチパネルなどに使用されている。しかし、かかる用途においてポリエステルフィルム上に他の材料を塗布積層する場合に、使用される材料によっては接着性が悪いという欠点がある。
 二軸延伸ポリエステルフィルムの接着性を改良する方法の一つとして、ポリエステルフィルムの表面に各種樹脂を塗布し、易接着性能を持つ塗布層を設ける方法が知られている。(特許文献1~2)
 しかしながら、このような既存の易接着性の塗布層では、上塗り層の種類によっては、その接着性が依然として十分ではない場合がある。例えば上塗り剤として、いわゆる無溶剤型UV硬化塗料が使用される場合、無溶剤型の上塗り剤は溶剤系の上塗り剤に比べて易接着層への浸透、膨潤効果が低いため、接着性が不十分となりやすい。これらの課題には、例えば特定の組成の易接着層を設ける事により、より優れた接着性を付与する方法が提案され、改善がなされてきている(特許文献3~5)。
 しかしながら、最近、ポリエステルフィルムが自動車や建材等の用途へ適用されることが増えてきており、特に屋外で使用される際には、接着性だけでなく、長期間にわたり接着性を維持する接着耐候性能が求められている。また、フィルムの加工過程において生じる静電気は、加工時において異物混入などの原因となっているため、ポリエステルフィルムには接着性だけでなく帯電防止性能の付与も求められている。そのため、上記の様な接着耐候性および帯電防止性を有する塗布層が必要とされているが、従来のどの易接着塗布層および帯電防止性を有する易接着塗布層も、依然として十分な効果は得られていない。
特開平2002-53687号公報 特開平11-286092号公報 特開2009-220376号公報 特開2009-221359号公報 特開2010-13550号公報
 本発明は、上記実情に鑑みなされたものであって、その解決課題は上塗り剤に対して、優れた帯電防止性、易接着性及び接着耐候性を併せ持つ塗布層を有するポリエステルフィルムを提供することにある。
 本発明者らは、上記の課題に関して鋭意検討を重ねた結果、特定の種類の化合物を含有する塗布層を設けることにより、上記課題が解決されることを見いだし、本発明を完成するに至った。
 すなわち、本発明の要旨は、塗布層を有する積層ポリエステルフィルムであって、該塗布層が、帯電防止剤(A)、イソシアネート系反応基とウレタン結合を有する化合物(B)、末端にイソシアネート系反応基を有さないウレタン樹脂(C)、および1種以上の架橋剤(D)を含有する塗布液から形成されてなることを特徴とする積層ポリエステルフィルムに存する。
 本発明によれば、上塗り剤に対して、帯電防止性、易接着性及び接着耐候性の優れた塗布層を有するポリエステルフィルムを提供することができ、本発明の工業的価値は高い。
 以下、本発明を詳細に説明する。
 本発明において使用する基材フィルムは、ポリエステルからなるものである。かかるポリエステルとは、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、4,4’-ジフェニルジカルボン酸、1,4-シクロヘキシルジカルボン酸のようなジカルボン酸またはそのエステルとエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのようなグリコールとを溶融重縮合させて製造されるポリエステルである。これらの酸成分とグリコール成分とからなるポリエステルは、通常行われている方法を任意に使用して製造することができる。例えば、芳香族ジカルボン酸の低級アルキルエステルとグリコールとの間でエステル交換反応をさせるか、あるいは芳香族ジカルボン酸とグリコールとを直接エステル化させるかして、実質的に芳香族ジカルボン酸のビスグリコールエステル、またはその低重合体を形成させ、次いでこれを減圧下、加熱して重縮合させる方法が採用される。その目的に応じ、脂肪族ジカルボン酸を共重合しても構わない。
 本発明のポリエステルとしては、代表的には、ポリエチレンテレフタレートやポリエチレン-2,6-ナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート等が挙げられるが、その他に上記の酸成分やグリコール成分を共重合したポリエステルであってもよく、必要に応じて他の成分や添加剤を含有していてもよい。
 本発明におけるポリエステルフィルムには、フィルムの走行性を確保したり、キズが入ることを防いだりする等の目的で粒子を含有させることができる。このような粒子としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、カオリン、タルク、酸化アルミニウム、酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子、架橋高分子粒子、シュウ酸カルシウム等の有機粒子、さらに、ポリエステル製造工程時の析出粒子等を用いることができる。
 用いる粒子の粒径や含有量はフィルムの用途や目的に応じて選択されるが、平均粒径に関しては、通常は0.01~5.0μmの範囲である。平均粒径が5.0μmを超えるとフィルムの表面粗度が粗くなりすぎたり、粒子がフィルム表面から脱落しやすくなったりする。平均粒径が0.01μm未満では、表面粗度が小さすぎて、十分な易滑性が得られない場合がある。粒子含有量については、ポリエステルに対し、通常0.0003~1.0重量%、好ましくは0.0005~0.5重量%の範囲である。粒子含有量が0.0003重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、1.0重量%を超えて添加する場合には、フィルムの透明性が不十分な場合がある。なおフィルムの透明性、平滑性などを特に確保したい場合には、実質的に粒子を含有しない構成とすることもできる。また、適宜、各種安定剤、潤滑剤、帯電防止剤等をフィルム中に加えることもできる。
 本発明のフィルムの製膜方法としては、通常知られている製膜法を採用でき、特に制限はない。例えば、まず溶融押出によって得られたシートを、ロール延伸法により、70~145℃で2~6倍に延伸して、一軸延伸ポリエステルフィルムを得、次いで、テンター内で先の延伸方向とは直角方向に80~160℃で2~6倍に延伸し、さらに、150~250℃で1~600秒間熱処理を行うことでフィルムが得られる。さらにこの際、熱処理のゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩する方法が好ましい。
 本発明におけるポリエステルフィルムは、単層または多層構造である。多層構造の場合は、表層と内層、あるいは両表層や各層を目的に応じ異なるポリエステルとすることができる。
 本発明のポリエステルフィルムは少なくとも片面に塗布層を有するが、フィルムの反対面に同様のあるいは他の塗布層や機能層を設けていても、本発明の概念に当然含まれるものである。
 本発明において塗布層は、公知の様々な塗布方法により設けてもよいが、フィルムの製膜中に塗布層を設ける、いわゆるインラインコーティング、特に塗布後に延伸を行う塗布延伸法により設けることが望ましい。
 インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押出ししてから二軸延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融・急冷して得られる実質的に非晶状態の未延伸シート、その後に長手方向(縦方向)に延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルムの何れかにコーティングする。特に塗布延伸法としては、一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。
 かかる方法によれば、製膜と塗布層塗設を同時に行うことができるため、製造コスト上のメリットがあり、コーティング後に延伸を行うために、薄膜で均一なコーティングとなるために接着性能が安定する。また、二軸延伸される前のポリエステルフィルム上を、まず易接着樹脂層で被覆し、その後フィルムと塗布層を同時に延伸することで、基材フィルムと塗布層が強固に密着することになる。
 また、ポリエステルフィルムの二軸延伸は、テンターによりフィルム端部を把持しつつ横方向に延伸することで、フィルムが長手/横手方向に拘束されており、熱固定において、しわ等が入らず平面性を維持したまま高温をかけることができる。それゆえ、コーティング後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、また塗布層とポリエステルフィルムが強固に密着する。易接着性ポリエステルフィルムとして、塗布層の均一性、造膜性の向上および塗布層とフィルムの密着は好ましい特性を生む場合が多い。
 この場合、用いる塗布液は、取扱い上、作業環境上、安全上の理由から水溶液または水分散液であることが望ましいが、水を主たる媒体としていれば、有機溶剤を含有していてもよい。
 次に、本発明においてフィルムに設ける塗布層について述べる。
 本発明において塗布層を設けるための塗布液中には、帯電防止剤(A)、イソシアネート系反応基とウレタン結合を有する化合物(B)、末端にイソシアネート系反応基を有さないウレタン樹脂(C)、および1種以上の架橋剤(D)を含有する。
 本発明における帯電防止剤(A)は、帯電防止性を付与し得る化合物であれば、特に限定されるものではないが、例えば、金属化合物や電子伝導ポリマー、電荷移動錯体化合物、導電性カーボン、高分子量のイオン性化合物(高分子型帯電防止剤)などが挙げられる。
 特には、高分子量のイオン性化合物が、接着性および帯電防止性能の観点から好適に用いられる。高分子量のイオン性化合物としては、アニオン性化合物、カチオン性化合物などが挙げられるが、特にカチオン性化合物が、接着性および帯電防止性能の観点から好ましい。また、高分子量のイオン性化合物の数平均分子量は、通常5,000~60,000、好ましくは10,000~60,000である。
 高分子量のカチオン性化合物としては、例えば、分子内に4級アンモニウム塩と少なくとも1つ以上の二重結合を有する化合物を単独重合もしくは共重合させた、高分子量のカチオン性化合物などが用いられるが、熱安定性の観点から高分子量のカチオン性化合物の主鎖構造に4級アンモニウム塩を含有する化合物を使用することが特に好ましい。
 塗布液中の帯電防止剤(A)の含有量は、限定されるものではなく、目的とする特性の出る範囲で適宜選択できるが、接着性および帯電防止性を鑑みると、塗布液中の総固形分に対する比率で、5~60重量%が好ましく、10~50重量%がより好ましい。
 本発明において、イソシアネート系反応基とウレタン結合を有する化合物(B)とは、分子中にイソシアネート系反応基およびウレタン結合を少なくとも1つ含む化合物のことである。例えば、水酸基含有化合物とジイソシアネートを反応させた化合物、水酸基含有化合物とポリイソシアネートを反応させた化合物、ポリオールとポリイソシアネートを反応させた化合物の何れかであって、水酸基と反応していないイソシアネート基を末端に有する化合物が挙げられる。
 なお、この末端イソシアネートをブロック剤で保護した、いわゆるブロックイソシアネートとすることもできる。本発明においては、液安定性等の観点から、ブロックイソシアネートとしたものを化合物(B)として用いる形態が好ましい。かかる化合物(B)としては、ポリオールに過剰ポリイソシアネートを反応させて生成した、末端にイソシアネート基を有するウレタン樹脂であっても構わず、この樹脂の合成には後述のウレタン樹脂(C)の合成に使用する原料成分を用いることが可能である。
 また、本発明では、例えば特開2008-45072号公報に記載のあるような方法により生成する、コアシェル構造を有する化合物を化合物(B)として使用することもできる。すなわち、例えば化合物(B)をコアとして、その外側が他の樹脂により覆われた様な、コアシェル構造をもつ樹脂エマルジョン粒子を本発明の化合物(B)として使用でき、この様な形態の樹脂は塗布液の安定性や、得られる塗布層の接着性の観点から好ましい。また、このシェル部の樹脂に、後述するウレタン樹脂を用いて、本発明におけるウレタン樹脂(C)としてもよい。
 本発明において化合物(B)のイソシアネート基をブロックしてブロックイソシアネートの形態で使用する場合、使用するブロック剤は特に制限されず、公知のものから適宜1種以上を選択して使用することができる。当ブロック剤としては、例えば、フェノール系、アルコール系、活性メチレン系、メルカプタン系、酸アミド系、ラクタム系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系化合物などが使用できる。
 より具体的には例えば、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、アセトアニリド、酢酸アミドなどの酸アミド系化合物、ε-カプロラクタム、δ-バレロラクタムなどのラクタム系化合物;コハク酸イミド、マレイン酸イミドなどの酸イミド系化合物、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシムなどのオキシム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、亜硫酸ナトリウム等が挙げられる。
 本発明における化合物(B)は、特に接着耐候性の観点から樹脂の構造中にテトラメチレン~デカメチレン構造(炭素数4~10)を有していることが好ましい。
 なお、ここで言うテトラメチレン~デカメチレン構造は、側鎖にメチル基を導入したものなど、テトラメチレン~デカメチレン構造に変性を加えた誘導体であってもかまわない。
 本発明において、化合物(B)は、単独で用いてもよいし、複数種組み合わせて用いてもよい。
 本発明において、末端にイソシアネート系反応基を有さないウレタン樹脂(C)(以下、単にウレタン樹脂と言うことがある)は、公知の水性ウレタン樹脂の合成法により、ポリイソシアネート成分とポリオール成分とを用いて合成された樹脂であり、合成した樹脂のイオン性はカチオン・アニオン・ノニオン性のいずれであっても使用することができるが、末端にはイソシアネート系の反応基は有さない。
