WO2011135724A1 - 純粋液体製造装置 - Google Patents

純粋液体製造装置 Download PDF

Info

Publication number
WO2011135724A1
WO2011135724A1 PCT/JP2010/057707 JP2010057707W WO2011135724A1 WO 2011135724 A1 WO2011135724 A1 WO 2011135724A1 JP 2010057707 W JP2010057707 W JP 2010057707W WO 2011135724 A1 WO2011135724 A1 WO 2011135724A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
water
drain tank
pure
evaporator
Prior art date
Application number
PCT/JP2010/057707
Other languages
English (en)
French (fr)
Inventor
春男 上原
Original Assignee
Uehara Haruo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uehara Haruo filed Critical Uehara Haruo
Priority to EP10850739.3A priority Critical patent/EP2564911B1/en
Priority to CN201080066535.9A priority patent/CN102905768B/zh
Priority to KR1020127005221A priority patent/KR101632252B1/ko
Priority to PCT/JP2010/057707 priority patent/WO2011135724A1/ja
Priority to JP2012512612A priority patent/JP5150785B2/ja
Publication of WO2011135724A1 publication Critical patent/WO2011135724A1/ja
Priority to US13/660,632 priority patent/US8617358B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/045Treatment of water, waste water, or sewage by heating by distillation or evaporation for obtaining ultra-pure water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a pure liquid manufacturing apparatus that manufactures and supplies a pure liquid such as pure water so that it can be used.
  • Pure water from which impurities have been removed from water is widely used for the cleaning of various equipment including semiconductors and the manufacture of chemicals such as pharmaceuticals, in addition to inspection and test applications, because of its characteristics that do not adversely affect the impurities.
  • the property of dissolving other substances in this pure water in water is higher than that of ordinary water, it has recently been used for drinking and edible purposes with the addition of naturally-occurring nutrients and flavors. It is like that.
  • the conventional pure water production apparatus is as shown in each of the above-mentioned patent documents, and if it is attempted to increase the yield of pure water, the production apparatus will become complicated and large, and it will be difficult to introduce it. Had problems. Also, when water is evaporated in the reduced pressure inside the device, the more complicated and larger the equipment, the greater the load on the vacuum exhaust device such as a vacuum pump for obtaining a reduced pressure state. In addition to having to adopt a large-scale vacuum exhaust system with high capacity, it is necessary to provide many valves for maintaining airtightness in each part of the manufacturing equipment, which increases the cost of the equipment and obtains pure water as it is. Therefore, there was a problem that led to an increase in cost.
  • the present invention has been made to solve the above-described problems, and provides a pure liquid production apparatus that can produce pure liquid such as pure water efficiently with a simple structure and can suppress the cost of supplying pure water. With the goal.
  • the pure liquid production apparatus includes a heater that heats a supplied liquid by heat exchange with a predetermined high-temperature heat source to obtain a liquid and / or vapor at a predetermined temperature, and the liquid obtained by the heater and An evaporator that is supplied with steam, evaporates at least the liquid in a decompression space, and sends out the steam; a separator that collects and removes the liquid mixed with the steam that has exited from the evaporator; and the separator The vapor passing through the heat exchanger is condensed by exchanging heat with a predetermined cooling fluid to obtain a pure liquid, and the remaining liquid not evaporated by the evaporator and the liquid removed by the separator are collected.
  • a drain tank that temporarily stores the liquid and a pump that pressurizes and supplies the liquid in the drain tank to the heater, and the drain tank is newly introduced with liquid from a predetermined liquid supply source, New introduced Liquid that has a liquid from the liquid and the evaporator and separator and the mixing state is what is supplied to the heater from the drain tank through a pump.
  • a series of devices for obtaining a pure liquid from evaporated vapor from a heater to a condenser are collected together with a liquid that has not evaporated in the evaporator and a separator.
  • a drain tank for storing the liquid is disposed, and the liquid that has exited the evaporator or separator and the new liquid are mixed in advance in the drain tank, and the mixed liquid is pressurized with a pump and supplied to the heater.
  • the drain tank serves as a pressure buffer, making it easy to maintain the pressure in each device such as an evaporator and a separator, and reducing the load on the vacuum exhaust device that creates a vacuum state due to the evaporation of the liquid.
  • the arrangement of valves and the like for maintaining the pressure can be minimized, and the structure of the apparatus can be simplified and the cost can be reduced.
  • the liquid that has not evaporated in the evaporator or the liquid collected by the separator is used in the heater. It will be used as a part of the liquid to be heated, the heat generated by the heater can be properly recovered, and it is not necessary to continuously put a large amount of heat into the heater, so that energy consumption can be reduced and the heater
  • the amount of liquid to be newly supplied from the outside can be reduced to reduce the amount of liquid consumption, and the cost for producing a pure liquid can be greatly reduced.
  • the pure liquid production apparatus introduces the pure liquid exiting the condenser and the vapor that has not been condensed, if necessary, and exchanges heat with a predetermined cooling fluid to form a gas phase. It is equipped with an auxiliary condenser that condenses the liquid and delivers pure liquid to the subsequent stage.
  • the auxiliary condenser is disposed on the rear side of the condenser, and the reduced pressure exhaust such as an external vacuum pump that decompresses the internal space and the pipe line of each device from the evaporator to the condenser.
  • the reduced pressure exhaust such as an external vacuum pump that decompresses the internal space and the pipe line of each device from the evaporator to the condenser.
  • the pure liquid production apparatus is disposed between the liquid supply source and the drain tank as needed, and temporarily stores a new liquid introduced from the liquid supply source.
  • a liquid supply tank to be sent to the drain tank side, and a sensor for measuring the electrical conductivity of the liquid in which the new liquid and the liquid from the evaporator and separator are mixed in the drain tank.
  • the electric conductivity of the mixed liquid in the drain tank exceeds a preset upper limit value, a part of the mixed liquid flows out and flows into the liquid supply tank. .
  • the liquid supply tank is disposed on the upstream side of the new liquid supply channel in the drain tank, while the drain tank is provided with the sensor for measuring the electric conductivity so that the mixed state in the drain tank is maintained. If the electrical conductivity of the liquid is too high, a part of the mixed liquid flows out from the drain tank toward the liquid supply tank, so that the mixed liquid in the drain tank is maintained as the operation of the apparatus continues.
  • the sensor of the drain tank detects that the electric conductivity of the mixed water exceeds the upper limit, When a part of the mixed liquid with a high concentration flows out from the drain tank, the electrolyte component is transferred from the liquid supply tank to the drain tank to compensate for the outflow amount. There is a risk that less water will be supplied, and the electrolyte concentration in the mixed liquid in the drain tank will be reduced to a value that will not cause any problems, which will adversely affect the heater or evaporator into which the mixed liquid flows. Can be eliminated.
  • the mixed liquid partially flowing out from the drain tank flows into the liquid supply tank, is mixed with the new liquid, and is diluted, so that it is not necessary to drain the liquid to the outside. Loss and cost associated with construction of discharge channel can be suppressed.
  • the pure water production apparatus 1 is obtained by heating a supplied water as the liquid into a warm liquid of a predetermined temperature, that is, warm water, and the heater 11.
  • An evaporator 12 that is supplied with warm water and evaporates the warm water in a reduced pressure space; a separator 13 that removes liquid-phase water mixed with vapor-phase water (water vapor) that has exited from the evaporator 12; and the separator
  • the vapor phase water passing through 13 is condensed by exchanging heat with the cooling fluid to obtain pure water, and the pure water exiting the condenser 14 and the vapor phase water remaining uncondensed are obtained.
  • the auxiliary condenser 15 that is introduced and heat-exchanged with the cooling fluid to condense the gas phase component, the remaining hot water that has not evaporated in the evaporator 12, and the liquid phase water that has been removed by the separator 13
  • a drain tank 18 that is collected and temporarily stored, and the drain tank 1 Water of the internal pressurized a structure and a supply pump 19 to the heater 11.
  • the heater 11 circulates high-temperature water or steam as the high-temperature heat source obtained by the known boiler 50 or the like in one of the flow paths separated through an internal heat transfer section, and passes through the other flow path. It is a kind of heat exchanger that circulates the supplied water to be heated and heats the supplied water by heat exchange with high-temperature water or steam via the heat transfer section, and the structure itself as a heat exchanger Is a known configuration.
  • the supplied water is heated by the heater 11, and is sent to the evaporator 12 as hot water that has reached a predetermined temperature that can be evaporated by the subsequent evaporator 12.
  • the evaporator 12 is a well-known device that efficiently evaporates heated water by introducing it into an internal space where the heated water is reduced to a pressure equal to or lower than the saturated vapor pressure of water at the same temperature. Hot water heated to a predetermined temperature by the heater 11 is directly supplied, and the hot water is evaporated to obtain vapor phase water (steam) containing almost no impurities.
  • the evaporator 12 can be any flash evaporation mechanism such as a multistage flash type or a spray flash type. While the water vapor obtained by the evaporator 12 reaches the separator 13, the liquid-phase water remaining without being evaporated is discharged outside the evaporator 12 and introduced into the drain tank 18. The liquid phase water is deprived of heat during the change of the gas phase to the gas phase, thereby lowering the temperature.