 本発明のかかるウレタン樹脂の合成における、ポリイソシアネートの成分にはポリウレタン樹脂の原材料としての通常のものが用いられて、特に規定はされないが、コーティング被膜の紫外線による黄変を避けるために、芳香族ジイソシアネートよりも脂肪族又は脂環族ジイソシアネートが好ましい。
 具体的な例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート、2,2,4-トリメチルヘキサメチレン-1,6-ジイソシアネート、2,4,4-トリメチルヘキサメチレン-1,6-ジイソシアネートなどの脂肪族ジイソシアネートが例示され、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、水素添加キシリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリメチルキシリレンジイソシアネートなどの脂環族ジイソシアネートがある。これらのジイソシアネートは、1種単独又は2種以上の混合で使用される。
 更には、ヘキサメチレンジイソシアネートと炭素数1~6のモノオールから得られるアロファネート変性ポリイソシアネートなどのような、これらのアダクト変性体、カルボジイミド変性体、アロファネート変性体、ビュレット変性体、ウレトジオン変性体、ウレトイミン変性体、イソシアヌレート変性体なども使用できる。
 なお、芳香族ジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、2,4´-ジフェニルメタンジイソシアネート、4,4´-ジフェニルエーテルジイソシアネート、2,2´-ジフェニルプロパン-4,4´-ジイソシアネート、3,3´-ジメチルジフェニルメタン-4,4´-ジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネートなどが例示される。
 かかるウレタン樹脂の合成におけるポリオールには、ポリエステルポリオール、ポリエステルアミドポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリアルキレンポリオール、ポリオレフィンポリオールなどが使用され、これらポリオールを併用してもよい。又、ポリオール成分としては、通常、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量で、300~5000であることが好ましい。
 本発明におけるウレタン樹脂(C)の合成には、通常鎖延長剤が使用され、用いる鎖延長剤も特に制限されないが、ジアミン又はポリアミン等のアミン化合物が、ジオール化合物を鎖延長剤とするよりも、容易に高架橋するため、耐水性や耐溶剤性及び耐汚染性などの物性において有利である。
 これらのアミン化合物の具体例は、ジアミンではエチレンジアミン、イソホロンジアミンなどが例示され、ポリアミンでは、HN-(CNH)-CNH(n=1~8)で表される、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどが例示される。
 本発明におけるウレタン樹脂(C)において、本発明における接着耐候性能を特によく発現させるためにはウレタン樹脂(C)の構造中に、テトラメチレン~デカメチレン構造を有していることが望ましい。
 テトラメチレン~デカメチレン構造をもつウレタン樹脂(C)は、例えば、ポリイソシアネート成分やポリオール成分、鎖延長剤等にテトラメチレン~デカメチレン構造を有する物を構成成分の一部として使用することで得られる。特に優れた特性のウレタン樹脂を得るためには、テトラメチレン~デカメチレン構造を有するポリオールを使用することが工業的に容易である。また、このテトラメチレン~デカメチレン構造を有するポリオールには、側鎖に例えば、メチル基を導入したものなど、テトラメチレン~デカメチレン構造に変性を加えた誘導体であってもかまわない。
 本発明におけるウレタン樹脂(C)は、ガラス転移点(以下、Tgと記載することがある)が10℃以下であることが好ましく、より好ましくは0℃以下、更に好ましくは-10℃以下の樹脂を使用すると接着耐候性の効果が得やすく、Tgが10℃より高いものは、易接着性が不十分となることがある。ここで言うTgの測定は、ウレタン樹脂(C)の乾燥皮膜を作成し、動的粘弾性測定を行い、E’’が最大となる温度を指す。
 本発明において、化合物(B)及びウレタン樹脂(C)は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ポリウレタンを水に分散または溶解させるには、乳化剤を用いる強制乳化型、ポリウレタン樹脂中に親水性基やイオン基を導入する自己乳化型あるいは水溶型等がある。特に、ポリウレタン樹脂の骨格中にエチレンオキシド鎖等のノニオン性親水基を導入する、もしくは骨格中にイオン基を導入しアイオノマー化する、自己乳化タイプが液の貯蔵安定性や得られる塗布層の耐水性、接着性に優れており好ましい。
 イオン基を導入する場合、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、4級アンモニウム等、種々のものが挙げられるが、カルボキシル基および4級アンモニウムが好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いたり、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いたりすることができる。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。
 例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸等を共重合させることができる。
 なおカルボキシル基は中和剤により中和されていても構わない。中和剤としては、通常のものが任意に使用される。例えば、エチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリエタノールアミン、トリイソプロパノールアミン、モルホリン、N-メチルモルホリンなどの有機アミン類が好ましく使用され、水酸化ナトリウム、水酸化カリウムなどの無機アルカリ類やアンモニアも例示される。乾燥後の耐候性や耐水性を向上させるためには、熱によって容易に解離する揮発性の高いもの又はポリイソシアネート硬化剤と反応するアミノアルコールがより好ましい。
 かかるポリウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、他の架橋剤による架橋反応点として用いることができる。これにより、塗布前の液の状態での安定性に優れる上、得られる塗布層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。