  • the temperature of the hot water introduced into the evaporator 12 is as low as possible, for example, 50 ° C. or less, and the internal space is reduced to a pressure capable of evaporating such low temperature hot water,
  • the separator 13 captures and removes fine water droplets (mist) of liquid phase water mixed in water vapor from the evaporator 12 toward the condenser 14 and sends only water vapor to the condenser 14. .
  • the liquid phase water collected by the separator 13 is discharged out of the separator 13 and introduced into the drain tank 18.
  • the condenser 14 circulates water vapor evaporated by the evaporator 12 and passing through the separator 13 in one of the flow paths separated through the internal heat transfer section, and a predetermined cooling fluid in the other flow path. And the water vapor and the cooling fluid are heat-exchanged through the heat transfer section to condense the water vapor, and the structure itself as a heat exchanger is a known configuration. By condensing water vapor with the condenser 14, pure water containing almost no impurities is obtained.
  • An external cooling device 60 for cooling the cooling fluid is connected to the flow path of the cooling fluid in the condenser 14, and the cooling device 60 is heated by heat exchange with the water vapor in the condenser 14.
  • the cooling fluid is introduced, and the cooling fluid is cooled by heat exchange with another cooling medium such as outside air, and is again introduced into the condenser 14 while the temperature is lowered.
  • the auxiliary condenser 15 is introduced with liquid-phase pure water condensed in the condenser 14 and water vapor that could not be condensed in the condenser 14, and heat exchange is performed between the water vapor and the cooling fluid to condense the water vapor. All the liquid phase pure water is sent to the subsequent stage.
  • the flow path of the cooling fluid in the auxiliary condenser 15 is connected to the cooling device 60 similarly to the condenser 14, and a part of the cooling fluid flows from the cooling device 60 into the auxiliary condenser 15, and the auxiliary condensation is performed.
  • the cooling fluid whose temperature has been raised by heat exchange in the condenser 15 is introduced into the cooling device 60 together with the amount that has flowed through the condenser 14 to be cooled. Will flow into the vessel 15.
  • the water-side flow path in the auxiliary condenser 15 and the pipe line on the rear stage side of the auxiliary condenser have a reduced pressure exhaust device such as an external vacuum pump that depressurizes the internal space of each device leading to the evaporator 12 and the inside of the pipe line. 70 is connected.
  • a reduced pressure exhaust device such as an external vacuum pump that depressurizes the internal space of each device leading to the evaporator 12 and the inside of the pipe line. 70 is connected.
  • the pure water from the auxiliary condenser 15 is sent to an external pure water tank 80.
  • the external pure water tank 80 can supply the stored pure water to the subsequent stage side to some extent continuously.
  • the drain tank 18 collects and temporarily stores the remaining hot water that has not been evaporated by the evaporator 12 and the liquid phase water that has been removed by the separator 13.
  • the drain tank 18 is supplied with new water from a predetermined water supply source together with such hot water and water storage, and new water, hot water from the evaporator 12 and liquid water from the separator 13 are provided inside the apparatus. Are also mixed, and the obtained mixed water is also supplied to the heater 11.
  • the remaining hot water that has not been evaporated by the evaporator 12 and the liquid phase water that has been removed by the separator 13, which are relatively high in temperature, are introduced at the temperature introduced from the water supply source.
  • the heat held by the water once passed through the heater 11 is recovered, the temperature of the water newly supplied to the heater 11 is increased in advance, and the amount of input heat in the heater 11 is reduced. I am trying.
  • each device in the manufacturing apparatus is such that the evaporator 12, the separator 13, and the condenser 14 are arranged at the highest position, and the heater 11 and the drain tank 18 are arranged below the evaporator 12. Further, an auxiliary condenser 15 is disposed below the condenser 14. For this reason, the inflow of water from the evaporator 12 and the separator 13 to the drain tank 18 and the flow of pure water in the condenser 14 and the auxiliary condenser 15 can utilize the natural flow of water and use a pump or the like. It will be finished.
  • the heater 11 is also supplied with high-temperature water as a high-temperature heat source from the boiler 50, so that the water supplied with the heat of this high-temperature water is heated to obtain hot water.
  • the hot water leaves the heater 11 and goes to the evaporator 12.
  • the cooling fluid having a low temperature is introduced into the other flow channel separating the heat transfer portion with respect to the one flow channel into which the water vapor is introduced, so that the water vapor exchanges heat with the cooling fluid. And condensed into pure water containing almost no impurities.
  • This pure water and uncondensed water in the vapor phase exit the condenser 14 and reach the auxiliary condenser 15, and again exchange heat with the cooling fluid having a low temperature, thereby further condensing the water vapor.
  • the gas that has reached the auxiliary condenser 15 together with pure water and uncondensed water vapor is directed to the vacuum exhaust device 70 from the inside of the auxiliary condenser 15 and the subsequent pipe line, and is discharged to the outside.
  • the pure water obtained by the condensation in the condenser 14 and the auxiliary condenser 15 is sent to the external pure water tank 80 after leaving the auxiliary condenser 15. Further, the cooling fluid that has received the heat from the pure water side condensed in the condenser 14 or the auxiliary condenser 15 and raised the temperature leaves the condenser 14 or the auxiliary condenser 15 and goes to the inlet side of the cooling device 60.
  • the introduced new water is mixed with the water exiting the evaporator 12 and the separator 13, and the new water raises the temperature in the mixing process.
  • the mixed water containing the new water that has been mixed and rises in temperature exits the drain tank 18, is pressurized by the pump 19, is guided to the heater 11, and is heated to a higher temperature by the heater 11. It will be.
  • the water that has exited the evaporator 12, the water that has exited the separator 13, and new water from the water supply source merge to form water that is supplied to the heater 11.
  • the amount of new water to be supplied to the heater 11 can be reduced by the amount of water that has flowed out of the water.
  • this mixed water is pressurized with the pump 19 and is supplied to the heater 11, and the pressure in each apparatus is maintained. And the load of the vacuum exhaust device 70 can be reduced, and the water that has not evaporated from the evaporator 12 and the liquid water collected from the separator 13 can be discharged smoothly, and the heater again. 11 can be efficiently introduced.
  • the heater 11 increases the proportion of the water that has exited the evaporator 12 and the separator 13 in the supplied water, and the temperature of the supplied water increases, so that the heater 11 supplies water to the predetermined amount.
  • the amount of hot water as a high-temperature heat source required for raising the temperature can be reduced, and the consumption of fuel used in the external boiler 50 and the like can be suppressed.
  • the evaporator 12 evaporates together with a series of devices for obtaining pure water from the evaporated water vapor from the heater 11 to the auxiliary condenser 15.
  • a drain tank 18 for storing water that has not been collected or liquid-phase water collected by the separator 13 is disposed, and the water that has exited the evaporator 12 or the separator 13 and new water are mixed in advance in the drain tank 18. Since the mixed water is pressurized by the pump 19 and supplied to the heater 11, the drain tank 18 serves as a pressure buffer and maintains the pressure in each device such as the evaporator 12 and the separator 13.
  • the load on the vacuum exhaust device 70 that causes a decompressed state due to water evaporation can be reduced, and the arrangement of valves and the like for maintaining the pressure can be minimized, and the device structure can be reduced. Simplify and reduce cost Emissions can be reduced.
  • new water is introduced into the drain tank 18, and water mixed in the drain tank 18 is supplied to the heater 11, so that water that has not evaporated in the evaporator 12 or collected in the separator 13. Liquid phase water will be used as part of the water heated by the heater 11, so that the heat generated by the heater 11 can be recovered appropriately, and a large amount of heat is not continuously supplied to the heater 11.
  • energy consumption can be saved, and the amount of water supplied from the outside to the heater 11 can be reduced to reduce the water consumption, thereby greatly reducing the cost of producing pure water.
  • the high temperature water or steam obtained by the boiler 50 or the like is used as the high temperature heat source to be introduced into the heater 11.
  • the temperature of the hot water obtained as a result of heating with a heater is low, for example, 50 ° or less, depending on the temperature conditions of the hot water that can be evaporated, factory exhaust heat, surface seawater in a warm area, etc. It can also be set as the structure to be used. In this case, in order to properly condense the water vapor evaporated in the evaporator with the condenser, it is sufficient that the difference between at least the temperature of the high-temperature heat source and the temperature of the cooling fluid in the condenser is 5 ° C. or more.
  • surface seawater can be used as the cooling fluid when the high-temperature heat source is factory waste heat, and the high-temperature heat source is a surface layer in a temperate area.
  • seawater deep seawater or the like can be used as a cooling fluid.
  • the pure water production apparatus 2 is similar to the first embodiment in that the heater 21, the evaporator 22, the separator 23, the condenser 24, the auxiliary condenser 25, While having a drain tank 28 and a pump 29, the difference is that two pure water tanks 26, 27 for temporarily storing the pure water exiting the auxiliary condenser 25, and a water supply tank 28 a connected to the drain tank 28. It has the structure provided with.