 4級アンモニウムを導入し、ウレタン樹脂にカチオン性を付与する場合は、ウレタンプレポリマーを合成する段階において、3級アミノ基を導入し、その3級アミノ基を酸で中和又は4級化剤で4級化させ、水に分散させる事でカチオン性水系ウレタン樹脂を得る。3級アミノ基を導入する例としては、3級アミノ基をもつ鎖延長剤を使用する事などがあげられ、この様な鎖延長剤の例としては、具体的にはN-メチルジエタノールアミン、N-エチルジエタノールアミン等のN-アルキルジアルカノールアミン、N-メチルジアミノエチルアミン、N-エチルジアミノエチルアミン等のN-アルキルジアミノアルキルアミン、トリエタノールアミン等が挙げられる。
 塗布層液中の化合物(B)および(C)の含有量は、特に限定されるものではなく、目的とする特性の出る範囲で適宜選択できるが、量が少量過ぎると、その効果が得られにくい。そのため化合物(B)は、塗布液中の総固形分に対する比率で、5~90重量%が好ましく、より好ましくは5~70重量%、特に好ましくは5~50重量%とすると効果が高い。また、ウレタン樹脂(C)は、塗布液中の総固形分に対する比率で、10~90重量%が好ましく、より好ましくは20~60重量%、特に好ましくは20~50重量%とすると効果が高い。
 本発明における架橋剤(D)には、例えば、上記(B)とは異なる種類のイソシアネート化合物、オキサゾリン化合物、エポキシ化合物、メラミン化合物、カルボジイミド化合物、アルコキシシラン化合物、シランカップリング剤、有機金属錯体などの公知の架橋剤の内、少なくとも1種以上を用いるが、接着耐候性の観点から、オキサゾリン化合物、エポキシ化合物、メラミン化合物、カルボジイミド化合物の群から選択される少なくとも1種を用いることが好ましい。
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にはオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。
 付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等のア(メタ)クリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N-アルキルアクリルアミド、N-アルキルメタクリルアミド、N,N-ジアルキルアクリルアミド、N,N-ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
 特に、オキサゾリン基を側鎖に有する重合体が好ましく、斯かる重合体は、付加重合性オキサゾリン基含有モノマーと他のモノマーとの重合によって容易に得られる。他のモノマーとしてアクリル系モノマーを使用したオキサゾリン化合物の商品の一例としては、オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤である、「エポクロスWS-500」、「エポクロスWS-300」(日本触媒社製)等が挙げられる。
 エポキシ化合物としては、ポリエポキシ化合物、ジエポキシ化合物、グリシジルアミン化合物等が挙げられ、ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。
 特に、多官能エポキシ化合物が好ましく、少なくとも2個のグリシジルエーテル構造を有する多官能エポキシ化合物が更に好ましい。市販品の一例としては、ポリグリセロールポリグリシジルエーテルである、「デナコールEX-521」(ナガセケムテックス社製)等が挙げられる。
 メラミン化合物は、特に限定されないが、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アルコールを反応させて部分的あるいは完全にエーテル化した化合物、あるいはこれらの混合物などを用いることができる。また、メラミン化合物としては、単量体、2量体以上の多量体からなる縮合物、あるいはこれらの混合物などを用いることができる。エーテル化に使用する低級アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、およびイソブタノールなどを用いることができる。官能基とは、イミノ基、メチロール基、あるいはメトキシメチル基やブトキシメチル基などのアルコキシメチル基を1分子中に有するもので、イミノ基型メチル化メラミン樹脂、メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、および完全アルキル型メチル化メラミン樹脂などである。これらの中では、メチロール基型メチル化メラミン樹脂が好適であり、市販品の一例としては、「ベッカミンJ-101」(大日本インキ化学工業社製)等が挙げられる。
 カルボジイミド化合物とは、分子中に2個以上のカルボジイミド基(-N=C=N-)を有するものを指し、例えば、特開平10-316930号公報や特開平11-140164号公報に示されるように、有機ポリイソシアネート、特に好ましくは有機ジイソシアネートを主たる合成原料として製造される。ジイソシアネート類は、ヘキサメチレンジイソシアネート(HDI)、水添キシリレンジイソシアネート(H6XDI)、キシリレンジイソシアネート(XDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート(TMHDI)、1,12-ジイソシアネートドデカン(DDI)、ノルボルナンジイソシアネート(NBDI)、及び2,4-ビス-(8-イソシアネートオクチル)-1,3-ジオクチルシクロブタン(OCDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(HMDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、及びイソホロンジイソシアネート(IPDI)から選ばれる1種又は2種以上のジイソシアネートが挙げられる。カルボジイミド化合物は、ジイソシアネート類を脱二酸化炭素縮合反応して得られる、末端イソシアネート基が親水性基で封止された構造を有する。
 特に、親水性基を含有する化合物を用いてカルボジイミド樹脂を変性させた親水性基含有カルボジイミド樹脂が好ましい。変性剤としては例えばPEG(ポリエチレングリコール)、PPG(ポリプロピレングリコール)等のポリアルキレンオキシド等が挙げられる。親水性基含有カルボジイミド樹脂の市販品の一例としては、有効成分濃度40質量%の水溶液である「カルボジライトSV-02」、「カルボジライトV-02」、「カルボジライトV-02-L2」および「カルボジライトV-04」、ならびに、有効成分濃度40質量%の水分散液である「カルボジライトE-01」、「カルボジライトE-02」、「カルボジライトE-03A」および「カルボジライトE-04」(いずれも日清紡績株式会社製)が挙げられる。これらは単独でも2種以上の組合せでも使用できる。
 本発明において、塗布液中の架橋剤(D)の量は限定されるものではないが、塗布液中の総固形分に対する比率で、10~80重量%であるのが好ましく、より好ましくは10~50重量%、特に好ましくは10~30重量%である。この範囲を外れると、接着耐候性が低下するという問題が生じる傾向がある。
 本発明では、ブロッキングを防止するために、塗布層全体の3重量%以上の粒子を含有すると好適である。含有量がこの比率以下だと、ブロッキングを防止する効果が不十分となりやすい。また含有量があまりに多すぎると、ブロッキングの防止効果は高いものの、塗布層の透明性が低下したり、塗布層の連続性が損なわれ塗膜強度が低下したりすることがあり、また易接着性が低下することがある。具体的には、15重量%以下、さらには10重量%以下が好適である。この手法によることで、易接着性能と耐ブロッキング性能を両立することが可能となる。
 粒子としては例えば、シリカやアルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等を用いることができる。特に、塗布層への分散性や得られる塗膜の透明性の観点からは、シリカ粒子が好適である。
 粒子の粒径は、小さすぎるとブロッキング防止の効果が得られにくく、大きすぎると塗膜からの脱落などが起き易い。平均粒径として、塗布層の厚さの1/2~10倍程度が好ましい。さらに、粒径が大きすぎると、塗布層の透明性が劣ることがあるので、平均粒径として、300nm以下、さらには150nm以下であることが好ましい。ここで述べる粒子の平均粒径は、粒子の分散液をマイクロトラックUPA(日機装社製)にて、個数平均の50%平均径を測定することで得られる。
 本発明において、易接着性の塗布層を設けるための塗布液中には、必要に応じて上記述べた成分以外を含むことができる。例えば、界面活性剤、その他のバインダー、消泡剤、塗布性改良剤、増粘剤、酸化防止剤、紫外線吸収剤、発泡剤、染料、顔料等である。これらの添加剤は単独で用いてもよいが、必要に応じて二種以上を併用してもよい。
 本発明において、ポリエステルフィルムに塗布層を設ける方法としては、例えば、原崎勇次著、槙書店、1979年発行、「コーティング方式」に示されるような塗布技術を用いることができる。具体的には、エアドクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースロールコーター、トランスファロールコーター、グラビアコーター、キスロールコーター、キャストコーター、スプレイコーター、カーテンコーター、カレンダコーター、押出コーター、バーコーター等のような技術が挙げられる。
 なお、塗布剤のフィルムへの塗布性、接着性を改良するため、塗布前にフィルムに化学処理やコロナ放電処理、プラズマ処理等を施してもよい。
 ポリエステルフィルム上に設けられる塗布層の塗工量は、最終的な被膜としてみた際に、通常0.002~1.0g/m、好ましくは0.005~0.5g/m、さらに好ましくは0.01~0.2g/mである。塗工量が0.002g/m未満の場合は十分な接着性能が得られない恐れがあり、1.0g/mを超える塗布層は、外観・透明性の悪化や、フィルムのブロッキング、コストアップを招きやすい。
 また、本発明の積層ポリエステルフィルムは、好ましくは、表面固有抵抗が1×1012Ω以下、より好ましくは1×1010Ω以下である。ここで言う表面固有抵抗は、例えばJIS:C-2318などに記載されている方法により測定することが可能である。
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例における評価方法は下記のとおりである。
(1)接着性:
 ポリエステルフィルムの塗布層上に、下記に示すとおりの活性エネルギー線硬化樹脂組成物を硬化後の厚さが3μmになるように塗布し、ウシオ電機社製紫外線照射装置UVC-402を用いて、高圧水銀灯により、160W/cm、照射距離100mm、コンベア速度3m/minで紫外線を照射し、活性エネルギー線硬化樹脂組成物の硬化を行い、<ポリエステルフィルム/易接着性塗布層/活性エネルギー線硬化樹脂層>という構成の積層フィルムを得た。
 得られた積層フィルムの活性エネルギー線硬化樹脂層に、1インチ幅に碁盤目が100個になるようクロスカットを入れ、セロテープ(登録商標)による急速剥離テストを実施し、剥離面積によりその密着性を評価した。判定基準は以下のとおりである。
 5: 0≦碁盤目剥離個数≦10
 4:11≦碁盤目剥離個数≦20
 3:21≦碁盤目剥離個数≦40
 2:41≦碁盤目剥離個数≦80
 1:81≦碁盤目剥離個数
・活性エネルギー線硬化樹脂組成物:カヤラッドDPHA(日本化薬社製)70重量部と、カヤラッドR128H(日本化薬社製)30重量部、IRGACURE651(チバスペシャルティケミカルズ社製)5重量部からなる組成物。
(2)接着耐候性:
 上記(1)と同様にして得た積層フィルムのポリエステルフィルム面をガラス板に張り付け、そのガラス板を沸騰水の入った容器に活性エネルギー線硬化樹脂層が下になるように被せ、活性エネルギー線硬化樹脂層を蒸気に5分間さらして湿熱負荷を与え、その後、UVC-402を用いて高圧水銀灯により160W/cm、照射距離100mm、コンベア速度1m/minで紫外線を照射する。
 この操作を交互に7セット行った後、得られた積層フィルムの活性エネルギー線硬化樹脂層に、1インチ幅に碁盤目が100個になるようクロスカットを入れ、セロテープ(登録商標)による急速剥離テストを実施し、剥離面積によりその接着性を評価した。判定基準は(1)と同様である。
(3)表面固有抵抗(Ω):
 日本ヒューレット・パッカード社製 高抵抗測定器:HP4339Bおよび測定電極:HP16008Bを使用し、23℃,50%RHの測定雰囲気でサンプルを30分間調湿後、表面固有抵抗値を測定した。
 尚、表面固有抵抗が1×1012Ω以下であれば良好な帯電防止性能があると言え、1×1010Ω以下であれば十分な帯電防止性能があると言える。
 実施例、比較例中で使用したポリエステル原料は次のとおりである。
(ポリエステル1):実質的に粒子を含有しない、極限粘度0.66のポリエチレンテレフタレート
(ポリエステル2):平均粒径2.5μmの非晶質シリカを0.6重量部含有する、極限粘度0.66のポリエチレンテレフタレート
 また、塗布組成物としては以下を用いた。ただし、文中「部」とあるのは、樹脂固形分での重量比を表す。
(AS1):下記式1の構成単位と、下記式2の構成単位と、下記式3の構成単位を重量比率で80/10/10の比率で共重合した、数平均分子量21000の高分子化合物。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(AS2):ポリ(トリメチルアンモニウムエチルメタクリレート)モノメチル硫酸塩のホモポリマー(数平均分子量約30000の高分子化合物)。
(UA):ヘキサメチレンジイソシアネート3量体312.5部、数平均分子量が700のメトキシポリエチレングリコール55.4部、からなる、分子内にウレタン結合と末端イソシアネート基を含有し、イソシアネート基をメチルエチルケトンオキシムでブロックイソシアネートとした化合物。