  • the pure water tanks 26 and 27 are disposed on the rear side of the water-side flow path in the auxiliary condenser 25, and store a predetermined amount of pure water condensed in the condenser 24 and the auxiliary condenser 25, respectively.
  • the discharged water can be continuously sent to the rear side.
  • Each of the pure water tanks 26 and 27 is connected and arranged in a state of being divided into two systems with respect to the auxiliary condenser 25, and thus condensed by providing the two systems of pure water tanks 26 and 27. While pure water is introduced into one pure water tank and stored, the other pure water tank is disconnected from the pure water flow path to stop the introduction of pure water, and the already stored pure water can flow to the rear stage side.
  • Pure water discharged from the pure water tanks 26 and 27 is sent to an external pure water tank 81 at a predetermined supply pressure by a pump 20 disposed on the rear stage side.
  • the external pure water tank 81 has a larger capacity than the two pure water tanks 26 and 27, and can supply the stored pure water to the subsequent stage side more continuously.
  • the water supply tank 28a is disposed on the upstream side of the path for introducing new water into the drain tank 28, temporarily stores new water, and from the new water and the evaporator 12 in the drain tank 28.
  • the electric conductivity of the mixed water mixed with the warm water of the liquid and the liquid phase water from the separator 13 exceeds the limit value, the mixed water flowing out from the drain tank 28 is introduced, and this water is supplied as new water. And further dilute to lower the electric conductivity and then reapply to the drain tank 28.
  • the water flow path between the water supply tank 28a and the drain tank 28 includes a filter 28b that removes impurities when new water contains impurities, and the water supply tank 28a side to the drain tank 28 in a normal state. Switching that allows only the inflow of water while stopping the inflow of water from the water supply tank 28a side to the drain tank 28 as required, and at the same time allows the inflow of mixed water from the drain tank 28 side to the water supply tank 28a Each of the valves 28c is arranged.
  • the water that has passed through each device has not reached the drain tank 28, so there is no inflow of mixed water from the drain tank 28 to the water supply tank 28a.
  • these new water tap water, fresh water such as ground water taken continuously, sea water, factory waste water, and the like can be used.
  • the drain tank 28 collects and temporarily stores the remaining hot water that has not evaporated in the evaporator 22 and the liquid phase water that has been removed by the separator 23, and supplies water. New water is introduced from the tank 28 a, and the new water, warm water from the evaporator 12, and liquid water from the separator 13 are mixed in the apparatus, and the obtained mixed water is supplied to the heater 11. In addition to supplying, when the electric conductivity of the mixed water in the drain tank 28 is too high, the switching valve 28c is operated to cause the mixed water to flow out toward the water supply tank 28a.
  • the drain tank 28 is provided with a sensor 28d for measuring the electric conductivity of the mixed water.
  • the remaining hot water that has not evaporated by the evaporator 22 and the liquid phase water removed by the separator 23 are passed from the water supply source through the water supply tank 28 a.
  • the heat held by the water once passed through the heater 21 is recovered, and the temperature of the water newly supplied to the heater 21 is increased in advance, so that the heater 21 The amount of input heat is reduced.
  • each device in the pure water production apparatus 2 is such that the evaporator 22, the separator 23, and the condenser 24 are arranged at the highest position, and the heater 21 and the drain tank 28 are disposed below the evaporator 22. Will be placed.
  • an auxiliary condenser 25 is disposed below the condenser 24, and pure water tanks 26 and 27 are disposed below the auxiliary condenser 25. For this reason, the inflow of water from the evaporator 22 and the separator 23 to the drain tank 28 and the inflow of pure water from the auxiliary condenser 25 to the pure water tanks 26 and 27 utilize the natural flow of water. This eliminates the need to use a pump or the like.
  • tap water is supplied as new water from a water supply source, as in the first embodiment.
  • tap water is supplied as new water from a water supply source, as in the first embodiment.
  • the high-temperature water as a high-temperature heat source from the boiler 50 is also supplied to the heater 21, the water supplied with the heat of the high-temperature water is heated to obtain hot water.
  • the hot water leaves the heater 21 and goes to the evaporator 22.
  • the hot water When the hot water reaches the evaporator 22, a part of the hot water is changed into water vapor by flash evaporation in the decompressed evaporator 22.
  • the water vapor exits the evaporator 22 together with the gas contained in the water in the drain tank 18 and reaches the separator 23, and liquid phase water (mist) and the like are appropriately separated by the separator 23, and then the condenser 24. It is introduced into one of the flow paths. Further, the water that is not evaporated in the evaporator 22 and remains in the liquid phase, and the liquid phase water that is separated from the water vapor by the separator is discharged from each device and directed to the drain tank 28.
  • the water vapor is condensed by exchanging heat with the cooling fluid to become pure water containing almost no impurities.
  • the pure water and uncondensed water vapor leave the condenser 24 and reach the auxiliary condenser 25, and heat exchange with the cooling fluid having a low temperature again results in further condensation of the water vapor.
  • the gas that has reached the auxiliary condenser 25 together with pure water and uncondensed water vapor is discharged from the inside of the auxiliary condenser 25 and the subsequent pipeline to the decompression exhaust device 70 and discharged to the outside.
  • the pure water obtained by condensation in the condenser 24 and the auxiliary condenser 25 in this way is discharged from the auxiliary condenser 25 and distributed to the pure water tanks 26 and 27 on the rear stage side and temporarily stored, and then collected.
  • a predetermined amount of pure water is sent to an external pure water tank 81 via a pump 20.
  • the introduced new water is mixed with the water exiting the evaporator 22 and the separator 23, and the new water raises the temperature in the mixing process.
  • the mixed water containing the new water that has been mixed and rises in temperature exits the drain tank 28, is pressurized by the pump 29, is guided to the heater 21, and is heated to a higher temperature by the heater 21. It will be. In this way, the water that has exited the evaporator 22, the water that has exited the separator 23, and new water from the water supply source merge to form water that is supplied to the heater 21.
  • the amount of new water supplied to the heater 21 can be reduced by the amount of water that has flowed out of the water.
  • this mixed water is pressurized with the pump 29 and is supplied to the heater 21, thereby maintaining the pressure in each device. And the load of the vacuum exhaust device 70 can be reduced, and the water that has not evaporated from the evaporator 22 and the liquid phase water collected from the separator 23 can be discharged smoothly, and the heater again. 21 can be efficiently introduced.
  • the heater 21 increases the proportion of water that has exited the evaporator 22 and the separator 23 in the supplied water, and the temperature of the supplied water increases, so that the heater 21 supplies water to the predetermined amount.
  • the amount of hot water as a high-temperature heat source required for raising the temperature can be reduced, and the consumption of fuel used in the external boiler 50 and the like can be suppressed.
  • the electrolyte component of the mixed water in the drain tank 28 is concentrated, and the electrolyte concentration does not sufficiently decrease even when new water is supplied.
  • the risk of adversely affecting the heater 21 and the evaporator 22 into which the mixed water flows is increased. Therefore, when the electric conductivity of the mixed water is measured by the sensor 28d of the drain tank 28 and the electrolyte component in the mixed water increases to some extent, the electric conductivity of the mixed water exceeds a preset upper limit value.
  • water with less electrolyte component is supplied from the water supply tank 28a to the drain tank 28 so as to compensate for the outflow amount, so that the electrolyte concentration in the mixed water in the drain tank 28 is reduced to a value with no problem. Can be made.
  • the pure liquid produced by the pure liquid production apparatus is pure water, and pure water is obtained using tap water, well water, seawater, etc. introduced as new water.
  • the present invention is not limited to this, and a pure liquid such as hydrochloric acid, sulfuric acid, alcohol, acetone, hexane or the like can be produced from these liquids containing impurities.
  • the pure liquid production apparatus of the present invention When the pure liquid production apparatus of the present invention is used as a pure water production apparatus, the relationship between the temperature of water introduced into the evaporator and the electrical conductivity of finally obtained pure water, and the water in the drain tank The results of verifying the relationship between the electrical conductivity of the water and the electrical conductivity of the pure water finally obtained will be described.
  • pure water having a value of electrical conductivity that is satisfactory as pure water can be produced by lowering the temperature of water introduced into the evaporator as much as possible, particularly by suppressing it to 50 ° C. or less.
  • the electrical conductivity is measured by the sensor of the drain tank, and the electrical conductivity of the water in the drain tank is an upper limit value, for example, about 500 [ ⁇ S / cm. ].
  • the mixed water with a high concentration of electrolyte partly flows out from the drain tank, while the water supply tank supplies a drain tank with less electrolyte component to reduce the electrolyte concentration of the water in the drain tank. It is clear that the mechanism for lowering is effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 簡略な構造で効率よく純水等の純粋液体を製造でき、純水等の供給に係るコストを抑えられる純粋液体製造装置であり、加熱器11から凝縮器14までの、蒸発させた蒸気から純粋な液体を得るための一連の各機器と共に、蒸発器12で蒸発しなかった液体や分離器13で捕集された液体を貯留するドレインタンク18を配設し、ドレインタンク18で蒸発器12や分離器13を出た液体と新規の液体をあらかじめ混合した上で、この混合した液体をポンプ19で加圧して加熱器11に供給することから、ドレインタンク18が圧力の緩衝部となって蒸発器12や分離器13等の各機器内の圧力の維持が容易となり、液体の蒸発のために減圧状態を生じさせる減圧排気装置70の負荷を軽減できると共に、圧力を維持するためのバルブ等の配設も必要最小限とすることができ、装置構造を簡略化してコストダウンが図れる。 