 ただし表面はイソホロンジイソシアネート80部、ヘキサメチレンジイソシアネート3量体20.2部、数平均分子量が1000のポリヘキサメチレンカーボネート229部、トリメチロールプロパン2.6部、ジメチロールプロピオン酸16.1部、からなりトリエチルアミンで中和し、ジエチレントリアミンで鎖延長したウレタン樹脂で被覆されたコアシェル構造となっている。
(UB1):4,4´-ジシクロヘキシルメタンジイソシアネート78.7部、数平均分子量が1000の末端OH変性ポリヘキサメチレンカーボネートを570部、N-メチル-N,N-ジエタノールアミン15.5部、からなるプレポリマーをジメチル硫酸と反応させ得られる、Tgが-20℃のポリウレタン樹脂の水分散体。
(A1):アクリル樹脂「プライマル HA-16」(ロームアンドハースジャパン社製)
(F1):平均粒径0.07μmのシリカゾル水分散体
(C1):オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤「エポクロスWS-500」(日本触媒社製)
(C2):グリシジルエーテルを有する多官能エポキシ化合物「デナコールEX-521」(ナガセケムテックス社製)
(C3):メトキシメチロールメラミンである「ベッカミンJ-101」(大日本インキ化学工業社製)
(C4):カルボジイミド化合物水溶液「カルボジライトSV-02」(日清紡社製)。
 実施例1~6及び比較例1~6:
 ポリエステル1とポリエステル2とを重量比で95/5でブレンドし、十分に乾燥した後、280~300℃に加熱溶融し、T字型口金よりシート状に押し出し、静電密着法を用いて表面温度40~50℃の鏡面冷却ドラムに密着させながら冷却固化させて、未延伸ポリエチレンテレフタレートフィルムを作成した。このフィルムを85℃の加熱ロール群を通過させながら長手方向に3.7倍延伸し、一軸配向フィルムとした。この一軸配向フィルムの片面に、表1に示すとおりの塗布組成物を塗布した。次いでこのフィルムをテンター延伸機に導き、その熱を利用して塗布組成物の乾燥を行いつつ、100℃で幅方向に4.0倍延伸し、さらに230℃で熱処理を施し、フィルム厚みが100μmの二軸配向ポリエチレンテレフタレートフィルムの上に0.04g/mの量の塗布層を設けた塗布フィルムを得た。またこのフィルムの特性も表1に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明のフィルムは、優れた帯電防止性と易接着性及び接着耐候性を必要とする屋外用途における二軸延伸ポリエステルフィルムとして、好適に利用することができる。
 

Claims (14)

  1.  塗布層を有する積層ポリエステルフィルムであって、該塗布層が、帯電防止剤(A)、イソシアネート系反応基とウレタン結合を有する化合物(B)、末端にイソシアネート系反応基を有さないウレタン樹脂(C)および1種以上の架橋剤(D)を含有する塗布液から形成されてなることを特徴とする積層ポリエステルフィルム。
  2.  塗布液中の総固形分に対する比率が、帯電防止剤(A)5~60重量%、化合物(B)5~90重量%、ウレタン樹脂(C)10~90重量%、架橋剤(D)10~90重量%(但し、これらの合計量は100重量%)である請求項1に記載の積層ポリエステルフィルム。
  3.  帯電防止剤(A)が分子内に4級アンモニウム塩を含有する高分子型帯電防止剤である請求項1又は2に記載の積層ポリエステルフィルム。
  4.  化合物(B)が、水酸基含有化合物とジイソシアネートを反応させた化合物、水酸基含有化合物とポリイソシアネートを反応させた化合物、ポリオールとポリイソシアネートを反応させた化合物の何れかであって、水酸基と反応していないイソシアネート基を末端に有する化合物またはこの末端イソシアネートをブロック剤で保護した化合物である請求項1~3の何れかに記載の積層ポリエステルフィルム。
  5.  ウレタン樹脂(C)のガラス転移点が10℃以下である請求項1~4の何れかに記載の積層ポリエステルフィルム。
  6.  架橋剤(D)が、オキサゾリン化合物、エポキシ化合物、メラミン化合物、カルボジイミド化合物の群から選択される少なくとも1種である請求項1~5の何れかに記載の積層ポリエステルフィルム。
  7.  オキサゾリン化合物がオキサゾリン基を側鎖に有する重合体である請求項6に記載の積層ポリエステルフィルム。
  8.  オキサゾリン基を有する重合体が付加重合性オキサゾリン基含有モノマーと他のモノマーとの重合によって得られたものである請求項7に記載の積層ポリエステルフィルム。
  9.  他のモノマーがアクリル系モノマーである請求項8に記載の積層ポリエステルフィルム。
  10.  エポキシ化合物が多官能エポキシ化合物である請求項6に記載の積層ポリエステルフィルム。
  11.  多官能エポキシ化合物が少なくとも2個のグリシジルエーテル構造を有する化合物である請求項10に記載の積層ポリエステルフィルム。
  12.  少なくとも2個のグリシジルエーテル構造を有する化合物がポリグリセロールポリグリシジルエーテルである請求項11に記載の積層ポリエステルフィルム。
  13.  メラミン化合物がメチロール基型メチル化メラミン樹脂である請求項6に記載の積層ポリエステルフィルム。
  14.  カルボジイミド化合物が親水性基含有カルボジイミド樹脂である請求項6に記載の積層ポリエステルフィルム。
PCT/JP2011/058795 2010-04-28 2011-04-07 積層ポリエステルフィルム WO2011135993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/643,182 US20130095325A1 (en) 2010-04-28 2011-04-07 Laminated polyester film
KR1020127028187A KR101768459B1 (ko) 2010-04-28 2011-04-07 적층 폴리에스테르 필름
EP11774777.4A EP2565034B1 (en) 2010-04-28 2011-04-07 Laminated polyester film
CN2011800196420A CN102844188A (zh) 2010-04-28 2011-04-07 叠层聚酯膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010104145A JP5645462B2 (ja) 2010-04-28 2010-04-28 積層ポリエステルフィルム
JP2010-104145 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135993A1 true WO2011135993A1 (ja) 2011-11-03

Family

ID=44861307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058795 WO2011135993A1 (ja) 2010-04-28 2011-04-07 積層ポリエステルフィルム

Country Status (6)

Country Link
US (1) US20130095325A1 (ja)
EP (1) EP2565034B1 (ja)
JP (1) JP5645462B2 (ja)
KR (1) KR101768459B1 (ja)
CN (1) CN102844188A (ja)
WO (1) WO2011135993A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051065A1 (ja) * 2012-09-27 2014-04-03 丸善薬品産業株式会社 帯電防止剤、それを用いた帯電防止性積層体、及び2軸延伸帯電防止性フィルムの製造方法
JP2014226924A (ja) * 2013-05-28 2014-12-08 三菱樹脂株式会社 離型フィルム
EP2955024A4 (en) * 2013-02-06 2016-09-14 Mitsubishi Plastics Inc ANTI-ADHERENT FILM
WO2023119905A1 (ja) * 2021-12-24 2023-06-29 日本ペイント・オートモーティブコーティングス株式会社 水性塗料組成物および塗装物の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458850A (zh) * 2009-06-12 2012-05-16 三菱树脂株式会社 叠层聚酯膜
JP5349172B2 (ja) * 2009-07-01 2013-11-20 三菱樹脂株式会社 積層ポリエステルフィルム
CN102470654A (zh) * 2009-07-01 2012-05-23 三菱树脂株式会社 叠层聚酯膜
KR20160091451A (ko) * 2009-09-23 2016-08-02 미쓰비시 쥬시 가부시끼가이샤 적층 폴리에스테르 필름
JP5281554B2 (ja) * 2009-11-30 2013-09-04 三菱樹脂株式会社 離型フィルム
JP5566415B2 (ja) * 2012-03-26 2014-08-06 三菱樹脂株式会社 積層ポリエステルフィルム
JP5753116B2 (ja) * 2012-03-26 2015-07-22 三菱樹脂株式会社 積層ポリエステルフィルム
US11028299B2 (en) 2013-11-19 2021-06-08 Mitsubishi Polyester Film, Inc Anti-powdering and anti-static polymer film for digital printing
CN103756526B (zh) * 2014-01-16 2016-09-28 张家港康得新光电材料有限公司 一种抗静电水性涂布液
KR101896350B1 (ko) * 2014-12-13 2018-09-07 미쯔비시 케미컬 주식회사 도포 필름
WO2017154226A1 (ja) * 2016-03-09 2017-09-14 三菱樹脂株式会社 粘着フィルム及びその製造方法
JP6874236B2 (ja) * 2016-03-18 2021-05-19 ナガセケムテックス株式会社 コーティング用樹脂組成物
HUP1600384A1 (hu) 2016-06-15 2018-01-29 Hungaro Lux Light Kft Antireflexiós bevonat
JP6750598B2 (ja) * 2017-12-04 2020-09-02 三菱ケミカル株式会社 積層ポリエステルフィルムの製造方法。
JP6597930B1 (ja) * 2018-01-19 2019-10-30 東洋紡株式会社 易接着性ポリエステルフィルム
CN112680052B (zh) 2020-12-23 2022-06-28 上海飞凯材料科技股份有限公司 一种抗反射涂料组合物及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139905A (ja) * 1996-11-13 1998-05-26 Unitika Ltd 易接着性プラスチックフィルムの製造方法
JPH10316930A (ja) 1997-05-16 1998-12-02 Nisshinbo Ind Inc カルボジイミド系架橋剤及びその製造方法並びにコーティング材
JPH11140164A (ja) 1997-11-05 1999-05-25 Jsr Corp 熱硬化性樹脂組成物およびその硬化物
JPH11286092A (ja) 1998-04-02 1999-10-19 Toray Ind Inc 積層ポリエステルフィルムおよびその製造方法
JP2001341264A (ja) * 2000-06-05 2001-12-11 Toyobo Co Ltd ポリエステル系被覆フィルム
JP2002053687A (ja) 2000-08-09 2002-02-19 Teijin Ltd 易接着性ポリエステルフィルム
JP2002338718A (ja) * 2001-05-21 2002-11-27 Mitsubishi Polyester Film Copp 塗布フィルム
JP2008045072A (ja) 2006-08-18 2008-02-28 Nippon Polyurethane Ind Co Ltd ブロックイソシアネート含有エマルジョン組成物及びその製造方法並びに焼付け型塗料用又は接着剤用組成物
JP2008133457A (ja) * 2006-10-24 2008-06-12 Mitsubishi Plastics Ind Ltd 光硬化性組成物
JP2009221359A (ja) 2008-03-17 2009-10-01 Mitsubishi Plastics Inc 易接着性ポリエステルフィルム
JP2009220376A (ja) 2008-03-17 2009-10-01 Mitsubishi Plastics Inc 易接着性フィルム
JP2010013550A (ja) 2008-07-03 2010-01-21 Toyobo Co Ltd 光学用易接着性ポリエステルフィルム
WO2010041408A1 (ja) * 2008-10-06 2010-04-15 三菱樹脂株式会社 二軸延伸ポリエステルフィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69026071T2 (de) * 1990-03-01 1996-10-02 Agfa Gevaert Nv Blatt- oder bahnförmiges Material mit antistatischen Eigenschaften
US5508343A (en) * 1994-08-31 1996-04-16 Rexam Industries Corporation Antistatic composition, method, and coated antistatic surface