Description

純粋液体製造装置
 本発明は、純水等の純粋な液体を製造して利用可能に供給する純粋液体製造装置に関する。
 水から不純物を取去った純水は、不純物による悪影響が生じない特徴から、検査や試験用途に加えて、半導体をはじめとする各種機器の洗浄や医薬品等の化学物質の製造に広く用いられていたが、この純水の他の物質を水中に溶かし込む性質が通常の水のそれに比べて高いことから、近年では天然由来の栄養成分や風味成分を添加して飲用や食用の用途でも用いられるようになっている。
 純水の製造には、濾過やイオン交換、逆浸透膜を用いる方法等様々な製造方法があるが、簡易で効率のよい方法として従来から蒸留による製造方法が多く用いられてきた。こうした蒸留の手法を用いた純水製造装置の例として、特開平6-63535号や特開2006-167535号公報、特開2002-79237号公報等に開示されるものがある。
特開平6-63535号公報 特開2000-167535号公報 特開2002-79237号公報
 従来の純水製造装置は、前記各特許文献に示されるようなものとなっており、純水の収量を多くしようとすると、製造装置が複雑化、大型化することとなり、導入が難しくなるという課題を有していた。また、水の蒸発を減圧された装置内空間で行うようにする場合、設備が複雑化、大型化するほど、減圧状態を得るための真空ポンプ等の減圧排気装置の負荷が大きくなり、より処理能力の高い大型の減圧排気装置を採用せざるを得なくなることに加え、製造装置内各部に気密を維持するための弁も多数必要となり、これらが装置のコストを上昇させ、そのまま純水を得るためのコスト増大につながるという課題を有していた。
 本発明は前記課題を解消するためになされたもので、簡略な構造で効率よく純水等の純粋液体を製造でき、純水等の供給に係るコストを抑えられる純粋液体製造装置を提供することを目的とする。
 本発明に係る純粋液体製造装置は、供給された液体を所定の高温熱源との熱交換で加熱して所定温度の液体及び/又は蒸気とする加熱器と、当該加熱器で得られた液体及び/又は蒸気を供給され、減圧空間で少なくとも前記液体を蒸発させ、蒸気を送出す蒸発器と、当該蒸発器から出た蒸気に混じった液体を捕集して取除く分離器と、当該分離器を経由した蒸気を所定の冷却用流体と熱交換させて凝縮させ、純粋な液体を得る凝縮器と、前記蒸発器で蒸発しなかった残りの液体及び前記分離器で取除かれた液体を集めて一時的に貯留するドレインタンクと、当該ドレインタンク内の液体を加圧して前記加熱器に供給するポンプとを少なくとも備え、前記ドレインタンクが、所定の液体供給源から新規に液体を導入され、当該導入された新規の液体と前記蒸発器及び分離器からの液体とを混合状態とした液体が、ドレインタンクからポンプを経て前記加熱器に供給されるものである。
 このように本発明によれば、加熱器から凝縮器までの、蒸発させた蒸気から純粋な液体を得るための一連の各機器と共に、蒸発器で蒸発しなかった液体や分離器で捕集された液体を貯留するドレインタンクを配設し、ドレインタンクで蒸発器や分離器を出た液体と新規の液体をあらかじめ混合した上で、この混合した液体をポンプで加圧して加熱器に供給することにより、ドレインタンクが圧力の緩衝部となって蒸発器や分離器等の各機器内の圧力の維持が容易となり、液体の蒸発のために減圧状態を生じさせる減圧排気装置の負荷を軽減できると共に、圧力を維持するためのバルブ等の配設も必要最小限とすることができ、装置構造を簡略化してコストダウンが図れる。また、新規の液体をドレインタンクに導入し、このドレインタンクで混合された液体を加熱器に供給することにより、蒸発器で蒸発しなかった液体や分離器で捕集された液体を加熱器で加熱される液体の一部として用いることとなり、加熱器で発生させた熱を適切に回収でき、加熱器に継続して大量の熱を投入せずに済み、エネルギ消費を節減できると共に、加熱器へ新規に外部から供給する液体の量を抑えて液体消費量の低減も図れ、純粋液体製造にかかるコストを大きく低減できることとなる。
 また、本発明に係る純粋液体製造装置は必要に応じて、前記凝縮器を出た純粋な液体及び凝縮されずに残った蒸気とを導入され、所定の冷却用流体と熱交換させて気相分を凝縮させ、純粋な液体を後段側に送出す補助凝縮器を備えるものである。
 このように本発明によれば、凝縮器の後段側に補助凝縮器を配設し、蒸発器から凝縮器に至る各機器の内部空間と管路内を減圧する外部の真空ポンプ等の減圧排気装置に対し、凝縮器と補助凝縮器の二段階で凝縮を進めることにより、減圧排気装置へ向って流れる未凝縮の蒸気を確実に凝縮させて、減圧排気装置の負荷を軽減すると共に、純粋液体の収量を高めることができる。
 また、本発明に係る純粋液体製造装置は必要に応じて、前記液体供給源とドレインタンクとの間に介在させて配設され、液体供給源から導入される新規の液体を一時的に貯留してドレインタンク側に送出す液体供給タンクを備え、前記ドレインタンクに、前記新規の液体と前記蒸発器及び分離器からの液体とを混合状態とした液体の電気伝導率を測定するセンサを配設し、前記ドレインタンクにおける前記混合状態の液体の電気伝導率があらかじめ設定された上限値を超えた場合には、混合状態の液体の一部を流出させ、前記液体供給タンクに流入させるものである。
 このように本発明によれば、ドレインタンクにおける新規の液体の供給流路前段側に液体供給タンクを配設する一方、ドレインタンクに電気伝導率測定用のセンサを設け、ドレインタンクにおける混合状態の液体の電気伝導率が高すぎる場合には、混合状態の液体の一部をドレインタンクから液体供給タンクに向け流出させることにより、装置の動作継続に伴って、ドレインタンク内での混合状態の液体の電解質成分が濃縮され、新規な液体の供給のみでは電解質濃度が十分に低下しないような場合でも、ドレインタンクのセンサで混合水の電気伝導率が上限値を超えた状態を検知して、電解質成分の濃い混合状態の液体をドレインタンクから一部流出させると、流出量を補うように、液体供給タンクからドレインタンクに電解質成分のより少ない水が供給されることとなり、ドレインタンク内の混合状態の液体における電解質濃度を問題のない値まで低下させられ、混合状態の液体の流入する加熱器や蒸発器等に悪影響を及す危険性を排除できる。また、ドレインタンクから一部流出した混合状態の液体は、液体供給タンクに流入して、新規の液体と混合され、希釈されることで、液体を外部に無駄に排出せずに済み、液体の損失や排出流路構築に伴うコストを抑えられる。
本発明の第1の実施形態に係る純水製造装置のブロック構成図である。 本発明の第2の実施形態に係る純水製造装置のブロック構成図である。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態を図1に基づいて説明する。本実施形態では純粋液体として純水を製造する装置の例について説明する。
 前記図1において本実施形態に係る純水製造装置1は、供給された前記液体としての水を加熱して所定温度の温かい液体すなわち温水とする加熱器11と、この加熱器11で得られた温水を供給され、この温水を減圧空間で蒸発させる蒸発器12と、この蒸発器12から出た気相の水(水蒸気)に混じった液相の水を取除く分離器13と、この分離器13を経由した気相の水を冷却用流体と熱交換させて凝縮させ、純水を得る凝縮器14と、この凝縮器14を出た純水及び凝縮されずに残った気相の水を導入され、冷却用流体と熱交換させて気相分を凝縮させる補助凝縮器15と、前記蒸発器12で蒸発しなかった残りの温水及び前記分離器13で取除かれた液相の水を集めて一時的に貯留するドレインタンク18と、このドレインタンク18内の水を加圧して加熱器11に供給するポンプ19とを備える構成である。
 前記加熱器11は、内部の伝熱部を介して隔てられた流路の一方に公知のボイラ50等で得られた前記高温熱源としての高温の水や蒸気を流通させ、他方の流路に供給された加熱対象の水を流通させ、伝熱部を介した高温の水や蒸気との熱交換により、供給された水を加熱する一種の熱交換器であり、熱交換器としての構造自体は公知の構成である。この加熱器11で、供給された水を加熱し、後段の蒸発器12で蒸発可能な所定温度に達した温水として、蒸発器12に送出すこととなる。
 前記蒸発器12は、加熱された水をこれと同温度における水の飽和蒸気圧以下の圧力に減圧した内部空間に導入することで効率よく蒸発させて水蒸気を得る公知の装置であり、前段の加熱器11で所定温度まで加熱された温水を直接供給され、この温水を蒸発させて、不純物をほとんど含まない気相の水(水蒸気)を得るものとなっている。この蒸発器12は、多段フラッシュ式やスプレーフラッシュ式など、いずれのフラッシュ蒸発機構とすることもできる。この蒸発器12で得られた水蒸気は分離器13に達する一方、蒸発しきれずに残った液相の水は、蒸発器12外に排出されてドレインタンク18に導入される仕組みである。この液相の水は、気相分の気相への変化の際に熱を奪われることで温度を低下させている。
 この蒸発器12に導入される温水の温度をなるべく低い温度、例えば50℃以下とすると共に、こうした低い温度の温水を蒸発させられる圧力に内部空間を減圧した状態では、温水の一部の蒸発にあたり不純物が水蒸気に混じり込む割合を抑えることができ、得られる水蒸気は電気伝導率σ=0.1~1[μS/cm]のレベルの純水となる。
 前記分離器13は、蒸発器12から凝縮器14へ向う水蒸気の中に混じった液相の水の微細水滴(ミスト)を捕捉して取除き、水蒸気のみを凝縮器14へ送出すものである。この分離器13で捕集された液相の水は、分離器13外に排出され、ドレインタンク18に導入される。
 前記凝縮器14は、内部の伝熱部を介して隔てられた流路の一方に、蒸発器12で蒸発し分離器13を経由した水蒸気を流通させ、他方の流路に所定の冷却用流体を流通させ、伝熱部を介して水蒸気と冷却用流体とを熱交換させて水蒸気を凝縮させるものであり、熱交換器としての構造自体は公知の構成である。この凝縮器14で水蒸気を凝縮させることで、不純物をほとんど含まない純水が得られることとなる。
 この凝縮器14における冷却用流体の流路には、冷却用流体を冷却するための外部の冷却装置60が接続されており、冷却装置60は、凝縮器14での水蒸気との熱交換により温度を上昇させた冷却用流体を導入され、この冷却用流体を外気等別の冷却用媒体との熱交換で冷却し、温度を低下させた状態であらためて凝縮器14に流入させる。
 前記補助凝縮器15は、凝縮器14で凝縮された液相の純水と凝縮器14では凝縮しきれなかった水蒸気を導入され、水蒸気と冷却用流体とを熱交換させて水蒸気を凝縮させ、全て液相の純水とした状態で後段側へ送出すものである。
 補助凝縮器15における冷却用流体の流路は、凝縮器14同様に冷却装置60と接続しており、補助凝縮器15には、冷却装置60から冷却用流体の一部が流入し、補助凝縮器15での熱交換により温度を上昇させた冷却用流体が、凝縮器14を流れた分と共に冷却装置60に導入されて冷却され、温度の低下した冷却用流体があらためて凝縮器14及び補助凝縮器15に流入することとなる。