DE102004043342A1 (de) * 2004-09-08 2006-03-09 Bayer Materialscience Ag Blockierte Polyurethan-Prepolymere als Klebstoffe
WO2009075389A1 (en) * 2007-12-12 2009-06-18 Kansai Paint Co., Ltd. Water-based paint compositions
JP5344745B2 (ja) * 2008-10-06 2013-11-20 三菱樹脂株式会社 積層ポリエステルフィルム
EP2335924B1 (en) * 2008-10-06 2014-02-12 Mitsubishi Plastics, Inc. Multilayer polyester film
JP5645455B2 (ja) * 2010-04-22 2014-12-24 三菱樹脂株式会社 積層ポリエステルフィルム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139905A (ja) * 1996-11-13 1998-05-26 Unitika Ltd 易接着性プラスチックフィルムの製造方法
JPH10316930A (ja) 1997-05-16 1998-12-02 Nisshinbo Ind Inc カルボジイミド系架橋剤及びその製造方法並びにコーティング材
JPH11140164A (ja) 1997-11-05 1999-05-25 Jsr Corp 熱硬化性樹脂組成物およびその硬化物
JPH11286092A (ja) 1998-04-02 1999-10-19 Toray Ind Inc 積層ポリエステルフィルムおよびその製造方法
JP2001341264A (ja) * 2000-06-05 2001-12-11 Toyobo Co Ltd ポリエステル系被覆フィルム
JP2002053687A (ja) 2000-08-09 2002-02-19 Teijin Ltd 易接着性ポリエステルフィルム
JP2002338718A (ja) * 2001-05-21 2002-11-27 Mitsubishi Polyester Film Copp 塗布フィルム
JP2008045072A (ja) 2006-08-18 2008-02-28 Nippon Polyurethane Ind Co Ltd ブロックイソシアネート含有エマルジョン組成物及びその製造方法並びに焼付け型塗料用又は接着剤用組成物
JP2008133457A (ja) * 2006-10-24 2008-06-12 Mitsubishi Plastics Ind Ltd 光硬化性組成物
JP2009221359A (ja) 2008-03-17 2009-10-01 Mitsubishi Plastics Inc 易接着性ポリエステルフィルム
JP2009220376A (ja) 2008-03-17 2009-10-01 Mitsubishi Plastics Inc 易接着性フィルム
JP2010013550A (ja) 2008-07-03 2010-01-21 Toyobo Co Ltd 光学用易接着性ポリエステルフィルム
WO2010041408A1 (ja) * 2008-10-06 2010-04-15 三菱樹脂株式会社 二軸延伸ポリエステルフィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565034A4
YUJI HARAZAKI: "Coating Methods", 1979, MAKI-SHOTEN

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051065A1 (ja) * 2012-09-27 2014-04-03 丸善薬品産業株式会社 帯電防止剤、それを用いた帯電防止性積層体、及び2軸延伸帯電防止性フィルムの製造方法
EP2955024A4 (en) * 2013-02-06 2016-09-14 Mitsubishi Plastics Inc ANTI-ADHERENT FILM
JP2014226924A (ja) * 2013-05-28 2014-12-08 三菱樹脂株式会社 離型フィルム
WO2023119905A1 (ja) * 2021-12-24 2023-06-29 日本ペイント・オートモーティブコーティングス株式会社 水性塗料組成物および塗装物の製造方法

Also Published As

Publication number Publication date
EP2565034A1 (en) 2013-03-06
CN102844188A (zh) 2012-12-26
JP2011230415A (ja) 2011-11-17
KR101768459B1 (ko) 2017-08-16
JP5645462B2 (ja) 2014-12-24
US20130095325A1 (en) 2013-04-18
KR20130097060A (ko) 2013-09-02
EP2565034A4 (en) 2018-01-03
EP2565034B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5645462B2 (ja) 積層ポリエステルフィルム
JP5645455B2 (ja) 積層ポリエステルフィルム
JP5778471B2 (ja) 表面保護フィルム用ポリエステルフィルムおよび表面保護フィルム
JP4798156B2 (ja) 積層フィルム
KR101562930B1 (ko) 이접착성 폴리에스테르 필름
EP2727954B1 (en) Coating film
EP2727726B1 (en) Coating film
EP3015496B1 (en) Coating film
JP5562373B2 (ja) 積層ポリエステルフィルム
JP5778472B2 (ja) 積層ポリエステルフィルム
JP2016153204A (ja) 離型フィルム
JP5566415B2 (ja) 積層ポリエステルフィルム
JP5753116B2 (ja) 積層ポリエステルフィルム
JP2011105015A (ja) 積層フィルム
WO2012144416A1 (ja) 塗布フィルム
JP5599360B2 (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019642.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774777

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028187

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13643182

Country of ref document: US