 この補助凝縮器15における水側流路、並びに補助凝縮器の後段側の管路には、蒸発器12に至る各機器の内部空間と管路内を減圧する外部の真空ポンプ等の減圧排気装置70が接続される。この減圧排気装置70に対し、凝縮器14と補助凝縮器15の二段階で凝縮を進める構成とすることで、減圧排気装置70へ向って流れる未凝縮の水蒸気を確実に凝縮させて、減圧排気装置70の負荷を軽減すると共に、純水の収量を高めることができる仕組みである。
 この補助凝縮器15から出た純水は、外部の純水タンク80へ送出される。外部の純水タンク80は、貯留した純水をある程度連続してさらに後段側に供給できるものとなっている。
 前記ドレインタンク18は、蒸発器12で蒸発しなかった残りの温水及び分離器13で取除かれた液相の水を集めて一時的に貯留するものである。このドレインタンク18は、こうした温水や水の貯留と共に、所定の水供給源から新規に水を導入され、装置内部で新規の水と蒸発器12からの温水及び分離器13からの液相の水とを混合状態とし、得られた混合水を加熱器11に供給する役割も果している。
 このドレインタンク18では、比較的温度が高くなっている、蒸発器12で蒸発しなかった残りの温水及び分離器13で取除かれた液相の水を、水供給源から導入された温度の低い新規の水と混合することで、一度加熱器11を経た水の保有する熱を回収し、加熱器11に新たに供給される水の温度をあらかじめ高めて、加熱器11における投入熱量の軽減を図っている。
 なお、製造装置起動直後は、装置各機器を通った水がドレインタンク18に到達していないため、加熱器11に導入される水としては、全て新規の水が用いられ、新規の水はドレインタンク18を経て供給される。装置が起動して一定期間が経過すると、装置各機器を通った水がドレインタンク18に達するため、ドレインタンク18への新規の水の導入量を低下させられる。この新規の水としては水道水の他、連続的に取水されている地下水等を利用することもできる。
 前記各機器の製造装置における配置は、蒸発器12と分離器13、凝縮器14を最も高い位置に配置し、蒸発器12より下側に加熱器11及びドレインタンク18を配置することとなる。また、凝縮器14より下側に補助凝縮器15を配置している。このため、蒸発器12及び分離器13からの水のドレインタンク18への流入、並びに凝縮器14と補助凝縮器15における純水の流れは、水の自然流下を利用でき、ポンプ等を使用せずに済むこととなる。
 次に、本実施形態に係る純水製造装置の動作について説明する。前提として、水供給源から新規の水として水道水が供給されるものとする。まず、本製造装置が起動した直後は、水供給源から供給された新規の水としての水道水のみが、ドレインタンク18に導入され、この新規の水がドレインタンク18を経てポンプ19で加圧され、加熱器11に供給される。
 加熱器11ではボイラ50からの高温熱源としての高温水も供給されていることで、この高温水の熱で供給された水を加熱し、温水を得ることとなる。温水は、加熱器11を出て、蒸発器12へ向う。
 温水が蒸発器12に達すると、減圧された蒸発器12内で一部の温水がフラッシュ蒸発により気相に変化する。気相の水、すなわち水蒸気は、ドレインタンク18内の水に含まれるガスと共に蒸発器12を出て分離器13に達し、浮遊する液相の水(ミスト)等を分離器13で適切に分離された上で、凝縮器14の一方の流路に導入される。また、蒸発器12で蒸発せず液相のまま残った水や、分離器13で水蒸気から分離された液相の水は、それぞれ各機器から排出され、ドレインタンク18に向うこととなる。
 凝縮器14では、水蒸気が導入される一方の流路に対し、伝熱部を隔てた他方の流路に温度の低い冷却用流体が導入されていることで、水蒸気が冷却用流体と熱交換して凝縮し、不純物をほとんど含まない純水となる。この純水及び未凝縮の気相の水は、凝縮器14を出て補助凝縮器15に達し、再び温度の低い冷却用流体と熱交換して、水蒸気のさらなる凝縮が生じることとなる。そして、純水や未凝縮の水蒸気と共に補助凝縮器15に達したガスは、補助凝縮器15内及びその後段の管路から減圧排気装置70へ向い、外部に排出されることとなる。
 こうして凝縮器14及び補助凝縮器15での凝縮により得られた純水は、補助凝縮器15を出た後、外部の純水タンク80に送られる。また、凝縮器14や補助凝縮器15で凝縮する純水側からの熱を受け取り昇温した冷却用流体は、凝縮器14や補助凝縮器15を出て冷却装置60入口側へ向う。
 ドレインタンク18では、導入された新規の水が、蒸発器12や分離器13を出た水と混合状態となり、この混合される過程で新規の水は温度を上昇させる。この混合されて温度上昇した新規の水の分を含む混合水がドレインタンク18を出て、ポンプ19で加圧された上で加熱器11へ導かれ、加熱器11でさらに高い温度まで温められることとなる。このように、蒸発器12を出た水、分離器13を出た水、及び水供給源からの新規の水が合流し、加熱器11に供給される水となることから、一度加熱器11から出た水の還流した分、加熱器11に供給する新規の水の量を低減できる。また、蒸発器12や分離器13を出た水と新規の水をあらかじめ混合した上で、この混合水をポンプ19で加圧して加熱器11に供給することで、各機器内の圧力の維持が容易となり、減圧排気装置70の負荷を軽減できると共に、蒸発器12から蒸発しなかった水を、また分離器13から捕集された液相の水を、それぞれスムーズに排出させ、再度加熱器11に効率よく導入できることとなる。
 この後、加熱器11入口側にドレインタンク18を出た水を供給しながら、前記同様に純水の生成に係る各過程が繰返されることとなる。動作の継続に伴い、加熱器11では供給される水における蒸発器12や分離器13を出た水の割合が増え、供給される水の温度が高くなることで、加熱器11で水を所定温度まで上昇させるにあたり必要とする高温熱源としての温水の量を低減でき、外部のボイラ50等で用いる燃料の消費も抑えることができる。
 このように、本実施形態に係る純水製造装置においては、加熱器11から補助凝縮器15までの、蒸発させた水蒸気から純水を得るための一連の各機器と共に、蒸発器12で蒸発しなかった水や分離器13で捕集された液相の水を貯留するドレインタンク18を配設し、ドレインタンク18で蒸発器12や分離器13を出た水と新規の水をあらかじめ混合した上で、この混合した水をポンプ19で加圧して加熱器11に供給することから、ドレインタンク18が圧力の緩衝部となって蒸発器12や分離器13等の各機器内の圧力の維持が容易となり、水の蒸発のために減圧状態を生じさせる減圧排気装置70の負荷を軽減できると共に、圧力を維持するためのバルブ等の配設も必要最小限とすることができ、装置構造を簡略化してコストダウンが図れる。また、新規の水をドレインタンク18に導入し、このドレインタンク18で混合された水を加熱器11に供給することで、蒸発器12で蒸発しなかった水や分離器13で捕集された液相の水を加熱器11で加熱される水の一部として用いることとなり、加熱器11で発生させた熱を適切に回収でき、加熱器11に継続して大量の熱を投入せずに済み、エネルギ消費を節減できると共に、加熱器11へ新規に外部から供給する水量を抑えて水消費量の低減も図れ、純水製造にかかるコストを大きく低減できる。
 なお、前記実施形態に係る純水製造装置において、加熱器11に導入する高温熱源として、ボイラ50等で得られた高温の水や蒸気を用いる構成としているが、この他、後段の蒸発器で蒸発可能な温水の温度条件により、加熱器で加熱した結果得られる温水の温度が低い温度、例えば50°以下でよい場合には、前記高温熱源として、工場排熱や温暖地域の表層海水等を使用する構成とすることもできる。この場合、蒸発器で蒸発させた水蒸気を凝縮器で適切に凝縮させるには、少なくとも高温熱源の温度と凝縮器における冷却用流体の温度との差が5℃以上あればよいことから、前記冷却装置で継続的に冷却される冷却用流体を利用する仕組み以外に、高温熱源が工場排熱の場合には冷却用流体として表層海水等を用いることができ、また、高温熱源が温暖地域の表層海水の場合には冷却用流体として深層海水等を用いることができる。
(本発明の第2の実施形態)
 本発明の第2の実施形態を図2に基づいて説明する。本実施形態でも、前記第1の実施形態同様、純粋液体として純水を製造する装置の例について説明する。
 前記図2において本実施形態に係る純水製造装置2は、前記第1の実施形態同様、加熱器21と、蒸発器22と、分離器23と、凝縮器24と、補助凝縮器25と、ドレインタンク28と、ポンプ29とを備える一方、異なる点として、補助凝縮器25を出た純水を一時貯留する二つの純水タンク26、27と、ドレインタンク28に接続される水供給タンク28aとを備える構成を有するものである。
 前記純水タンク26、27は、補助凝縮器25における水側流路の後段側に配設され、凝縮器24及び補助凝縮器25で凝縮された純水をそれぞれ所定量貯留して、この貯留された水を連続して後段側に送出せるようにするものである。各純水タンク26、27は、補助凝縮器25に対し二系統に分けた状態で接続、配設される構成であり、こうして二系統の純水タンク26、27を設けることで、凝縮された純水を一方の純水タンクに導入して貯留する間、他方の純水タンクは純水の流路から切離して純水の導入を停止し、既に貯留した純水を後段側に流すことができ、流路の圧力を維持しつつ純水の貯留と後段側への純水の排出を同時に行えることとなる。これらの純水タンク26、27から出た純水は、後段側に配設されたポンプ20により所定の送給圧力で外部の純水タンク81へ送出される。
 なお、外部の純水タンク81は、二つの純水タンク26、27より大容量となっており、貯留した純水をある程度連続してさらに後段側に供給できるものとなっている。
 前記水供給タンク28aは、ドレインタンク28に新規の水を導入する経路の前段側に配設され、新規の水を一時的に貯留すると共に、ドレインタンク28内で新規の水と蒸発器12からの温水、及び分離器13からの液相の水とが混合した混合水の電気伝導率が限界値を超えた場合に、ドレインタンク28から流出するこの混合水を流入させ、これを新規の水と混合してさらに薄め、電気伝導率を下げた上であらためてドレインタンク28へ向わせるものである。
 この水供給タンク28aとドレインタンク28との間の水流路には、新規の水に不純物が含まれる場合にこれを除去するフィルタ28bと、通常状態では水供給タンク28a側からドレインタンク28への水の流入のみ許容する一方、必要に応じて水供給タンク28a側からドレインタンク28への水の流入を止めると同時に、ドレインタンク28側から水供給タンク28aへの混合水の流入を許容する切替弁28cとが、それぞれ配設される構成である。
 なお、製造装置起動直後は、装置各機器を通った水がドレインタンク28に到達していないため、ドレインタンク28から水供給タンク28aへの混合水の流入もなく、水供給タンク28a内の水は、全て新規の水となっている。この新規の水としては水道水や、連続的に取水されている地下水といった清水の他、海水や工場廃水等を利用することもできる。
 前記ドレインタンク28は、前記第1の実施形態同様、蒸発器22で蒸発しなかった残りの温水及び分離器23で取除かれた液相の水を集めて一時的に貯留すると共に、水供給タンク28aから新規の水を導入され、装置内部で新規の水と蒸発器12からの温水、及び分離器13からの液相の水とを混合状態として、得られた混合水を加熱器11に供給する他、異なる点として、ドレインタンク28内の混合水の電気伝導率が高過ぎる場合には、前記切替弁28cを作動させて混合水を水供給タンク28aに向けて流出させるものである。このドレインタンク28には、混合水の電気伝導率を測定するセンサ28dが配設される。
 このドレインタンク28では、前記第1の実施形態同様、蒸発器22で蒸発しなかった残りの温水及び分離器23で取除かれた液相の水を、水供給源から水供給タンク28aを経て導入される温度の低い新規の水と混合することで、一度加熱器21を経た水の保有する熱を回収し、加熱器21に新たに供給される水の温度をあらかじめ高めて、加熱器21における投入熱量の軽減を図っている。
 本実施形態に係る純水製造装置2における各機器の配置は、蒸発器22と分離器23、凝縮器24を最も高い位置に配置し、蒸発器22より下側に加熱器21及びドレインタンク28を配置することとなる。また、凝縮器24より下側に補助凝縮器25を配置すると共に、補助凝縮器25より下側に純水タンク26、27を配置している。このため、蒸発器22及び分離器23からの水のドレインタンク28への流入、並びに補助凝縮器25を出た純水の各純水タンク26、27への流入は、水の自然流下を利用でき、ポンプ等を使用せずに済むこととなる。
 次に、本実施形態に係る純水製造装置の動作について説明する。前提として、前記第1の実施形態同様、水供給源から新規の水として水道水が供給されるものとする。まず、本製造装置が起動した直後は、水供給源から供給された新規の水としての水道水のみが、水供給タンク28aを経てドレインタンク28に導入され、この新規の水がドレインタンク28を経てポンプ29で加圧され、加熱器21に供給される。
 加熱器21ではボイラ50からの高温熱源としての高温水も供給されていることで、この高温水の熱で供給された水を加熱し、温水を得ることとなる。温水は、加熱器21を出て、蒸発器22へ向う。
 温水が蒸発器22に達すると、減圧された蒸発器22内で一部の温水がフラッシュ蒸発により水蒸気に変化する。水蒸気は、ドレインタンク18内の水に含まれるガスと共に蒸発器22を出て分離器23に達し、液相の水(ミスト)等を分離器23で適切に分離された上で、凝縮器24の一方の流路に導入される。また、蒸発器22で蒸発せず液相のまま残った水や、分離器で水蒸気から分離された液相の水は、それぞれ各機器から排出され、ドレインタンク28に向うこととなる。
 凝縮器24では、前記第1の実施形態同様、水蒸気が冷却用流体と熱交換して凝縮し、不純物をほとんど含まない純水となる。この純水及び未凝縮の水蒸気は、凝縮器24を出て補助凝縮器25に達し、再び温度の低い冷却用流体と熱交換して、水蒸気のさらなる凝縮が生じることとなる。そして、純水や未凝縮の水蒸気と共に補助凝縮器25に達したガスは、補助凝縮器25内及びその後段の管路から減圧排気装置70へ向い、外部に排出されることとなる。
 こうして凝縮器24及び補助凝縮器25での凝縮により得られた純水は、補助凝縮器25を出て後段側の純水タンク26、27にそれぞれ振分けられて一時的に貯留された後、まとまった所定量の純水としてポンプ20を経由して外部の純水タンク81に送られる。また、凝縮器24や補助凝縮器25で凝縮する純水側からの熱を受け取り昇温した冷却用流体は、凝縮器24や補助凝縮器25を出て冷却装置60入口側へ向う。
 ドレインタンク28では、導入された新規の水が、蒸発器22や分離器23を出た水と混合状態となり、この混合される過程で新規の水は温度を上昇させる。この混合されて温度上昇した新規の水の分を含む混合水がドレインタンク28を出て、ポンプ29で加圧された上で加熱器21へ導かれ、加熱器21でさらに高い温度まで温められることとなる。このように、蒸発器22を出た水、分離器23を出た水、及び水供給源からの新規の水が合流し、加熱器21に供給される水となることから、一度加熱器21から出た水の還流した分、加熱器21に供給する新規の水の量を低減できる。また、蒸発器22や分離器23を出た水と新規の水をあらかじめ混合した上で、この混合水をポンプ29で加圧して加熱器21に供給することで、各機器内の圧力の維持が容易となり、減圧排気装置70の負荷を軽減できると共に、蒸発器22から蒸発しなかった水を、また分離器23から捕集された液相の水を、それぞれスムーズに排出させ、再度加熱器21に効率よく導入できることとなる。
 この後、加熱器21入口側にドレインタンク28を出た水を供給しながら、前記同様に純水の生成に係る各過程が繰返されることとなる。動作の継続に伴い、加熱器21では供給される水における蒸発器22や分離器23を出た水の割合が増え、供給される水の温度が高くなることで、加熱器21で水を所定温度まで上昇させるにあたり必要とする高温熱源としての温水の量を低減でき、外部のボイラ50等で用いる燃料の消費も抑えることができる。
 なお、新規な水の水質によっては、装置の動作継続に伴って、ドレインタンク28内での混合水の電解質成分が濃縮されていき、新規な水の供給によっても電解質濃度が十分に低下せず、混合水の流入する加熱器21や蒸発器22等に悪影響を及す危険性が高まる。このため、ドレインタンク28のセンサ28dで混合水の電気伝導率を測定し、混合水中における電解質成分がある程度増加することで、混合水の電気伝導率があらかじめ設定された上限値を超えた場合には、水供給タンク28aとドレインタンク28との間にある切替弁28cを作動させ、電解質成分の濃い混合水をドレインタンク28から一部流出させる。この流出の後、流出量を補うように、水供給タンク28aからドレインタンク28に電解質成分のより少ない水が供給されるため、ドレインタンク28内の混合水中における電解質濃度を問題のない値まで低下させることができる。ドレインタンク28から流出した一部の混合水は、水供給タンク28aに流入して、新規の水と混合され、希釈されることとなり、水を外部に無駄に排出せずに済む。
 なお、前記各実施形態においては、純粋液体製造装置で製造する純粋な液体を純水とし、新規の水として導入される水道水や井戸水、海水等を用いて純水を得ているが、これに限らず、純粋液体として、純粋な塩酸や硫酸、アルコール、アセトン、ヘキサン等の液体を、不純物を含んだこれらの液体から製造する装置とすることもできる。
 本発明の純粋液体製造装置を純水製造装置として用いた場合における、蒸発器に導入される水の温度と最終的に得られる純水の電気伝導率との関係、及び、ドレインタンク内の水の電気伝導率と最終的に得られる純水の電気伝導率との関係を、それぞれ検証した結果について説明する。
 前記第2の実施形態に示した純水製造装置で、蒸発器に導入される水を加熱するボイラからの温水の温度を複数通り変えて、各温度で装置を連続運転した場合に最終的に得られた純水の電気伝導率を測定した。前記純水製造装置でボイラからの温水温度を55℃、60℃、65℃とした各場合における純水の電気伝導率測定値を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、電気伝導率は、ボイラからの温水の温度が高くなるほど大きくなる、すなわち悪化しており、蒸発器に導入される水の温度が低いほど、最終的に得られる純水の電気伝導率が小さくなることがわかる。上記のボイラからの温水の温度と純水の電気伝導率との関係から、近似曲線を求めて複数の温度における電気伝導率の値をそれぞれ計算すると、表2に示すような関係が得られ、ボイラからの温水の温度が50℃を下回ると、電気伝導率が1.0[μS/cm]以下になる。
Figure JPOXMLDOC01-appb-T000002
 このように、蒸発器に導入される水の温度をなるべく下げる、特に50℃以下に抑えることで、純水として申し分ない電気伝導率の値となった純水を製造できることがわかる。
 次に、前記第2の実施形態に示した純水製造装置で、蒸発器に導入される水を加熱するボイラからの温水の温度を55℃に固定して装置を連続運転した場合に、ドレインタンク内の水の電気伝導率と、最終的に得られた純水の電気伝導率とを、所定経過時間ごとにそれぞれ測定した。前記純水製造装置の運転時における所定経過時間での、ドレインタンク内の水の電気伝導率と、最終的に得られた純水の電気伝導率の各測定値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、いずれの電気伝導率も時間の経過と共に大きくなっている。ドレインタンク内の水の電気伝導率が、時間経過と共に大きくなる原因としては、蒸発器における蒸発により水のみが蒸発してドレインタンクに還流しない状態となることで、ドレインタンク内の水に含まれる電解質成分が濃縮されていくことによると考えられる。また、ドレインタンク内の水の電気伝導率と、最終的に得られる純水の電気伝導率との関係を曲線近似して考察すると、ドレインタンク内の水の電気伝導率の値が大きくなると、最終的に得られる純水の電気伝導率の値が指数関数的に大きくなっていくことがわかる。
 最終的に得られる純水の電気伝導率の値を小さく、例えば1.0[μS/cm]以下に抑えるためには、ドレインタンク内の水の電気伝導率も小さく抑えておく必要があり、前記第2の実施形態に示した純水製造装置のように、ドレインタンクのセンサで電気伝導率を測定し、このドレインタンク内の水の電気伝導率が上限値、例えば約500[μS/cm]を超えた場合に、電解質成分の濃い混合水をドレインタンクから一部流出させる一方、水供給タンクからドレインタンクに電解質成分のより少ない水を供給させて、ドレインタンク内の水の電解質濃度を低下させる仕組み、が有効であることは明らかである。
 1、2      純水製造装置
 11、21    加熱器
 12、22    蒸発器
 13、23    分離器
 14、24    凝縮器
 15、25    補助凝縮器
 18、28    ドレインタンク
 19、29    ポンプ
 20       ポンプ
 26、27    純水タンク
 28a      水供給タンク
 28b      フィルタ
 28c      切替弁
 28d      センサ
 50       ボイラ
 60       冷却装置
 70       減圧排気装置
 80、81    純水タンク

Claims (3)

  1.  供給された液体を所定の高温熱源との熱交換で加熱して所定温度の液体及び/又は蒸気とする加熱器と、
     当該加熱器で得られた液体及び/又は蒸気を供給され、減圧空間で少なくとも前記液体を蒸発させ、蒸気を送出す蒸発器と、
     当該蒸発器から出た蒸気に混じった液体を捕集して取除く分離器と、
     当該分離器を経由した蒸気を所定の冷却用流体と熱交換させて凝縮させ、純粋な液体を得る凝縮器と、
     前記蒸発器で蒸発しなかった残りの液体及び前記分離器で取除かれた液体を集めて一時的に貯留するドレインタンクと、
     当該ドレインタンク内の液体を加圧して前記加熱器に供給するポンプとを少なくとも備え、
     前記ドレインタンクが、所定の液体供給源から新規に液体を導入され、当該導入された新規の液体と前記蒸発器及び分離器からの液体とを混合状態とした液体が、ドレインタンクからポンプを経て前記加熱器に供給されることを
     特徴とする純粋液体製造装置。
  2.  前記請求項1に記載の純粋液体製造装置において、
     前記凝縮器を出た純粋な液体及び凝縮されずに残った蒸気とを導入され、所定の冷却用流体と熱交換させて気相分を凝縮させ、純粋な液体を後段側に送出す補助凝縮器を備えることを
     特徴とする純粋液体製造装置。
  3.  前記請求項1又は2に記載の純粋液体製造装置において、
     前記液体供給源とドレインタンクとの間に介在させて配設され、液体供給源から導入される新規の液体を一時的に貯留してドレインタンク側に送出す液体供給タンクを備え、
     前記ドレインタンクに、前記新規の液体と前記蒸発器及び分離器からの液体とを混合状態とした液体の電気伝導率を測定するセンサを配設し、
     前記ドレインタンクにおける前記混合状態の液体の電気伝導率があらかじめ設定された上限値を超えた場合には、混合状態の液体の一部を流出させ、前記液体供給タンクに流入させることを
     特徴とする純粋液体製造装置。
PCT/JP2010/057707 2010-04-30 2010-04-30 純粋液体製造装置 WO2011135724A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10850739.3A EP2564911B1 (en) 2010-04-30 2010-04-30 Pure liquid manufacturing apparatus
CN201080066535.9A CN102905768B (zh) 2010-04-30 2010-04-30 纯净液体制造装置
KR1020127005221A KR101632252B1 (ko) 2010-04-30 2010-04-30 순수 액체 제조 장치
PCT/JP2010/057707 WO2011135724A1 (ja) 2010-04-30 2010-04-30 純粋液体製造装置
JP2012512612A JP5150785B2 (ja) 2010-04-30 2010-04-30 純粋液体製造装置
US13/660,632 US8617358B2 (en) 2010-04-30 2012-10-25 Pure liquid manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057707 WO2011135724A1 (ja) 2010-04-30 2010-04-30 純粋液体製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/660,632 Continuation US8617358B2 (en) 2010-04-30 2012-10-25 Pure liquid manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2011135724A1 true WO2011135724A1 (ja) 2011-11-03

Family

ID=44861063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057707 WO2011135724A1 (ja) 2010-04-30 2010-04-30 純粋液体製造装置

Country Status (6)

Country Link
US (1) US8617358B2 (ja)
EP (1) EP2564911B1 (ja)
JP (1) JP5150785B2 (ja)
KR (1) KR101632252B1 (ja)
CN (1) CN102905768B (ja)
WO (1) WO2011135724A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104958928A (zh) * 2015-05-27 2015-10-07 广东芬尼克兹节能设备有限公司 热泵蒸发冷凝一体机及浓缩方法
WO2018029764A1 (ja) * 2016-08-08 2018-02-15 春男 上原 純水製造装置
US11110183B2 (en) * 2018-08-03 2021-09-07 University Of South Florida Method of delivering genes and drugs to a posterior segment of an eye

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906243B2 (ja) * 2010-09-07 2016-04-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 豆腐を製造するための凝固剤制御
CN103691141B (zh) * 2014-01-13 2015-07-22 林文浩 一种节能型蒸馏装置
CN109946141B (zh) * 2019-02-19 2021-12-03 中国家用电器研究院 一种涉水产品卫生安全前处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554078A (en) * 1978-10-16 1980-04-21 Hitachi Zosen Corp Distillation equipment
JPS61259795A (ja) * 1985-05-13 1986-11-18 Babcock Hitachi Kk 燃料電池−海水淡水化機複合装置
JPH0663535A (ja) 1992-06-18 1994-03-08 Orugano Aqua Kk 純粋蒸溜水の製造装置
JP2000325941A (ja) * 1999-05-19 2000-11-28 Ebara Corp 塩水淡水化装置
JP2002079237A (ja) 2000-09-07 2002-03-19 Kokueki Reiki Kk 純水の製造方法
JP2006167535A (ja) 2004-12-14 2006-06-29 Seiko Epson Corp 描画装置、電気光学装置の製造方法および電子機器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245883A (en) * 1962-01-29 1966-04-12 Aqua Chem Inc Closed circuit distillant feed with indirect heat exchange condensation
US3203875A (en) * 1962-08-20 1965-08-31 Harold V Sturtevant Apparatus for distilling water with waste heat
US3558436A (en) * 1968-07-30 1971-01-26 Auscoteng Pty Ltd Distilation apparatus for desalinisation of saline water to recover fresh water as condensate
US3844899A (en) * 1972-09-25 1974-10-29 Gen Atomic Co Multistage flash distillation
US4181577A (en) * 1974-07-18 1980-01-01 Auscoteng Pty. Ltd. Refrigeration type water desalinisation units
US4096039A (en) * 1975-12-18 1978-06-20 Carnine Corporation Condition sensing control system for desalinator automation
US4316774A (en) * 1979-07-05 1982-02-23 United Technologies Corporation Thermoelectric integrated membrane evaporation system
US5156706A (en) * 1982-09-07 1992-10-20 Sephton Hugo H Evaporation of liquids with dispersant added
AU596854B2 (en) * 1986-06-18 1990-05-17 Vaqua Limited Distillation apparatus and method
US5164049A (en) * 1986-10-06 1992-11-17 Athens Corporation Method for making ultrapure sulfuric acid
US5439560A (en) * 1990-02-22 1995-08-08 Konica Corporation Low pressure evaporation concentrating apparatus for a photographic process waste disposl
US5484510A (en) * 1993-10-26 1996-01-16 Dew Enterprises, Inc. Water distilling apparatus
GB2337210A (en) * 1998-05-14 1999-11-17 Aqua Pure Ventures Inc Mechanical vapour recompression separation process
US6159345A (en) * 1998-11-06 2000-12-12 Mitsubishi Chemical America, Inc. Method and apparatus for recovering and/or recycling solvents
JP3482594B2 (ja) 1998-12-10 2003-12-22 日立造船株式会社 蒸留法純水製造装置
JP3434238B2 (ja) * 1999-06-23 2003-08-04 哲夫 宮坂 減圧蒸留装置
US6436242B1 (en) * 2000-02-10 2002-08-20 Pedro Joaquin Sanchez Belmar Device and method for distilling water
AUPR533501A0 (en) * 2001-05-29 2001-06-21 Virgin Pure Water Pty Ltd Improvements in or relating to distillation apparatus
US20030132095A1 (en) * 2002-01-15 2003-07-17 Brian Kenet Device and method for distilling water
EP2476471B1 (en) * 2002-11-13 2016-07-27 DEKA Products Limited Partnership Liquid distillation with recycle of pressurized vapor
US7597784B2 (en) * 2002-11-13 2009-10-06 Deka Products Limited Partnership Pressurized vapor cycle liquid distillation
US8069676B2 (en) * 2002-11-13 2011-12-06 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
WO2007008491A2 (en) * 2005-07-06 2007-01-18 Sylvan Source, Inc. Water purification system
DE102006004639A1 (de) * 2005-09-27 2007-03-29 Aquadetox International Gmbh Verfahren und Vorrichtung zur Brauchwasseraufbereitung
CN201016092Y (zh) * 2006-12-07 2008-02-06 刘允平 太阳能制备纯净水装置
US8951391B2 (en) * 2007-02-14 2015-02-10 Miles McClure Solar distillation device
US7955478B2 (en) * 2007-02-14 2011-06-07 Mcclure Miles Solar distillation device
AU2009288217A1 (en) * 2008-09-04 2010-03-11 Alcoa Inc. Desalination apparatus and process
JP5234625B2 (ja) * 2008-12-02 2013-07-10 春男 上原 洗濯システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554078A (en) * 1978-10-16 1980-04-21 Hitachi Zosen Corp Distillation equipment
JPS61259795A (ja) * 1985-05-13 1986-11-18 Babcock Hitachi Kk 燃料電池−海水淡水化機複合装置
JPH0663535A (ja) 1992-06-18 1994-03-08 Orugano Aqua Kk 純粋蒸溜水の製造装置
JP2000325941A (ja) * 1999-05-19 2000-11-28 Ebara Corp 塩水淡水化装置
JP2002079237A (ja) 2000-09-07 2002-03-19 Kokueki Reiki Kk 純水の製造方法
JP2006167535A (ja) 2004-12-14 2006-06-29 Seiko Epson Corp 描画装置、電気光学装置の製造方法および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2564911A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104958928A (zh) * 2015-05-27 2015-10-07 广东芬尼克兹节能设备有限公司 热泵蒸发冷凝一体机及浓缩方法
WO2018029764A1 (ja) * 2016-08-08 2018-02-15 春男 上原 純水製造装置
US11110183B2 (en) * 2018-08-03 2021-09-07 University Of South Florida Method of delivering genes and drugs to a posterior segment of an eye

Also Published As

Publication number Publication date
US8617358B2 (en) 2013-12-31
EP2564911A1 (en) 2013-03-06
CN102905768B (zh) 2014-11-05
EP2564911B1 (en) 2016-01-06
EP2564911A4 (en) 2014-03-12
JPWO2011135724A1 (ja) 2013-07-18
US20130092522A1 (en) 2013-04-18
JP5150785B2 (ja) 2013-02-27
CN102905768A (zh) 2013-01-30
KR20130080421A (ko) 2013-07-12
KR101632252B1 (ko) 2016-06-21

Similar Documents

Publication Publication Date Title
JP5150785B2 (ja) 純粋液体製造装置
WO2010026953A1 (ja) エネルギー効率の高い蒸留水及び/又は濃縮水の製造方法と装置
JP2011050860A (ja) 含水有機物の無水化方法
JP5775267B2 (ja) 水処理システム
JP2008510610A (ja) Msf蒸留物駆動式の脱塩プロセス及び脱塩装置
WO2011085669A1 (zh) 低温热能驱动负压蒸发水溶液蒸馏分离装置和获得蒸馏水的方法
TWI533924B (zh) 水處理系統以及水處理方法
CN102107119B (zh) 多效膜蒸馏装置与方法
JP2009103422A (ja) ヒートポンプシステム及びその運用方法並びに蒸気蒸発器システム
TW200306399A (en) Integrated energy recovery system
WO2011132427A1 (ja) 流体膜分離発電方法および流体膜分離発電システム
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
KR20110080215A (ko) 진공증발식 정수설비
JP5975208B2 (ja) 海水の淡水化装置及びこれを用いた海水の淡水化方法
KR102212585B1 (ko) 믹싱 밸브와 사이클론이 부착된 히트 펌프를 이용하는 해수 담수화 시스템 및 그의 동작 방법
WO2019163420A1 (ja) 液体有機物と水の分離システム及び分離方法
JP2007132227A (ja) 蒸気タービンプラントおよびこれを搭載した蒸気タービン船
CN203750417U (zh) 一种利用射流循环减压的膜蒸馏装置
JP5708926B2 (ja) 海水の淡水化システム及びその方法
JP7473171B2 (ja) 液組成調整システム
WO2018029764A1 (ja) 純水製造装置
JP2014144939A (ja) Nmp精製システム
US9908791B2 (en) Steam condensation and water distillation system
US11498017B2 (en) Refining system
JP5743489B2 (ja) 水処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066535.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005221

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012512612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3149/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010850739

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE