WO2011134103A1 - 回热式吸收-发生系统与回热式第一类吸收式热泵 - Google Patents

回热式吸收-发生系统与回热式第一类吸收式热泵 Download PDF

Info

Publication number
WO2011134103A1
WO2011134103A1 PCT/CN2010/000588 CN2010000588W WO2011134103A1 WO 2011134103 A1 WO2011134103 A1 WO 2011134103A1 CN 2010000588 W CN2010000588 W CN 2010000588W WO 2011134103 A1 WO2011134103 A1 WO 2011134103A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
new
solution
evaporator
generator
Prior art date
Application number
PCT/CN2010/000588
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Priority to PCT/CN2010/000588 priority Critical patent/WO2011134103A1/zh
Publication of WO2011134103A1 publication Critical patent/WO2011134103A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the technical field of refrigeration and low temperature waste heat utilization heat pump.
  • the premise of using the absorption heat pump technology for waste heat utilization is that the heat pump can raise the heat from the residual heat temperature to the temperature required by the user, and at the same time make the performance index of the absorption heat pump unit as high as possible; similarly, the user is satisfied during cooling. Under the premise of the demand, the cooling efficiency of driving the heat medium should also be exerted as high as possible. This requires that the corresponding units used have a reasonable structure and workflow, and that there is a corresponding high-performance index absorption heat pump with different operating parameters.
  • the first type of absorption heat pump In order to improve the heating temperature and performance index of the first type of absorption heat pump, people have obtained different efficiency and different series of units through research, and then use different methods such as increasing the heating end and increasing the heating process. The compounding of the process yields more detailed effects and progressions, which correspond to the corresponding performance indices.
  • the first type of absorption heat pump with different effectiveness has great differences in working parameters and performance index. Their working parameter intervals are not connected, and there is a big difference in performance index.
  • the first type of absorption heat pump of the series also has great differences in working parameters and performance index.
  • the key is to reduce the concentration of the solution entering the generator; in order to be able to utilize the lower temperature of the residual heat, the key is to increase the concentration of the solution entering the absorber. It would be very important to take reasonable technical measures, increase the concentration of the solution entering the absorber and reduce the concentration of the solution entering the generator, and be able to select the range of increase and decrease of the solution concentration according to the demand within a certain range. .
  • the present invention employs a clever process to apply the regenerative principle.
  • the absorption-generation process of the solution establishes a regenerative absorption-generation system, and based on this, a regenerative first-type absorption heat pump with different effects and different stages is obtained; combined with existing technical measures, Different working parameter intervals correspond to the corresponding first type of absorption heat pumps, and the continuous connection of the first type of absorption heat pumps in the working parameter interval is realized, and the continuous connection of the first type of absorption heat pumps in the performance index is realized.
  • the main object of the present invention is to provide a regenerative absorption-generation system and a regenerative first-type absorption heat pump - firstly, a regenerative absorption-generation system is proposed, and then a different type is added based on the regenerative absorption-generating system.
  • the component is obtained as a series of corresponding regenerative first type absorption heat pumps.
  • the regenerative absorption-generation system of the present invention which is mainly composed of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump, a solution heat exchanger, and a steam separation chamber;
  • An absorber has a dilute solution line connected to the second absorber via the second solution pump, and the second absorber and the dilute solution line are connected to the generator via the first solution pump and the solution heat exchanger, and the generator is further rich
  • the solution pipeline is connected to the steam separation chamber through the solution heat exchanger and the second absorber, and the concentrated steam chamber has a concentrated solution pipeline communicating with the first absorber; the first absorber also has a heated medium pipeline connected to the outside respectively.
  • the refrigerant vapor passage communicates with the outside
  • the external refrigerant liquid pipeline communicates with the first absorber
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber
  • the steam distribution chamber has a refrigerant vapor passage
  • the generator is further connected to the first absorber, and the generator further has a driving heat medium pipeline connected to the outside and a refrigerant vapor channel communicating with the outside; when the generator is turned into a rectification tower, the rectifying tower respectively drives the heat medium pipeline Connected to the outside, there is The heat medium pipe and communicates with the external refrigerant vapor passage in communication with the outside, there are sub-steam chamber communicating with an external heating medium line.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a first throttle valve, a refrigerant liquid a pump or a second throttle valve, forming a single-stage single-effect regenerative first-type absorption heat pump based on a regenerative absorption-generation system; connecting the generator with a refrigerant vapor passage to the outside to determine that the generator has a refrigerant
  • the steam passage is connected to the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator through the first throttle valve, and the refrigerant passage of the first absorber is communicated with the outside to determine that the evaporator has a refrigerant vapor passage and
  • the first absorber is connected to communicate with the first absorber after the external refrigerant liquid line is connected with the first absorber, and then the first absorber and the refrigerant
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, and a first throttle valve. a second throttle valve, a second solution heat exchanger, a refrigerant liquid pump or a third throttle valve, wherein the first generator is a high voltage generator and the second generator is a low pressure generator, forming a regenerative absorption based - a single-stage parallel double-effect regenerative first-stage absorption heat pump of the system; a second absorber is connected to the first solution pump to provide a dilute solution line, and then a second solution heat exchanger is connected to the second generator, The second generator further has a concentrated solution line that passes through the second solution heat exchanger and merges with the first generator through the concentrated solution line after the first solution heat exchanger, and then communicates with the steam separation chamber through the second absorber.
  • the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage and the second generator is in communication, and the second generator has a refrigerant liquid pipeline through the first throttle valve and the condenser Connected - the refrigerant vapor produced by the first generator
  • the second generator drives the heat medium
  • the second generator has a refrigerant vapor passage communicating with the condenser
  • the condenser and the refrigerant liquid line are connected to the evaporator via the second throttle valve
  • the first absorber has The refrigerant vapor passage is connected to the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, and the external refrigerant liquid conduit is in communication with the first absorber, and then the first absorber has a refrigerant vapor passage and the first
  • the second absorber is connected to determine that the evaporator has a refrigerant liquid pipeline connected to the first absorber
  • the residual heat medium pipeline communicates with the outside; when the first generator becomes the first rectification tower, the second generator is replaced by the second rectification tower, and the second refinery tower and the heated medium pipeline are connected to the outside. , the steam separation chamber and the heated medium pipeline External communication.
  • the second generator is replaced by a second rectification column, which naturally has a connecting line or channel between the second generator and the external or other components - respectively heated medium
  • the pipeline communicates with the outside and the refrigerant vapor passage communicates with the condenser; meanwhile, the second fine tower has one more heated medium conduit connected to the outside than the second generator. Therefore, when the second generator is replaced by the second rectification column, only the piping of the rectification tower compared to the generator is described. Subsequent similar situations are handled by this method.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, and a first throttle valve. a second throttle valve, a second solution heat exchanger, a refrigerant liquid pump or a third throttle valve, forming a single-stage series double-effect regenerative first-type absorption heat pump based on a recuperative absorption-generation system;
  • the second absorber has a dilute solution pipeline connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump, the first solution heat exchange And the second solution heat exchanger is in communication with the first generator, and the first generator has a concentrated solution line connected to the steam separation chamber through the first solution heat exchanger and the second absorber to adjust the first generator to be rich After the solution line is connected to the second generator via the second solution heat exchanger, the second generator and the concentrated solution line are connected
  • the vapor passage of the agent is in communication with the second absorber, or is determined to be connected to the second absorber by the refrigerant having the coolant liquid pipeline connected to the first absorber through the third throttle valve.
  • the condenser is further connected to the outside by the heating medium pipeline, and the evaporator and the waste heat medium pipeline are connected to the outside; when the first generator becomes the first rectification tower, the second generator is replaced by the second rectification Tower, second distillation tower and heated medium Conduit communicating with the outside, there are sub-steam chamber is in communication with the outside heating medium line.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a third solution pump, a condenser, an evaporator, a second generator,
  • the first throttle valve, the second throttle valve, the second solution heat exchanger, the refrigerant liquid pump or the third throttle valve form a single-stage series double-effect regenerative type based on the regenerative absorption-generation system
  • the second absorber has a dilute solution connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution through the first solution pump and the first solution heat
  • the exchanger is connected to the second generator, and the second generator further has a concentrated solution pipeline connected to the first generator via the third solution pump and the second solution heat exchanger, and the first generator has a concentrated solution pipeline a solution heat exchanger and a second absorber are connected to the steam distribution chamber to be adjusted to be a first generator having
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third generator, The first throttle valve, the second throttle valve, the third throttle valve, the second solution heat exchanger, the third solution heat exchanger, the refrigerant liquid pump or the fourth throttle valve are formed based on the regenerative absorption -
  • a single-stage parallel three-effect regenerative first-stage absorption heat pump of the system occurs; a dilute solution pipeline is added by the second absorber through the first solution pump, and then connected to the second generator via the second solution heat exchanger and then Passing through the third solution heat exchanger to the third generator, the second generator having the concentrated solution line after passing through the second solution heat exchanger and the third generator having the concentrated solution line passing through the third solution heat exchanger Cooperating with the first generator through the concentrated solution line after the first solution heat exchanger, and then communicating with the steam separation chamber through the second absorber, and connecting the first
  • the refrigerant vapor passage is connected to the first absorber, and the external refrigerant liquid pipeline is connected with the first absorber, and then the first absorber is further connected with the refrigerant vapor passage and the second absorber to determine that the evaporator is cold.
  • the first absorber After the refrigerant liquid pipeline is connected to the first absorber through the refrigerant liquid pump, the first absorber further has a refrigerant vapor passage communicating with the second absorber, or is determined to be a condenser having a refrigerant liquid pipeline passing through the fourth throttle valve After communicating with the first absorber, the first absorber further has a refrigerant vapor passage communicating with the second absorber, the condenser and the heated medium conduit are in communication with the outside, and the evaporator and the waste heat medium conduit are connected to the outside;
  • a generator becomes the first rectification column
  • the second generator is replaced with a second rectification column, a second rectification column, and a heated medium line to communicate with the outside
  • the third generator is replaced by a third The rectification column, the third rectification column, and the heated medium line communicate with the outside, and the steam distribution chamber and the heated medium line communicate with the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third generator, The first throttle valve, the second throttle valve, the third throttle valve, the second solution heat exchanger, the third solution heat exchanger, the refrigerant liquid pump or the fourth throttle valve are formed based on the regenerative absorption - a single-stage series three-effect regenerative first type absorption heat pump of the system occurs; the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust to The second absorber has a dilute solution line connected to the first generator via the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the third solution heat exchanger, and the first generator has a concentrated solution tube The first solution heat exchanger and the second absorber are connected to the steam distribution chamber to be adjusted to be the first generator.
  • the concentrated solution pipeline is connected to the second generator via the third solution heat exchanger, and the second generator is further rich.
  • the solution line is in communication with the third generator via the second solution heat exchanger,
  • the three generators and the concentrated solution pipeline communicate with the steam distribution chamber through the first solution heat exchanger and the second absorber, and the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has refrigerant vapor.
  • the second generator and the refrigerant liquid line are connected to the condenser via the first throttle valve - the refrigerant vapor generated by the first generator is used as the driving heat medium of the second generator
  • the second generator further has a refrigerant vapor passage communicating with the third generator
  • the third generator is further provided with a refrigerant liquid line communicating with the condenser via the second throttle valve - the refrigerant vapor released by the second generator is used as
  • the third generator drives the heat medium
  • the third generator has a refrigerant vapor passage communicating with the condenser
  • the condenser and the refrigerant liquid pipeline are connected to the evaporator via the third throttle valve
  • the first absorber has The refrigerant vapor passage is connected to the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, and the external refrigerant liquid conduit is in communication with the first absorber, and then the first absorber has a ref
  • the first absorber After the flow is connected to the first absorber, the first absorber is further connected with the second absorber through the refrigerant vapor passage, the condenser and the heated medium pipeline are connected to the outside, and the evaporator and the waste heat medium pipeline are connected to the outside.
  • the first generator becomes the first rectification column
  • the second generator is replaced with the second rectification column, the second rectification column, and the heated medium pipe to communicate with the outside
  • the third generator is replaced by The third rectification column, the third rectification column, and the heated medium pipe are connected to the outside, and the steam distribution chamber and the heated medium pipe are connected to the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third generator, First throttle valve, second throttle valve, third throttle valve, second solution heat exchanger, third solution heat exchanger, third solution pump, fourth solution pump, refrigerant liquid pump or fourth section a flow valve, forming a single-stage series three-effect regenerative first-type absorption heat pump based on a regenerative absorption-generation system;
  • the second absorber has a dilute solution line through the first solution pump and the first solution heat exchanger Connected to the first generator, the second absorber has a dilute solution line connected to the third generator via the first solution pump and the first solution heat exchanger, and the third generator has a concentrated solution line through the third solution
  • the pump and the second solution heat exchanger are in communication with the second generator, and the second generator and the concentrated solution line are in communication with the first generator via the fourth solution pump and the
  • An absorber further has a refrigerant vapor passage communicating with the second absorber to determine that the evaporator has a refrigerant liquid pipeline, and the first absorber has a refrigerant vapor passage and a second after the refrigerant liquid pump communicates with the first absorber.
  • the absorber is connected, or it is determined that the condenser is cold
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber, and the condenser and the heated medium pipeline are connected to the outside, and the evaporator is further connected.
  • the residual heat medium pipeline communicates with the outside; when the first generator becomes the first rectification tower, the second generator is replaced with the second rectification tower, the second refinery tower, and the heated medium pipeline to communicate with the outside
  • the third generator is replaced with a third rectifying tower, a third refining tower, and a heated medium line communicating with the outside, and the steam dividing chamber and the heated medium line are connected to the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, an absorption-evaporator, and a first throttle valve. a second solution heat exchanger, a first refrigerant liquid pump or a second throttle pump, a second refrigerant liquid pump or a third throttle valve, forming a single generator two-stage back based on a recuperative absorption-generation system
  • a refrigerant vapor passage is connected to the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator through the first section, and the refrigerant passage of the first absorber is connected to the outside to determine that the evaporator is cold.
  • Liquid line through the first refrigerant pump and absorption-evaporation After the connection, the absorption-evaporator is further connected to the first absorber by the refrigerant vapor channel, or is determined to be a refrigerant having a refrigerant liquid pipeline connected to the absorption-evaporator via the second section, and then absorbed and vaporized and then cooled.
  • the vapor channel of the agent is in communication with the first absorber, and the evaporator and the refrigerant vapor channel are in communication with the absorption-evaporator, and the external absorber has a refrigerant liquid line connected to the first absorber, and the first absorber has a refrigerant vapor channel.
  • Communicating with the second absorber is determined to be that the evaporator has a refrigerant liquid pipeline connected to the first absorber through the second refrigerant liquid pump, and then the first absorber is further connected to the second absorber by the refrigerant vapor passage, or is determined as
  • the condenser has a refrigerant liquid pipeline connected to the first absorber through the third throttle valve, and the first absorber further has a refrigerant vapor passage communicating with the second absorber, and the condenser and the heated medium pipeline are connected to the outside.
  • the evaporator and the residual heat medium pipeline communicate with the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a first throttle valve, and a second solution heat.
  • the exchanger, the second throttle valve or the first refrigerant liquid pump, the third absorber, the second refrigerant liquid pump or the third section is wide, forming a single generator two-stage back based on the recuperative absorption-generation system Thermal first type absorption heat pump; connecting the second absorber with a dilute solution line through the first solution pump and the first solution heat exchanger and the generator to adjust the second absorber to have a dilute solution line through the first solution
  • the pump, the first solution heat exchanger and the second solution heat exchanger are in communication with the generator, and the concentrated solution line of the generator is connected to the steam separation chamber through the first solution heat exchanger and the second absorber to adjust the generator to have
  • the concentrated solution pipeline is connected to the third absorber via the second solution heat exchanger, and the third
  • the device is connected, and the external refrigerant liquid pipeline is connected with the first absorber, and then the first absorber is further connected with the refrigerant vapor passage and the second absorber to determine that the evaporator has a refrigerant liquid pipeline through the first refrigerant liquid.
  • the first absorber is further connected to the second absorber by the coolant vapor passage, or is determined to be the condenser having the coolant liquid pipeline connected to the first absorber via the second throttle valve
  • the receiver further has a refrigerant vapor passage communicating with the second absorber, and the first absorber has a heated medium pipeline connected to the outside to adjust the condenser to have a refrigerant liquid pipeline through the third throttle valve and the first absorber.
  • the first absorber is further connected with the third absorber by the coolant vapor passage, or is adjusted to the evaporator.
  • the refrigerant liquid pipeline is connected to the first absorber through the second refrigerant liquid pump, and then the first absorber is further
  • the refrigerant vapor passage is in communication with the third absorber, and the third absorber and the condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the waste heat medium pipeline are in communication with the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third absorber, a third solution pump, a second solution heat exchanger, a first throttle, a refrigerant pump or a second throttle valve, formed based on a recuperative absorption-generation system, provided by the first generator to the third absorber a dual-generator two-stage regenerative first type absorption heat pump for refrigerant vapor; connecting the first generator with a refrigerant vapor passage to the outside to determine that the first generator has a refrigerant vapor passage communicating with the third absorber,
  • the third absorber has a dilute solution line connected to the second generator via the third solution pump and the second solution heat exchanger, and the second generator further has a concentrated solution line through the second solution heat exchanger and the third absorber Connected, the second generator has a refrigerant vapor passage communicating with the
  • the first absorber Connected to determine that the evaporator has a refrigerant vapor channel
  • the first absorber is connected, and the external refrigerant liquid pipeline is connected with the first absorber, and then the first absorber is further connected with the refrigerant vapor passage and the second absorber, and the condenser has a refrigerant liquid pipeline through the second
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber, or is determined to be an evaporator having a refrigerant liquid pipeline connected to the first absorber through the refrigerant liquid pump
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber, the second generator further driving the heat medium conduit to communicate with the outside, and the third absorber and the condenser are respectively connected to the outside by the heated medium conduit
  • the evaporator and the waste heat medium pipeline communicate with the outside; when the first generator becomes the first rectification tower, the second generator is replaced by the second rectification tower,
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third absorber, a third solution pump, a second solution heat exchanger, a third solution heat exchanger, a first throttle valve, a refrigerant liquid pump or a second throttle valve, formed based on a recuperative absorption-generation system, which is generated by the first a double generator two-stage regenerative first type absorption heat pump for supplying refrigerant vapor to the third absorber; connecting the first generator with the refrigerant vapor passage to the outside to determine that the first generator has a refrigerant vapor passage Communicating with the third absorber, the third absorber and the dilute solution pipeline are connected to the first generator via the third solution pump and the third solution heat exchanger, and the first generator has a concentrated solution pipeline through the first solution
  • the heat exchanger and the second absorber are connected to the steam distribution chamber to be adjusted
  • the vapor channel of the agent is in communication with the second absorber, or is determined to be connected to the second absorber by the refrigerant circuit having the coolant liquid pipeline connected to the first absorber through the coolant pump,
  • the second generator also has a driving heat medium
  • the road is connected to the outside, and the third absorber and the condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the waste heat medium pipeline are connected to the outside; when the first generator becomes the first distillation tower, the first The second generator is replaced by a second rectification column, and the second rectification column is further connected to the outside by a heated medium pipe, and the steam distribution chamber and the heated medium pipe are connected to the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, Adding a first condenser, a second condenser, an evaporator, a second generator, a third absorber, a third solution pump, a second solution heat exchanger, a first throttle valve, a second throttle valve, a refrigerant a liquid pump or a third throttle valve, forming a double-generator two-stage regenerative type based on a regenerative absorption-generation system, providing a refrigerant vapor from the first generator to the third absorber and the second condenser, respectively
  • the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage that communicates with the third absorber and the second condenser, respectively
  • the third absorber has a dilute solution tube
  • the third solution pump and the second solution heat exchanger are
  • connection is determined to be the second condenser or the first condenser has a refrigerant liquid pipeline connected to the first absorber through the third throttle valve, and then the first absorber is further connected to the second absorber by the refrigerant vapor passage, or is determined
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber
  • the second generator also drives the heat medium pipeline and Externally connected
  • the second condenser, the third absorber and the first condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the residual heat medium pipeline communicate with the outside;
  • the first generator becomes the first fine In the distillation column
  • the second generator is replaced by a second fine column
  • the second distillation column is further connected to the outside by a heated medium line, and the steam dividing chamber and the heated medium line are in communication with the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, which increases the first condenser, the second condenser, the evaporator, and the second generation , third absorber, third solution pump, second solution heat exchanger, third solution heat exchanger, first throttle valve, second throttle valve, refrigerant liquid pump or third throttle valve, formed a two-stage two-stage regenerative first type absorption heat pump based on a regenerative absorption-generation system, a refrigerant generator that supplies refrigerant vapor to a third absorber and a second condenser, respectively;
  • the refrigerant vapor passage is connected to the outside to determine that the first generator has a refrigerant vapor passage that communicates with the third absorber and the second condenser, respectively, and the third absorber has a dilute solution pipeline through the third solution pump and the third
  • the solution heat exchanger is in communication with the first generator, and the first generator has a concentrated
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third absorber, a third solution pump, a second solution heat exchanger, a first throttle valve, a refrigerant liquid pump or a second throttle valve, forming a regenerative absorption-generation system based on the second generator to the first absorber a double generator two-stage regenerative first type absorption heat pump providing refrigerant steam; connecting the first generator with a refrigerant vapor passage to the outside to determine that the first generator has a refrigerant vapor passage communicating with the condenser, condensing
  • the refrigerant liquid pipeline is connected to the evaporator via the first throttle valve, the evaporator and the refrigerant vapor passage are connected to the third absorber, and the third absorber has a dilute solution pipeline through the third solution pump and the third
  • the second generator has a refrigerant vapor passage communicating with the first absorber, and the external refrigerant liquid line is in communication with the first absorber, and the first absorber is further connected with the refrigerant vapor passage and the second absorber.
  • the condenser has a refrigerant liquid pipeline connected to the first absorber through the second throttle valve, and then the first absorber is further connected with the second absorber by the refrigerant vapor passage, or is determined to have a refrigerant liquid pipeline through the evaporator.
  • An absorber further has a refrigerant vapor passage communicating with the second absorber, the second generator further driving the heat medium conduit to communicate with the outside, and the third absorber and the condenser are respectively connected to the outside by the heated medium conduit,
  • the evaporator and the waste heat medium pipeline communicate with the outside; when the first generator becomes the first rectification tower, the second generator is replaced by the second rectification tower, and the second rectification tower and the heated medium pipeline Connected to the outside, the steam dividing chamber is also connected to the outside by the heated medium line.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, which increases the first condenser, the second condenser, the evaporator, and the second generation , third absorber, third solution pump, second solution heat exchanger, first throttle valve, second throttle valve, refrigerant liquid pump or third section flow, formed based on regenerative absorption-occurrence a dual generator two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the first absorber and the second condenser by the second generator; the first generator has a refrigerant vapor passage and an external The connection is determined to be that the first generator has a refrigerant vapor passage communicating with the first condenser, the first condenser and the refrigerant liquid pipeline are connected to the second condenser via the first throttle valve, and the second condenser is also cooled The liquid liquid pipeline is connected to the evaporator through the second section, the evaporator and the ref
  • the device is in communication with the second generator, and the second generator has a concentrated solution tube
  • the second solution heat exchanger is in communication with the third absorber
  • the first absorber has a refrigerant vapor passage communicating with the outside to adjust the second generator to have a refrigerant vapor passage communicating with the first absorber, the second generator
  • the refrigerant vapor passage is connected to the second condenser, and the external refrigerant liquid pipeline is connected to the first absorber, and then the first absorber is further connected with the refrigerant vapor passage and the second absorber to determine the first condenser.
  • the second condenser has a refrigerant liquid pipeline connected to the first absorber through the third throttle valve, and then the first absorber is further connected with the second absorber by the refrigerant vapor passage, or is determined to have a refrigerant liquid in the evaporator.
  • the first absorber After the pipeline is connected to the first absorber through the refrigerant liquid pump, the first absorber further has a refrigerant vapor passage communicating with the second absorber, and the second generator further has a driving heat medium conduit communicating with the outside, the third absorber
  • the second condenser and the first condenser are further connected to the outside by the heated medium pipeline, and the evaporator and the waste heat medium pipeline are connected to the outside; when the first generator becomes the first distillation tower, the second occurs Replace it with a second distillation column,
  • the second rectification column is also connected to the outside by the heated medium line, and the steam distribution chamber is also connected to the outside by the heating medium line.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system of item 1, adding a condenser, an evaporator, a second generator, a third absorber, a third solution pump, a second solution heat exchanger, a first throttle valve, a refrigerant liquid pump or a second throttle valve, formed based on a recuperative absorption-generation system, common to the first absorber and the first generator a two-stage two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to a third absorber; a third absorber having a dilute solution line through a third solution pump and a second solution heat exchanger and a second occurrence
  • the second generator and the concentrated solution pipeline are connected to the third absorber via the second solution heat exchanger, and the second generator has a refrigerant vapor passage communicating with the condenser, and the condenser and the refrigerant liquid tube The first section of the passage is connected to the evaporator through
  • the passage is connected to the second absorber to determine that the condenser has a refrigerant liquid pipe
  • the first absorber further has a refrigerant vapor passage communicating with the third absorber and the second absorber, respectively, or determining that the evaporator has a refrigerant liquid pipeline through the refrigerant Liquid pump and first absorber
  • the first absorber further has a refrigerant vapor passage communicating with the third absorber and the second absorber respectively
  • the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage and
  • the third absorber is in communication, and the first absorber has a refrigerant vapor passage communicating with the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, and the second generator also driving the heat medium conduit to communicate with the outside.
  • the third absorber and the condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the waste heat medium pipeline are connected to the outside; when the first generator becomes the first distillation tower, the second generator is replaced
  • the second rectification column, the second rectification column and the heated medium pipe are connected to the outside, and the steam distribution chamber and the heated medium pipe are connected to the outside.
  • the regenerative first type absorption heat pump of the present invention is based on the regenerative absorption-generation system according to item 1, adding a condenser, an evaporator, a second generator, a third solution pump, a second solution heat exchanger, a first throttle valve, a first refrigerant liquid pump or a second throttle valve, an absorption-evaporator, a second refrigerant liquid pump or a third throttle valve, forming a regenerative absorption based a generating system, a dual-generator two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the first absorber by the absorption-evaporator and the second generator; the second generator has a concentrated solution line
  • the second solution heat exchanger is in communication with the absorption-evaporator, and the absorption-evaporator and the dilute solution line are in communication with the second generator via the third solution pump and the second solution heat exchanger, and the first generator has a refrigerant
  • the steam passage is connected to
  • the passage of the passage to the outside is determined to be a refrigerant liquid line in the condenser
  • the second throttle valve is in communication with the absorption-evaporator, the absorption-evaporator is further connected to the first absorber by the refrigerant vapor passage, and the second generator has a refrigerant vapor passage communicating with the first absorber, or is determined to be an evaporator
  • the refrigerant liquid pipeline is connected to the absorption-evaporator through the first refrigerant liquid pump, the absorption-vaporizer and the refrigerant vapor passage are connected to the first absorber, and the second generator has a refrigerant vapor passage and the first absorption.
  • the device is connected, the evaporator and the refrigerant vapor channel are connected to the absorption-evaporator, and the external refrigerant liquid line is connected with the first absorber, and then the first absorber is further connected with the second absorber through the refrigerant vapor channel.
  • the condenser quench liquid line is connected to the first absorber through the third throttle valve, the first absorber is further connected with the second absorber by the refrigerant vapor passage, or is determined to be a coolant liquid line of the evaporator.
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber
  • the second generator also drives the heat medium conduit to communicate with the outside
  • the condenser has The heated medium line communicates with the outside,
  • the evaporator and the waste heat medium pipeline communicate with the outside; when the first generator becomes the first rectification tower, the second generator is replaced by the second rectification tower, and the second refinement tower and the heated medium pipeline Connected to the outside, the steam dividing chamber is also connected to the outside by the heated medium line.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 3, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the two solution heat exchanger is connected to the second generator to be adjusted to be a second absorber having a dilute solution line connected to the newly added absorber through the first solution pump and the second solution heat exchanger, and the new absorber and the dilute solution tube are added.
  • the new first solution heat exchanger is connected to the new absorption-evaporator, and the new absorption-evaporator and dilute solution pipeline are added to the new solution pump, the first solution heat exchanger is added, and the second is added.
  • the solution heat exchanger is in communication with the second generator, and the second generator has a concentrated solution line that passes through the second solution heat exchanger and is merged with the first generator through the concentrated solution line after the first solution heat exchanger to adjust
  • the second generator has a concentrated solution line through a new second solution heat exchanger After the second solution heat exchanger is merged with the first generator through the concentrated solution pipeline after the first solution heat exchanger, the refrigerant vapor channel is connected by the evaporator to the newly added absorption-evaporator, and the refrigerant is added by the condenser.
  • the liquid pipeline is connected to the new absorption-evaporator via a new throttle valve, and then a new absorption-evaporator is connected, and a refrigerant vapor passage is connected with the newly added absorber, or the refrigerant is added with a refrigerant liquid pipeline.
  • a new absorption-evaporator is added, and then a refrigerant vapor channel is connected with the newly added absorber, and the newly added absorber and the heated medium pipe are connected to the outside, and the absorber is newly added.
  • the regenerative first type absorption heat pump of the present invention is the regenerative first type absorption heat pump according to item 3, Add new absorption-evaporator, new absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new Adding a second throttle valve or a newly added refrigerant liquid pump, adjusting a second absorber having a dilute solution line through the first solution pump and the second solution heat exchanger to the second generator to adjust to a second absorber having a rare
  • the solution pipeline is connected to the newly added absorber through the first solution pump and the second solution heat exchanger, and the newly added absorber and the dilute solution pipeline are connected to the newly added absorption-evaporator via the newly added first solution heat exchanger.
  • the second generator has a concentrated solution After the pipeline passes through the second solution heat exchanger, it merges with the first generator through the concentrated solution pipeline after the first solution heat exchanger to adjust the second generator to have a concentrated solution pipeline through the addition of the second solution heat exchanger and After the second solution heat exchanger is in thermal contact with the first generator via the first solution
  • the refrigerant liquid pipeline is added by the condenser.
  • the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or by new Increase the evaporator or evaporator to add the refrigerant liquid pipeline.
  • the new refrigerant liquid pump is connected with the new absorption-evaporator, add the absorption-evaporator and then connect the refrigerant vapor channel to the new absorber to add absorption.
  • the device is also connected to the outside by a heated medium pipe, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 3, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the second absorber has a dilute solution line through the first solution pump and the first a solution heat exchanger is connected to the first generator to adjust to a second absorber having a dilute solution line connected to the new absorber through the first solution pump and the first solution heat exchanger, and the new absorber and the dilute solution tube
  • the first new solution heat exchanger is connected with the new absorption-evaporator, and the new absorption-evaporator and the dilute solution pipeline are divided into two paths after the new solution pump and the new first solution heat exchanger are added.
  • the concentrated solution line that is connected to the second generator after the device will be the first one.
  • the concentrated solution pipeline is connected to the steam separation chamber through the first solution heat exchanger and the second absorber to adjust the first generator to have a concentrated solution pipeline, and the second solution heat exchanger and the first solution heat exchanger are added.
  • the second absorber is connected with the steam separation chamber, and the refrigerant vapor channel is connected by the evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser through the newly added throttle valve and the newly added absorption-evaporator After the connection, the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or the evaporator is added with the refrigerant liquid pipeline. After the new refrigerant liquid pump is connected with the new absorption-evaporator, the absorption is newly added.
  • the evaporator has a refrigerant vapor passage communicating with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is the addition of a new absorption-evaporator, a new absorber, and a new solution in the regenerative first type absorption heat pump according to item 3.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new refrigerant pump, will
  • the second absorber has a dilute solution line connected to the first generator via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the first solution heat exchanger
  • the absorber is connected to
  • Additional refrigerant vapor channel is connected to the new absorption-evaporator, and cold is added by the condenser.
  • the agent liquid pipeline is connected with the new absorption-evaporator by adding a second throttle valve, and then a new absorption-evaporator is connected to the refrigerant vapor passage to communicate with the newly added absorber, or added by a new evaporator or evaporator.
  • the refrigerant liquid pipeline is connected with the new absorption-evaporator through the newly added refrigerant liquid pump, and then the absorption-vaporizer is connected to the refrigerant vapor passage and the new absorber is connected.
  • the new absorber and the heated medium tube are added.
  • the road is connected to the outside, and the new absorber is added to the adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump of item 4, a new absorption-evaporator, a new absorber, and a new solution are added.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new throttle valve or new refrigerant liquid pump, the second absorber has a dilute solution pipeline through the first solution pump, a solution heat exchanger and a second solution heat exchanger are connected to the first generator to adjust the second absorber to have a dilute solution line through the first solution pump, the first solution heat exchanger and the second solution heat exchanger and the new
  • the absorber is connected, the new absorber and the dilute solution pipeline are connected to the new absorption-evaporator via the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added to the new solution pump.
  • the first generator has a concentrated solution line through a new second solution heat exchanger
  • the second solution heat exchanger is in communication with the second generator, and the refrigerant vapor channel is added by the evaporator to communicate with the newly added suction-evaporator, and the refrigerant liquid pipeline is added by the condenser through the newly added throttle valve and newly added
  • the absorption-evaporator is connected, the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or the refrigerant liquid line is added by the evaporator, and the newly added refrigerant liquid pump is connected with the newly added absorption-evaporator.
  • the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is the addition of a new absorption-evaporator, a new absorber, and a new solution in the regenerative first type absorption heat pump according to item 4.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new refrigerant pump, will
  • the second absorber has a dilute solution pipeline connected to the first generator via the first solution pump, the first solution heat exchanger and the second solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump,
  • the first solution heat exchanger and the second solution heat exchanger are in communication with the newly added absorber, and the newly added absorber and the dilute solution pipeline are connected to the newly added absorption-evaporator via the newly added first solution heat exchanger, and newly added
  • the absorption-evaporator and the dilute solution pipeline are connected to the first generator via a new solution pump, a new first solution heat exchanger, and a new
  • the refrigerant vapor channel is added by the new evaporator to connect with the new absorption-evaporator.
  • the refrigerant liquid pipeline is added by the condenser. After the second section is added, the new absorption-vaporizer is connected and the absorption is added.
  • the evaporator has a refrigerant vapor channel connected to the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline.
  • the new refrigerant liquid pump is connected to the new absorption-evaporator to add absorption.
  • the evaporator has a refrigerant vapor passage communicating with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump of item 5, a new absorption-evaporator, a new absorber, and a new solution are added.
  • a pump, a new solution heat exchanger, a new throttle valve or a new refrigerant liquid pump, and the second absorber has a dilute solution line connected to the second generator via the first solution pump and the first solution heat exchanger Adjusted to a second absorber with a dilute solution line connected to the new absorber through the first solution pump and the first solution heat exchanger, a new absorber and a dilute solution line through the new solution heat exchanger and new
  • the absorption-evaporator is connected, the new absorption-evaporator and the dilute solution line are connected to the second generator via the new solution pump and the new solution heat exchanger, and the refrigerant vapor channel is added by the evaporator and the absorption is newly added.
  • the evaporator is connected, and the refrigerant liquid pipeline is added by the condenser.
  • the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or by evaporation.
  • Adding refrigerant liquid line through new refrigerant liquid pump and adding absorption-evaporator After through new absorber - evaporator, then the refrigerant vapor channel communicating with the new absorber, a new The absorber is also connected to the outside by the heated medium line, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 5, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the second absorber has a dilute solution line connected to the second generator via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the first solution heat exchanger
  • Adding absorber connection, adding absorber and dilute solution pipeline through new first solution heat exchanger and new absorption-evaporator, adding absorption-evaporator and dilute solution pipeline through new solution a pump, a new first solution heat exchanger and a new second solution heat exchanger are connected to the second generator, and the first generator has a concentrated solution line through the second solution heat exchanger and the first solution heat exchanger And the second absorb
  • the second throttle valve and the new absorption-evaporator are added. After the connection, the absorption-evaporator is added, and the refrigerant vapor channel is connected with the newly added absorber, or the refrigerant circuit is added by the new evaporator or the evaporator. The new refrigerant liquid pump and the new absorption-evaporator are added.
  • a new absorption-evaporator is added, and a refrigerant vapor channel is connected with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end;
  • the new absorption-evaporator has a dilute solution pipeline connected to the second generator via the new solution pump and the newly added first solution heat exchanger, and the first generator has The concentrated solution line passes through the second solution heat exchanger and the first Fluid communication with the second absorber heat exchanger.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump of item 6, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the three-solution heat exchanger is connected to the third generator to be adjusted to be a second absorber having a dilute solution line connected to the newly added absorber through the first solution pump and the third solution heat exchanger, and the new absorber and the dilute solution tube are added.
  • the new first solution heat exchanger is connected to the new absorption-evaporator, and the new absorption-evaporator and dilute solution pipeline are added to the new solution pump, the first solution heat exchanger is added, and the second is added.
  • the solution heat exchanger is in communication with the third generator, and the third generator has a concentrated solution line that passes through the third solution heat exchanger and is merged with the first generator through the concentrated solution line after the first solution heat exchanger to adjust
  • the third generator has a concentrated solution line through the addition of a second solution heat exchange
  • the third solution heat exchanger is merged with the first generator through the concentrated solution pipeline after the first solution heat exchanger, and the refrigerant vapor passage is connected by the evaporator to the newly added absorption-evaporator, and the cold is added by the condenser.
  • the agent liquid pipeline is connected with the new absorption-evaporator via a new throttle valve, and then a new absorption-evaporator is connected to the refrigerant vapor passage to communicate with the newly added absorber, or a refrigerant liquid pipeline is added by the evaporator.
  • the refrigerant pump is connected with the new absorption-evaporator
  • the absorption-evaporator is added, and the refrigerant vapor channel is connected with the newly added absorber.
  • the newly added absorber and the heated medium pipeline are connected to the outside.
  • the absorber is a new adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump of item 6, a new absorption-evaporator, a new absorber, and a new solution are added.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new refrigerant pump, will
  • the second absorber has a dilute solution line connected to the third generator via the first solution pump and the third solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the third solution heat exchanger
  • Adding absorber connection, adding absorber and dilute solution pipeline through new first solution heat exchanger and new absorption-evaporator, adding absorption-evaporator and dilute solution pipeline through new solution a pump, a new first solution heat exchanger and a new second solution heat exchanger are connected to the third generator, and the third generator has a concentrated solution line through the third solution heat exchanger and the first generator Concentrated solution line con
  • the passage is connected with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser.
  • the absorption-evaporator is added and the refrigerant vapor channel is added.
  • the absorber is connected, or the refrigerant circuit is added by a new evaporator or evaporator.
  • the absorption-evaporator is added and the refrigerant vapor channel is added.
  • the absorber is connected, the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 6, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the second absorber has a dilute solution line through the first solution pump and the first a solution heat exchanger is connected to the first generator to adjust to a second absorber having a dilute solution line connected to the new absorber through the first solution pump and the first solution heat exchanger, and the new absorber and the dilute solution tube
  • the new first solution heat exchanger is connected with the new absorption-evaporator, and the new absorption-evaporator and the dilute solution pipeline are divided into three paths after the new solution pump and the new first solution heat exchanger are added.
  • the second absorber is subjected to a second solution heat exchange after passing through the first solution pump a solution line connecting the second generator and a solution line communicating with the third generator via the third solution heat exchanger, the first generator having the concentrated solution line passing through the first solution heat exchanger and the second absorber
  • the first generator has a concentrated solution pipeline connected to the steam distribution chamber, and the second solution heat exchanger, the first solution heat exchanger and the second absorber are connected to the steam distribution chamber, and the refrigerant vapor is added by the evaporator.
  • the channel is connected with the new absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser.
  • the absorption-evaporator is added and the refrigerant vapor channel is added and the absorption is newly added.
  • the absorption-evaporator is added and the refrigerant vapor channel is connected with the newly added absorber.
  • the absorber is also connected to the outside by a heated medium line, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator, new absorber, new solution added in the regenerative first type absorption heat pump according to item 6.
  • the second absorber has a dilute solution line connected to the first generator via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the second solution heat exchanger Adding absorber connection, adding absorber and dilute solution pipeline through new first solution heat exchanger and new absorption-evaporator, adding absorption-evaporator and dilute solution pipeline through new solution
  • the pump and the newly added first solution heat exchanger are divided into three paths and respectively communicated with the third generator through the third solution heat exchanger, and then connected to the second generator through the second solution heat exchanger and then added
  • the second solution heat exchanger is in communication with the
  • the additional refrigerant liquid pipeline is connected with the new absorption-evaporator by adding a second throttle valve, and then the absorption-evaporator is added, and then the refrigerant vapor passage is connected with the newly added absorber, or added by a new evaporator.
  • the refrigerant liquid pipeline is connected with the new absorption-evaporator through the newly added refrigerant liquid pump, and then the absorption-vaporizer is connected to the refrigerant vapor passage and the new absorber is connected.
  • the new absorber and the heated medium tube are added.
  • the road is connected to the outside, and the new absorber is added to the adjacent height. Heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 7, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the exchanger, the new throttle valve or the newly added refrigerant liquid pump, the second absorber has a dilute solution line through the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the third solution heat
  • the exchanger is connected to the first generator to be adjusted to have a second solution having a dilute solution line through the first solution pump, the first solution heat exchanger, the second solution heat exchanger, and the third solution heat exchanger and the new absorber Connected, the new absorber and the dilute solution pipeline are connected to the new absorption-evaporator by adding the first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added by the new solution pump.
  • the first solution heat exchanger and the newly added second solution heat exchanger are in communication with the first generator, and the first generator has a concentrated solution pipeline connected to the second generator via the third solution heat exchanger to be adjusted to be the first occurrence
  • the concentrated solution pipeline is connected to the second generator via the newly added second solution heat exchanger and the third solution heat exchanger, and the refrigerant vapor passage is connected by the evaporator to the newly added absorption-evaporator, and is added by the condenser.
  • the refrigerant liquid line has been added with a new throttle valve and added absorption - After the evaporator is connected, a new absorption-evaporator is added, and then a refrigerant vapor channel is connected with the newly added absorber, or a refrigerant liquid line is added by the evaporator. After the new refrigerant liquid pump is connected with the new absorption-evaporator, the new one is connected.
  • the absorption-evaporator and the refrigerant vapor channel are connected to the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 7, a new absorption-evaporator, a new absorber, and a new solution are added.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new refrigerant pump, will
  • the second absorber has a dilute solution line connected to the first generator via the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the third solution heat exchanger to adjust the second absorber to a dilute solution tube
  • the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the third solution heat exchanger are connected to the newly added absorber, and the new absorber and the dilute solution pipeline are added with the first solution.
  • the heat exchanger is connected to the new absorption-evaporator, and the new absorption-evaporator and the dilute solution pipeline are added through the new solution pump, the first solution heat exchanger is added, and the second solution heat exchanger is added.
  • the generator is connected, and the first generator has a concentrated solution pipeline through the third solution heat
  • the converter is connected to the second generator to be adjusted to be a first generator having a concentrated solution line connected to the second generator via the newly added second solution heat exchanger and the third solution heat exchanger, and the refrigerant liquid tube is added by the evaporator
  • the first throttle valve is added to the new evaporator, and the refrigerant vapor channel is added by the new evaporator to connect with the new absorption-evaporator.
  • the refrigerant liquid pipeline is added by the condenser through the new throttle valve. After connecting with the new absorption-evaporator, add the absorption-evaporator and then connect the refrigerant vapor channel to the new absorber, or add a new refrigerant or evaporator to add the coolant liquid pipeline through the new refrigerant liquid pump. After connecting with the new absorption-evaporator, the absorption-evaporator is added and the refrigerant vapor channel is connected with the newly added absorber. The newly added absorber and the heated medium pipeline are connected to the outside, and the new absorber is added. Adjacent high temperature heating end.
  • the regenerative type I absorption heat pump is added to the regenerative first type absorption heat pump of item 8, adding a new absorption-evaporator, adding a new absorber, adding a new solution pump, adding a throttle valve or a newly added refrigerant liquid pump, a new first solution heat exchanger and a new second solution heat exchanger, and the second absorber has a dilute solution line through the first solution pump and the first solution heat exchange
  • the device is connected to the third generator to adjust the second absorber to have a dilute solution pipeline connected to the newly added absorber through the first solution pump and the first solution heat exchanger, and the newly added absorber and the dilute solution pipeline are newly added.
  • the first solution heat exchanger is connected to the newly added absorption-evaporator, and the new absorption-evaporator and the dilute solution line are added through the new solution pump, the first solution heat exchanger is added, and the second solution heat exchanger is added.
  • Communicating with the third generator adjusting the first generator having the concentrated solution line through the third solution heat exchanger, the second solution heat exchanger, the first solution heat exchanger, and the second absorber to the steam separation chamber to
  • the first generator has a concentrated solution line through the third solution heat exchanger, the second solution heat
  • the converter, the newly added second solution heat exchanger, the first solution heat exchanger and the second absorber are in communication with the steam separation chamber, and the refrigerant vapor passage is connected by the evaporator to the newly added absorption-evaporator, and is added by the condenser.
  • the refrigerant liquid pipeline is connected with the newly added absorption-evaporator through a new throttle valve, and then a new absorption-evaporator is connected to the refrigerant vapor passage to communicate with the newly added absorber, or a refrigerant liquid pipeline is added by the evaporator.
  • the newly added refrigerant liquid pump is connected with the new absorption-evaporator, and the new absorption-evaporator is connected to the refrigerant vapor passage to communicate with the newly added absorber.
  • the newly added absorber and the heated medium pipeline are connected to the outside.
  • the absorber is a new adjacent high-temperature heating end; wherein, when the second heat exchanger is added, the new absorption-evaporator is added.
  • the dilute solution pipeline is connected to the third generator via a new solution pump and a newly added first solution heat exchanger, and the first generator has a concentrated solution pipeline through the third solution heat exchanger, the second solution heat exchanger, A solution heat exchanger and a second absorber are in communication with the steam dividing chamber.
  • the regenerative type I absorption heat pump is a new type of absorption-evaporator, new absorber, new solution pump, new addition in the regenerative type I absorption heat pump according to item 8.
  • Solution heat exchanger, new evaporator, new first throttle valve, new second throttle valve or new refrigerant liquid pump, the second absorber has a dilute solution pipeline through the first solution pump and the first a solution heat exchanger is connected to the third generator to adjust to a second absorber having a dilute solution line connected to the new absorber through the first solution pump and the first solution heat exchanger, and the new absorber and the dilute solution tube
  • the new solution heat exchanger is connected to the new absorption-evaporator, and the new absorption-evaporator and the dilute solution line are connected to the third generator via the new solution pump and the new solution heat exchanger.
  • the additional refrigerant liquid pipeline is connected with the newly added evaporator through the addition of the first throttle valve, and the refrigerant vapor passage is added by the newly added evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser.
  • New absorption-evaporator after adding the second section of the flow to the new absorption-evaporator There is a refrigerant vapor channel connected to the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline. After the new refrigerant liquid pump is connected with the new absorption-evaporator, the absorption-evaporator is added.
  • the refrigerant vapor channel is connected with the newly added absorber, the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative type I absorption heat pump is added to any of the regenerative first type absorption heat pumps mentioned in items 2, 9, 15-16 and 18, adding a new absorption-evaporator, adding Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new throttle valve or new refrigerant liquid pump, the second absorber has a dilute solution line
  • the first solution pump and the first solution heat exchanger are connected to the first generator to be adjusted to have a second solution having a dilute solution line connected to the first solution pump and the first solution heat exchanger and the newly added absorber, and the absorption is newly added.
  • the dilute solution pipeline is connected to the newly added absorption-evaporator by adding the first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added to the new solution pump, and the first solution heat exchange is added.
  • the newly added second solution heat exchanger is connected to the first generator, and the first generator has a concentrated solution pipeline connected to the first solution heat exchanger and the second absorber and the steam distribution chamber to adjust to the first generator.
  • the concentrated solution line is added with the second solution heat exchanger, the first solution heat exchanger and the first
  • the second absorber is connected to the steam distribution chamber, and the refrigerant vapor channel is added by the evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser through the newly added throttle valve to communicate with the newly added absorption-evaporator.
  • the new refrigerant liquid pump is connected to the new absorption-evaporator to add absorption-evaporation.
  • the refrigerant vapor passage is connected with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative type I absorption heat pump is added to any of the regenerative first-class absorption heat pumps mentioned in items 2, 9, 15-16, and 18, adding a new absorption-evaporator, adding Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new cold a liquid pump, the second absorber has a dilute solution pipeline connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump and A solution heat exchanger is connected to the newly added absorber, and the newly added absorber and the dilute solution pipeline are connected to the newly added absorption-evaporator through the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution are added.
  • the pipeline is connected to the first generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and the first generator has a concentrated solution pipeline through the first solution heat exchanger and
  • the second absorber is connected to the steam distribution chamber to adjust the first generator to have a concentrated solution pipeline through the addition of the second solution heat
  • the converter, the first solution heat exchanger and the second absorber are connected to the steam distribution chamber, and the refrigerant liquid pipeline is added by the evaporator, and the first throttle valve is connected with the newly added evaporator, and the new evaporator is added.
  • the refrigerant vapor passage is connected with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser.
  • the absorption-evaporator is added and the refrigerant vapor is added.
  • the channel is connected to the newly added absorber, or the refrigerant liquid line is added by a new evaporator or evaporator.
  • the absorption-evaporator is added and the refrigerant vapor is added.
  • Channel and new The absorber is connected, the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 10, a new absorption-evaporator, a new absorber, and a new solution are added.
  • the second absorber has a dilute solution pipeline through the first solution pump, a solution heat exchanger and a second solution heat exchanger are connected to the first generator to adjust the second absorber to have a dilute solution line through the first solution pump, the first solution heat exchanger and the second solution heat exchanger and the new
  • the absorber is connected, the new absorber and the dilute solution pipeline are connected to the new absorption-evaporator via the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added to the new solution pump.
  • the first generator has a concentrated solution line through a new second solution heat exchanger
  • the second solution heat exchanger is in communication with the third absorber, and the refrigerant vapor channel is connected by the evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser through the newly added throttle valve and newly absorbed.
  • the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or the refrigerant liquid pipeline is added by the evaporator.
  • the new refrigerant liquid pump is connected with the new absorption-evaporator, the new one is connected.
  • the absorption-evaporator and the refrigerant vapor channel are connected to the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is characterized in that in the regenerative first type absorption heat pump according to item 10, a new absorption-evaporator, a new absorber, and a new solution are added.
  • Pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new refrigerant pump, will
  • the second absorber has a dilute solution pipeline connected to the first generator via the first solution pump, the first solution heat exchanger and the second solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump,
  • the first solution heat exchanger and the second solution heat exchanger are in communication with the newly added absorber, and the newly added absorber and the dilute solution pipeline are connected to the newly added absorption-evaporator via the newly added first solution heat exchanger, and newly added
  • the absorption-evaporator and the dilute solution pipeline are connected to the first generator via a new solution pump, a new first solution heat exchanger,
  • the refrigerant vapor channel is added by the new evaporator to connect with the new absorption-evaporator.
  • the refrigerant liquid pipeline is added by the condenser. After the second throttle valve is added, the new absorption-evaporator is connected and the absorption is added.
  • the evaporator has a refrigerant vapor channel connected to the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline.
  • the new refrigerant liquid pump is connected to the new absorption-evaporator to add absorption.
  • the evaporator has a refrigerant vapor passage communicating with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator added to any of the regenerative first type absorption heat pumps described in items 11, 13, and 17 Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new throttle valve or new refrigerant liquid pump, the third absorber has a dilute solution line
  • the third solution pump and the second solution heat exchanger are connected to the second generator to be adjusted to be a third absorber having a dilute solution line connected to the newly added absorber through the third solution pump and the second solution heat exchanger, and newly adding absorption
  • the dilute solution pipeline is connected to the newly added absorption-evaporator by adding the first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added to the new solution pump, and the first solution heat exchange is added.
  • the second solution heat exchanger is connected to the second generator, and the second generator has a concentrated solution pipeline connected to the third absorber through the second solution heat exchanger to adjust the second generator to have a concentrated solution tube Adding a second solution heat exchanger and a second solution heat exchanger to the third absorber Passing, the refrigerant vapor channel is added by the evaporator to connect with the new absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser. After the new throttle is connected and the new absorption-evaporator is connected, the absorption-evaporator is added.
  • the refrigerant vapor passage is connected with the newly added absorber, or the refrigerant liquid pipeline is added by the evaporator, and the newly added refrigerant liquid pump is connected with the newly added absorption-evaporator.
  • the refrigerant vapor channel is connected with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is added with the adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator added to any of the regenerative first type absorption heat pumps described in items 11, 13, and 17 Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second section or new cold a liquid pump, the third absorber has a dilute solution pipeline connected to the second generator through the third solution pump and the second solution heat exchanger to adjust the third absorber to have a dilute solution pipeline through the third solution pump and The two-solution heat exchanger is connected to the newly added absorber, and the newly added absorber and the dilute solution pipeline are connected with the newly added absorption-evaporator through the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution are added.
  • the pipeline is connected to the second generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and the second generator has a concentrated solution pipeline through the second solution heat exchanger.
  • the third absorber is connected to be adjusted to have a second solution
  • the heat exchanger and the second solution heat exchanger are in communication with the third absorber, and the refrigerant liquid line is added by the evaporator, and the first throttle valve is connected with the newly added evaporator, and the refrigerant vapor is added by the newly added evaporator.
  • the channel is connected with the new absorption-evaporator, and the refrigerant liquid line is added by the condenser.
  • the new absorption-evaporator is connected, and the absorption-evaporator is added to the refrigerant channel.
  • the absorber is connected, or the refrigerant circuit is added by a new evaporator or evaporator.
  • the new refrigerant pump is connected with the new absorption-evaporator, the absorption-evaporator is added and the refrigerant vapor channel is added.
  • the absorber is connected, the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator and a new absorber added to any of the regenerative first type absorption heat pumps described in items 12 and 14. , adding a solution pump, adding a first solution heat exchanger, adding a second solution heat exchanger, adding a new throttle valve or adding a new refrigerant liquid pump, and the second absorber has a dilute solution pipeline through the first
  • the solution pump, the first solution heat exchanger and the second solution heat exchanger are connected to the second generator to be adjusted to have a second solution having a dilute solution line through the first solution pump, the first solution heat exchanger and the second solution heat
  • the exchanger is connected to the newly added absorber, and the new absorber and the dilute solution pipeline are connected to the newly added absorption-evaporator through the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution pipeline are added.
  • a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger are connected to the second generator, and the second; the raw material has a concentrated solution line through the second solution heat exchanger and the first
  • the triple absorber is connected to adjust the second generator to have a concentrated solution line through the addition of the second solution
  • the exchanger and the second solution heat exchanger are in communication with the third absorber, and the refrigerant vapor channel is added by the evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser through the new throttle and the new After the absorption-evaporator is connected, the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or the refrigerant liquid line is added by the evaporator, and the new refrigerant liquid pump and the new absorption-evaporator are added.
  • a new absorption-evaporator is added, and a refrigerant vapor channel is connected with the newly added absorber.
  • the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator and a new absorber added to any of the regenerative first type absorption heat pumps described in items 12 and 14.
  • the second absorber has a dilute solution pipeline connected to the second generator through the first solution pump, the first solution heat exchanger and the second solution heat exchanger
  • the second absorber has a dilute solution pipeline
  • a solution pump, a first solution heat exchanger and a second solution heat exchanger are connected to the newly added absorber, and the newly added absorber and the dilute solution line are added with the first solution heat exchanger and the newly added absorption-evaporator Connected, the new absorption-evaporator and the dilute solution line are connected to the second generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and the second
  • the second throttle valve is added with the new throttle valve.
  • a new absorption-evaporator is added, and then a refrigerant vapor channel is connected with the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline via the newly added refrigerant liquid pump and the new
  • the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber.
  • the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is newly added. High temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator and a new absorber added to any of the regenerative first type absorption heat pumps described in items 3-8. , adding a new solution pump, adding a first solution heat exchanger, adding a second solution heat exchanger, adding a new throttle valve or adding a new refrigerant liquid pump, adding a concentrated solution line from the low pressure generator, adding a new The two-solution heat exchanger is connected to the newly added absorber, and the newly added absorber and the dilute solution pipeline are connected with the newly added absorption-evaporator through the newly added first solution heat exchanger, and the new absorption-evaporator and the dilute solution are added.
  • the pipeline is connected to the low pressure generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and a refrigerant vapor passage is connected to the evaporator to connect with the newly added absorption-evaporator.
  • the refrigerant circuit is added with a new throttle valve and a new absorption-evaporator is connected to the new absorption-evaporator, and then the refrigerant vapor channel is connected with the newly added absorber, or a refrigerant liquid pipe is added by the evaporator.
  • the new refrigerant liquid pump is connected with the new absorption-evaporator, the suction is added.
  • the absorber also add a heating medium line is in communication with the outside, to add new absorber adjacent to the high temperature end of heating.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator and a new absorber added to any of the regenerative first type absorption heat pumps described in items 3-8.
  • the new absorber and the dilute solution line are added with the first solution heat exchanger and newly absorbed.
  • the evaporator is connected, the new absorption-evaporator and the dilute solution line are connected to the low-pressure generator via the new solution pump, the new first solution heat exchanger and the new second solution heat exchanger, and are added by the evaporator.
  • the refrigerant liquid pipeline is connected with the newly added evaporator through the addition of the first throttle valve, and the refrigerant vapor channel is added by the newly added evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid pipeline is added by the condenser. Add the second throttle valve to the new absorption-evaporator and add the absorption-evaporator.
  • refrigerant vapor channel connected to the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline. After the new refrigerant liquid pump is connected with the new absorption-evaporator, the absorption-evaporator is added.
  • the refrigerant vapor channel is connected with the newly added absorber, the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporation in any of the regenerative first type absorption heat pumps described in items 2, 10, 15-16, and 18 , new absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new throttle or new refrigerant pump, added by the first generator
  • the solution pipeline is connected to the newly added absorber through the newly added second solution heat exchanger, and the newly added absorber and the dilute solution pipeline are connected with the newly added absorption-evaporator through the newly added first solution heat exchanger, and the new absorption is added.
  • the evaporator and the dilute solution pipeline are connected to the first generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and a refrigerant vapor channel is added and added by the evaporator
  • the absorption-evaporator is connected, and the refrigerant liquid pipeline is added by the condenser.
  • the absorption-vaporizer is added, and then the refrigerant vapor channel is connected with the newly added absorber, or Adding refrigerant liquid line from the evaporator, adding new refrigerant liquid pump and adding absorption-steaming
  • a new absorption-evaporator is added, and then a refrigerant vapor channel is connected with the newly added absorber.
  • the newly added absorber and the heated medium pipe are connected to the outside, and the newly added absorber is a newly added adjacent high-temperature heating end. .
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator added to any of the regenerative first type absorption heat pumps described in items 2, 10, 15-16, and 18 , adding a new absorber, adding a new solution pump, adding a first solution heat exchanger, adding a second solution heat exchanger, adding a new evaporator, adding a first throttle valve, adding a second throttle valve or A new refrigerant liquid pump is added, and a concentrated solution line is added by the first generator, and a new second solution heat exchanger is connected to the newly added absorber, and the new absorber and the dilute solution line are added with the first solution heat.
  • the exchanger is connected to the new absorption-evaporator, and the new absorption-evaporator and the dilute solution line are added to the new solution pump, the first solution heat exchanger is added, and the second solution heat exchanger is added to the first occurrence.
  • the refrigerant liquid pipeline added by the evaporator is connected with the newly added evaporator through the addition of the first throttle valve, and the refrigerant vapor channel is added by the newly added evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid is added by the condenser.
  • the pipeline is connected to the newly added absorption-evaporator by adding a second throttle valve, and then the absorption-evaporator is added, and then the refrigerant vapor passage is connected with the newly added absorber, or the refrigerant is added by a new evaporator or evaporator.
  • the liquid pipeline is connected to the new absorption-evaporator by the newly added refrigerant liquid pump, and then the absorption-evaporator is added, and then the refrigerant vapor passage is connected with the newly added absorber, and the new absorber and the heated medium pipeline are added. Externally connected, the new absorber is added to the adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator added to any of the regenerative first type absorption heat pumps described in items 11-14 and 17 Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new throttle or new refrigerant pump, and thick solution line added by the second generator A new second solution heat exchanger is connected to the newly added absorber, and the new absorber and the dilute solution line are connected to the newly added absorption-evaporator via the newly added first solution heat exchanger, and the new absorption-evaporator is added.
  • the dilute solution pipeline is connected to the second generator via a new solution pump, a new first solution heat exchanger and a new second solution heat exchanger, and a refrigerant vapor channel and a new absorption-evaporator are added from the evaporator. Connected, the refrigerant liquid line is added by the condenser. After the new throttle valve is connected with the new absorption-evaporator, the absorption-evaporator is added, and then the refrigerant vapor channel is connected with the newly added absorber, or added by the evaporator.
  • the refrigerant liquid pipeline is connected to the newly added absorption-evaporator after the newly added refrigerant liquid pump Increase absorber - evaporator, then the refrigerant vapor channel communicating with the new absorber, new absorber also be a heating medium line is in communication with the outside, to add new absorber adjacent to the high temperature end of heating.
  • the regenerative first type absorption heat pump of the present invention is a new type of absorption-evaporator added to any of the regenerative first type absorption heat pumps described in items 11-14, 17 Absorber, new solution pump, new first solution heat exchanger, new second solution heat exchanger, new evaporator, new first throttle, new second throttle or new cold
  • the liquid medium pump is connected with the second generator to form a concentrated solution pipeline
  • the second solution heat exchanger is connected with the newly added absorber, and the new absorber and the dilute solution pipeline are added with the first solution heat exchanger.
  • a new absorption-evaporator connection is added, and a new absorption-evaporator and a dilute solution line are connected to the second generator via a new solution pump, a new first solution heat exchanger, and a new second solution heat exchanger.
  • the refrigerant liquid pipeline added by the evaporator is connected with the newly added evaporator through the addition of the first throttle valve, and the refrigerant vapor channel is added by the newly added evaporator to communicate with the newly added absorption-evaporator, and the refrigerant liquid is added by the condenser.
  • the pipeline is newly added to absorb and evaporate after adding the second section of the flow to the new absorption-evaporator.
  • refrigerant vapor channel connected to the newly added absorber, or a new refrigerant or evaporator is added to the refrigerant liquid pipeline.
  • the new refrigerant liquid pump is connected with the new absorption-evaporator to add an absorption-evaporator.
  • the refrigerant vapor passage is connected with the newly added absorber, and the newly added absorber and the heated medium pipeline are connected to the outside, and the newly added absorber is a newly added adjacent high temperature heating end.
  • the regenerative first type absorption heat pump of the present invention is the one of the regenerative first type absorption heat pump according to any of the items 3 to 5, wherein the re-increase condenser and the re-increase throttle valve are added.
  • the refrigerant vapor channel is added by the high-pressure generator to communicate with the re-condensing condenser, and the condenser and the refrigerant liquid pipeline are connected to the condenser through the additional throttle flow, and the condenser is further heated and the medium is heated. Externally connected, the additional condenser becomes the reheating heat supply end of the regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump of the present invention is the one in which the reheating condenser and the additional throttle are added in any of the regenerative first type absorption heat pumps according to Item 6-8.
  • a refrigerant vapor passage is added from the medium pressure generator to communicate with the re-concentration condenser, and the condenser and the refrigerant liquid pipeline are connected to the condenser through the re-increase throttle valve, and the condenser is further heated.
  • the additional condenser becomes the reheating heat supply end of the regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump of the present invention is the second type generator, the secondary absorber, and the second type of absorption heat pump of any of the regenerative type first absorption heat pumps described in items 3-8.
  • Level condenser, two-stage solution pump, two-stage solution heat exchanger and two-stage throttle valve, the refrigerant flow channel is connected with the secondary absorber from the low-pressure generator, and the secondary absorber and the dilute solution pipeline are passed through
  • the grade solution pump and the secondary solution heat exchanger are connected to the secondary generator, and the secondary generator and the concentrated solution pipeline are connected to the secondary absorber via the secondary solution heat exchanger, and the secondary generator also has the refrigerant vapor.
  • the passage is connected to the secondary condenser, secondary condensation
  • the refrigerant liquid pipeline is connected to the condenser through the two-stage throttle valve, and the secondary absorber and the secondary condenser are respectively connected to the outside by the heated medium pipeline, and the secondary generator also drives the heat medium pipe.
  • the road is connected to the outside.
  • the regenerative first type absorption heat pump of the present invention is a secondary generator, a secondary absorber, or a second-stage absorber, in any of the regenerative first-type absorption heat pumps described in Item 3-5.
  • the two-stage solution pump and the two-stage solution heat exchanger, the low-pressure generator has a refrigerant vapor passage connected to the condenser, and is adjusted to be a low-pressure generator having a refrigerant vapor passage communicating with the secondary absorber, and the secondary absorber and the dilute solution
  • the pipeline is connected to the secondary generator through the secondary solution pump and the secondary solution heat exchanger, and the secondary generator and the concentrated solution pipeline are connected to the secondary absorber through the secondary solution heat exchanger, and the secondary generator is further
  • the refrigerant vapor passage is connected to the condenser, and the refrigerant generator has a refrigerant vapor passage connected with the low pressure generator, and then the low pressure generator and the refrigerant liquid pipeline are connected to the condenser through
  • the second stage Generator After the refrigerant vapor passage is connected with the low pressure generator, the low pressure generator and the refrigerant liquid pipeline are connected to the evaporator through the first throttle valve, and the secondary absorber and the heated medium pipeline are connected to the outside, the second stage Generator also drives heat medium Passage communicates with the outside.
  • the regenerative first type absorption heat pump of the present invention is the second type generator, the secondary absorber, and the second type of absorption heat pump of any of the regenerative first type absorption heat pumps described in Item 6-8.
  • the grade solution pump and the secondary solution heat exchanger, the low pressure generator has a refrigerant vapor passage connected to the condenser, and is adjusted to be a low pressure generator having a refrigerant vapor passage communicating with the secondary absorber, and the secondary absorber and the dilute solution tube
  • the secondary solution pump and the secondary solution heat exchanger are connected to the secondary generator, and the secondary generator and the concentrated solution pipeline are connected to the secondary absorber through the secondary solution heat exchanger, and the secondary generator has
  • the refrigerant vapor passage is connected with the condenser, and the refrigerant generator has a refrigerant vapor passage connected with the medium pressure generator, and the medium pressure generator and the refrigerant liquid pipeline are connected to the condenser through the first throttle valve to be adjusted to a high pressure
  • the generator has a refrigerant vapor passage connected to the medium pressure generator, and the medium pressure generator and the refrigerant liquid pipeline are connected to the evaporator via the first throttle valve, and the medium pressure generator has a refrigerant vapor passage and a low pressure generator.
  • the low-voltage generator has a coolant tube
  • the medium pressure generator has a refrigerant vapor passage connected with the low pressure generator, and then the low pressure generator has a refrigerant liquid pipeline connected to the evaporator through the second section of the flow, the second stage
  • the absorber is also connected to the outside by a heated medium line, and the secondary generator also drives the heat medium line to communicate with the outside.
  • FIG. 1 is a schematic view showing the structure and flow of a recuperative absorption-generation system according to the present invention.
  • FIG. 2 is also a schematic diagram showing the structure and flow of a recuperative absorption-generation system according to the present invention.
  • FIG. 2 shows that there is no essential difference between the two as shown in Figure 1.
  • the difference between the two is: 1 there is a generator in Figure 1, and in Figure 2 is a rectification tower - the former is suitable for absorption heat pumps with lithium bromide aqueous solution as the representative of the working fluid, and the latter is suitable for ammonia aqueous solution Absorption heat pump representing working fluid; 2
  • the steam dividing chamber in the two figures is different:
  • the steam dividing chamber in Fig. 2 also has a medium to be heated to communicate with the outside.
  • FIG. 3 is a schematic view showing the structure and flow of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • 4 is also a schematic view showing the structure and flow of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 4 is shown in comparison with FIG. 3, which is based on the regenerative absorption-generation system shown in FIG. 1, and FIG. 4 is based on the regenerative absorption-generation system shown in FIG.
  • FIG. 5 is a schematic diagram showing the structure and flow of a single-stage parallel double-effect regenerative first-class absorption heat pump according to the present invention.
  • Fig. 6 is also a schematic diagram showing the structure and flow of a single-stage parallel double-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 5 has a coolant liquid pipeline connected to the first absorber through the refrigerant liquid pump, and then the first absorber has a refrigerant vapor passage connected to the second absorber.
  • the condenser has a refrigerant liquid pipeline connected to the first absorber through the second throttle valve, and then the first absorber and the refrigerant vapor passage communicate with the second absorber.
  • FIG. 7 is a schematic view showing the structure and flow of a single-stage series double-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 8 is also a schematic diagram showing the structure and flow of a single-stage series double-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 9 is a schematic view showing the structure and flow of a single-stage series double-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 10 is also a schematic diagram showing the structure and flow of a single-stage series double-effect regenerative first-class absorption heat pump according to the present invention. The difference between the two shown in Figs. 10 and 9 is the difference between the one shown in Fig. 5 and the one shown in Fig. 6.
  • the series double effect shown in Figures 9-10 differs from the series double effect shown in Figures 7-8:
  • the low voltage generator in Figure 9-10 provides a solution to the high voltage generator, while in Figures 7-8 It is the high voltage generator that supplies the solution to the low pressure generator.
  • Figure 11 is a schematic view showing the structure and flow of a single-stage parallel three-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 12 is also a schematic diagram showing the structure and flow of a single-stage parallel three-effect regenerative first-class absorption heat pump according to the present invention. The difference between Figure 11 and Figure 12 is the difference between Figure 5 and Figure 6.
  • FIG. 13 is a schematic view showing the structure and flow of a single-stage series three-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 14 is also a schematic diagram showing the structure and flow of a single-stage series three-effect regenerative first-class absorption heat pump according to the present invention.
  • the difference between the two shown in Fig. 14 and Fig. 13 is the difference between Fig. 5 and Fig. 6.
  • Figure 15 is a schematic view showing the structure and flow of a single-stage series three-effect regenerative first-class absorption heat pump according to the present invention.
  • Fig. 16 is also a schematic view showing the structure and flow of a single-stage series three-effect regenerative first type absorption heat pump according to the present invention. The difference between the two shown in Figs. 16 and 15 is the difference between the one shown in Fig. 5 and the one shown in Fig. 6.
  • the series three effects shown in Figures 15-16 differ from the series three effects shown in Figures 13-14:
  • the low voltage generators in Figure 15-116 provide a solution to the high voltage generator, while in Figures 13-14 It is the high voltage generator that supplies the solution to the low pressure generator.
  • FIG. 17 is a schematic view showing the structure and flow of a single-stage two-stage regenerative first-stage absorption heat pump according to the present invention.
  • Figure 18 is also a schematic diagram showing the structure and flow of a single-generator two-stage regenerative first-stage absorption heat pump according to the present invention.
  • the difference between the two shown in Fig. 18 and Fig. 17 is as follows: In Fig. 17, the refrigerant liquid flowing through the absorption-evaporator and the first absorber, respectively, is from the evaporator, and in Fig. 18, respectively, flowing through the absorption-evaporator and the first The coolant liquid of an absorber comes from the condenser.
  • Figure 19 is a schematic view showing the structure and flow of a single-stage two-stage regenerative first-class absorption heat pump according to the present invention. In the process, Figure 19 shows a big difference from Figure 17-18.
  • FIG. 20 is a schematic view showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 21 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • the difference between Fig. 21 and Fig. 20 is the difference between Fig. 5 and Fig. 6.
  • Fig. 22 is also a schematic view showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention. In the process, Figure 22 shows a big difference from Figure 20-21.
  • FIG. 23 is a schematic view showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 24 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • the difference between Fig. 24 and Fig. 23 is the difference between Fig. 5 and Fig. 6.
  • Figure 22 - Figure 24 shows a major difference compared to Figure 20-22 - Figure 22 - Figure 24 has an additional condenser and a throttle.
  • the dual-generator two-stage regenerative first-stage absorption heat pump shown in Figures 20-24 has a common feature - the generator supplies refrigerant vapor to the absorber.
  • Figure 25 is also a schematic view showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 26 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first-stage absorption heat pump provided in accordance with the present invention.
  • Figure. In comparison with Figure 25, the second condenser and the third throttle are added in Figure 26.
  • Figure 27 is a schematic view showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 28 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention. The difference between the two shown in Fig. 28 and Fig. 27 is the difference between Fig. 5 and Fig. 6.
  • Figure 29 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 30 is also a schematic diagram showing the structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • the difference between the two shown in Fig. 30 and Fig. 29 is as follows: In Fig. 29, the refrigerant liquid flowing through the absorption-evaporator and the first absorber, respectively, is from the evaporator, and in Fig. 30, respectively, flowing through the absorption-evaporator and the first The coolant liquid of an absorber comes from the condenser.
  • 29 to 30 are mainly different from those shown in Figs. 27 to 28 in that: in Figs. 27 to 28, the first absorber and the first generator collectively supply refrigerant vapor to the third absorber; 29- Figure 30, the refrigerant vapor is supplied together by the absorption-evaporator and the second generator to the first absorber. This is also a difference between Figures 27 and 30 and Figures 20-26.
  • Figure 31 is a schematic view showing the structure and flow of a single-stage single-effect regenerative first-stage absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • Figure 32 is also a schematic view showing the structure and flow of a single-stage single-effect regenerative first-stage absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • Figure 32 shows the difference between the two and the one shown in Figure 31.
  • the new evaporators provide refrigerant vapor to the new absorption-evaporator.
  • the new evaporator also supplies refrigerant to the new absorption-evaporator through the addition of a refrigerant pump; in Figure 31, the evaporator supplies refrigerant vapor to the new absorption-evaporator, and the condenser passes the new section.
  • the flow valve supplies coolant to the new absorption-evaporator.
  • Fig. 33 is also a schematic view showing the structure and flow of a single-stage single-effect regenerative first-stage absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • the solution flow of adding the adjacent high-temperature heating end in FIG. 33 is performed in series with the original solution flow, and the solution flow of the adjacent high-temperature heating end is added in FIGS. 31-32.
  • the original solution flow is cross-processed.
  • Figure 34 is a schematic view showing the structure and flow of a single-stage series double-effect regenerative first-class absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • Figure 35 is a schematic view showing the structure and flow of a single-stage parallel double-effect regenerative first-class absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • Figure 36 is also a schematic diagram showing the structure and flow of a single-stage parallel double-effect regenerative first-class absorption heat pump provided in accordance with the present invention and having an adjacent high-temperature heating end.
  • Figure 36 shows the main difference between the two shown in Figure 35: 1 In Figure 35, a portion of the solution from the second absorber enters the new absorber, and in Figure 36, the entire solution of the second absorber. Enter the new absorber; 2 Figure 35 shows the addition of the new evaporator and the addition of the third throttle valve, from the new evaporator to the new absorption-evaporator to provide refrigerant vapor; and in Figure 36, by the evaporator Coolant vapor is supplied to the new absorption-evaporator.
  • Figure 31-36 shows a representative of a regenerative first-type absorption heat pump with adjacent high-temperature heating ends.
  • Figure 37 is a schematic view showing the structure and flow of a single-stage series double-effect regenerative first-stage absorption heat pump provided in accordance with the present invention and having a high-temperature heating end.
  • Figure 38 is a schematic view showing the structure and flow of a single-stage parallel three-effect regenerative first-stage absorption heat pump provided in accordance with the present invention and having a high temperature heating end.
  • Figure 39 is a two-stage regenerative first type absorption heat pump provided in accordance with the present invention and having a single stage series double effect as the first stage. Schematic diagram of structure and process.
  • Fig. 40 is also a schematic view showing the structure and flow of a two-stage regenerative first type absorption heat pump provided in accordance with the present invention and having a single-stage parallel three-effect as the first stage.
  • FIG. 3 Figure 4 - Figure 4, Figure 31 - Figure 33, M - condenser, B1 - evaporator, C1 throttle valve / first throttle valve, D1 - refrigerant liquid pump, F1 - second throttle valve.
  • FIG 11 Figure 16 - Figure 16, Figure 38, Figure 40, A3 - condenser, B3 - evaporator, C3 - second generator, D3 - third generator, E3 - first throttle, F3 - second section Flow valve, G3—third throttle valve, H3—coolant liquid pump, 13—second solution heat exchanger, J3—third solution heat exchanger, K3—fourth section wide, L3—third solution pump , M3 - the fourth solution pump.
  • FIG. 17 - Figure 19 A4 - condenser, B4 - evaporator, C4 - absorption - evaporator, D4 - throttle / first throttle, E4 - second solution heat exchanger, F4 - first cold Solution pump, G4 - second coolant pump, H4 - second throttle, 14 a third throttle, J4 - third absorber.
  • A5 condenser/first condenser
  • B5 evaporator
  • C5 second generator
  • D5 third absorber
  • E5 third solution pump
  • F5 second solution heat exchange
  • G5 throttle valve/first throttle valve
  • H5 second throttle valve
  • J5 second condenser
  • K5 third section wide
  • L5 third solution heat Switch.
  • A6 condenser
  • B6 evaporator
  • C6 second generator
  • D6 third absorber
  • E6 third solution pump
  • F6 second solution heat exchanger
  • G6 section Flow valve / first section wide, H6 - second throttle, 16 - refrigerant pump / first coolant pump, J6 - absorption - evaporation, K6 - second coolant pump, L6 - third Throttle valve.
  • the concentrated solution of the generator 3 is depressurized by the solution heat exchanger 6 and then passed through the second absorber 2 to absorb heat to achieve partial vaporization, wherein the solution heat exchanger 6 also functions as a solution throttle valve - if necessary
  • the solution throttle valve can be added.
  • the internal space pressure of the steam dividing chamber 7 and the first absorber 1 is the same, and the concentrated solution entering the first absorber 1 from the steam dividing chamber 7 can rely on the gravity difference to overcome the flow resistance of the solution; likewise, there is a gravity difference
  • the coolant pump can be omitted when using.
  • the first generator 3 and the second generator C2 are also referred to as a high-voltage generator and a low-voltage generator;
  • the first generator 3, the second generator C3 and the third generator D3 are also referred to as a high voltage generator, a medium voltage generator and a low voltage generator. .
  • Single-stage in terms such as “single-stage double-effect” refers to the name in the first type of absorption heat pump, and “double-effect” also follows the action of the high-temperature driving heat medium in the first type of absorption heat pump. The angle is called. detailed description:
  • the recuperative absorption-generation system shown in Figure 1 is implemented as follows:
  • the first absorber 1 structurally, it is mainly composed of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump, a solution heat exchanger and a steam separation chamber; the first absorber 1 has a dilute solution pipeline
  • the second solution pump 5 is in communication with the second absorber 2, and the second absorber 2 and the dilute solution line are connected to the generator 3 via the first solution pump 4 and the solution heat exchanger 6, and the generator 3 has a concentrated solution.
  • the pipeline communicates with the steam dividing chamber 7 via the solution heat exchanger 6 and the second absorber 2, and the steam dividing chamber 7 also has a concentrated solution pipeline communicating with the first absorber 1; the first absorber 1 also has a heated medium
  • the pipeline communicates with the outside and has a refrigerant vapor passage communicating with the outside. After the external refrigerant liquid pipeline communicates with the first absorber 1, the first absorber 1 is further connected with the second absorber 2 by the refrigerant vapor passage.
  • the steam chamber 7 also has a refrigerant vapor passage communicating with the first absorber 1, and the generator 3 further has a drive heat medium line connected to the outside and a refrigerant vapor passage to communicate with the outside.
  • the intermediate medium coolant vapor refrigerant liquid from the outside absorbs the steam generated by the waste heat (or the waste heat steam) and the refrigerant vapor from the steam separation chamber 7 into the first absorber 1, and the concentrated solution from the steam separation chamber 7 Absorbing and exothermic to the heated medium and heating the refrigerant liquid flowing through the first absorber 1 into a refrigerant vapor;
  • the dilute solution of the first absorber 1 is passed through the second solution pump 5 into the second absorber 2, and the absorption is from the first a refrigerant vapor of the absorber 1 and exothermic to the solution flowing through the second absorber 2, the dilute solution of the second absorber 2 entering the generator 3 via the first solution pump 4 and the solution heat exchanger 6; driving the heat medium Heating the solution entering the generator 3 and releasing the refrigerant vapor to the outside, the concentrated solution of the generator 3 is exothermic after the solution heat exchanger 6, and is depressurized, and then flows through the second absorber 2 to absorb and vaporize,
  • the second absorber 2 functions to: 1 heat another solution flowing through it to achieve partial vaporization at a low pressure, such that the second absorber 2
  • the dilute solution concentration may be lower than the dilute solution of the first absorber 1, so that the solution entering the generator 3 can release the higher temperature refrigerant vapor; 2 combining the steam separation chamber 7 to increase the solution from the generator 3
  • the first absorber 1 is further introduced, which is beneficial to increase the concentration of the solution working in the first absorber 1, so that the first absorber 1 can absorb the lower temperature refrigerant vapor or residual heat steam to provide the heated medium. Higher temperature heat load. It can be seen that the use of this regenerative absorption-generation system can increase the temperature increase of the residual heat, which does not impose additional requirements on the high-temperature driving heat medium, thereby improving the utilization of waste heat resources.
  • the working medium (coolant vapor) from the first absorber 1 is condensed (absorbed into a liquid by the solution), and the heat released by the second absorber 1 is satisfied by the other working medium (solution) flowing through the second absorber 2.
  • the endothermic demand while the refrigerant vapor after the vaporization of the solution enters the first absorber 1, becomes part of the heat load of the first absorber 1, and adopts two regenerative processes, so the absorption-generation system is called regenerative Absorption-generation system.
  • the advantages and characteristics of the regenerative absorption-generation system are as follows: 1 The greater the thermal load in the first absorber 1 for heating the coolant liquid flowing therethrough, the first absorber 1 is supplied to the second absorber 2 The greater the amount of refrigerant vapor, the more refrigerant vapor is produced by vaporization of the solution flowing through the second absorber 2, and the higher the residual heat temperature is. 2 The amount of heat recovery is corresponding to the degree of heat recovery of the heat pump. Positive correspondence, using such a regenerative method, the corresponding unit can realize the continuous change and correspondence of thermodynamic parameters, so as to realize the uninterrupted connection of the first type of absorption heat pump unit in thermodynamic parameters and performance index, filling the different heat pump units. The space left between the discontinuities in the thermodynamic parameters.
  • the recuperative absorption-generation system shown in Figure 2 is implemented as follows:
  • the first absorber 1 structurally, it mainly consists of a first absorber, a second absorber, a rectification column, a first solution pump, a second solution pump, a solution heat exchanger and a steam separation chamber; the first absorber 1 has a dilute solution tube
  • the second solution pump 5 is in communication with the second absorber 2, and the second absorber 2 and the dilute solution line are connected to the fine column 3 via the first solution pump 4 and the solution heat exchanger 6, and the distillation column 3 is further
  • the concentrated solution line is connected to the steam dividing chamber 7 via the solution heat exchanger 6 and the second absorber 2, and the steam dividing chamber 7 also has a concentrated solution tube.
  • the first absorber 1 is further connected to the first absorber 1; the first absorber 1 is further connected to the outside by the heated medium pipeline and has a refrigerant vapor passage communicating with the outside, and the external refrigerant liquid pipeline is connected to the first absorber 1
  • the first absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2
  • the steam dividing chamber 7 further has a refrigerant vapor passage communicating with the first absorber 1 and a heated medium conduit communicating with the outside, the distillation
  • the tower 3 also has a driving heat medium pipe connected to the outside, a heated medium pipe connected to the outside, and a refrigerant vapor channel communicating with the outside.
  • the medium-temperature refrigerant vapor refrigerant liquid from the outside absorbs the steam generated by the heat of the refrigerant medium (or the waste heat steam) and the refrigerant vapor from the steam separation chamber 7 into the first absorber 1, and is taken from the steam separation chamber.
  • the concentrated solution of 7 absorbs and exotherms the heated medium and heats the refrigerant liquid flowing through the first absorber 1 into a refrigerant vapor; the dilute solution of the first absorber 1 passes through the second solution pump 5 into the second absorber 2 Absorbing the refrigerant vapor from the first absorber 1 and exothermic to the solution flowing through the second absorber 2, the dilute solution of the second absorber 2 passing through the first solution pump 4 and the solution heat exchanger 6 into the rectification column 3; driving the heat medium to heat the solution entering the fine column 3 and releasing the refrigerant vapor to the outside and exothermic to the heated medium, and the concentrated solution of the rectification column 3 is heated by the solution heat exchanger 6, and then flows down the pressure.
  • the second absorber 2 absorbs heat and vaporizes, and the vaporized solution enters the steam separation chamber 7 for vapor and liquid separation and releases heat to the cooling medium; the refrigerant vapor and the concentrated solution released by the steam separation chamber 7 enter the first absorber 1.
  • the absorption-generating system shown in Fig. 2 and the absorption-generation system shown in Fig. 1 are not substantially different in nature, and the difference between them is as follows:
  • the absorption type shown in Fig. 1 is suitable for an aqueous solution such as an aqueous solution of lithium bromide.
  • the heat pump unit, and the one shown in Fig. 2 is suitable for an absorption heat pump unit such as an ammonia solution. Because of this, in the specific embodiment, the present invention only gives an example of the single-stage single-effect regenerative first-class absorption heat pump shown in FIG. 4 as the basis of the regenerative absorption-generation system shown in FIG. Representative of the regenerative first-class absorption heat pump.
  • the evaporator B1 has a refrigerant liquid pipeline connected to the first absorber 1 via the refrigerant liquid pump D1.
  • the first first absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2, the condenser A1 and the heated medium conduit are in communication with the outside, and the evaporator B1 and the residual heat medium conduit are in communication with the outside.
  • the refrigerant vapor generated by the generator 3 enters the condenser A1, and releases the heat to the heated medium to form a refrigerant liquid.
  • the refrigerant liquid of the condenser A1 is throttled and reduced by the throttle valve C1, and then enters the evaporator B1.
  • the refrigerant liquid entering the evaporator B1 is divided into two parts, part of which absorbs the residual heat into the refrigerant vapor and enters the first absorber 1, and the other part passes through the refrigerant liquid pump D1 and then flows through the first absorber 1, and absorbs the heat into the refrigerant.
  • the steam enters the second absorber 2.
  • the single-stage single-effect regenerative first-class absorption heat pump shown in Figure 4 is implemented as follows:
  • the first absorber 1 After the first absorber 1 is connected, the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the condenser A1 and the cooling medium conduit are in communication with the outside, and the evaporator B1 is also connected to the refrigerant medium. Externally connected.
  • the refrigerant vapor generated by the rectification column 3 enters the condenser A1, and is heated to the heated medium to form a refrigerant liquid, which is cold.
  • the refrigerant liquid of the condenser Al is divided into two paths, throttled and depressurized by the first throttle valve C1, and then enters the evaporator B1, absorbs the heat of the refrigerant to be cooled, and supplies the refrigerant vapor to the first absorber 1, and
  • the other coolant liquid passes through the second throttle valve E1 and then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and enters the second absorber 2.
  • the first generator 3 After the G2 is merged with the first generator 3 through the concentrated solution line after the first solution heat exchanger 6, and then communicated with the steam dividing chamber 7 via the second absorber 2, the first generator 3 has a refrigerant vapor channel.
  • the communication with the outside is determined to be that the first generator 3 has a refrigerant vapor passage communicating with the second generator C2, and then the second generator C2 has a refrigerant liquid pipeline connected to the condenser A2 via the first throttle width D2 -
  • the refrigerant vapor generated by a generator 3 acts as a drive for the second generator C2
  • the heat medium, the second generator C2 and the refrigerant vapor passage are connected to the condenser A2, and the condenser A2 and the refrigerant liquid pipeline are connected to the evaporator B2 via the second throttle valve E2, and the first absorber 1 has
  • the refrigerant vapor passage communicates with the outside to determine that the evaporator B2 has a refrig
  • the steam passage is connected to the second absorber 2 to determine that the evaporator B2 has a refrigerant liquid pipeline, and the first absorber 1 has a refrigerant vapor passage and a second absorber after the refrigerant liquid pump F2 communicates with the first absorber 1 2 is connected, the condenser A2 is also connected to the outside by the heated medium pipeline, and the evaporator B2 and the residual heat medium pipeline are connected to the outside.
  • the refrigerant liquid entering the evaporator B2 is divided into two parts, part of which absorbs the residual heat into the refrigerant vapor and enters the first absorber.
  • the steam passage is connected to the outside to determine that the first generator 3 has a refrigerant vapor passage communicating with the second generator C2, and then the second generator C2 is further connected to the condenser A2 via the first throttle valve D2. - the refrigerant vapor generated by the first generator 3 as the driving heat medium of the second generator C2,
  • the second generator C2 also has a refrigerant vapor passage communicating with the condenser A2, and the condenser A2 and the refrigerant liquid pipeline are connected to the evaporator B2 via the second throttle valve E2, and the first absorber 1 has a refrigerant vapor passage.
  • the external communication is determined to be that the evaporator B2 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid pipeline is connected to the first absorber 1 and the first absorber 1 has a refrigerant vapor passage and the first
  • the connection of the two absorbers 2 is determined as
  • the condenser A2 has a refrigerant liquid pipeline connected to the first absorber 1 via the third throttle valve H2, and then the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the condenser A2 is also heated.
  • the medium pipe is connected to the outside, and the evaporator B2 and the waste heat medium pipe are connected to the outside.
  • Figure 5 uses the refrigerant liquid pump F2, and the evaporator B2 sets the coolant liquid line through the refrigerant.
  • the liquid pump F2 is in communication with the first absorber 1
  • the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2
  • the third throttle valve H2 is used instead of the refrigerant liquid pump F2
  • the condenser A2 is arranged to communicate with the second absorber 2 via the third section of the flow line H2 in communication with the first absorber 1 after the first absorber 1 has a refrigerant vapor passage. Therefore, it will not be separately detailed in the following examples.
  • the second generator C2 After the second solution heat exchanger G2 is in communication with the second generator C2, the second generator C2 has a concentrated solution line connected to the steam distribution chamber 7 via the first solution heat exchanger 6 and the second absorber 2, which will be first
  • the generator 3 has a refrigerant vapor passage connected to the outside to determine that the first generator 3 has a refrigerant vapor
  • the second generator C2 is further connected to the condenser A2 via the first throttle valve D2.
  • the refrigerant vapor generated by the first generator 3 is used as the second generator.
  • the refrigerant 1 has a refrigerant vapor passage and communicates with the outside to determine that the evaporator B2 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid conduit is connected to the first absorber 1 after the first absorber 1
  • the refrigerant vapor passage is connected to the second absorber 2 to determine that the condenser A2 has a refrigerant liquid pipeline connected to the first absorber 1 through the third throttle valve H2, and then the first absorber 1 has a refrigerant vapor passage and
  • the second absorber 2 is in communication, and the condenser A2 is also connected to the outside by the heated medium line, and the evaporator B2 and the residual heat medium line are in communication with
  • the dilute solution of the second absorber 2 enters the first generator 3 via the first solution pump 4 and the second solution heat exchanger G2, and the concentrated solution of the first generator 3 enters through the second solution heat exchanger G2.
  • a second generator C2 the refrigerant vapor generated by the first generator 3 flows through the second generator C2, the solution heated into the second generator C2 releases the refrigerant vapor and is supplied to the condenser A2, and the second generator C2
  • the concentrated solution enters the steam dividing chamber 7 through the first solution heat exchanger 6 and the second absorber 2, and the refrigerant vapor which drives the heat medium as the second generator C2 releases heat to form a refrigerant liquid, and then passes through the first throttle valve D2.
  • the throttling enters the condenser A2; the refrigerant vapor entering the condenser A2 is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A2 is divided into two paths to enter the evaporator B2 via the second throttle valve E2.
  • the residual heat is absorbed into the refrigerant vapor and supplied to the first absorber 1, and the other coolant liquid passes through the third throttle valve H2 and then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and flows to the second absorber. 2 available.
  • the single-stage series double-effect regenerative first-class absorption heat pump shown in Fig. 8 is different from the single-stage series double-effect regenerative first-type absorption heat pump shown in Fig. 7 in that: 1Structurally, in Figure 8, the refrigerant liquid pump F2 is used to replace the third throttle valve H2 in Fig. 7, and the evaporator B2 has a refrigerant liquid pipeline connected to the first absorber 1 through the refrigerant liquid pump F2.
  • An absorber 1 has a refrigerant vapor passage communicating with the second absorber 2; 2, in the process, the coolant liquid of the condenser A2 in Fig. 8 is throttled into the evaporator B2 through the second throttle valve E2 and is divided into two paths.
  • the first generator 3 has a refrigerant vapor passage and the external connection is determined as the first
  • the generator 3 has a refrigerant vapor passage communicating with the second generator C2, and the second generator C2 is further connected with the coolant liquid line via the first throttle valve D2 and the condenser A2 - the cold generated by the first generator 3
  • the agent steam is used as the driving heat medium of the second generator C2, the second generator C2 and the refrigerant vapor channel are connected with the condenser A2, and the condenser A2 and the refrigerant liquid line are passed through the second throttle valve E2 and the evaporator.
  • the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B2 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid pipeline is connected to the first absorber 1.
  • the first absorber 1 is further connected to the second absorber 2 by the refrigerant vapor passage.
  • the first absorber 1 is determined to be the condenser A2 having the refrigerant liquid pipeline connected to the first absorber 1 via the third throttle valve H2.
  • a refrigerant vapor passage is connected to the second absorber 2, and the condenser A2 is further connected to the outside by the heated medium pipeline, and the evaporator B2 and the waste heat medium pipeline are connected to the outside.
  • the dilute solution of the second absorber 2 enters the second generator C2 via the first solution pump 4 and the second solution heat exchanger G2, and the refrigerant vapor from the first generator 3 flows through the second generator C2.
  • the solution heated into the solution releases the refrigerant vapor and is supplied to the condenser A2, and the concentrated solution of the second generator C2 enters the first generator 3 through the third solution pump 12 and the second solution heat exchanger G2, the first occurrence
  • the concentrated solution of the device 3 enters the steam separation chamber 7 through the second solution heat exchanger G2, the first solution heat exchanger 6, and the second absorber 2; the refrigerant vapor that drives the heat medium as the second generator C2 releases heat to form a cold
  • the agent liquid is throttled into the condenser A2 through the first throttle valve D2
  • the refrigerant vapor entering the condenser A2 is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A2 is divided into two paths
  • the single-stage series double-effect regenerative first-class absorption heat pump shown in FIG. 10 is different from the single-stage series double-effect regenerative first-type absorption heat pump shown in FIG. 9 in that: 1Structure, in Figure 10, the refrigerant liquid pump F2 is used instead of the third throttle valve H2 in Fig. 9, and the evaporator B2 has a refrigerant liquid line connected to the first absorber 1 through the refrigerant liquid pump F2.
  • An absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2; 2, in the flow, the coolant liquid of the condenser A2 in Fig. 10 is completely divided into two passages after entering the evaporator B2 through the second throttle valve E2.
  • the residual heat is supplied to the first absorber 1 and the other passes through the refrigerant pump F2 and then flows through the first absorber 1, and absorbs heat into the refrigerant vapor and supplies it to the second absorber 2.
  • the single-stage parallel three-effect regenerative first-class absorption heat pump shown in Fig. 11 is realized in this way.
  • the condenser and the evaporator are added.
  • a dilute solution pipeline is added from the second absorber 2 via the first solution pump 4, and then through the second solution heat exchanger 13 and the second generator C3 Connected and re-connected to the third generator D3 via the third solution heat exchanger J3, the second generator C3 has a concentrated solution passing through the second solution heat exchanger 13 and the third generator D3 has a concentrated solution line After the third solution heat exchanger J3 is merged with the first generator 3
  • the generator C3 also has a refrigerant vapor passage communicating with the third generator D3, and the third generator D3 is further connected with the refrigerant liquid line via the second throttle valve F3 to the condenser A3 - the second generator C3 is released
  • the refrigerant vapor is used as the driving heat medium of the third generator D3, and the third generator D3 also has a refrigerant vapor passage communicating with the condenser A3, and the condenser A3 also has a refrigerant liquid pipeline passing through the third throttle valve G3 and evaporating.
  • the device B3 is connected, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B3 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid pipeline and the first absorber 1 are After the communication, the first absorber 1 is further connected with the second absorber 2 to determine that the evaporator B3 has a refrigerant liquid line and the first absorber 1 is connected to the first absorber 1 through the refrigerant liquid pump H3. Further, the refrigerant vapor passage communicates with the second absorber 2, and the condenser A3 is further connected to the outside by the heated medium pipeline, and the evaporator B3 and the residual heat medium conduit communicate with the outside.
  • the concentrated solution of the device 3 after the first solution heat exchanger 6 is merged; the refrigerant vapor that drives the heat medium as the second generator C3 releases heat to form a refrigerant liquid, and then throttles into the condenser A3 through the first throttle valve E3.
  • the third occurrence D3 drives the refrigerant vapor of the heat medium to form a refrigerant liquid, and then throttles into the condensing A3 through the second throttle valve F3, and the refrigerant vapor entering the condenser A3 is heated to the heated medium to form a refrigerant liquid, and condenses.
  • the refrigerant liquid of the device A3 enters the evaporator B3 through the third throttle valve G3; the refrigerant liquid entering the evaporator B3 is divided into two parts, part of which absorbs the residual heat into the refrigerant vapor and enters the first absorber 1, and the other part passes through the coolant liquid.
  • the pump H3 then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and enters the second absorber 2.
  • the single-stage parallel three-effect regenerative first-stage absorption heat pump shown in Fig. 12 is different from the single-stage series three-effect regenerative first-type absorption heat pump shown in Fig. 11 in that: 1Structurally, in Fig. 12, the fourth throttle valve K3 is used instead of the refrigerant liquid pump H3 in Fig. 11, and the condenser A3 has a refrigerant liquid pipeline connected to the first absorber 1 through the fourth section wide 3
  • the first absorber 1 is further connected with the second absorber 2 by the refrigerant vapor channel; 2, in the process, the refrigerant liquid of the condenser A3 in Fig.
  • the residual heat is supplied to the first absorber 1 and the other through the fourth section, and then flows through the first absorber 1, and absorbs heat into the refrigerant vapor and supplies it to the second absorber 2.
  • the single-stage series three-effect regenerative first-class absorption heat pump shown in Fig. 13 is realized in this way.
  • the condenser and the evaporator are added.
  • a second generator, a third generator, a first throttle valve, a second throttle valve, a third throttle valve, a second solution heat exchanger, a third solution heat exchanger, and a fourth throttle valve are formed based on Single-stage series three-effect regenerative first-class absorption heat pump of regenerative absorption-generation system;
  • the second absorber 2 has a dilute solution line connected to the first generator 3 via the first solution pump 4 and the first solution heat exchanger 6 to be adjusted to a second absorber 2 having a dilute solution line through the first solution pump 4
  • the first solution heat exchanger 6, the second solution heat exchanger 13 and the third solution heat exchanger J3 are in communication with the first generator 3, and the first generator 3 has a concentrated solution line through the first solution heat exchanger 6 and the second absorber 2 is
  • the pipeline is connected to the third generator D3 via the second solution heat exchanger 13, and the third generator D3 and the concentrated solution pipeline are connected to the steam distribution chamber 6 via the first solution heat exchanger 6 and the second absorber 2.
  • the first generator 3 has a refrigerant vapor passage communicating with the outside to determine that the first generator 3 has a refrigerant vapor passage communicating with the second generator C3, and the second generator C3 and the refrigerant liquid pipeline are passed through the first section.
  • the flow valve E3 is in communication with the condenser - the refrigerant vapor generated by the first generator 3 acts as a driving heat medium for the second generator C3, second After the burner C3 and the refrigerant vapor passage are in communication with the third generator D3, the third generator D3 and the refrigerant liquid pipeline are connected to the condenser A3 via the second throttle valve F3 - the second generator C3 is released.
  • the refrigerant vapor is used as the driving heat medium of the third generator D3, the third generator D3 and the refrigerant vapor passage are connected to the condenser A3, and the condenser A3 and the refrigerant liquid pipeline are passed through the third throttle valve G3 and evaporated.
  • the device B3 is connected, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B3 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid pipeline and the first absorber 1 are After the communication, the first absorber 1 is further connected with the second absorber 2, and the first absorber is connected to the first absorber 1 via the fourth throttle valve K3. 1 Further, a refrigerant vapor passage is connected to the second absorber 2, and the condenser A3 is further connected to the outside by the heated medium pipeline, and the evaporator C3 and the waste heat medium pipeline are connected to the outside.
  • the driving heat medium flows through the first generator 3 to be heated by the second absorber 2 through the first solution pump 4, the first solution heat exchanger 6, the second solution heat exchanger 13, and the third solution heat exchanger
  • the solution into which J3 enters releases the refrigerant vapor, and the refrigerant vapor generated by the first generator 3 flows through the second generator C3 to heat the solution which is introduced into the solution by the first generator 3 through the third solution heat exchanger J3.
  • the refrigerant vapor, the refrigerant vapor generated by the second generator C3 is supplied to the third generator D3 as its driving heat medium, and the concentrated solution of the second generator C3 passes through the second solution heat exchanger 13 to enter the third generator D3, which is cold.
  • the refrigerant vapor flows through the solution heated by the third generator D3 to release the refrigerant vapor and is supplied to the condenser A3; the refrigerant liquid formed by the refrigerant vapor flowing through the second generator C3 is discharged through the first throttling
  • the valve E3 enters the condenser A3, and the refrigerant liquid formed by the heat release of the refrigerant vapor flowing through the third generator D3 enters the condenser A3 via the second throttle valve F3, and the refrigerant vapor entering the condenser A3 is heated to be heated.
  • the liquid is divided into two paths - one passage enters the evaporator B3 through the third throttle valve G3, absorbs the residual heat into the refrigerant vapor and supplies it to the first absorber 1, and the other coolant liquid flows through the fourth throttle valve K3.
  • An absorber 1 absorbs heat into the refrigerant vapor and supplies it to the second absorber 2.
  • the single-stage series three-effect regenerative first-class absorption heat pump shown in Fig. 14 is different from the single-stage series three-effect regenerative first-type absorption heat pump shown in Fig. 13 in that: 1Structure, in the figure, the refrigerant valve H3 is used to replace the fourth throttle valve K3 in Fig. 13, and the evaporator ⁇ 3 has the refrigerant liquid pipeline connected to the first absorber 1 through the refrigerant liquid pump ⁇ 3.
  • the absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2; 2, in the flow, the coolant liquid of the condenser A3 in Fig.
  • the refrigerant vapor is supplied to the first absorber 1, and the other passes through the coolant pump 3 and then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and supplies it to the second absorber 2.
  • the liquid pipeline communicates with the condenser A3 via the first throttle valve E3 - the refrigerant vapor generated by the first generator 3 acts as a driving heat medium for the second generator C3, and the second generator C3 also has a refrigerant vapor passage and After the third generator D3 is connected, the third generator D3 has a refrigerant liquid pipeline connected to the condenser A3 via the second throttle valve F3 - The refrigerant vapor released by the generator C3 serves as the driving heat medium of the third generator D3, the third generator D3 also has a refrigerant vapor passage communicating with the condenser A3, and the condenser A3 and the refrigerant liquid pipeline are passed through the third section.
  • the flow valve G3 is in communication with the evaporator B3, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B3 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid pipeline is After the first absorber 1 is connected, the first absorber 1 is further connected with the second absorber 2 by the refrigerant vapor passage.
  • the condenser A3 has a refrigerant liquid pipeline connected to the first absorber 1 via the fourth throttle valve K3.
  • the first first absorber 1 is further connected to the second absorber 2 by a refrigerant vapor passage, and the condenser A3 is further connected to the outside by a heated medium line, and the evaporator C3 and the heat remaining medium line communicate with the outside.
  • the driving heat medium flows through the first generator 3 to heat the solution into which the second generator C3 enters the fourth solution pump M3 and the third solution heat exchanger J3 to release the refrigerant vapor
  • the first generator 3 The generated refrigerant vapor flows through the second generator C3 to heat the solution which is introduced into the third solution D3 through the third solution pump L3 and the second solution heat exchanger 13 to release the refrigerant vapor
  • the second generator C3 generates
  • the refrigerant vapor is supplied to the third generator D3 as its driving heat medium, and the solution which is heated by the second absorber 2 through the first solution pump 4 and the first solution heat exchanger 6 is released, and the refrigerant vapor is discharged.
  • the refrigerant vapor generated by the device D3 enters the condenser A3; the refrigerant liquid formed by the heat release of the refrigerant vapor flowing through the second generator C3 enters the condenser A3 through the first throttled wide E3, and flows through the third generator D3.
  • the refrigerant liquid formed by the refrigerant vapor exotherm enters the condenser A3 via the second throttle valve F3, and the refrigerant vapor entering the condenser A3 is radiated to the heated medium to form the refrigerant liquid, and the coolant liquid of the condenser A3.
  • the C3 absorbs the residual heat into the refrigerant vapor and supplies it to the first absorber 1, and the other passes through the first section, the K3, flows through the first absorber 1, absorbs the heat into the refrigerant vapor, and supplies the refrigerant to the second absorber 2. .
  • the single-stage series three-effect regenerative first-class absorption heat pump shown in Fig. 16 is different from the single-stage series three-effect regenerative first-type absorption heat pump shown in Fig. 15 in that: 1Structurally, in Fig. 16, the refrigerant liquid pump H3 is used instead of the fourth throttle valve K3 in Fig. 15, and the evaporator ⁇ 3 has a refrigerant liquid line connected to the first absorber 1 through the refrigerant liquid pump ⁇ 3.
  • An absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2; 2, in the flow, the coolant liquid of the condenser A3 in Fig.
  • the residual heat is supplied to the first absorber 1 and the other through the coolant pump 3, and then flows through the first absorber 1, and absorbs heat into the refrigerant vapor and supplies it to the second absorber 2.
  • the first absorber 1 has a dilute solution line through the second solution pump 5 and
  • the second absorber 2 is connected to be adjusted so that the first absorber 1 has a dilute solution line connected to the absorption-evaporator D4 via the second solution heat exchanger ⁇ 4, and the absorption-evaporator D4 has a dilute solution line through the second solution pump.
  • the generator 3 has a refrigerant vapor passage communicating with the outside to determine that the generator 3 has a refrigerant vapor passage.
  • the condenser A4 and the refrigerant liquid pipeline communicate with the evaporator B4 via the throttle valve D4, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B4 has a refrigerant liquid.
  • the pipeline is connected to the absorption-evaporator D4 via the first refrigerant liquid pump F4, and then the absorption-evaporator D4 is connected to the first absorber 1 through a refrigerant vapor passage.
  • the evaporator B4 also has a refrigerant vapor passage and absorption-evaporation.
  • the device D4 is connected, and the external refrigerant liquid line is connected with the first absorber 1 , and then the first absorber 1 has a refrigerant vapor channel and the second absorber 2 is connected to determine that the evaporator B4 has a refrigerant liquid line.
  • the second refrigerant liquid pump G4 is in communication with the first absorber 1
  • the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2
  • the condenser A4 is also connected to the outside by the heated medium line
  • the evaporator B4 also has a waste heat medium pipeline connected to the outside.
  • the solution that drives the heat medium to heat into the generator 3 releases the refrigerant vapor and supplies it to the condenser A4, and the refrigerant vapor entering the condenser A4 releases heat to the heated medium to form a refrigerant liquid, and the refrigerant of the condenser A4
  • the liquid enters the evaporator B4 after throttling and throttling through the throttle valve D4; the refrigerant liquid entering the evaporator C4 is divided into three paths - one passage of the refrigerant liquid absorbs the residual heat into the refrigerant vapor and is supplied to the absorption-evaporator D4, the other way
  • the refrigerant liquid is pressurized by the first refrigerant liquid pump F4, flows through the absorption-evaporator C4, absorbs heat into the refrigerant vapor and is supplied to the first absorber 1, and the coolant liquid passes through the second refrigerant liquid pump G4.
  • the diluted solution of the first absorber 1 After being pressurized, flowing through the first absorber 1, absorbing heat into the refrigerant vapor and supplying to the second absorber 2; the diluted solution of the first absorber 1 passes through the second solution heat exchanger E4 into the absorption-evaporator C4, absorbing The refrigerant vapor from the evaporator B4 is exothermic to the refrigerant liquid flowing therethrough, and the dilute solution of the absorption-evaporator C4 enters the second absorber 2 via the second solution pump 5 and the second solution heat exchanger E4.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 18 is realized as follows:
  • the refrigerant 3 passage of the generator 3 is communicated with the outside to determine that the generator 3 has a refrigerant vapor passage communicating with the condenser A4, and the condenser A4 has
  • the refrigerant liquid pipeline is connected to the evaporator B4 via the first throttle valve D4, and the evaporator B4 and the refrigerant vapor passage are connected to the absorption-evaporator D4, and the first absorber 1 has a refrigerant vapor passage connected to the outside.
  • the condenser A4 there is a refrigerant liquid pipeline through the second throttling After the H4 is connected to the absorption-evaporator D4, the absorption-evaporator D4 is further connected to the first absorber 1 by the refrigerant vapor passage, and the first absorber 1 is connected after the external refrigerant liquid line is connected to the first absorber 1.
  • the refrigerant vapor passage is connected to the second absorber 2 to determine that the condenser A4 has a refrigerant liquid pipeline connected to the first absorber 1 through the third throttle valve 14 and then the first absorber 1 has a refrigerant vapor passage and
  • the second absorber 2 is in communication, and the condenser A4 is also connected to the outside by the heated medium line, and the evaporator B4 and the residual heat medium line are in communication with the outside.
  • the solution that drives the heat medium to heat into the generator 3 releases the refrigerant vapor and supplies it to the condenser A4.
  • the refrigerant vapor entering the condenser A4 radiates heat to the heated medium to form a refrigerant liquid, and the refrigerant of the condenser A4.
  • the liquid is divided into three passages and throttled through the throttle valve D4 to reduce the pressure, then enters the evaporator B4, absorbs the residual heat into the refrigerant vapor and supplies it to the absorption-evaporator D4, and the other coolant liquid is depressurized by the second throttle valve H4.
  • the absorption-evaporator C4 Flowing through the absorption-evaporator C4, absorbing heat into the refrigerant vapor and supplying it to the first absorber 1, and then cooling the liquid to the third throttle valve 14 and then flowing through the first absorber 1 to absorb heat.
  • the refrigerant vapor is supplied to the second absorber 2; the dilute solution of the first absorber 1 enters the absorption-evaporator C4 via the second solution heat exchanger E4, absorbs the refrigerant vapor from the evaporator B4, and releases the heat through the flow.
  • the refrigerant liquid therein, the dilute solution of the absorption-evaporator C4 enters the second absorber 2 via the second solution pump 5 and the second solution heat exchanger E4.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Figure 19 is implemented as follows:
  • the steam passage is connected to the outside to determine that the evaporator B4 has a refrigerant vapor passage communicating with the first absorber 1, and the external refrigerant liquid line is in communication with the first absorber 1 and the first absorber 1 has a refrigerant vapor passage.
  • the first absorber 1 Connected with the second absorber 2 to determine that the evaporator B4 has a refrigerant liquid line connected to the first absorber 1 via the refrigerant liquid pump F4
  • the first absorber 1 further has a refrigerant vapor passage communicating with the second absorber 2
  • the first absorber 1 has a medium to be heated and communicated with the outside to adjust the condenser A4 to have a refrigerant liquid pipeline through the third
  • the throttle valve 14 is in communication with the first absorber 1
  • the first absorber 1 has a refrigerant vapor passage communicating with the third absorber J4, and the third absorber J4 and the condenser A4 respectively have a heated medium line and an outer portion.
  • the evaporator B4 and the residual heat medium line communicate with the outside.
  • the dilute solution of the second absorber 2 enters the generator 3 through the first solution pump 4, the first solution heat exchanger 6 and the second solution heat exchanger E4, and drives the solution of the heat medium heated into the generator 3 to release
  • the refrigerant vapor is supplied to the condenser A4, the refrigerant vapor entering the condenser A4 is radiated to the heated medium to form a refrigerant liquid; the concentrated solution of the generator 3 is introduced into the third absorber J4 through the second solution heat exchanger E4, and is absorbed.
  • the refrigerant vapor from the first absorber 1 is exothermic to the heated medium, and the dilute solution of the third absorber J4 enters the steam separation chamber 7 through the first solution heat exchanger 6 and the first absorber 2; the condenser A4
  • the refrigerant liquid is divided into two paths into the evaporator B4 via the first throttle valve D4, and the other passage through the third throttle valve 14 and then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and flows to the third absorber.
  • J4 provides; the refrigerant liquid entering the evaporator B4 is divided into two paths - one channel absorbs the residual heat into the refrigerant vapor to the first absorber 1, and the other passes through the refrigerant liquid pump F4 and then flows through the first absorber 1. The heat is absorbed into the refrigerant vapor and supplied to the second absorber 2.
  • the dual generator two-stage regenerative first type absorption heat pump shown in Fig. 20 is realized as follows:
  • the throttle valve and the second throttle valve form a double generator two-stage regenerative first type absorption heat pump based on a regenerative absorption-generation system and a refrigerant vapor supplied from the first generator to the third absorber
  • the first generator 3 has a refrigerant vapor passage communicating with the outside to determine that the first generator 3 has a refrigerant vapor passage communicating with the third absorber D5, and the third absorber D5 has a dilute solution pipeline passing through the third solution pump.
  • the E5 and the second solution heat exchanger F5 are in communication with the second generator C5, and the second generator C5 and the concentrated solution line are in communication with the third absorber D5 via the second solution heat exchanger F5, and the second generator C5 is further
  • the refrigerant vapor passage is connected to the condenser A5, and the condenser A5 and the refrigerant liquid pipeline are connected to the evaporator B5 via the first throttle valve G5, and the first absorber 1 has a refrigerant vapor passage and the external communication is determined as Evaporator B5 has a refrigerant vapor channel and a first suction
  • the device 1 is connected, and the external refrigerant liquid line is communicated with the first absorber 1 , and then the first absorber 1 is further connected with the second absorber 2 by the refrigerant vapor channel, and the condenser A5 has a refrigerant liquid line.
  • the first absorber 1 After the second throttle valve H5 is in communication with the first absorber 1, the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the second generator C5 also drives the heat medium conduit to communicate with the outside,
  • the three absorbers D5 and the condenser A5 are also respectively connected to the outside by the medium to be heated, and the evaporator B5 and the heat remaining medium line are in communication with the outside.
  • the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor into the third absorber D5, is absorbed by the concentrated solution from the second generator C5, and radiates heat to the heated medium, the third absorber
  • the dilute solution of D5 enters the second generator C5 via the third solution pump E5 and the second solution heat exchanger F5, and the solution that drives the heat medium to enter the second generator C5 releases the refrigerant vapor and supplies it to the condenser A5,
  • the concentrated solution of the generator C5 enters the third absorber D5 through the second solution heat exchanger F5; the refrigerant vapor entering the condenser A5 is radiated to the heated medium to form a refrigerant liquid, and the condenser A5 is cooled.
  • the agent liquid is divided into two paths to enter the evaporator B5 through the first throttle valve G5, absorb the residual heat into the refrigerant vapor and supply to the first absorber 1, and the other coolant liquid flows through the second throttle valve H5 and then flows through the first An absorber 1 absorbs heat into the refrigerant vapor and supplies it to the second absorber 2.
  • the two-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 21 is different from the two-generator two-stage regenerative first-type absorption heat pump shown in Fig. 20 in that: 1Structurally, in Fig. 21, the refrigerant liquid pump 15 is used instead of the second section flow H5 in Fig. 20, and the evaporator B5 has a refrigerant liquid line connected to the first absorber 1 through the refrigerant liquid pump 15 An absorber 1 is further connected to the second absorber 2 by a refrigerant vapor channel; 2 in the process, the coolant liquid of the condenser A5 in Fig.
  • the first absorber 1 After the passage of the refrigerant liquid pump 15 and the first absorber 1, the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the second generator C5 also drives the heat medium conduit to communicate with the outside.
  • the second condenser J5, the third absorber D5, and the first condenser A5 are also respectively connected to the outside by the medium to be heated, and the evaporator B5 and the heat remaining medium line are in communication with the outside.
  • the solution that drives the heat medium to heat into the first generator 3 releases the refrigerant vapor into the third absorber D5 and the second condenser J5, respectively, and the refrigerant vapor entering the third absorber D5 is from the second generator.
  • the concentrated solution of C5 absorbs and exotherms in the heated medium, and the dilute solution of the third absorber D5 enters the second generator C5 through the third solution pump E5 and the second solution heat exchanger F5, and drives the heat medium to heat into the second occurrence.
  • the solution of the device C5 releases the refrigerant vapor and is supplied to the first condenser A5, and the concentrated solution of the second generator C5 enters the third absorber D5 via the second solution heat exchanger F5; the refrigerant vapor entering the first condenser A5 Exothermic to the heated medium to form a refrigerant liquid, the refrigerant liquid of the first condenser A5 enters the second condenser J5 through the first throttle valve G5, and the refrigerant vapor entering the second condenser J5 radiates heat to the heated medium After the refrigerant liquid; the refrigerant liquid of the second condenser J5 enters the evaporator B5 through the second throttle valve H5, and the refrigerant liquid entering the evaporator B5 is divided into two paths - one way absorbs the residual heat into the refrigerant vapor and goes to the first One absorber 1 is provided, the other is Agent solution by liquid pump 15 and then the refrigerant flows through the first absorb
  • the two-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 23 is different from the two-generator two-stage regenerative first-type absorption heat pump shown in Fig. 22 in that: 1 structurally, in Figure 23, the third section flow width K5 is used to replace the refrigerant liquid pump 15 in Fig. 22, and the second condenser J5 has a refrigerant liquid line through the third throttle valve K5 and the first absorber 1 After the communication, the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2; 2, in the flow, the refrigerant liquid of the second condenser J5 in Fig.
  • the two-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 24 is realized as follows:
  • the absorber and the second condenser provide a dual-generator two-stage regenerative first type absorption heat pump for refrigerant vapor; and the first generator 3 has a refrigerant vapor passage communicating with the outside to determine that the first generator 3 is cold
  • the agent vapor channel is in communication with the third absorber D5 and the second condenser J5, respectively, and the third absorber D5 and the dilute solution line are connected to the first generator 3 via the third solution pump E5 and the third solution heat exchanger L5.
  • the first generator 3 has a concentrated solution pipeline connected to the steam splitting chamber 7 through the first solution heat exchanger 6 and the second absorber 2 to be adjusted to be the first generator 3 having a concentrated solution pipeline through the third solution heat exchange L5, first solution heat exchanger 6 and second absorber 2
  • the steam dividing chamber 7 is connected, and the second absorber 2 has a dilute solution pipeline connected to the first generator 3 through the first solution pump 4 and the first solution heat exchanger 6 to be adjusted to a second absorber 2 having a dilute solution pipeline
  • the first solution pump 4, the first solution heat exchanger 6 and the second solution heat exchanger F5 are in communication with the second generator C5, and the second generator C5 also has a concentrated solution line via the second solution heat exchanger F5.
  • the third absorber D5 is in communication, the second generator C5 also has a refrigerant vapor passage communicating with the first condenser A5, and the first condenser A5 has a refrigerant liquid pipeline passing through the first throttle valve G5 and the second condenser J5 is connected, the second condenser J5 and the refrigerant liquid pipeline are connected to the evaporator B5 through the second section wide H5, and the first absorber 1 ⁇ the refrigerant vapor passage is connected to the outside to determine that the evaporator B5 is cold.
  • the vapor passage of the agent is in communication with the first absorber 1, and the external absorber 1 is connected to the first absorber 1 and the first absorber 1 is further connected with the second absorber 2 to be first.
  • the condenser A5 has a refrigerant liquid pipeline connected to the first absorber 1 through the third throttle valve K5.
  • the receiver 1 has a refrigerant vapor passage communicating with the second absorber 2
  • the second generator C5 also has a driving heat medium conduit communicating with the outside
  • the second condenser J5 the third absorber and the first condenser A5 are further
  • the solution that drives the heat medium to heat into the first generator 3 releases the refrigerant vapor into the third absorber D5 and the second condenser J5, respectively, and the refrigerant vapor entering the third absorber D5 is from the second generator.
  • the concentrated solution of C5 absorbs and exotherms in the heated medium, and the dilute solution of the third absorber D5 enters the first generator 3 through the third solution pump E5 third solution heat exchanger L5, and the concentrated solution of the first generator 3 passes through The third solution heat exchanger L5, the first solution heat exchanger 6 and the second absorber 2 enter the steam dividing chamber 7; the dilute solution of the second absorber 2 passes through the first solution heat exchanger 6 and the second solution heat exchanger F5 enters the second generator C5, the solution that drives the heat medium to heat into the second generator C5 releases the refrigerant vapor and supplies it to the first condenser A5, and the concentrated solution of the second generator C5 enters through the second solution heat exchanger F5.
  • the refrigerant liquid of the second condenser J5 enters the evaporator B5 through the second throttle valve H5, absorbs the residual heat into the refrigerant vapor and supplies it to the first absorber 1, and the other coolant liquid.
  • a generator 3 has a refrigerant vapor passage communicating with the outside to determine that the first generator 3 has a refrigerant vapor passage communicating with the condenser A5, and the condenser A5 and the refrigerant liquid conduit are connected to the evaporator B5 via the throttle valve G5.
  • the steam passage is in communication with the third absorber D5, and the third absorber D5 has a dilute solution line connected to the second generator C5 via the third solution pump E5 and the second solution heat exchanger F5, and the second generator C5 is further rich
  • the solution line communicates with the third absorber D5 via the second solution heat exchanger F5, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the second generator C5 has a refrigerant vapor passage and the first absorber.
  • the first absorber 1 has a refrigerant vapor passage and the second absorber 2 is connected to determine that the evaporator B5 has a refrigerant liquid pipeline through the cold
  • the reagent liquid pump 15 is in communication with the first absorber 1
  • the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2
  • the second generator C5 also drives the heat medium conduit to communicate with the outside
  • the third absorption The device D5 and the condenser A5 are also respectively connected to the outside by the medium to be heated, and the evaporator B5 and the heat remaining medium line communicate with the outside.
  • the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor into the condenser A5, and the refrigerant vapor entering the condenser A5 releases heat to the heated medium to form a refrigerant liquid, and the refrigerant of the condenser A5
  • the liquid enters the evaporator B5 after throttling through the throttle valve G5; the refrigerant liquid entering the evaporator B5 is divided into two paths: "One way absorbs the residual heat into the refrigerant vapor and supplies it to the third absorber D5, and the other passes the coolant pump 15 then flows through the first absorber 1, absorbs heat into the refrigerant vapor and supplies it to the second absorber 2; the refrigerant vapor entering the third absorber D5 is absorbed and released by the concentrated solution from the second generator C5.
  • the dilute solution of the third absorber D5 enters the second generator C5 via the third solution pump E5 and the second solution heat exchanger F5, and the solution that drives the heat medium to enter the second generator C5 releases the refrigerant vapor.
  • the concentrated solution of the second generator C5 enters the third absorber D5 via the second solution heat exchanger F5.
  • the two-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 26 is realized as follows:
  • the evaporator B5 In communication with the evaporator B5, the evaporator B5 also has a refrigerant vapor passage communicating with the third absorber D5, and the third absorber D5 has a dilute solution pipeline via the third solution pump E5 and the second solution heat exchanger F5 and the second Generator C5 is connected, and the first generator C5 has a concentrated solution line.
  • the two solution heat exchanger F5 is in communication with the third absorber D5, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the second generator C5 has a refrigerant vapor passage communicating with the first absorber 1, and second The generator C5 also has a refrigerant vapor passage communicating with the second condenser J5, and the first absorber 1 has a refrigerant vapor passage and a second absorber 2 after the external refrigerant liquid line is in communication with the first absorber 1.
  • connection is determined to be that the first condenser A5 has a refrigerant liquid pipeline connected to the first absorber 1 via the third throttle valve K5, and then the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, the second
  • the generator C5 also has a driving heat medium pipeline connected to the outside, and the second condenser J5, the third absorber D5 and the first condenser A5 are respectively connected to the outside by the heated medium pipeline, and the evaporator B5 has a residual heat medium.
  • the piping is connected to the outside.
  • the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor into the first condenser A5, and the refrigerant vapor entering the first condenser A5 releases the heat to the heated medium to form the refrigerant liquid
  • first The refrigerant liquid of the condenser A5 is divided into two paths and throttled by the first throttle valve G5 to enter the second condenser J5, and the other channel is throttled by the third throttle valve K5 and then passed through the first absorber 1; Heating the solution from the third absorber D5 through the third solution pump E5 and the second solution heat exchanger F5 into the second generator C5 to release the refrigerant vapor and supplying the first absorber 1 and the second condenser J5, respectively
  • the concentrated solution of the second generator C5 enters the third absorber D5 through the second solution heat exchanger F5; the refrigerant vapor entering the second condenser J5 is radiated to the heated medium to form a refrigerant liquid; the second con
  • the two-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 27 is realized as follows:
  • the second generator C6 also has a refrigerant vapor passage communicating with the condenser A6.
  • the condenser A6 also has a refrigerant liquid line passing through the first throttle valve G6. Communicating with the evaporator B6, the first absorber 1 has a heated medium line communicating with the outside and the external refrigerant liquid line is in communication with the first absorber 1, and the first absorber 1 has a refrigerant vapor passage and a first
  • the second absorber 2 is connected to determine that the condenser A6 has a refrigerant liquid pipe After the second throttle valve H6 is in communication with the first absorber 1, the first absorber 1 has a refrigerant vapor passage communicating with the third generator D6 and the second absorber 2, respectively, and the first generator 3 has a refrigerant.
  • the steam passage is connected to the outside to determine that the first generator 3 has a refrigerant vapor passage communicating with the third absorber D6, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B6 has a refrigerant vapor passage and
  • the first absorber 1 is in communication
  • the second generator C6 also has a driving heat medium pipeline connected to the outside
  • the third absorber D6 and the condenser A6 are respectively connected to the outside by the heated medium pipeline
  • the evaporator B6 has residual heat.
  • the media line is connected to the outside.
  • the solution that drives the heat medium to enter the second generator 3 releases the refrigerant vapor and supplies it to the condenser A6, and the concentrated solution of the second generator C6 enters the third absorber D6 through the second solution heat exchanger F6.
  • the refrigerant vapor entering the condenser A6 exotherms in the heated medium to form a refrigerant liquid; the refrigerant liquid in the condenser A5 is divided into two paths - one passage is throttled through the first throttle valve G6 into the evaporator B5, and the residual heat is cooled.
  • the agent vapor is supplied to the first absorber 1, and the other channel is throttled by the second throttle valve H6 and then flows through the first absorber 1, absorbs heat into refrigerant vapor, and respectively passes to the third absorber D6 and the second
  • the absorber 2 provides; the solution that drives the heat medium to heat into the first generator 3 releases the refrigerant vapor and supplies it to the third absorber D6; the refrigerant vapor entering the third absorber D6 is concentrated by the second generator C6 Absorbing and exothermic to the heated medium, the dilute solution of the third absorber D6 enters the second generator C6 via the third solution pump E6 and the second solution heat exchanger F6.
  • the dual generator two-stage regenerative first type absorption heat pump shown in Fig. 28 is different from the double generator two-stage regenerative first type absorption heat pump shown in Fig. 27 in that: 1 structurally, in Fig. 28, the refrigerant liquid pump 16 is used instead of the second throttle valve H6 in Fig. 27, and the evaporator B6 has a refrigerant liquid line connected to the first absorber 1 through the refrigerant liquid pump 16 An absorber 1 further has a refrigerant vapor passage communicating with the second absorber D6 and the second absorber 2; 2, in the flow, the coolant liquid of the condenser A6 in Fig.
  • the refrigerant liquid of the evaporator B5 is divided into two paths - one path absorbs the residual heat into the refrigerant vapor and is supplied to the first absorber 1, and the other passes through the coolant liquid pump 16 and then flows through the first absorber 1, and absorbs heat to form a cold
  • the agent vapor is supplied to the third absorber D6 and the second absorber 2, respectively.
  • the A6 is connected, the condenser A6 and the refrigerant liquid pipeline are connected to the evaporator B6 via the throttle valve G6, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B6 has a refrigerant liquid pipeline.
  • the absorption-evaporator J6 is further The refrigerant vapor passage in communication with the first absorber 1
  • the second generator C6 has a refrigerant vapor passage communicating with the first absorber 1, the evaporator B6 and the refrigerant vapor passage communicating with the absorption-evaporator J6, and the external refrigerant liquid line and the first absorber 1
  • the first absorber 1 is further connected with the second absorber 2 to determine that the evaporator B6 has a refrigerant liquid pipeline connected to the first absorber 1 through the second refrigerant liquid pump K6.
  • the device 1 further has a refrigerant vapor passage communicating with the second absorber 2, and the second generator C6 also drives the heat medium conduit to communicate with the outside, and the condenser A6 is also connected to the outside by the heated medium conduit, and the evaporator B6 is further The residual heat medium pipe is connected to the outside.
  • the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor into the condenser A6, and the refrigerant vapor entering the condenser A6 radiates heat to the heated medium to form a coolant liquid, and the condensate passes through the throttle valve.
  • the G6 After the G6 is throttled, it enters the evaporator B6; the refrigerant liquid entering the evaporator B6 is divided into three paths - one path absorbs the residual heat into the refrigerant vapor and supplies it to the absorption-evaporator J6, and the other passes through the first refrigerant liquid pump 16 Flowing through the absorption-evaporator J6, absorbing heat into the refrigerant vapor and supplying it to the first absorber 1, and then passing through the second refrigerant liquid pump K6, then flowing through the first absorber 1, absorbing heat into the refrigerant vapor and Provided to the second absorber 2; the refrigerant vapor entering the absorption-evaporator J6 is absorbed by the concentrated solution from the second generator C6 and radiated to the refrigerant liquid flowing through the absorption-evaporator J6, absorption-evaporator J6 The dilute solution enters the second generator C6 via the third solution pump E6 and the second solution heat exchanger F6, and the solution that drives
  • the dual-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 30 is realized as follows:
  • the A6 is connected, the condenser A6 and the refrigerant liquid pipeline are connected to the evaporator B6 via the first throttle valve G6, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the condenser A6 has a refrigerant liquid.
  • the pipeline is connected to the absorption-evaporator J6 via the second throttle valve H6.
  • the absorption-evaporator J6 After the absorption-evaporator J6, there is a refrigerant vapor passage communicating with the first absorber 1 and a second generator C6 having a refrigerant vapor passage communicating with the first absorber 1, the evaporator B6 also having a refrigerant vapor passage and absorption -
  • the evaporator J6 is connected, and the external refrigerant liquid line is connected with the first absorber 1 , and then the first absorber 1 is further connected with the second absorber 2 to determine that the condenser A6 has a refrigerant liquid tube.
  • the first absorber 1 After the third throttle valve L6 is in communication with the first absorber 1, the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the second generator C6 also drives the heat medium conduit to communicate with the outside.
  • the condenser A6 is also connected to the outside by the heated medium pipeline, and the evaporator B6 and the residual heat medium pipeline are connected to the outside.
  • the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor into the condenser A6, and the refrigerant vapor entering the condenser A6 radiates heat to the heated medium to form a refrigerant liquid, and the condensate is divided into three paths— - All the way through the first throttle valve G6 throttled into the evaporator B6, the absorption of residual heat into the refrigerant vapor and provided to the absorption-evaporator J6, the other through the second throttle valve H6 throttling and then through the absorption-evaporation J6, absorbs the refrigerant vapor and supplies it to the first absorber 1, and then throttles through the third throttle valve L6 and then flows through the first absorber 1, absorbs heat into the refrigerant vapor, and moves to the second absorption Provided by the device 2; the refrigerant vapor entering the absorption-evaporator J6 is absorbed by the concentrated solution from the second generator C6 and radiated to the refrig
  • the single-stage single-effect regenerative first-stage absorption heat pump with the adjacent high-temperature heating end shown in Figure 31 is realized as follows: 1Structure, in the single-stage single-effect regenerative first-class absorption heat pump shown in Figure 3, adding a new absorption-evaporator, adding a new absorber, adding a new solution pump, adding a first solution heat exchange , adding a second solution heat exchanger and a new throttle valve, adding a concentrated solution pipeline from the first generator 3, and adding a second solution heat exchanger el to communicate with the newly added absorber bl, adding an absorber Bl also has a dilute solution pipeline through the addition of the first solution heat exchanger dl and the new absorption-evaporator a, the new absorption-evaporator a and the dilute solution pipeline through the new solution pump cl, new A solution heat exchanger dl and a newly added second solution heat exchanger el are in communication with the first generator 3, and a refrigerant vapor passage is added from
  • the liquid pipeline is connected to the new absorption-evaporator a via the new throttle valve fl, and then the absorption-evaporator is connected, and then the refrigerant vapor passage is connected with the newly added absorber bl.
  • the new absorber bl is also heated.
  • the medium pipe is connected to the outside, and the newly added absorber bl is the condenser Al or the adjacent high temperature heating end of the first absorber 1.
  • the adjacent high-temperature heating end is formed by: adding the second solution heat exchanger el to the solution of the newly added absorber bl by the first generator 3, absorbing the absorption from the new absorption-evaporator a1
  • the refrigerant vapor is exothermic to the heated medium; the dilute solution of the new absorber bl is added to the first absorption heat exchanger dl to enter the new absorption-evaporator a, absorbs the refrigerant vapor from the evaporator B1 and heats the flow
  • the refrigerant liquid of the absorption-evaporator a1 is added to form a refrigerant vapor; the dilute solution of the absorption-evaporator al is added by the new solution pump cl, the first solution heat exchanger dl is added, and the second solution heat is added.
  • the exchanger el enters the first generator 3; the refrigerant solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor to the condenser A1, and the refrigerant vapor entering the condenser A1 releases the heat to the heated medium to be cooled.
  • the liquid of the solvent; the refrigerant liquid of the condenser A1 is divided into two paths - one passage enters the evaporator B1 through the throttle valve C1, absorbs the residual heat into the refrigerant vapor and provides the new absorption-evaporator a1, and the other channel is newly throttled. After the wide fl, it flows through the new absorption-evaporator. l, absorb heat into the refrigerant vapor and provide it to the new absorber bl.
  • the single-stage single-effect regenerative first-stage absorption heat pump with the adjacent high-temperature heating end shown in Figure 32 is realized as follows -
  • the pipeline is connected to the first generator 3 via the new solution pump cl, the newly added first solution heat exchanger dl, and the newly added second solution heat exchanger el, and the refrigerant liquid pipeline is added by the evaporator B1 through the new section.
  • the flow valve ⁇ is connected with the newly added evaporator hi, and the refrigerant vapor passage is added by the newly added evaporator hi to communicate with the newly added absorption-evaporator a, and the refrigerant liquid pipeline is added by the newly added evaporator hi to add the refrigerant liquid.
  • the pump gl is connected to the new absorption-evaporator a, and then the absorption-evaporator and the refrigerant vapor channel are added.
  • New absorber communication bl, bl new absorber is also heated medium conduit in communication with the outside, adjacent to the new absorber bl thermal heating a first end of the condenser or absorber Al 1.
  • the adjacent high-temperature heating end is formed by: adding the second solution heat exchanger el to the solution of the newly added absorber bl by the first generator 3, absorbing the absorption from the new absorption-evaporator a1
  • the refrigerant vapor is exothermic to the heated medium; the dilute solution of the new absorber bl is added to the new absorption heat exchanger dl to enter the new absorption-evaporator a, and the refrigerant vapor from the new evaporator hi is absorbed.
  • Heating flows through the refrigerant liquid of the new absorption-evaporator a to form a refrigerant vapor; adding a dilute solution of the absorption-evaporator al via the new solution pump cl, adding the first solution heat exchanger dl and adding a second
  • the solution heat exchanger el enters the first generator 3; the solution that drives the heat medium to enter the first generator 3 releases the refrigerant vapor to the condenser A1, and the refrigerant vapor entering the condenser A1 releases the heat to the heated medium.
  • the refrigerant liquid of the condenser A1 enters the evaporator B1 through the throttle width C1, and then enters the new evaporator hi through the newly added throttle valve fl, and the refrigerant liquid entering the new evaporator hi is divided into two paths.
  • the road absorbs the waste heat into the refrigerant vapor and sucks it up - providing al evaporator, another new path after flowing through the refrigerant liquid pump gl new absorber - evaporator al, endothermic refrigerant vapor to provide a new absorber bl.
  • the single-stage single-effect regenerative first-stage absorption heat pump with the adjacent high-temperature heating end shown in Fig. 33 is realized as follows: 1. Structurally, the single-stage single-effect regenerative type shown in Fig. 3 is first. In the absorption-type heat pump, add a new absorption-evaporator, Adding an absorber, adding a new solution pump, adding a first solution heat exchanger, adding a second solution heat exchanger and adding a new refrigerant liquid pump, and the second absorber 2 has a dilute solution line through the first solution The pump 4 and the first solution heat exchanger 6 are connected to the first generator 3 to be adjusted so that the second absorber 2 has a dilute solution line connected to the first solution pump 4 and the first solution heat exchanger 6 and the new absorber bl , the new absorber bl and the dilute solution pipeline are connected to the new absorption-evaporator a1 by adding the first solution heat exchanger dl, and the new absorption-evaporator a1 and
  • a new first solution heat exchanger dl and a new second solution heat exchanger el are connected to the first generator 3, and the first generator 3 has a concentrated solution line through the first solution heat exchanger 6 and
  • the second absorber 2 is connected to the steam dividing chamber 7 to be adjusted to have a concentrated solution line of the first generator 3 through the addition of the second solution heat exchanger el, the first solution heat exchanger 6 and the second absorber 2 and the steam dividing chamber 7 connected, the refrigerant vapor channel is added by the evaporator B1 and the new absorption-evaporator a is connected, and the refrigerant liquid pipeline is added by the evaporator B1.
  • the liquid pump gl is connected with the new absorption-evaporator a, and then the absorption-evaporator is connected, and then the refrigerant vapor passage is connected with the newly added absorber bl.
  • the new absorber bl and the heated medium pipeline are connected to the outside.
  • the newly added absorber bl is an adjacent high temperature heating end of the condenser A1 or the first absorber 1.
  • the adjacent high-temperature heating end is formed by the second absorber 2 passing through the first solution pump 4 and the first solution heat exchanger 6 into the solution of the new absorber bl, and the absorption is from the newly absorbed-
  • the refrigerant vapor of the evaporator a1 is radiated to the heated medium; the dilute solution of the newly added absorber M is added to the new absorption heat exchanger d1 to enter the new absorption-evaporator a1, and absorbs the refrigerant from the evaporator B1.
  • a solution heat exchanger el is connected to the newly added absorption-evaporator a1, a new absorption-evaporator a1 and a dilute solution line is added via a new solution pump cl, a first solution heat exchanger dl is added, and a second is added.
  • the solution heat exchanger el is in communication with the second generator C2, and the first generator 3 has a concentrated solution line through the second solution heat exchanger G2, the first solution heat exchanger 6 and the second absorber 2, and the steam dividing chamber 7 connected to the first generator 3 has a concentrated solution pipeline through the second solution heat exchanger G2, new
  • the two solution heat exchangers el, the first solution heat exchanger 6 and the second absorber 2 are in communication with the steam dividing chamber 7, and the refrigerant vapor channel is added by the evaporator B2 to communicate with the newly added absorption-evaporator a1, and the evaporator B2 is connected.
  • the additional refrigerant liquid pipeline is connected with the newly added absorption liquid evaporator gl and the new absorption-evaporator a.
  • the new absorption-evaporator is connected, and then the refrigerant vapor passage is connected with the newly added absorber bl, and the absorber bl is added.
  • the heated medium pipe is connected to the outside, and the newly added absorber bl is a newly added adjacent high temperature heating end.
  • the adjacent high-temperature heating end is formed by the second absorber 2 passing through the first solution pump 4 and the first solution heat exchanger 6 into the solution of the new absorber bl, and the absorption is from the newly absorbed-
  • the refrigerant vapor of the evaporator a1 is radiated to the heated medium; the dilute solution of the new absorber bl is added to the new absorption heat exchanger dl to enter the new absorption-evaporator a, and the refrigerant from the evaporator B2 is absorbed.
  • the dilute solution of the receiving-evaporator a1 is added to the second generator C2 via the newly added solution pump cl, the newly added first solution heat exchanger dl, and the newly added second solution heat exchanger el; the refrigerant vapor heating as the driving heat medium
  • the solution entering the second generator C2 releases the refrigerant vapor to the condenser A2, the refrigerant vapor entering the condenser A2 is radiated to the heated medium to form the refrigerant liquid;
  • the concentrated solution of the second generator C2 is passed through the third
  • the solution pump 12 and the second solution heat exchanger G2 enter the first generator 3, and the solution that drives the heat medium to heat into the first generator 3 releases the refrigerant vapor and supplies it to the second generator C2 as its driving heat medium, a concentrated solution of a generator 3 is introduced into the steam separation chamber 7 via the second solution heat exchanger G2, the
  • B2 After B2, it is divided into two ways to absorb the waste heat into the refrigerant vapor and provide it to the new absorption-evaporator a1, and the other channel is added to the new absorption liquid pump gl and then to the new absorption-evaporator a, the endothermic refrigerant.
  • the steam is supplied to the new absorber bl.
  • Figure 35 shows a single-stage parallel double-effect regenerative first-stage absorption heat pump with adjacent high-temperature heating ends:
  • A2 additional refrigerant liquid pipeline is connected with the new absorption-evaporator a by adding a second throttle valve il, and then a new absorption-evaporator is connected, and then a refrigerant vapor passage is connected with the newly added absorber bl, and the absorption is newly added.
  • the bl is also connected to the outside by the heated medium line, and the new absorber bl is the adjacent high temperature heating end of the condenser A2 or the first absorber 1.
  • the adjacent high-temperature heating end is formed as follows: the second absorber 2 enters the solution of the new absorber bl through the first solution pump 4 and the second solution heat exchanger G2, and the absorption is from the newly absorbed-
  • the refrigerant vapor of the evaporator a1 is radiated to the heated medium; the dilute solution of the newly added absorber bl is added to the new absorption heat exchanger dl by adding the first solution heat exchanger dl, and the absorption is from the newly added evaporator hi
  • the refrigerant vapor is heated and flows through the refrigerant liquid of the new absorption-evaporator a1 into a refrigerant vapor; the dilute solution of the absorption-evaporator a1 is newly added, the new solution pump cl is added, and the first solution heat exchanger dl is added.
  • the second solution heat exchanger el is added to the second generator C2; the refrigerant vapor from the first generator 3 is heated into the solution of the second generator C2 to release the refrigerant vapor to the condenser A2, and enters the condenser A2.
  • the additional absorber bl is provided, and the other passage enters the evaporator B2 through the throttle valve E2, and then enters the new evaporator hl by adding the first section of the flow, and absorbs the residual heat into the refrigerant vapor and absorbs the new one -
  • the evaporator a is provided.
  • Figure 36 shows a single-stage parallel double-effect regenerative first-class absorption heat pump with an adjacent high-temperature heating end. This is achieved by the structure of the single-stage parallel double-effect regenerative type shown in Figure 5.
  • the second absorber 2 has a dilute solution line connected to the first generator 3 via the first solution pump 4 and the first solution heat exchanger 6
  • the second absorber 2 has a dilute solution pipeline connected to the new absorber bl via the first solution pump 4 and the first solution heat exchanger 3, and the new absorber bl and the dilute solution pipeline are added.
  • a solution heat exchanger dl is connected to the new absorption-evaporator a1, and the new absorption-evaporator a1 and the dilute solution line are divided into two paths after the addition of the solution pump cl and the addition of the first solution heat exchanger dl.
  • the agent steam passage is connected to the newly added absorption-evaporator a1, and the refrigerant liquid line is added by the condenser A2 via the newly added throttle valve f1 and newly added.
  • the absorption-evaporator is connected, the absorption-evaporator and the refrigerant vapor channel are connected to the new absorber bl.
  • the new absorber bl is also connected to the outside by the heated medium pipeline, and the new absorber bl is The condenser A2 or the adjacent high temperature heating end of the first absorber 1.
  • the adjacent high-temperature heating end is formed by the second absorber 2 passing through the first solution pump 4 and the first solution heat exchanger 6 into the solution of the newly added absorber M, and the absorption is from the newly absorbed-
  • the refrigerant vapor of the evaporator a1 is radiated to the heated medium; the dilute solution of the new absorber bl is added to the new absorption heat exchanger dl to enter the new absorption-evaporator a, and the refrigerant from the evaporator B2 is absorbed.
  • the dilute solution of the new absorption-evaporator a1 is newly added to the solution pump cl, and the first solution heat exchanger dl is added, respectively Passing through the second solution heat exchanger G2 into the second generator C2 and then adding the second solution heat exchanger el into the first generator 3; driving the heat medium to heat the solution entering the first generator 3 to release the refrigerant vapor
  • the second generator C2 is provided as a driving heat medium thereof, and the concentrated solution of the first generator 3 is added by the second solution heat exchanger el, the first solution heat exchanger 6, and the second generator C2 through the second solution.
  • the concentrated solution of the heat exchanger G2 is merged and then passed through
  • the absorber 2 enters the steam dividing chamber 7; the refrigerant vapor from the first generator 3 is heated into the solution of the second generator C2 to release the refrigerant vapor supplied to the condenser A2, and the refrigerant vapor entering the condenser A2 is heated to the
  • the heating medium is formed into a refrigerant liquid; the refrigerant liquid of the condenser A2 is divided into two paths, and the new throttle valve fl is passed through the new absorption-evaporator a, the heat is absorbed into the refrigerant vapor, and the new absorber is bl.
  • the other passage enters the evaporator B2 via the throttle valve E2, absorbs the residual heat into the refrigerant vapor, and supplies it to the new absorption-evaporator a1.
  • Figures 31-35 show the representative of a regenerative first-type absorption heat pump based on a regenerative absorption-generation system and an adjacent high-temperature heating end;
  • Figures 3-29 Based on the regenerative absorption-generation system, the first type of absorption heat pump can be used as a technical example to increase the adjacent high-temperature heating end.
  • the process of forming the reheating heat supply end is as follows: the solution medium is heated to enter the solution of the high pressure generator 3 to release the refrigerant vapor, a part of the refrigerant vapor enters the re-enlargement condenser a2 ; The part of the refrigerant vapor exotherms in the heated medium to form a refrigerant liquid, the refrigerant liquid enters the evaporator B2 through the additional throttle b2, the condenser A2 and the second throttle valve E2; the portion entering the evaporator B2 is cold The agent liquid absorbs the residual heat into the refrigerant vapor into the first absorber 1, and the dilute solution containing the part of the refrigerant medium enters the second absorber through the second solution pump 5 and passes through the first solution pump 4 and the first solution heat exchanger.
  • the 6 and second solution heat exchangers G2 enter the high pressure generator 3, and the solution that drives the heat medium to heat into the high pressure generator 3 re-releases the portion of the refrigerant vapor and supplies it to the re-up condenser a2.
  • the single-stage parallel three-effect regenerative first-class absorption heat pump with the high-temperature heating end shown in Fig. 38 is realized as follows - 1 structure, the single-stage parallel three-effect regenerative type shown in Fig. 11
  • the refrigerant vapor channel is added by the medium pressure generator C3 to communicate with the re-increase condenser a2
  • the condenser a2 and the refrigerant liquid pipeline are further increased by the throttle valve b2 and the condenser.
  • A3 is connected, and the condenser a2 is further connected to the outside by the heating medium pipeline, and the condenser a2 is added to the reheating heat supply end of the regenerative first type absorption heat pump.
  • the process of forming the reheating heat supply end is as follows: the refrigerant vapor as the driving medium is heated to the solution of the medium pressure generator C3 to release the refrigerant vapor, and a part of the refrigerant vapor enters the re-enlargement condenser a2; The portion of the refrigerant vapor of the condenser a2 is further radiated to the heated medium to form a refrigerant liquid, and the refrigerant liquid enters the evaporator B3 through the re-increase throttle valve b2, the condenser A3 and the third throttle valve G3; The portion of the refrigerant liquid of the device B3 absorbs the residual heat into the refrigerant vapor and enters the first absorber 1, and the dilute solution containing the portion of the refrigerant medium enters the second absorber 2 through the second solution pump 5 and passes through the first solution pump.
  • Figures 36-37 show two representatives of a single-stage double-effect and single-stage three-effect regenerative first-stage absorption heat pump based on a regenerative absorption-generation system and an additional high-temperature heating end;
  • the single-stage double-effect or single-stage three-effect regenerative first-class absorption heat pump based on the recuperative absorption-generation system shown in Fig. 5-16 can be used as a reference to increase the high-temperature heating end.
  • the high-pressure generator when the high-temperature heating end is added to the single-stage double-effect regenerative first-class absorption heat pump, the high-pressure generator has a refrigerant vapor channel connected to the re-enlargement condenser a2; When the high-temperature heating end is added to the first type of absorption heat pump of the thermal type, the medium-pressure generator has a refrigerant vapor passage communicating with the re-upper condenser a2.
  • the two-stage regenerative first-class absorption heat pump with single-stage series double-effect as the first stage shown in Fig. 39 is realized as follows -
  • the exchanger d3 is connected to the secondary generator a3, and the secondary generator a3 and the concentrated solution pipeline are connected to the secondary absorber b3 via the secondary solution heat exchanger d3, and the secondary generator a3 also has a refrigerant vapor passage and
  • the secondary condenser e3 is connected, the secondary condenser e3 and the refrigerant liquid pipeline are connected to the condenser A2 via the secondary throttle valve f3, and the secondary absorber b3 and the secondary condenser e3 respectively have the heated medium pipe
  • the road is connected to the outside, and the secondary generator a3 also drives the heat medium line to communicate with the outside.
  • the second-stage process for raising the residual heat temperature is carried out as follows: a part of the refrigerant vapor generated by the low-pressure generator C2 enters the secondary absorber b3, is absorbed by the concentrated solution from the secondary generator a3, and radiates heat to the Heating medium, the dilute solution of the secondary absorber b3 enters the secondary generator a3 through the secondary solution pump c3 and the secondary solution heat exchanger d3, and the solution that drives the heat medium to enter the secondary generator a3 releases the refrigerant vapor to the second
  • the stage condenser e3 provides that the concentrated solution of the secondary generator a3 is returned to the secondary absorber b3 via the secondary solution heat exchanger d3 ; the refrigerant vapor entering the secondary condenser e3 is exothermic to the heated medium to form the refrigerant liquid
  • the portion of the refrigerant liquid of the secondary condenser e3 enters the evaporator B2 through the secondary throttle valve £, the condens
  • the refrigerant vapor enters the first absorber 1, and then enters the second absorber 2 with the dilute solution through the second solution pump 5, and then enters the low pressure generator C2 via the first solution pump 4 and the first solution heat exchanger 6, from The refrigerant vapor of the high pressure generator 3 flows through the low pressure C2 into solution and heated in the low pressure generator C2 release the refrigerant vapor.
  • the two-stage regenerative first-class absorption heat pump with single-stage parallel three-effect as the first stage shown in FIG. 40 is realized by the structure of the single-stage parallel three-effect regenerative type shown in FIG.
  • a secondary absorber, a secondary generator, a secondary solution pump and a secondary solution heat exchanger are added, and the low pressure generator D3 has a refrigerant vapor passage connected to the condenser A3 to be adjusted to a low pressure.
  • the D3 has a refrigerant vapor passage communicating with the secondary absorber b3, and the secondary absorber b3 and the dilute solution conduit are connected to the secondary generator a3 via the secondary solution pump c3 and the secondary solution heat exchanger d3,
  • the generator a3 also has a concentrated solution line connected to the secondary absorber b3 via the secondary solution heat exchanger d3, and the secondary generator a3 also has a refrigerant vapor passage communicating with the condenser A3, and the high pressure generator 3 has a refrigerant.
  • the refrigerant liquid pipeline is connected to the condenser A3 through the first throttle valve E3 to be adjusted to a high pressure generator 3, and the refrigerant vapor passage is connected with the medium pressure generator C3, and the medium pressure generator C3 has a refrigerant liquid pipeline.
  • the first throttle valve E3 is connected with the evaporator B3
  • the medium pressure generator C3 has a refrigerant vapor passage connected with the low pressure generator D3
  • the low pressure generator D3 has a refrigerant liquid pipeline through the second throttle valve F3.
  • the condenser A3 is connected to the medium pressure generator C3 with refrigerant cooling.
  • the steam passage is connected with the low pressure generator D3, and the low pressure generator D3 is further connected with the refrigerant liquid pipeline via the second throttle valve F3 and the evaporator B3.
  • the stage absorber b3 is also in communication with the outside by the heated medium line, and the secondary generator a3 also drives the heat medium line to communicate with the outside.
  • the second-stage process for raising the residual heat temperature is carried out as follows:
  • the low-pressure generator D3 generates a part of the refrigerant vapor of d into the secondary absorber b3, is absorbed by the concentrated solution from the secondary generator a3, and radiates heat.
  • the dilute solution of the secondary absorber b3 enters the secondary generator a3 via the secondary solution pump c3 and the secondary solution heat exchanger d3, and the solution that drives the heat medium to enter the secondary generator a3 releases the refrigerant vapor.
  • the concentrated solution of the secondary generator a3 enters the secondary absorber b3 through the secondary solution heat exchanger d3; the portion of the refrigerant vapor entering the condenser A3 is exothermic to the heated medium to form the refrigerant liquid,
  • the refrigerant liquid of the condenser A3 enters the evaporator B3 via the third throttle valve G3, and the portion of the refrigerant liquid heated into the evaporator B3 by the residual heat medium is supplied to the first absorber 1; into the first absorber 1
  • the portion of the refrigerant medium is then passed through the second solution pump 5 into the second absorber 2 with the dilute solution, and then enters the low pressure generator D3 via the first solution pump 4 and the third solution heat exchanger J3, from the medium pressure generator C3. Cold The low pressure steam flowing through the heat generator and into the lower pressure generator D3 D3 was the portion of the refrigerant vapor is released.
  • Figures 39-40 show a two-stage regenerative first-class absorption heat pump based on a regenerative absorption-generation system with a single-stage double-effect or single-stage three-effect as the first stage.
  • Two representatives; Figure 5 - Figure 16 is based on the regenerative absorption-generation system single-stage double-effect or single-stage three-effect regenerative first-class absorption heat pump, which can be used as a reference to form a corresponding single
  • the double-effect or single-stage three-effect is the first-stage two-stage regenerative first-class absorption heat pump.
  • Regenerative absorption-generation system, structure and process are simple and reasonable. Compared with the conventional absorption-generation system composed of an absorber, a solution pump, a solution heat exchanger and a generator for the first type of absorption heat pump, the regenerative absorption-generation system proposed by the present invention mainly adds a second The absorber, solution pump and steam separation chamber are cleverly designed, and the structure and process are simple and reasonable.
  • the regenerative first type absorption heat pump provided by the invention can select the degree of heat recovery according to the residual heat parameter and the heating temperature, and realize the stepwise correspondence between the heating temperature and the performance index. It is beneficial to maintain a high performance index and improve the efficiency of waste heat utilization.
  • the regenerative first type absorption heat pump provided by the present invention can be selected according to the temperature of the driving heat medium, the cooling medium and the medium to be cooled. Corresponding structure of the regenerative type I absorption heat pump unit, and select the appropriate degree of heat recovery to maximize the unit cooling coefficient.
  • the regenerative absorption-generation system and the regenerative first-type absorption heat pump provided by the present invention realize the diversity of the first type of absorption heat pump units, and realize the first type of absorption heat pump units. Uninterrupted convergence of operating parameters and performance indices, and maintaining a high performance index; able to better meet the user's heating or cooling needs, with excellent creativity, novelty and practicality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

回热式吸收-发生系统与回热式第一类吸收式热泵 技术领域:
本发明属于制冷和低温余热利用热泵技术领域。
背景技术:
采用吸收式热泵技术进行余热利用的前提是热泵能够将热量自余热温度提升到用户需求 的温度以上, 同时还要使吸收式热泵机组的性能指数尽可能地高; 同理, 制冷时在满足用户 的需求前提下也要尽可能高地发挥驱动热介质的制冷效益。 这要求所采用的相应机组有着合 理的结构和工作流程,更要求在不同的工作参数区间都有相对应的高性能指数的吸收式热泵。
为使第一类吸收式热泵的供热温度和性能指数得到提高, 人们先是通过研究得到了不同 效数和不同级数的机组, 进而采用增加供热端、 增加供热流程等方法进行不同热泵流程的复 合得到更为细致的效数和级数, 它们对应着相应的性能指数。 但是, 不同效数的第一类吸收 式热泵在工作参数和性能指数两方面都存在较大的差别, 它们的工作参数区间是不相连的, 在性能指数上更是有着较大的差别; 不同级数的第一类吸收式热泵在工作参数和性能指数两 方面同样存在较大的差别。
从机组内部流程来看, 为提高第一类吸收式热泵的供热温度, 关键在于降低进入发生器' 的溶液浓度; 为了能够利用更低温度的余热, 关键在于提高进入吸收器的溶液浓度。 如果能 够采取合理的技术措施, 同时提高进入吸收器的溶液浓度和降低进入发生器的溶液浓度, 并 且能够在一定范围内根据需求来选择溶液浓度提高和降低的幅度,这将有着非常重要的意义。
为了提升第一类吸收式热泵的供热温度、 使其具有较高的性能指数和实现工作参数之间 和性能指数之间的无间断衔接, 本发明采用巧妙的流程, 将回热原理应用于溶液的吸收-发生 过程, 建立起回热式吸收-发生系统, 并以此为基础得到不同效数、 不同级数的回热式第一类 吸收式热泵; 再结合已有的技术措施, 实现不同工作参数区间对应相应的第一类吸收式热泵, 实现第一类吸收式热泵在工作参数区间上的连续衔接, 实现第一类吸收式热泵在性能指数上 的连续衔接。
发明内容:
本发明的主要目的是提供回热式吸收-发生系统和回热式第一类吸收式热泵——首先提 出回热式吸收 -发生系统, 然后以回热式吸收 -发生系 为 础增加不同的构件, 得到一系列 相应的回热式第一类吸收式热泵。 具体发明内容分项阐述如下:
1. 本发明中的回热式吸收-发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一 溶液泵、 第二溶液泵、 溶液热交换器和分汽室组成; 第一吸收器有稀溶液管路经第二溶液泵 与第二吸收器连通,第二吸收器还有稀溶液管路经第一溶液泵和溶液热交换器与发生器连通, 发生器还有浓溶液管路经溶液热交换器和第二吸收器与分汽室连通, 分汽室还有浓溶液管路 与第一吸收器连通; 第一吸收器还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外 部连通, 外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器 连通, 分汽室还有冷剂蒸汽通道与第一吸收器连通, 发生器还分别有驱动热介质管路与外部 连通和有冷剂蒸汽通道与外部连通; 发生器变为精馏塔时,'精馏塔分别有驱动热介质管路与 外部连通、 有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 分汽室还有被加热 介质管路与外部连通。
1
确认本 2.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础,, 增加冷凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收-发生系统 的单级单效回热式第一类吸收式热泵; 将发生器有冷剂蒸汽通道与外部连通确定为发生器有 冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第一节流阀与蒸发器连通, 将第一吸 收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有 冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为蒸发 器有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器 连通、 或确定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通后第一吸收器再有冷剂 蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质 管路与外部连通。
3. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第一节流阀、 第二节流阀、 第二溶液热交换器、 冷剂液 泵或第三节流阀, 以第一发生器为高压发生器、 第二发生器为低压发生器, 形成基于回热式 吸收 -发生系统的单级并联双效回热式第一类吸收式热泵;由第二吸收器经第一溶液泵增设稀 溶液管路再经第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液 热交换器之后与第一发生器经第一溶液热交换器之后的浓溶液管路汇合、 再经第二吸收器与 分汽室连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与 第二发生器连通后第二发生器再有冷剂液管路经第一节流阀与冷凝器连通——第一发生器产 生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第二节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连 通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为蒸发器有冷剂液管路经冷剂液泵与 第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为冷凝器有冷剂 液管路经第三节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器 变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精熘塔还有被加热介质管路与外部 连通, 分汽室还有被加热介质管路与外部连通。
这里需要说明的是, 第二发生器代之以第二精馏塔, 第二精馏塔自然具有第二发生器原 本与外部或其它部件之间的连接管路或通道——分别被加热介质管路与外部连通和冷剂蒸汽 通道与冷凝器连通; 同时, 第二精镏塔比第二发生器还多了一条被加热介质管路与外部连通。 因此, 第二发生器代之以第二精馏塔时, 只表述精馏塔相比发生器多出来的管路。 后续类似 情况均采用此方法处理。
4. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第一节流阀、 第二节流阀、 第二溶液热交换器、 冷剂液 泵或第三节流阀, 形成基于回热式吸收 -发生系统的单级串联双效回热式第一类吸收式热泵; 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二 吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第一发生器连 通, 将第一发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为第一 发生器有浓溶液管路经第二溶液热交换器与第二发生器连通后第二发生器再有浓溶液管路经 第一溶液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与外部连通确 定为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经第一节流 阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第二节流阀与蒸发器连通, 将第 一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外 部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为 蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸 收器连通、 或确定为冷凝器有冷剂液管路经第三节流阀与第一吸收器连通后第一吸收器再有 冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热 介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二 精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
5. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收-发生系统为基础, 增加第三溶液泵、 冷凝器、 蒸发器、 第二发生器、 第一节流阀、 第二节流阀、 第二溶液热交 换器、冷剂液泵或第三节流阀, 形成基于回热式吸收 -发生系统的单级串联双效回热式第一类 吸收式热泵; 将第二吸收器有稀溶液经第一溶液泵和第一溶液热交换器与第一发生器连通调 整为第二吸收器有稀溶液经第一溶液泵和第一溶液热交换器与第二发生器连通, 第二发生器 还有浓溶液管路经第三溶液泵和第二溶液热交换器与第一发生器连通, 将第一发生器有浓溶 液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第 二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽 通道与外部连通确定为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂 液管路经第一节流阔与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热 介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第二节流阀与 蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一 吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二 吸收器连通确定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂 蒸汽通道与第二吸收器连通、 或确定为冷凝器有冷剂液管路经第三节流阀与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通,冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第 二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部 连通。
6. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二溶液热交换器、第三溶液热交换器、 冷剂液泵或第四节流阀, 形成基于回热式吸收 -发生 系统的单级并联三效回热式第一类吸收式热泵; 由第二吸收器经第一溶液泵增设稀溶液管路 分别再经第二溶液热交换器与第二发生器连通和再经第三溶液热交换器与第三发生器连通, 第二发生器有浓溶液管路经第二溶液热交换器之后和第三发生器有浓溶液管路经第三溶液热 交换器之后均与第一发生器经第一溶液热交换器之后的浓溶液管路汇合、 再经第二吸收器与 分汽室连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与 第二发生器连通后第二发生器再有冷剂液管路经第一节流阀与冷凝器连通——第一发生器释 放的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与第三发生器连 通后第三发生器再有冷剂液管路经第二节流阀与冷凝器连通——第二发生器释放的冷剂蒸汽 作为第三发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷 剂液管路经第三节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发 器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器 再有冷剂蒸汽通道与第二吸收器连通确定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器连 通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为冷凝器有冷剂液管路经第四 节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被 加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏 塔时, 第二发生器代之以第二精馏塔、 第二精馏塔还有被加热介质管路与外部连通, 第三发 生器代之以第三精馏塔、 第三精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介 质管路与外部连通。
7. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二溶液热交换器、第三溶液热交换器、.冷剂液泵或第四节流阀, 形成基于回热式吸收 -发生 系统的单级串联三效回热式第一类吸收式热泵; 将第二吸收器有稀溶液管路经第一溶液泵和 第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶 液热交换器、 第二溶液热交换器和第三溶液热交换器与第一发生器连通, 将第一发生器有浓 溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经 第三溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器与第 三发生器连通,第三发生器还有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与第二发生器连 通后第二发生器还有冷剂液管路经第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽 作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与第三发生器连通后第三发生 器再有冷剂液管路经第二节流阀与冷凝器连通——第二发生器释放的冷剂蒸汽作为第三发生 器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第 三节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽 通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽 通道与第二吸收器连通确定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收 器再有冷剂蒸汽通道与第二吸收器连通、 或确定为冷凝器有冷剂液管路经第四节流阔与第一 吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路 与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发 生器代之以第二精馏塔、 第二精馏塔还有被加热介质管路与外部连通, 第三发生器代之以第 三精馏塔、 第三精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部 连通。
8. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二溶液热交换器、 第三溶液热交换器、 第三溶液泵、 第四溶液泵、 冷剂液泵或第四节流阀, 形成基于回热式吸收 -发生系统的单级串联三效回热式第一类吸收式热泵;将第二吸收器有稀 溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管 路经第一溶液泵和第一溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三 溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第四溶液泵和 第三溶液热交换器与第一发生器连通, ·将第一发生器有浓溶液管路经第一溶液热交换器和第 二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第三溶液热交换器、 第二溶液热交 换器、 第一溶液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与外部 连通确定为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经第 一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二 发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀与冷 凝器连通——第二发生器释放的冷剂蒸汽作为第兰发生器的驱动热介质, 第三发生器还有冷 剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第三节流阀与蒸发器连通, 将第一吸收 器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷 剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为蒸发器 有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连 通、 或确定为冷凝器有冷剂液管路经第四节流闺与第一吸收器连通后第一吸收器再有冷剂蒸 汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管 路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精馏塔、 第二精熘塔 还有被加热介质管路与外部连通, 第三发生器代之以第三精馏塔、 第三精熘塔还有被加热介 质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
9. 本发明中的回热式第一类吸收式热泵, 是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 吸收-蒸发器、 第一节流阀、 第二溶液热交换器、 第一冷剂液泵或第二 节流阔、第二冷剂液泵或第三节流阀, 形成基于回热式吸收 -发生系统的单发生器两级回热式 第一类吸收式热泵; 将第一吸收器有稀溶液管路经第二溶液泵与第二吸收器连通调整为第一 吸收器有稀溶液管路经第二溶液热交换器与吸收-蒸发器连通, 吸收-蒸发器再有稀溶液管路 经第二溶液泵和第二溶液热交换器与第二吸收器连通, 将发生器有冷剂蒸汽通道与外部连通' 确定为发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第一节流阔与蒸发器 · 连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂液管路经第一冷剂液泵 与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通、 或确定为冷凝器有 冷剂液管路经第二节流阔与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器 连通, 蒸发器还有冷剂蒸汽通道与吸收-蒸发器连通, 将外部有冷剂液管路与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为蒸发器有冷剂液管路经第二冷剂液 泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为冷凝器有 冷剂液管路经第三节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连 通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通。
10.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第一节流阀、 第二溶液热交换器、 第二节流阀或第一冷剂液泵、 第三 吸收器、第二冷剂液泵或第三节流阔, 形成基于回热式吸收 -发生系统的单发生器两级回热式 第一类吸收式热泵; 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与发生器 连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器 与发生器连通, 将发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整 为发生器有浓溶液管路经第二溶液热交换器与第三吸收器连通, 第三吸收器还有稀溶液管路 经第一溶液热交换器和第二吸收器与分汽室连通, 将发生器有冷剂蒸汽通道与外部连通确定 为发生器有冷剂蒸汽通道与冷凝器连通,冷凝器还有冷剂液管路经第一节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确 定为蒸发器有冷剂液管路经第一冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道 与第二吸收器连通、 或确定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通后第一吸 收器再有冷剂蒸汽通道与第二吸收器连通, 将第一吸收器有被加热介质管路与外部连通调整 为冷凝器有冷剂液管路经第三节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第 三吸收器连通、 或调整为蒸发器有冷剂液管路经第二冷剂液泵与第一吸收器连通后第一吸收 器再有冷剂蒸汽通道与第三吸收器连通, 第三吸收器和冷凝器还分别有被加热介质管路与外 部连通, 蒸发器还有余热介质管路与外部连通。
11.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阔、冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第一发生器向第三吸收器 提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器有冷剂蒸汽通道与外 部连通确定为第一发生器有冷剂蒸汽通道与第三吸收器连通, 第三吸收器有稀溶液管路经第 三溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热 交换器与第三吸收器连通, 第二发生器还有冷剂蒸汽通道与冷凝器连通, ·冷凝器还有冷剂液 管路经第一节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有 冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有 冷剂蒸汽通道与第二吸收器连通确定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷剂液 泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 第二发生器还有驱 动热介质管路与外部连通, 第三吸收器和冷凝器还分别有被加热介质管路与外部连通, 蒸发 器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精 馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
12.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第三溶 液热交换器、 第一节流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第一 发生器向第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器 有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与第三吸收器连通, 第三吸收 器还有稀溶液管路经第三溶液泵和第三溶液热交换器与第一发生器连通, 将第一发生器有浓 溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经 第三溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通, 将第二吸收器有稀溶液 管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经 第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第二发生器连通, 第二发生器还有浓 溶液管路经第二溶液热交换器与第三吸收器连通, 第二发生器还有冷剂蒸汽通道与冷凝器连 通, 冷凝器还有冷剂液管路经第一节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外 部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器 连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为冷凝器有冷剂液管路经第二节 流阔与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为蒸发器 有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连 通, 第二发生器还有驱动热介质管路与外部连通, 第三吸收器和冷凝器还分别有被加热介质 管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第 二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加 热介质管路与外部连通。
13.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 形成基于回热式吸收-发生系 统、 由第一发生器分别向第三吸收器和第二冷凝器提供冷剂蒸汽的双发生器两级回热式第一 类吸收式热泵; 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道 分别与第三吸收器和第二冷凝器连通, 第三吸收器有稀溶液管路经第三溶液泵和第二溶液热 交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器与第三吸收器连 通, 第二发生器还有冷剂蒸汽通道与第一冷凝器连通, 第一冷凝器还有冷剂液管路经第一节 流阀与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第二节流阀与蒸发器连通, 将第一吸 收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有 冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定为第二 冷凝器或第一冷凝器有冷剂液管路经第三节流阀与第一吸收器连通后第一吸收器再有冷剂蒸 汽通道与第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第 一吸收器再有冷剂蒸汽通道与第二吸收器连通,第二发生器还有驱动热介质管路与外部连通, 第二冷凝器、 第三吸收器和第一冷凝器还分别有被加热介质管路与外部连通, 蒸发器还有余 热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精熘塔, 第 二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
14.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第三溶液热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 形成基 于回热式吸收 -发生系统、由第一发生器分别向第三吸收器和第二冷凝器提供冷剂蒸汽的双发 生器两级回热式第一类吸收式热泵; 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发 生器有冷剂蒸汽通道分别与第三吸收器和第二冷凝器连通, 第三吸收器还有稀溶液管路经第 三溶液泵和第三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热 交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第三溶液热交换器、 第 一溶液热交换器和第二吸收器与分汽室连通, 将第二吸收器有稀溶液管路经第一溶液泵和第 一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液 热交换器和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热 交换器与第三吸收器连通, 第二发生器还有冷剂蒸汽通道与第一冷凝器连通, 第一冷凝器还 有冷剂液管路经筹一节流阀与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第二节流阔与 蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一 吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二 吸收器连通确定为第二冷凝器或第一冷凝器有冷剂液管路经第三节流阀与第一吸收器连通后 第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷剂液泵 与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 第二发生器还有驱动 热介质管路与外部连通, 第三吸收器、 第二冷凝器和第一冷凝器还分别有被加热介质管路与 外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生 器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质 管路与外部连通。
15.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阀、冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第二发生器向第一吸收器 提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器有冷剂蒸汽通道与外 部连通确定为第一发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第一节流 阀与蒸发器连通, 蒸发器还有冷剂蒸汽通道与第三吸收器连通, 第三吸收器有稀溶液管路经 第三溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液 热交换器与第三吸收器连通, 将第一吸收器有冷剂蒸汽通道与外部连通调整为第二发生器有 冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有 冷剂蒸汽通道与第二吸收器连通确定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷剂液 泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 第二发生器还有驱 动热介质管路与外部连通, 第三吸收器和冷凝器还分别有被加热介质管路与外部连通, 蒸发 器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精 馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
16.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阔, 形成基于回热式吸收-发生系 统、 由第二发生器分别向第一吸收器和第二冷凝器提供冷剂蒸汽的双发生器两级回热式第一 类吸收式热泵; 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道 与第一冷凝器连通, 第一冷凝器还有冷剂液管路经第一节流阀与第二冷凝器连通, 第二冷凝 器还有冷剂液管路经第二节流阔与蒸发器连通,蒸发器还有冷剂蒸汽通道与第三吸收器连通, 第三吸收器有稀溶液管路经第三溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器 还有浓溶液管路经第二溶液热交换器与第三吸收器连通, 将第一吸收器有冷剂蒸汽通道与外 部连通调整为第二发生器有冷剂蒸汽通道与第一吸收器连通, 第二发生器还有冷剂蒸汽通道 与第二冷凝器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道 与第二吸收器连通确定为第一冷凝器或第二冷凝器有冷剂液管路经第三节流阀与第一吸收器 连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷 剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 第二发生器还 有驱动热介质管路与外部连通, 第三吸收器、 第二冷凝器和第一冷凝器还分别有被加热介质 管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第 二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加 热介质管路与外部连通。
17.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阀、冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第一吸收器和第一发生器 共同向第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 第三吸收器有稀 溶液管路经第三溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路 经第二溶液热交换器与第三吸收器连通, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝 器还有冷剂液管路经第一节流阔与蒸发器连通, 将第一吸收器有被加热介质管路与外部连通 和外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确 定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道分 别与第三吸收器和第二吸收器连通、 或确定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器 连通后第一吸收器再有冷剂蒸汽通道分别与第三吸收器和第二吸收器连通, 将第一发生器有 冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与第三吸收器连通, 将第一吸收 器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 第二发生器 还有驱动热介质管路与外部连通,第三吸收器和冷凝器还分别有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第 二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部 连通。
18.本发明中的回热式第一类吸收式热泵,是以第 1项所述回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三溶液泵、 第二溶液热交换器、 第一节流阀、 第一冷 剂液泵或第二节流阀、 吸收-蒸发器、 第二冷剂液泵或第三节流阀, 形成基于回热式吸收-发 生系统、由吸收-蒸发器和第二发生器共同向第一吸收器提供冷剂蒸汽的双发生器两级回热式 第一类吸收式热泵; 第二发生器有浓溶液管路经第二溶液热交换器与吸收-蒸发器连通, 吸收 -蒸发器还有稀溶液管路经第三溶液泵和第二溶液热交换器与第二发生器连通,将第一发生器 有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷 剂液管路经第一节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为冷凝 器有冷剂液管路经第二节流阀与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道与第一吸 收器连通和第二发生器有冷剂蒸汽通道与第一吸收器连通、 或确定为蒸发器有冷剂液管路经 第一冷剂液泵与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道与第一吸收器连通和第二 发生器有冷剂蒸汽通道与第一吸收器连通, 蒸发器还有冷剂蒸汽通道与吸收-蒸发器连通, 将 外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确定 为冷凝器夸冷剂液管路经第三节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第 二吸收器连通、 或确定为蒸发器有冷剂液管路经第二冷剂液泵与第一吸收器连通后第一吸收 器再有冷剂蒸汽通道与第二吸收器连通, 第二发生器还有驱动热介质管路与外部连通, 冷凝 器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通; 第一发生器变为 第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精熘塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
19. 本发明中的回热式第一类吸收式热泵, 是在第 3项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第二溶液 热交换器与第二发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第二溶液热交换 器与新增吸收器连通,新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收 -蒸发 器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二 溶液热交换器与第二发生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器之后与第 一发生器经第一溶液热交换器之后的浓溶液管路汇合调整为第二发生器有浓溶液管路经新增 第二溶液热交换器和第二溶液热交换器之后与第一发生器经第一溶液热交换器之后的浓溶液 管路汇合, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经 新增节流阀与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连 通、 或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收-蒸发器再 有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收 器为新增相邻高温供热端。
20.本发明中的回热式第一类吸收式热泵, 是在第 3项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液 管路经第一溶液泵和第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新 增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液 泵、 新增第一溶液热交换器和新增第二溶液热交换器与第二发生器连通, 将第二发生器有浓 溶液管路经第二溶液热交换器之后与第一发生器经第一溶液热交换器之后的浓溶液管路汇合 调整为第二发生器有浓溶液管路经新增第二溶液热交换器和第二溶液热交换器之后与第一发 生器经第一溶液热交换器之后的浓溶液管路汇合, 由蒸发器增设冷剂液管路经新增第一节流 阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增 设冷剂液管路经新增第二节流阔与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通 道与新增吸收器连通、或由新增蒸发器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收- 蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热 介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
21.本发明中的回热式第一类吸收式热泵, 是在第 3项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液 热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换 器与新增吸收器连通,新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收 -蒸发 器连通,新增吸收-蒸发器还有稀溶液管路经新增溶液泵和新增第一溶液热交换器之后分成两 路、 并分别再经第二溶液热交换器与第二发生器连通和再经新增第二溶液热交换器与第一发 生器连通, 取消第二吸收器经第一溶液泵和第二溶液热交换器之后与第二发生器连通的浓溶 液管路, 将第一发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为 第一发生器有浓溶液管路经新增第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽 室连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新 增节流阀与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、 或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷 剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为 新增相邻高温供热端。
22. 本发明中的回热式第一类吸收式热泵, 是在第 3项所述回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液 管路经第一溶液泵和第一溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新 增第一溶液热交换器与新增吸收-蒸发 连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液 泵和新增第一溶液热交换器之后分成两路、 分别再经第二溶液热交换器与第二发生器连通和 再经新增第二溶液热交换器与第一发生器连通, 取消第二吸收器经第一溶液泵和第二溶液热 交换器之后与第二发生器连通的浓溶液管路, 将第一发生器有浓溶液管路经第一溶液热交换 器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经新增第二溶液热交换器、 第 一溶液热交换器和第二吸收器与分汽室连通, 由蒸发器增设冷剂液管路经新增第一节流阀与 新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷 剂液管路经新增第二节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与 新增吸收器连通、或由新增蒸发器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发 器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热介质 管路与外部连通, 新增吸收器为新增相邻高温供热端。
23. 本发明中的回热式第一类吸收式热泵, 是在第 4项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵、 第一溶液 热交换器和第二溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液 泵、 第一溶液热交换器和第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路 经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增 溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第一发生器连通, 将第一发生器 有浓溶液管路经第二溶液热交换器与第二发生器连通调整为第一发生器有浓溶液管路经新增 第二溶液热交换器和第二溶液热交换器与第二发生器连通, 由蒸发器增设冷剂蒸汽通道与新 增吸'收-蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收-蒸发器连通后新增 吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷剂液 泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸 收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
24. 本发明中的回热式第一类吸收式热泵, 是在第 4项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第一发生器连通调整为 第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与新增吸收 器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增 吸收 -蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶液热交换器 与第一发生器连通, 将第一发生器有浓溶液管路经第二溶液热交换器与第二发生器连通调整 为第一发生器有浓溶液管路经新增第二溶液热交换器和第二溶液热交换器与第二发生器连 通, 由蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂 蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阔与新增吸收- 蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发 器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽 通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相 邻高温供热端。
25. 本发明中的回热式第一类吸收式热泵, 是在第 5项所述回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增节流阀或新增冷 剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第二发生器连通调 整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与新增吸收器连通, 新增吸 收器还有稀溶液管路经新增溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀 溶液管路经新增溶液泵和新增溶液热交换器与第二发生器连通, 由蒸发器增设冷剂蒸汽通道 与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收-蒸发器连通后 新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷 剂液泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新 增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。 -―
26. 本发明中的回热式第一类吸收式热泵, 是在第 5项所述回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增蒸发器、 新增第一节流阀、 新增第二 节流阀或新增冷剂液泵、 新增第一溶液热交换器和新增第二溶液热交换器, 将第二吸收器有 稀溶液管路经第一溶液泵和第一溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液 管路经第一溶液泵和第一溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新 增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液 泵、 新增第一溶液热交换器和新增第二溶液热交换器与第二发生器连通, 将第一发生器有浓 溶液管路经第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通改为第一发生 器有浓溶液管路经第二溶液热交换器、 新增第二溶液热交换器、 第一溶液热交换器和第二吸 收器与分汽室连通, 由蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增 蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通,由冷凝器增设冷剂液管路经新增第二节流 阀与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、 或由新 增蒸发器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收 -蒸发 器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增 吸收器为新增相邻高温供热端; 其中, 省略新增第二溶液热交换器时, 新增吸收 -蒸发器有稀 溶液管路经新增溶液泵和新增第一溶液热交换器与第二发生器连通, 第一发生器有浓溶液管 路经第二溶液热交换器和第一溶液热交换器与第二吸收器连通。
27. 本发明中的回热式第一类吸收式热泵, 是在第 6项所述回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第三溶液 热交换器与第三发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第三溶液热交换 器与新增吸收器连通,新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收 -蒸发 器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二 溶液热交换器与第三发生器连通, 将第三发生器有浓溶液管路经第三溶液热交换器之后与第 一发生器经第一溶液热交换器之后的浓溶液管路汇合调整为第三发生器有浓溶液管路经新增 第二溶液热交换器和第三溶液热交换器之后与第一发生器经第一溶液热交换器之后的浓溶液 管路汇合, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经 新增节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连 通、 或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器 再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸 收器为新增相邻高温供热端。
28. 本发明中的回热式第一类吸收式热泵, 是在第 6项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵和第三溶液热交换器与第三发生器连通调整为第二吸收器有稀溶液 管路经第一溶液泵和第三溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新 增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液 泵、 新增第一溶液热交换器和新增第二溶液热交换器与第三发生器连通, 将第三发生器有浓 溶液管路经第三溶液热交换器之后与第一发生器经第一溶液热交换器之后的浓溶液管路汇合 调整为第三发生器有浓溶液管路经新增第二溶液热交换器和第三溶液热交换器之后与第一发 生器经第一溶液热交换器之后的浓溶液管路汇合, 由蒸发器增设冷剂液管路经新增第一节流 阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增 设冷剂液管路经新增第二节流阀与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通 道与新增吸收器连通、或由新增蒸发器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收- 蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热 介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
29. 本发明中的回热式第一类吸收式热泵, 是在第 6项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液 热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换 器与新增吸收器连通,新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收 -蒸发 器连通,新增吸收-蒸发器还有稀溶液管路经新增溶液泵和新增第一溶液热交换器之后分成三 路并分别再经第三溶液热交换器与第三发生器连通、 再经第二溶液热交换器与第二发生器连 通和再经新增第二溶液热交换器与第一发生器连通, 取消第二吸收器经第一溶液泵之后分别 经第二溶液热交换器与第二发生器的溶液管路和经第三溶液热交换器与第三发生器连通的溶 液管路, 将第一发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为 第一发生器有浓溶液管路经新增第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽 室连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新 增节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收 -蒸发器再有 冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器 为新增相邻高温供热端。
30. 本发明中的回热式第一类吸收式热泵, 是在第 6项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阔或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液 管路经第一溶液泵和第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新 增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液 泵和新增第一溶液热交换器之后分成三路并分别再经第三溶液热交换器与第三发生器连通、 再经第二溶液热交换器与第二发生器连通和再经新增第二溶液热交换器与第一发生器连通, 取消第二吸收器经第一溶液泵之后分别经第二溶液热交换器与第二发生器的溶液管路和经第 三溶液热交换器与第三发生器连通的溶液管路, 将第一发生器有浓溶液管路经第一溶液热交 换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经新增第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通, 由蒸发器增设冷剂液管路经新增第一节流阀 与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设 冷剂液管路经新增第二节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道 与新增吸收器连通、或由新增蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通 后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热介质管路与 外部连通, 新增吸收器为新增相邻高温供热端。
31. 本发明中的回热式第一类吸收式热泵, 是在第 7项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵、 第一溶液 热交换器、 第二溶液热交换器和第三溶液热交换器与第一发生器连通调整为第二吸收器有稀 溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第三溶液热交换器与新增 吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶液热交 换器与第一发生器连通, 将第一发生器有浓溶液管路经第三溶液热交换器与第二发生器连通 调整为第一发生器有浓溶液管路经新增第二溶液热交换器和第三溶液热交换器与第二发生器 连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增 节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、 或 由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷 剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为 新增相邻高温供热端。
32. 本发明中的回热式第一类吸收式热泵, 是在第 7项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第三溶液热交换器与第 一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液 热交换器和第三溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶 液热交换器与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、 新增 第一溶液热交换器和新增第二溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路 经第三溶液热交换器与第二发生器连通调整为第一发生器有浓溶液管路经新增第二溶液热交 换器和第三溶液热交换器与第二发生器连通, 由蒸发器增设冷剂液管路经新增第一节流阀与 新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷 剂液管路经新增节流阀与新增吸收 -蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增 吸收器连通、或由新增蒸发器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连 通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热介质管路 与外部连通, 新增吸收器为新增相邻高温供热端。
33. 回热式第一类吸收式热泵, 是在第 8项所述回热式第一类吸收式热泵中, 增加新增 吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增节流阀或新增冷剂液泵、 新增第一溶液热交换 器和新增第二溶液热交换器, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器 与第三发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与新增 吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶液热交 换器与第三发生器连通, 将第一发生器有浓溶液管路经第三溶液热交换器、 第二溶液热交换 器、 第一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第三溶 液热交换器、 第二溶液热交换器、 新增第二溶液热交换器、 第一溶液热交换器和第二吸收器 与分汽室连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管 路经新增节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器 连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收 -蒸发 器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增 吸收器为新增相邻高温供热端; 其中, 省略新增第二溶液热交换器时, 新增吸收 -蒸发器还有 稀溶液管路经新增溶液泵和新增第一溶液热交换器与第三发生器连通, 第一发生器有浓溶液 管路经第三溶液热交换器、 第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连 通。
34. 回热式第一类吸收式热泵, 是在第 8项所述回热式第一类吸收式热泵中, 增加新增 吸收-蒸发器、新增吸收器、新增溶液泵、新增溶液热交换器、新增蒸发器、新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交 换器与第三发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与 新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液泵和新增溶液热交换器与第三发生器连通,由蒸 发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道 与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阔与新增吸收-蒸发器连 通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发器增设冷 剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新 增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供 热端。
35. 回热式第一类吸收式热泵, 是在第 2、 9、 15-16、 18项所述任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵 和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一 溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新 增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液泵、 新增第一溶液热交换 器和新增第二溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交 换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经新增第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通,由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发 器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收 -蒸发器连通后新增吸收-蒸发器 再有冷剂蒸汽通道与新增吸收器连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸 收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被 加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
36. 回热式第一类吸收式热泵, 是在第 2、 9、 15-16、 18项所述任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第 二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收 器有稀溶液管路经第一溶液泵和第一溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶 液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路 经新增溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第一发生器连通, 将第一 发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓 溶液管路经新增第二溶液热交换器、 第一溶液热交换器和第二吸收器与分汽室连通, 由蒸发 器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与 新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阀与新增吸收 -蒸发器连通 后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发器增设冷剂 液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增 吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热 端。
37.本发明中的回热式第一类吸收式热泵,是在第 10项所述回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵、 第一溶液 热交换器和第二溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液 泵、 第一溶液热交换器和第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路 经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管路经新增 溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第一发生器连通, 将第一发生器 有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为第一发生器有浓溶液管路经新增 第二溶液热交换器和第二溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂蒸汽通道与新 增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收 -蒸发器连通后新增 吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷剂液 泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸 收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
38.本发明中的回热式第一类吸收式热泵,是在第 10项所述回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热 交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器有 稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第一发生器连通调整为 第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与新增吸收 器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增 吸收 -蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶液热交换器 与第一发生器连通, 将第一发生器有浓溶液管路经第二溶液热交换器与第三吸收器连通调整 为第一发生器有浓溶液管路经新增第二溶液热交换器和第二溶液热交换器与第三吸收器连 通, 由蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂 蒸汽通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阀与新增吸收- 蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发 器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽 通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相 邻高温供热端。
39. 本发明中的回热式第一类吸收式热泵, 是在第 11、 13、 17项所述任一回热式第一类 吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第三吸收器有稀溶液管路经第三溶 液泵和第二溶液热交换器与第二发生器连通调整为第三吸收器有稀溶液管路经第三溶液泵和 第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器 与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、 新增第一溶液热 交换器和新增第二溶液热交换器与第二发生器连通, 将第二发生器有浓溶液管路经第二溶液 热交换器与第三吸收器连通调整为第二发生器有浓溶液管路经新增第二溶液热交换器和第二 溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器连通, 由冷 凝器增设冷剂液管路经新增节流阔与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽 通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通 后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热介质管路与 外部连通, 新增吸收器为新增相邻高温供热端。
40. 本发明中的回热式第一类吸收式热泵, 是在第 11、 13、 17项所述任一回热式第一类 吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阔或新增冷剂液泵, 将第三吸收器有稀溶液管路经第三溶液泵和第二溶液热交换器与第二发生器连通调整为第三 吸收器有稀溶液管路经第三溶液泵和第二溶液热交换器与新增吸收器连通, 新增吸收器还有 稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液 管路经新增溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第二发生器连通, 将 第二发生器有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为第二发生器有浓溶液 管路经新增第二溶液热交换器和第二溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂液 管路经新增第一节流阀与新增蒸发器连通,由新增蒸发器增设冷剂蒸汽通道与新增吸收 -蒸发 器连通, 由冷凝器增设冷剂液管路经新增第二节流阔与新增吸收-蒸发器连通后新增吸收-蒸 发器再有冷剂蒸汽通道与新增吸收器连通、 或由新增蒸发器或蒸发器增设冷剂液管路经新增 冷剂液泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
41. 本发明中的回热式第一类吸收式热泵, 是在第 12、 14项所述任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、新增节流阀或新增冷剂液泵, 将第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液管路经 第一溶液泵、 第一溶液热交换器和第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀 溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液管 路经新增溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第二发生器连通, 将第 二; ^生器有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为第二发生器有浓溶液管 路经新增第二溶液热交换器和第二溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂蒸汽 通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阔与新增吸收-蒸发器连 通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新 增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连 通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
42. 本发明中的回热式第一类吸收式热泵, 是在第 12、 14项所述任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第 二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第二发生器 连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器 与新增吸收器连通,新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器 连通, 新增吸收-蒸发器还有稀溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶 液热交换器与第二发生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器与第三吸收 器连通调整为第二发生器有浓溶液管路经新增第二溶液热交换器和第二溶液热交换器与第三 吸收器连通, 由蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器 增设冷剂蒸汽通道与新增吸收-蒸发器连通,由冷凝器增设冷剂液管路经新增第二节流阀与新 增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、 或由新增蒸发 器或蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收-蒸发器连通后新增吸收 -蒸发器再有 冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器 为新增相邻高温供热端。
43. 本发明中的回热式第一类吸收式热泵, 是在第 3-8项所述任一回热式第一类吸收式 热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第 二溶液热交换器、 新增节流阀或新增冷剂液泵, 由低压发生器增设浓溶液管路经新增第二溶 液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器与新增 吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、 新增第一溶液热交换器 和新增第二溶液热交换器与低压发生器连通,由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器 连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收-蒸发器连通后新增吸收-蒸发器再 有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷剂液泵与新增吸收- 蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有被加热 介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
44. 本发明中的回热式第一类吸收式热泵, 是在第 3-8项所述任一回热式第一类吸收式 热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第 二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 由低压 发生器增设浓溶液管路经新增第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液 管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经 新增溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与低压发生器连通, 由蒸发器 增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通道与新 增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阀与新增吸收-蒸发器连通后 新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发器增设冷剂液 管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸 收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
45. 本发明中的回热式第一类吸收式热泵, 是在第 2、 10、 15-16、 18项所述任一回热式 第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交 换器、 新增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 由第一发生器增设浓溶液管路 经新增第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热 交换器与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、 新增第一 溶液热交换器和新增第二溶液热交换器与第一发生器连通, 由蒸发器增设冷剂蒸汽通道与新 增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收 -蒸发器连通后新增 吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由蒸发器增设冷剂液管路经新增冷剂液 泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸 收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
46. 本发明中回热式第一类吸收式热泵, 是在第 2、 10、 15-16、 18项所述任一回热式第 一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换 器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液 泵, 由第一发生器增设浓溶液管路经新增第二溶液热交换器与新增吸收器连通, 新增吸收器 还有稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀 溶液管路经新增溶液泵、新增第一溶液热交换器和新增第二溶液热交换器与第一发生器连通, 由蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽 通道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阀与新增吸收 -蒸发 器连通后新增吸收 -蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发器增 设冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道 与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高 温供热端。
47. 本发明中的回热式第一类吸收式热泵, 是在第 11-14、 17项所述任一回热式第一类 吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增节流阔或新增冷剂液泵, 由第二发生器增设浓溶液管路经新增 第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经新增第一溶液热交换器 与新增吸收-蒸发器连通, 新增吸收 -蒸发器还有稀溶液管路经新增溶液泵、 新增第一溶液热 交换器和新增第二溶液热交换器与第二发生器连通,由蒸发器增设冷剂蒸汽通道与新增吸收- 蒸发器连通, 由冷凝器增设冷剂液管路经新增节流阀与新增吸收-蒸发器连通后新增吸收-蒸 发器再有冷剂蒸汽通道与新增吸收器连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵与新 增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还 有被加热介质管路与外部连通, 新增吸收器为新增相邻高温供热端。
48. 本发明中的回热式第一类吸收式热泵, 是在第 11-14、 17项所述任一回热式第一类 吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 由第二发生器增设浓溶液管路经新增第二溶液热交换器与新增吸收器连通, 新增吸收器还有 稀溶液管路经新增第一溶液热交换器与新增吸收-蒸发器连通, 新增吸收-蒸发器还有稀溶液 管路经新增溶液泵、 新增第一溶液热交换器和新增第二溶液热交换器与第二发生器连通, 由 蒸发器增设冷剂液管路经新增第一节流阀与新增蒸发器连通, 由新增蒸发器增设冷剂蒸汽通 道与新增吸收-蒸发器连通, 由冷凝器增设冷剂液管路经新增第二节流阔与新增吸收-蒸发器 连通后新增吸收-蒸发器再有冷剂蒸汽通道与新增吸收器连通、或由新增蒸发器或蒸发器增设 冷剂液管路经新增冷剂液泵与新增吸收 -蒸发器连通后新增吸收-蒸发器再有冷剂蒸汽通道与 新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 新增吸收器为新增相邻高温 供热端。
49. 本发明中的回热式第一类吸收式热泵, 是在第 3- 5项所述任一回热式第一类吸收式 热泵中, 增加再增冷凝器和再增节流阀, 由高压发生器增设冷剂蒸汽通道与再增冷凝器连通, 再增冷凝器还有冷剂液管路经再增节流阔与冷凝器连通, 再增冷凝器还有被加热介质管路与 外部连通, 再增冷凝器成为回热式第一类吸收式热泵的再增高温供热端。
50. 本发明中的回热式第一类吸收式热泵, 是在第 6- 8项所述任一回热式第一类吸收式 热泵中, 增加再增冷凝器和再增节流阀, 由中压发生器增设冷剂蒸汽通道与再增冷凝器连通, 再增冷凝器还有冷剂液管路经再增节流阀与冷凝器连通, 再增冷凝器还有被加热介质管路与 外部连通, 再增冷凝器成为回热式第一类吸收式热泵的再增高温供热端。
51. 本发明中的回热式第一类吸收式热泵, 是在第 3-8项所述任一回热式第一类吸收式 热泵中, 增加二级发生器、 二级吸收器、 二级冷凝器、 二级溶液泵、 二级溶液热交换器和二 级节流阀, 自低压发生器增设冷剂蒸汽通道与二级吸收器连通, 二级吸收器还有稀溶液管路 经二级溶液泵和二级溶液热交换器与二级发生器连通, 二级发生器还有浓溶液管路经二级溶 液热交换器与二级吸收器连通, 二级发生器还有冷剂蒸汽通道与二级冷凝器连通, 二级冷凝 器还有冷剂液管路经二级节流阀与冷凝器连通, 二级吸收器和二级冷凝器还分别有被加热介 质管路与外部连通, 二级发生器还有驱动热介质管路与外部连通。
52. 本发明中的回热式第一类吸收式热泵, 是是在第 3-5项所述任一回热式第一类吸收 式热泵中, 增加二级发生器、 二级吸收器、 二级溶液泵和二级溶液热交换器, 将低压发生器 有冷剂蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸收器连通, 二级吸 收器还有稀溶液管路经二级溶液泵和二级溶液热交换器与二级发生器连通, 二级发生器还有 浓溶液管路经二级溶液热交换器与二级吸收器连通, 二级发生器还有冷剂蒸汽通道与冷凝器 连通, 将髙压发生器有冷剂蒸汽通道与低压发生器连通后低压发生器再有冷剂液管路经第一 节流阀与冷凝器连通调整为高压发生器有冷剂蒸汽通道与低压发生器连通后低压发生器再有 冷剂液管路经第一节流阀与蒸发器连通, 二级吸收器还有被加热介质管路与外部连通, 二级 发生器还有驱动热介质管路与外部连通。
53. 本发明中的回热式第一类吸收式热泵, 是在第 6- 8项所述任一回热式第一类吸收式 热泵中, 增加二级发生器、 二级吸收器、 二级溶液泵和二级溶液热交换器, 将低压发生器有 冷剂蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸收器连通, 二级吸收 器还有稀溶液管路经二级溶液泵和二级溶液热交换器与二级发生器连通, 二级发生器还有浓 溶液管路经二级溶液热交换器与二级吸收器连通, 二级发生器还有冷剂蒸汽通道与冷凝器连 通, 将髙压发生器有冷剂蒸汽通道与中压发生器连通后中压发生器再有冷剂液管路经第一节 流阀与冷凝器连通调整为高压发生器有冷剂蒸汽通道与中压发生器连通后中压发生器再有冷 剂液管路经第一节流阀与蒸发器连通, 将中压发生器有冷剂蒸汽通道与低压发生器连通后低 压发生器再有冷剂液管路经第二节流阀与冷凝器连通调整为中压发生器有冷剂蒸汽通道与低 压发生器连通后低压发生器再有冷剂液管路经第二节流阔与蒸发器连通, 二级吸收器还有被 加热介质管路与外部连通, 二级发生器还有驱动热介质管路与外部连通。
附图说明:
图 1是依据本发明所提供的回热式吸收-发生系统结构和流程示意图。
图 2也是依据本发明所提供的回热式吸收-发生系统结构和流程示意图。
图 2所示与图 1所示相比, 二者没有本质上的区别。 二者之间的不同在于: ①图 1中有 发生器, 而图 2中则为精馏塔——前者适用于以溴化锂水溶液为代表工质的吸收式热泵, 而 后者适用于以氨水溶液为代表工质的吸收式热泵; ②两图中的分汽室有区别: 图 2中的分汽 室还有被加热介质冷却介质管路与外部连通。
图 3是依据本发明所提供的单级单效回热式第一类吸收式热泵结构和流程示意图。 图 4也是依据本发明所提供的单级单效回热式第一类吸收式热泵结构和流程示意图。 图
4所示和图 3所示比较, 图 3所示是基于图 1所示回热式吸收 -发生系统, 而图 4所示则基于 图 1所示回热式吸收 -发生系统。
图 5是依据本发明所提供的单级并联双效回热式第一类吸收式热泵结构和流程示意图。 图 6 也是依据本发明所提供的单级并联双效回热式第一类吸收式热泵结构和流程示意 图。
图 5和图 6所示的区别在于: 图 5中蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通 后第一吸收器再有冷剂蒸汽通道与第二吸收器连通, 而图 6中则是冷凝器有冷剂液管路经第 二节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通。
图 7是依据本发明所提供的单级串联双效回热式第一类吸收式热泵结构和流程示意图。 图 8 也是依据本发明所提供的单级串联双效回热式第一类吸收式热泵结构和流程示意 图。
图 7和图 8所示的二者的区别如同图 5所示和图 6所示之间的区别。
图 9是依据本发明所提供的单级串联双效回热式第一类吸收式热泵结构和流程示意图。 图 10 也是依据本发明所提供的单级串联双效回热式第一类吸收式热泵结构和流程示意 图。 图 10和图 9所示的二者的区别如同图 5所示和图 6所示之间的区别。
图 9-图 10所示的串联双效与图 7-图 8所示的串联双效有区别: 图 9-图 10中低压发生 器向高压发生器提供溶液, 而图 7-图 8中则是高压发生器向低压发生器提供溶液。
图 11是依据本发明所提供的单级并联三效回热式第一类吸收式热泵结构和流程示意图。 图 12 也是依据本发明所提供的单级并联三效回热式第一类吸收式热泵结构和流程示意 图。 图 11和图 12所示的区别如同图 5所示和图 6所示之间的区别。
图 13是依据本发明所提供的单级串联三效回热式第一类吸收式热泵结构和流程示意图。 图 14 也是依据本发明所提供的单级串联三效回热式第一类吸收式热泵结构和流程示意 图。 图 14和图 13所示的二者的区别如同图 5所示和图 6所示之间的区别。
图 15是依据本发明所提供的单级串联三效回热式第一类吸收式热泵结构和流程示意图。 图 16 也是依据本发明所提供的单级串联三效回热式第一类吸收式热泵结构和流程示意 图。 图 16和图 15所示的二者的区别如同图 5所示和图 6所示之间的区别。
图 15-图 16所示的串联三效与图 13-图 14所示的串联三效有区别: 图 15-图 116中低压 发生器向高压发生器提供溶液, 而图 13-图 14中则是高压发生器向低压发生器提供溶液。
图 17是依据本发明所提供的单发生器两级回热式第一类吸收式热泵结构和流程示意图。, 图 18 也是依据本发明所提供的单发生器两级回热式第一类吸收式热泵结构和流程示意 图。 图 18和图 17所示的二者的区别在于: 图 17中分别流经吸收 -蒸发器和第一吸收器的冷 剂液来自蒸发器, 而图 18中分别流经吸收-蒸发器和第一吸收器的冷剂液来自冷凝器。
图 19是依据本发明所提供的单发生器两级回热式第一类吸收式热泵结构和流程示意图。 在流程上, 图 19所示与图 17-图 18所示有较大差别。
图 20是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意图。 图 21 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 图 21和图 20所示的区别如同图 5所示和图 6所示之间的区别。
图 22 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 在流程上, 图 22所示与图 20-图 21所示有较大差别。
图 23是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意图。 图 24 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 图 24和图 23所示的区别如同图 5所示和图 6所示之间的区别。
与图 22-图 23所示比较, 图 22-图 23中两级流程的溶液是分别独立进行的, 而图 24中 两级流程的溶液是串联进行的。
图 22-图 24所示与图 20-22所示相比有一个主要的区别——图 22-图 24中多了一个冷凝 器和一个节流阀。
图 20-图 24所示的双发生器两级回热式第一类吸收式热泵, 还都有一个共同的特点—— 由发生器向吸收器提供冷剂蒸汽。
图 25 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。
图 26 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 与图 25所示相比, 图 26中多了第二冷凝器和第三节流阀。
与图 20-图 24所示不同, 图 25-图 26中由第二发生器向第一吸收器提供冷剂蒸汽。 图 27是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意图。 图 28 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 图 28和图 27所示的二者的区别如同图 5所示和图 6所示之间的区别。
图 29 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。
图 30 也是依据本发明所提供的双发生器两级回热式第一类吸收式热泵结构和流程示意 图。 图 30和图 29所示的二者的区别在于: 图 29中分别流经吸收 -蒸发器和第一吸收器的冷 剂液来自蒸发器, 而图 30中分别流经吸收-蒸发器和第一吸收器的冷剂液来自冷凝器。
图 29-图 30所示与图 27-图 28所示的主要不同在于: 图 27-图 28中, 由第一吸收器和 第一发生器共同向第三吸收器提供冷剂蒸汽; 而图 29-图 30中, 由吸收 -蒸发器和第二发生 器向第一吸收器共同提供冷剂蒸汽。 这也是图 27-图 30所示与图 20-图 26所示的一个区别。
图 31是依据本发明所提供、并增加了相邻高温供热端的单级单效回热式第一类吸收式热 泵结构和流程示意图。
图 32也是依据本发明所提供、并增加了相邻高温供热端的单级单效回热式第一类吸收式 热泵结构和流程示意图。
图 32所示与图 31所示相比,二者的区别在于:图 32中多了新增蒸发器和新增冷剂液泵, 新增蒸发器向新增吸收-蒸发器提供冷剂蒸汽, 新增蒸发器还通过新增冷剂液泵向新增吸收- 蒸发器提供冷剂液; 而图 31中, 蒸发器向新增吸收-蒸发器提供冷剂蒸汽, 冷凝器通过新增 节流阀向新增吸收-蒸发器提供冷剂液。
图 33也是依据本发明所提供、并增加了相邻高温供热端的单级单效回热式第一类吸收式 热泵结构和流程示意图。
与图 31-图 32所示相比, 图 33中增加相邻高温供热端的溶液流程与原有溶液流程是串 联进行的, 而图 31-图 32中增加相邻高温供热端的溶液流程与原有溶液流程是交叉进行的。
图 34是依据本发明所提供、并增加了相邻高温供热端的单级串联双效回热式第一类吸收 式热泵结构和流程示意图。
图 35是依据本发明所提供、并增加了相邻高温供热端的单级并联双效回热式第一类吸收 式热泵结构和流程示意图。
图 36也是依据本发明所提供、并增加了相邻高温供热端的单级并联双效回热式第一类吸 收式热泵结构和流程示意图。
图 36所示与图 35所示相比, 二者的主要区别在于: ①图 35中来自第二吸收器的一部分 溶液进入新增吸收器, 而图 36中则是第二吸收器的全部溶液进入新增吸收器; ②图 35中多 了新增蒸发器和新增第三节流阀, 由新增蒸发器向新增吸收-蒸发器提供冷剂蒸汽; 而图 36 中, 由蒸发器向新增吸收-蒸发器提供冷剂蒸汽。
图 31-图 36所示是增加了相邻高温供热端的回热式第一类吸收式热泵的代表。
图 37是依据本发明所提供、并增加了高温供热端的单级串联双效回热式第一类吸收式热 泵结构和流程示意图。
图 38是依据本发明所提供、并增加了高温供热端的单级并联三效回热式第一类吸收式热 泵结构和流程示意图。
图 39是依据本发明所提供、并以单级串联双效为第一级的两级回热式第一类吸收式热泵 结构和流程示意图。
图 40也是依据本发明所提供、并以单级并联三效为第一级的两级回热式第一类吸收式热 泵结构和流程示意图。
图中, 1一第一吸收器, 2—第二吸收器, 3—发生器 (精馏塔) /第一发生器, 4一第一溶液 泵, 5—第二溶液泵, 6—溶液热交换器 /第一溶液热交换器, 7—分汽室; al—新增吸收 -蒸发 器, bl—新增吸收器, cl一新增溶液泵, dl—新增溶液热交换器 /新增第一溶液热交换器, el 一新增第二溶液热交换器, fl一新增节流阀 /新增第一节流阀, gl—新增冷剂液泵, hi—新增 蒸发器, i l一新增第二节流阀; a2—再增冷凝器, b2—再增节流阀; a3—二级发生器, b3— 二级吸收器, c3—二级溶液泵, d3—二级溶液热交换器, e3—二级冷凝器, f3—二级节流阀。
图 3-图 4、 图 31-图 33中, M—冷凝器, B1—蒸发器, C1一节流阀 /第一节流阀, D1— 冷剂液泵, F1—第二节流阀。
图 5-图 10、 图 34-图 37、 图 39中, A2—冷凝器, B2—蒸发器, C2—第二发生器, D2— 第一节流阀, E2—第二节流阀, F2—冷剂液泵, G2—第二溶液热交换器, H2—第三节流阀, 12—第三溶液泵。
图 11 -图 16、 图 38、 图 40中, A3—冷凝器, B3—蒸发器, C3—第二发生器, D3—第三 发生器, E3—第一节流阀, F3—第二节流阀, G3—第三节流阀, H3—冷剂液泵, 13—第二溶 液热交换器, J3—第三溶液热交换器, K3—第四节流阔, L3—第三溶液泵, M3—第四溶液泵。
图 17-图 19中, A4—冷凝器, B4—蒸发器, C4一吸收-蒸发器, D4—节流阀 /第一节流 阀, E4—第二溶液热交换器, F4—第一冷剂液泵, G4—第二冷剂液泵, H4—第二节流阀, 14 一第三节流阀, J4一第三吸收器。
图 20-图 26中, A5—冷凝器 /第一冷凝器, B5—蒸发器, C5—第二发生器, D5—第三吸 收器, E5—第三溶液泵, F5—第二溶液热交换器, G5—节流阀 /第一节流阀, H5—第二节流阀, 15—冷剂液泵, J5—第二冷凝器, K5—第三节流阔, L5—第三溶液热交换器。
图 27-图 30中, A6—冷凝器, B6—蒸发器, C6—第二发生器, D6—第三吸收器, E6—第 三溶液泵, F6—第二溶液热交换器, G6—节流阀 /第一节流阔, H6—第二节流阀, 16—冷剂液 泵 /第一冷剂液泵, J6—吸收-蒸发, K6—第二冷剂液泵, L6—第三节流阀。
需要指出的是:
①发生器 3的浓溶液经溶液热交换器 6降压后再流经第二吸收器 2吸热而实现部分汽化, 其中溶液热交换器 6也起到了溶液节流阀的作用——必要时可再增加溶液节流阀。
②理论上, 分汽室 7和第一吸收器 1的内部空间压力是相同的, 浓溶液由分汽室 7进入 第一吸收器 1可以依靠重力差来克服溶液流动阻力; 同样, 有重力差利用时可省去冷剂液泵。
③在基于回热式吸收-发生系统的单级双效回热式第一类吸收式热泵中,第一发生器 3和 第二发生器 C2也被称为高压发生器和低压发生器; 同理, 单级三效回热式第一类吸收式热泵 中, 第一发生器 3、 第二发生器 C3和第三发生器 D3也被称为高压发生器、 中压发生器和低 压发生器。
④ "单级并联双效回热式第一类吸收式热泵" 中的 "并联"是指回热式第一类吸收式热 泵实现双效流程时溶液循环为并联; "单级并联三效"亦如此。
⑤ "单级串联双效回热式第一类吸收式热泵" 中的 "串联"是指回热式第一类吸收式热 泵实现双效流程时溶液循环为串联; "单级串联三效"亦如此。
⑥诸如 "单级双效"等术语中的 "单级"是引用了第一类吸收式热泵中的称呼, "双效" 也是沿用了第一类吸收式热泵中高温驱动热介质发生作用的角度来称呼的。 具体实施方式:
下面结合附图和实例来详细描述本发明。
图 1所示的回热式吸收-发生系统是这样实现的:
①结构上, 它主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第二溶液泵、 溶 液热交换器和分汽室组成;第一吸收器 1有稀溶液管路经第二溶液泵 5与第二吸收器 2连通, 第二吸收器 2还有稀溶液管路经第一溶液泵 4和溶液热交换器 6与发生器 3连通, 发生器 3 还有浓溶液管路经溶液热交换器 6和第二吸收器 2与分汽室 7连通, 分汽室 7还有浓溶液管 路与第一吸收器 1连通; 第一吸收器 1还分别有被加热介质管路与外部连通和有冷剂蒸汽通 道与外部连通, 外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与 第二吸收器 2连通, 分汽室 7还有冷剂蒸汽通道与第一吸收器 1连通, 发生器 3还分别有驱 动热介质管路与外部连通和有冷剂蒸汽通道与外部连通。
②流程上, 来自外部的中温冷剂蒸汽冷剂液吸收余热产生的蒸汽 (或余热蒸汽) 和来自 分汽室 7的冷剂蒸汽进入第一吸收器 1、 被来自分汽室 7的浓溶液吸收并放热于被加热介质 和加热流经第一吸收器 1的冷剂液成冷剂蒸汽; 第一吸收器 1的稀溶液经第二溶液泵 5进入 第二吸收器 2、 吸收来自第一吸收器 1的冷剂蒸汽并放热于流经第二吸收器 2的溶液, 第二 吸收器 2的稀溶液经第一溶液泵 4和溶液热交换器 6进入发生器 3 ; 驱动热介质加热进入发 生器 3的溶液并对外释放冷剂蒸汽, 发生器 3的浓溶液经溶液热交换器 6放热、 降压后再流 经第二吸收器 2吸热汽化, 汽化后的溶液进入分汽室 7进行汽、 液分离; 分汽室 7释放的冷 剂蒸汽和浓溶液均进入第一吸收器 1。
在图 1所示的回热式吸收-发生系统中, 第二吸收器 2的作用在于: ①加热流经其内的另 一路溶液使其实现低压下的部分汽化, 这样第二吸收器 2的稀溶液浓度可以比第一吸收器 1 的稀溶液更低, 从而使进入发生器 3的溶液能够释放出更高温度的冷剂蒸汽; ②结合分汽室 7, 使来自发生器 3的溶液提高浓度后再进入第一吸收器 1, 这有利于提高工作于第一吸收器 1 的溶液浓度, 从而使第一吸收器 1可以吸收更低温度的冷剂蒸汽或余热蒸汽从而向被加热 介质提供更高温度的热负荷。 可见, 利用此回热式吸收-发生系统能够提高余热温度提升的幅 度, 这种提高并不对高温驱动热介质提出额外要求, 从而能够提高余热资源利用率。
本吸收-发生系统中, 来自第一吸收器 1的工质(冷剂蒸汽)冷凝(被溶液吸收成为液体) 所放出的热满足流经第二吸收器 2的另一路工质 (溶液) 的吸热需求, 同时溶液汽化后的冷 剂蒸汽进入第一吸收器 1, 成为第一吸收器 1热负荷中的一部分, 采用了两个回热过程, 故 称该吸收-发生系统为回热式吸收 -发生系统。 本回热式吸收-发生系统的优势和特点在于: ① 第一吸收器 1中用于加热流经其内的冷剂液的热负荷越大, 第一吸收器 1提供给第二吸收器 2的冷剂蒸汽量就越大, 流经第二吸收器 2的溶液汽化产生的冷剂蒸汽就越多, 余热温度提 升则越高; ②回热负荷多少与热泵提升余热温度的程度成相应的正对应关系, 采用这样的回 热方法可以使相应机组实现热力学参数的连续变化和对应, 从而实现第一类吸收式热泵机组 在热力学参数和性能指数上的无间断衔接, 填补了不同热泵机组之间的热力学参数上的不连 续所遗留的空间。
图 2所示的回热式吸收 -发生系统是这样实现的:
①结构上, 它主要由第一吸收器、 第二吸收器、 精馏塔、 第一溶液泵、 第二溶液泵、 溶 液热交换器和分汽室组成;第一吸收器 1有稀溶液管路经第二溶液泵 5与第二吸收器 2连通, 第二吸收器 2还有稀溶液管路经第一溶液泵 4和溶液热交换器 6与精熘塔 3连通, 精馏塔 3 还有浓溶液管路经溶液热交换器 6和第二吸收器 2与分汽室 7连通, 分汽室 7还有浓溶液管 路与第一吸收器 1连通; 第一吸收器 1还分别有被加热介质管路与外部连通和有冷剂蒸汽通 道与外部连通, 外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与 第二吸收器 2连通, 分汽室 7还分别有冷剂蒸汽通道与第一吸收器 1连通和有被加热介质管 路与外部连通, 精馏塔 3还分别有驱动热介质管路与外部连通、 有被加热介质管路与外部连 通和有冷剂蒸汽通道与外部连通。
②流程上, 来自外部的中温冷剂蒸汽冷剂液吸收被制冷介质的热产生的蒸汽 (或余热蒸 汽) 和来自分汽室 7的冷剂蒸汽进入第一吸收器 1、 被来自分汽室 7的浓溶液吸收并放热于 被加热介质和加热流经第一吸收器 1的冷剂液成冷剂蒸汽; 第一吸收器 1的稀溶液经第二溶 液泵 5进入第二吸收器 2、 吸收来自第一吸收器 1的冷剂蒸汽并放热于流经第二吸收器 2的 溶液, 第二吸收器 2的稀溶液经第一溶液泵 4和溶液热交换器 6进入精馏塔 3 ; 驱动热介质 加热进入精熘塔 3的溶液并对外释放冷剂蒸汽和放热于被加热介质, 精馏塔 3的浓溶液经溶 液热交换器 6放热、 降压后再流经第二吸收器 2吸热汽化, 汽化后的溶液进入分汽室 7进行 汽、 液分离并放热于冷却介质; 分汽室 7释放的冷剂蒸汽和浓溶液均进入第一吸收器 1。
图 2所示的吸收-发生系统和图 1所示的吸收-发生系统在本质上没有实质性的差别, 二 者的区别在于: 图 1所示的适用于诸如溴化锂水溶液为工质的吸收式热泵机组, 而图 2所示 的适用于诸如氨水溶液为工质的吸收式热泵机组。 正因为如此, 在具体实施方式中, 本发明 只给出了图 4所示的单级单效回热式第一类吸收式热泵实例作为以图 2所示回热式吸收 -发生 系统为基础的回热式第一类吸收式热泵的代表。
图 3所示的单级单效回热式吸收 -发生系统是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 节流阀和 冷剂液泵, 形成基于回热式吸收-发生系统的单级单效回热式第一类吸收式热泵; 将发生器.3 有冷剂蒸汽通道与外部连通确定为发生器 3有冷剂蒸汽通道与冷凝器 A1连通, 冷凝器 A1还 有冷剂液管路经节流阀 C1与蒸发器 B1连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确 定为蒸发器 B1有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与第一吸收器 1连 通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为蒸发器 B1有冷剂液管路经冷 剂液泵 D1与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,冷凝 器 A1还有被加热介质管路与外部连通, 蒸发器 B1还有余热介质管路与外部连通。
②流程上, 发生器 3产生的冷剂蒸汽进入冷凝器 Al、 放热于被加热介质后成冷剂液, 冷 凝器 A1的冷剂液经节流阀 C1节流降压后进入蒸发器 B1 ;进入蒸发器 B1的冷剂液分成两部 分 部分吸收余热成冷剂蒸汽并进入第一吸收器 1,另一部分经冷剂液泵 D1后再流经第 一吸收器 1、 吸热成冷剂蒸汽并进入第二吸收器 2。
图 4所示的单级单效回热式第一类吸收式热泵是这样实现的: '
①结构上, 以图 2所示的回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第一节流 阀和第二节流阀, 形成基于回热式吸收-发生系统的单级单效回热式第一类吸收式热泵; 将精 馏塔 3有冷剂蒸汽通道与外部连通确定为精馏塔 3有冷剂蒸汽通道与冷凝器 A1连通,冷凝器 A1还有冷剂液管路经第一节流阀 C1与蒸发器 B1连通, 将第一吸收器 1有冷剂蒸汽通道与外 部连通确定为蒸发器 B1有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与 一吸 收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A1有冷剂液 管路经第二节流阀 E1与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2 连通, 冷凝器 A1还有冷却介质管路与外部连通, 蒸发器 B1还有被制冷介质管路与外部连通。
②流程上, 精馏塔 3产生的冷剂蒸汽进入冷凝器 Al、放热于被加热介质后成冷剂液, 冷 凝器 Al的冷剂液分成两路 路经第一节流阀 C1节流降压后进入蒸发器 Bl、 吸热被制 冷介质的热后成冷剂蒸汽并向第一吸收器 1提供,而另一路冷剂液经第二节流阀 E1后再流经 第一吸收器 1、 吸热成冷剂蒸汽并进入第二吸收器 2。
图 5所示的单级并联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示回热式吸收 -发生系统为基础,增加冷凝器、蒸发器、第二发生器、 第一节流阀、 第二节流阔、 冷剂液泵和第二溶液热交换器, 以第一发生器为高压发生器、 第 二发生器为低压发生器,形成基于回热式吸收 -发生系统的单级并联双效回热式第一类吸收式 热泵;由第二吸收器 2经第一溶液泵 4增设稀溶液管路再经第二溶液热交换器 G2与第二发生 器 C2连通,第二发生器 C2还有浓溶液管路经第二溶液热交换器 G2之后与第一发生器 3经第 一溶液热交换器 6之后的浓溶液管路汇合、 再经第二吸收器 2与分汽室 7连通, 将第一发生 器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第二发生器 C2连通后 第二发生器 C2再有冷剂液管路经第一节流阔 D2与冷凝器 A2连通——第一发生器 3产生的冷 剂蒸汽作为第二发生器 C2的驱动热介质,第二发生器 C2还有冷剂蒸汽通道与冷凝器 A2连通, 冷凝器 A2还有冷剂液管路经第二节流阀 E2与蒸发器 B2连通,将第一吸收器 1有冷剂蒸汽通 道与外部连通确定为蒸发器 B2有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与 第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为蒸发器 B2有 冷剂液管路经冷剂液泵 F2与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收 器 2连通, 冷凝器 A2还有被加热介质管路与外部连通, 蒸发器 B2还有余热介质管路与外部 连通。
②流程上, 第二吸收器 2的一部分稀溶液经第一溶液泵 4和第二溶液热交换器 G2进入 第二发生器 C2, 第一发生器 3产生的冷剂蒸汽流经第二发生器 C2、 加热进入第二发生器 C2 的溶液释放冷剂蒸汽并向冷凝器 A2提供, 第二发生器 C2的浓溶液经第二溶液热交换器 G2 之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液汇合, 作为第二发生器 C2驱动热 介质的冷剂蒸汽放热形成冷剂液后再经第一节流阀 D2节流进入冷凝器 A2; 进入冷凝器 A2 的冷剂蒸汽放热于被加热介质后成冷剂液, 冷凝器 A2的冷剂液经第二节流阀 E2进入蒸发器
B2; 进入蒸发器 B2的冷剂液分成两部分 部分吸收余热成冷剂蒸汽并进入第一吸收器
1, 另一部分冷剂液经冷剂液泵 F2后再流经第一吸收器 1、 吸热成冷剂蒸汽并进入第二吸收 器 2。
图 6所示的单级并联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、 第一节流阀、 第二节流阀、 第二溶液热交换器和第三节流阀, 以第一发生器为高压发生 器、第二发生器为低压发生器, 形成基于回热式吸收 -发生系统的单级并联双效回热式第一类 吸收式热泵;由第二吸收器 2经第一溶液泵 4增设稀溶液管路再经第二溶液热交换器 G2与第 二发生器 C2连通,第二发生器 C2还有浓溶液管路经第二溶液热交换器 G2之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液管路汇合、 再经第二吸收器 2与分汽室 7连通, 将第 一发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第二发生器 C2 连通后第二发生器 C2再有冷剂液管路经第一节流阀 D2与冷凝器 A2连通——第一发生器 3产 生的冷剂蒸汽作为第二发生器 C2的驱动热介质, 第二发生器 C2还有冷剂蒸汽通道与冷凝器 A2连通, 冷凝器 A2还有冷剂液管路经第二节流阀 E2与蒸发器 B2连通, 将第一吸收器 1有 冷剂蒸汽通道与外部连通确定为蒸发器 B2有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷 剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为 冷凝器 A2有冷剂液管路经第三节流阀 H2与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽 通道与第二吸收器 2连通, 冷凝器 A2还有被加热介质管路与外部连通, 蒸发器 B2还有余热 介质管路与外部连通。
②流程上, 第二吸收器 2的一部分稀溶液经第一溶液泵 4和第二溶液热交换器 G2进入 第二发生器 C2, 第一发生器 3产生的冷剂蒸汽流经第二发生器 C2、 加热进入第二发生器 C2 的溶液释放冷剂蒸汽并向冷凝器 A2提供, 第二发生器 C2的浓溶液经第二溶液热交换器 G2 之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液汇合, 作为第二发生器 C2驱动热 介质的冷剂蒸汽放热形成冷剂液后再经第一节流阀 D2节流进入冷凝器 A2; 进入冷凝器 A2 的冷剂蒸汽放热于被加热介质后成冷剂液, 冷凝器 A2 的冷剂液分成两路 路经第二节 流阀 E2进入蒸发器 B2、 吸收余热成冷剂蒸汽并进入第一吸收器 1, 另一路冷剂液经第三节 流阀 H2后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供。
实际上, 图 6所示和图 5所示的没有实质性的差别, 二者的区别仅在于: 图 5中采用冷 剂液泵 F2,并由蒸发器 B2设置冷剂液管路经冷剂液泵 F2与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; 而图 6中采用第三节流阀 H2取代冷剂液泵 F2, 并由冷凝器 A2设置冷剂液管路经第三节流阔 H2与第一吸收器 1连通后第一吸收器 1再有冷 剂蒸汽通道与第二吸收器 2连通。 因此, 在后面的实例中将不再分别详述。
图 7所示的单级串联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、 第一节流闽、 第二节流阔、 第二溶液热交换器和第三节流阔, 形成基于回热式吸收 -发生 系统的单级串联双效回热式第一类吸收式热泵; 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液 泵 4、 第一溶液热交换器 6和第二溶液热交换器 G2与第一发生器 3连通, 将第一发生器 3有 浓溶液管路经第一溶液热交换器 6和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓 溶液管路经第二溶液热交换器 G2与第二发生器 C2连通后第二发生器 C2再有浓溶液管路经第 一溶液热交换器 6和第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与外部 连通确定为第一发生器 3有冷剂蒸汽通道与第二发生器 C2连通后第二发生器 C2再有冷剂液 管路经第一节流阀 D2与冷凝器 A2连通——第一发生器 3产生的冷剂蒸汽作为第二发生器 C2 的驱动热介质, 第二发生器 C2还有冷剂蒸汽通道与冷凝器 A2连通, 冷凝器 A2还有冷剂液管 路经第二节流阀 E2与蒸发器 B2连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸 发器 B2有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A2有冷剂液管路经第三节流 阀 H2与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 冷凝器 A2还有被加热介质管路与外部连通, 蒸发器 B2还有余热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第二溶液热交换器 G2进入第一发 生器 3, 第一发生器 3的浓溶液经第二溶液热交换器 G2进入第二发生器 C2; 第一发生器 3 产生的冷剂蒸汽流经第二发生器 C2、 加热进入第二发生器 C2的溶液释放冷剂蒸汽并向冷凝 器 A2提供, 第二发生器 C2的浓溶液经第一溶液热交换器 6和第二吸收器 2进入分汽室 7, 作为第二发生器 C2驱动热介质的冷剂蒸汽放热形成冷剂液后再经第一节流阀 D2节流进入冷 凝器 A2; 进入冷凝器 A2的冷剂蒸汽放热于被加热介质后成冷剂液, 冷凝器 A2的冷剂液分 成两路 路经第二节流阀 E2进入蒸发器 B2、 吸收余热成冷剂蒸汽并向第一吸收器 1提 供, 另一路冷剂液经第三节流阀 H2后再流经第一吸收器 1、吸热成冷剂蒸汽并向第二吸收器 2提供。
图 8所示的单级串联双效回热式第一类吸收式热泵, 与图 7所示的单级串联双效回热式 第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 8中采用冷剂液泵 F2取代了图 7 中的第三节流阀 H2, 蒸发器 B2有冷剂液管路经冷剂液泵 F2与第一吸收器 1连通后第一吸收 器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 8中冷凝器 A2的冷剂液全部经第 二节流阀 E2节流进入蒸发器 B2后分成两路——一路吸收余热成冷剂蒸汽并向第一吸收器 1 提供,另一路经冷剂液泵 F2后再流经第一吸收器 1、吸热成冷剂蒸汽并向第二吸收器 2提供。
图 9所示的单级串联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示回热式吸收-发生系统为基础,增加冷凝器、蒸发器、第二发生器、 第一节流阔、 第二节流阀、 第二溶液热交换器、 第三节流阀和第三溶液泵, 形成基于回热式 吸收 -发生系统的单级串联双效回热式第一类吸收式热泵;将第二吸收器 2有稀溶液经第一溶 液泵 4和第一溶液热交换器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液经第一溶液 泵 4和第一溶液热交换器 6与第二发生器 C2连通, 第二发生器 C2还有浓溶液管路经第三溶 液泵 12和第二溶液热交换器 G2与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一 溶液热交换器 6和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第二溶 液热交换器 G2、 第一溶液热交换器 6和第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷 剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第二发生器 C2连通后第二发生 器 C2再有冷剂液管路经第一节流阀 D2与冷凝器 A2连通——第一发生器 3产生的冷剂蒸汽作 为第二发生器 C2的驱动热介质, 第二发生器 C2还有冷剂蒸汽通道与冷凝器 A2连通, 冷凝器 A2还有冷剂液管路经第二节流阀 E2与蒸发器 B2连通, 将第一吸收器 1有冷剂蒸汽通道与外 部连通确定为蒸发器 B2有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与第一吸 收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A2有冷剂液 管路经第三节流阀 H2与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2 连通, 冷凝器 A2还有被加热介质管路与外部连通, 蒸发器 B2还有余热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第二溶液热交换器 G2进入第二发 生器 C2, 来自第一发生器 3的冷剂蒸汽流经第二发生器 C2、 加热进入其内的溶液释放冷剂 蒸汽并向冷凝器 A2提供, 第二发生器 C2的浓溶液经第三溶液泵 12和第二溶液热交换器 G2 进入第一发生器 3 , 第一发生器 3的浓溶液经第二溶液热交换器 G2、 第一溶液热交换器 6和 第二吸收器 2进入分汽室 7;作为第二发生器 C2驱动热介质的冷剂蒸汽放热形成冷剂液后再 经第一节流阀 D2节流进入冷凝器 A2, 进入冷凝器 A2的冷剂蒸汽放热于被加热介质后成冷 剂液, 冷凝器 A2的冷剂液分成两路——一路经第二节流阀 E2进入蒸发器 B2、 吸收余热成 冷剂蒸汽并向第一吸收器 1提供, 另一路冷剂液经第三节流阀 H2后再流经第一吸收器 1、吸 热成冷剂蒸汽并向第二吸收器 2提供。
图 10所示的单级串联双效回热式第一类吸收式热泵,与图 9所示的单级串联双效回热式 第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 10中采用冷剂液泵 F2取代了图 9中的第三节流阀 H2, 蒸发器 B2有冷剂液管路经冷剂液泵 F2与第一吸收器 1连通后第一吸 收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 10中冷凝器 A2的冷剂液全部 经第二节流阀 E2进入蒸发器 B2后分成两路 路吸收余热成冷剂蒸汽并向第一吸收器 1 提供,另一路经冷剂液泵 F2后再流经第一吸收器 1、吸热成冷剂蒸汽并向第二吸收器 2提供。
图 11所示的单级并联三效回热式第一类吸收式热泵是这样实现的- ①结构上, 以图 1所示回热式吸收-发生系统为基础,增加冷凝器、蒸发器、第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二溶液热交换器、 第三溶液热交换 器和冷剂液泵, 形成基于回热式吸收 -发生系统的单级并联三效回热式第一类吸收式热泵; 由 第二吸收器 2经第一溶液泵 4增设稀溶液管路分别再经第二溶液热交换器 13与第二发生器 C3连通和再经第三溶液热交换器 J3与第三发生器 D3连通, 第二发生器 C3有浓溶液詧路经 第二溶液热交换器 13之后和第三发生器 D3有浓溶液管路经第三溶液热交换器 J3之后均与第 一发生器 3经第一溶液热交换器 6的浓溶液管路汇合、 再经第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第二发生 器 C3连通后第二发生器 C3再有冷剂液管路经第一节流阀 E3与冷凝器 A3连通——第一发生 器 3释放的冷剂蒸汽作为第二发生器 C3的驱动热介质, 第二发生器 C3还有冷剂蒸汽通道与 第三发生器 D3连通后第三发生器 D3再有冷剂液管路经第二节流阀 F3与冷凝器 A3连通—— 第二发生器 C3释放的冷剂蒸汽作为第三发生器 D3的驱动热介质,第三发生器 D3还有冷剂蒸 汽通道与冷凝器 A3连通, 冷凝器 A3还有冷剂液管路经第三节流阀 G3与蒸发器 B3连通, 将 第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B3有冷剂蒸汽通道与第一吸收器 1连 通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收 器 2连通确定为蒸发器 B3有冷剂液管路经冷剂液泵 H3与第一吸收器 1连通后第一吸收器 1 再有冷剂蒸汽通道与第二吸收器 2连通通, 冷凝器 A3还有被加热介质管路与外部连通, 蒸发 器 B3还有余热介质管路与外部连通。
②流程上, 第二吸收器 2的一部分稀溶液经第一溶液泵 4和第二溶液热交换器 13进入第 二发生器 C3, 第一发生器 3产生的冷剂蒸汽流经第二发生器 C3、加热进入第二发生器 C3的 溶液释放冷剂蒸汽并向第三发生器 D3提供以作为其驱动热介质,第二发生器 C3的浓溶液经 第二溶液热交换器 13之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液汇合; 第二吸 收器 2的再一部分稀溶液经第一溶液泵 4和第三溶液热交换器 J3进入第三发生器 D3, 来自 第二发生器 C3的冷剂蒸汽加热进入第三发生器 D3的溶液释放冷剂蒸汽并向冷凝器 A3提供, 第三发生器 D3的浓溶液经第三溶液热交换器 J3之后也与第一发生器 3经第一溶液热交换器 6之后的浓溶液汇合;作为第二发生器 C3驱动热介质的冷剂蒸汽放热形成冷剂液后再经第一 节流阀 E3节流进入冷凝器 A3, 作为第三发生器 D3驱动热介质的冷剂蒸汽放热形成冷剂液 后再经第二节流阀 F3节流进入冷凝 A3, 进入冷凝器 A3的冷剂蒸汽放热于被加热介质后成 冷剂液,冷凝器 A3的冷剂液经第三节流阀 G3进入蒸发器 B3 ; 进入蒸发器 B3的冷剂液分成 两部分 部分吸收余热成冷剂蒸汽并进入第一吸收器 1,另一部分经冷剂液泵 H3后再流 经第一吸收器 1、 吸热成冷剂蒸汽并进入第二吸收器 2。
图 12所示的单级并联三效回热式第一类吸收式热泵, 与图 11所示的单级串联三效回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 12中采用第四节流阀 K3取代 了图 11中的冷剂液泵 H3, 冷凝器 A3有冷剂液管路经第四节流阔 3与第一吸收器 1连通后 第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 12中冷凝器 A3的冷剂 液分成两路 路经第三节流阀 G3进入蒸发器 B3、吸收余热成冷剂蒸汽并向第一吸收器 1 提供, 另一路经第四节流阔 K3后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提 供。
图 13所示的单级串联三效回热式第一类吸收式热泵是这样实现的- ①结构上, 以图 1所示回热式吸收 -发生系统为基础,增加冷凝器、蒸发器、第二发生器、 第三发生器、 第一节流阀、 第二节流阔、 第三节流阀、 第二溶液热交换器、 第三溶液热交换 器和第四节流阀, 形成基于回热式吸收 -发生系统的单级串联三效回热式第一类吸收式热泵; 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调 整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6、 第二溶液热交换器 13和第三溶液热交换器 J3与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液 热交换器 6和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第三溶液热 交换器 J3与第二发生器 C3连通, 第二发生器 C3还有浓溶液管路经第二溶液热交换器 13与 第三发生器 D3连通, 第三发生器 D3还有浓溶液管路经第一溶液热交换器 6和第二吸收器 2 与分汽室 6连通, 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸 汽通道与第二发生器 C3连通后第二发生器 C3还有冷剂液管路经第一节流阀 E3与冷凝器连通 ——第一发生器 3产生的冷剂蒸汽作为第二发生器 C3的驱动热介质, 第二发生器 C3还有冷 剂蒸汽通道与第三发生器 D3连通后第三发生器 D3再有冷剂液管路经第二节流阀 F3与冷凝器 A3连通——第二发生器 C3释放的冷剂蒸汽作为第三发生器 D3的驱动热介质,第三发生器 D3 还有冷剂蒸汽通道与冷凝器 A3连通, 冷凝器 A3还有冷剂液管路经第三节流阀 G3与蒸发器 B3连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B3有冷剂蒸汽通道与第 一吸收器 1连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通 道与第二吸收器 2连通确定为冷凝器 A3有冷剂液管路经第四节流阀 K3与第一吸收器 1连通 后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,冷凝器 A3还有被加热介质管路与外 部连通, 蒸发器 C3还有余热介质管路与外部连通。
②流程上, 驱动热介质流经第一发生器 3加热由第二吸收器 2经第一溶液泵 4、 第一溶 液热交换器 6、 第二溶液热交换器 13和第三溶液热交换器 J3进入其内的溶液释放冷剂蒸汽, 第一发生器 3产生的冷剂蒸汽流经第二发生器 C3加热由第一发生器 3经第三溶液热交换器 J3进入其内的溶液释放冷剂蒸汽,第二发生器 C3产生的冷剂蒸汽提供给第三发生器 D3作为 其驱动热介质, 第二发生器 C3的浓溶液经第二溶液热交换器 13进入第三发生器 D3, 冷剂蒸 汽流经第三发生器 D3加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A3提供;流经第二发生 器 C3的冷剂蒸汽放热形成的冷剂液再经第一节流阀 E3进入冷凝器 A3, 流经第三发生器 D3 的冷剂蒸汽放热形成的冷剂液再经第二节流阀 F3进入冷凝器 A3, 进入冷凝器 A3的冷剂蒸 汽放热于被加热介质成冷剂液;冷凝器 A3的冷剂液分成两路——一路经第三节流阀 G3进入 蒸发器 B3、 吸收余热成冷剂蒸汽并向第一吸收器 1提供, 另一路冷剂液经第四节流阀 K3后 流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供。
图 14所示的单级串联三效回热式第一类吸收式热泵, 与图 13所示的单级串联三效回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 中采用冷剂液泵 H3取代了 图 13中的第四节流阀 K3, 蒸发器 Β3有冷剂液管路经冷剂液泵 Η3与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 14中冷凝器 A3的冷剂液 全部经第三节流阀 G3进入蒸发器 Β3后分成两路 路吸收余热成冷剂蒸汽并向第一吸收 器 1提供, 另一路经冷剂液泵 Η3后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2 提供。
图 15所示的单级串联三效回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示回热式吸收 -发生系统为基础,增加冷凝器、蒸发器、第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二溶液热交换器、 第三溶液热交换 器、第四节流阀、第三溶液泵和第四溶液泵, 形成基于回热式吸收 -发生系统的单级串联三效 回热式第一类吸收式热泵; 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换 器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交 换器 6与第三发生器 D3连通,第三发生器 D3还有浓溶液管路经第三溶液泵 L3和第二溶液热 交换器 13与第二发生器 C3连通, 第二发生器 C3还有浓溶液管路经第四溶液泵 M3和第三溶 液热交换器 J3与第一发生器 3连通,将第一发生器 3有浓溶液管路经第一溶液热交换器 6和 第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第三溶液热交换器 J3、 第 二溶液热交换器 13、 第一溶液热交换器 6和第二吸收器 2与分汽室 6连通, 将第一发生器 3 有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第二发生器 C3连通后第二 发生器 C3再有冷剂液管路经第一节流阀 E3与冷凝器 A3连通——第一发生器 3产生的冷剂蒸 汽作为第二发生器 C3的驱动热介质,第二发生器 C3还有冷剂蒸汽通道与第三发生器 D3连通 后第三发生器 D3再有冷剂液管路经第二节流阀 F3与冷凝器 A3连通——第二发生器 C3释放 的冷剂蒸汽作为第三发生器 D3的驱动热介质, 第三发生器 D3还有冷剂蒸汽通道与冷凝器 A3 连通, 冷凝器 A3还有冷剂液管路经第三节流阀 G3与蒸发器 B3连通,将第一吸收器 1有冷剂 蒸汽通道与外部连通确定为蒸发器 B3有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液 管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝 器 A3有冷剂液管路经第四节流阀 K3与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道 与第二吸收器 2连通, 冷凝器 A3还有被加热介质管路与外部连通, 蒸发器 C3还有余热介质 管路与外部连通。
②流程上, 驱动热介质流经第一发生器 3加热由第二发生器 C3经第四溶液泵 M3、 第三 溶液热交换器 J3进入其内的溶液释放冷剂蒸汽,第一发生器 3产生的冷剂蒸汽流经第二发生 器 C3加热由第三发生器 D3经第三溶液泵 L3、 第二溶液热交换器 13进入其内的溶液释放冷 剂蒸汽, 第二发生器 C3产生的冷剂蒸汽提供给第三发生器 D3作为其驱动热介质、 加热由第 二吸收器 2经第一溶液泵 4、 第一溶液热交换器 6进入其内的溶液释放冷剂蒸汽, 第三发生 器 D3产生的冷剂蒸汽进入冷凝器 A3; 流经第二发生器 C3的冷剂蒸汽放热形成的冷剂液再 经第一节流阔 E3进入冷凝器 A3, 流经第三发生器 D3的冷剂蒸汽放热形成的冷剂液再经第 二节流阀 F3进入冷凝器 A3, 进入冷凝器 A3的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝 器 A3的冷剂液分成两路 路经第三节流阀 H3进入蒸发器 C3、 吸收余热成冷剂蒸汽并 向第一吸收器 1提供, 另一路经第四节流阔 K3后流经第一吸收器 1、吸热成冷剂蒸汽并向第 二吸收器 2提供。
图 16所示的单级串联三效回热式第一类吸收式热泵, 与图 15所示的单级串联三效回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 16中采用冷剂液泵 H3取代了 图 15中的第四节流阀 K3, 蒸发器 Β3有冷剂液管路经冷剂液泵 Η3与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 16中冷凝器 A3的冷剂液 全部经第三节流阀 G3进入蒸发器 Β3后分成两路 路吸收余热成冷剂蒸汽并向第一吸收 器 1提供, 另一路经冷剂液泵 Η3后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2 提供。
图 17所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 吸收-蒸 发器、 节流阀、 第二溶液热交换器、 第一冷剂液泵和第二冷剂液泵, 形成基于回热式吸收- 发生系统的单发生器两级回热式第一类吸收式热泵; 将第一吸收器 1有稀溶液管路经第二溶 液泵 5与第二吸收器 2连通调整为第一吸收器 1有稀溶液管路经第二溶液热交换器 Ε4与吸收 -蒸发器 D4连通,吸收-蒸发器 D4再有稀溶液管路经第二溶液泵 5和第二溶液热交换器 Ε4与 第二吸收器 2连通, 将发生器 3有冷剂蒸汽通道与外部连通确定为发生器 3有冷剂蒸汽通道 与冷凝器 A4连通, 冷凝器 A4还有冷剂液管路经节流阀 D4与蒸发器 B4连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B4有冷剂液管路经第一冷剂液泵 F4与吸收 -蒸发 器 D4连通后吸收-蒸发器 D4再有冷剂蒸汽通道与第一吸收器 1连通, 蒸发器 B4还有冷剂蒸 汽通道与吸收-蒸发器 D4连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再 有冷剂蒸汽通道与第二吸收器 2连通确定为蒸发器 B4有冷剂液管路经第二冷剂液泵 G4与第 一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,冷凝器 A4还有被加 热介质管路与外部连通, 蒸发器 B4还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入发生器 3的溶液释放冷剂蒸汽并向冷凝器 A4提供, 进 入冷凝器 A4的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 A4的冷剂液经节流阀 D4节流 降压后进入蒸发器 B4; 进入蒸发器 C4的冷剂液分成三路——一路冷剂液吸收余热成冷剂蒸 汽并向吸收-蒸发器 D4提供, 另一路冷剂液经第一冷剂液泵 F4加压后流经吸收-蒸发器 C4、 吸热成冷剂蒸汽并向第一吸收器 1提供, 再一路冷剂液经第二冷剂液泵 G4加压后流经第一 吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供; 第一吸收器 1 的稀溶液经第二溶液热交 换器 E4进入吸收-蒸发器 C4、 吸收来自蒸发器 B4的冷剂蒸汽并放热于流经其内的冷剂液, 吸收-蒸发器 C4的稀溶液经第二溶液泵 5和第二溶液热交换器 E4进入第二吸收器 2。
图 18所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 吸收-蒸 发器、 第一节流阀、 第二溶液热交换器、 第二节流阀和第三节流阀, 形成基于回热式吸收- 发生系统的单发生器两级回热式第一类吸收式热泵; 将第一吸收器 1有稀溶液管路经第二溶 液泵 5与第二吸收器 2连通调整为第一吸收器 1有稀溶液管路经第二溶液热交换器 E4与吸收 -蒸发器 D4连通,吸收-蒸发器 D4再有稀溶液管路经第二溶液泵 5和第二溶液热交换器 E4与 第二吸收器 2连通, 将发生器 3有冷剂蒸汽通道与外部连通确定为发生器 3有冷剂蒸汽通道 与冷凝器 A4连通, 冷凝器 A4还有冷剂液管路经第一节流阀 D4与蒸发器 B4连通, 蒸发器 B4 还有冷剂蒸汽通道与吸收-蒸发器 D4连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定 为冷凝器 A4有冷剂液管路经第二节流阀 H4与吸收-蒸发器 D4连通后吸收-蒸发器 D4再有冷 剂蒸汽通道与第一吸收器 1连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1 再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A4有冷剂液管路经第三节流阀 14与第 一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,冷凝器 A4还有被加 热介质管路与外部连通, 蒸发器 B4还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入发生器 3的溶液释放冷剂蒸汽并向冷凝器 A4提供, 进 入冷凝器 A4的冷剂蒸汽放热于被加热介质成冷剂液,冷凝器 A4的冷剂液分成三路 路 经节流阀 D4节流降压后进入蒸发器 B4、 吸收余热成冷剂蒸汽并向吸收-蒸发器 D4提供, 另 一路冷剂液经第二节流阀 H4降压后流经吸收-蒸发器 C4、吸热成冷剂蒸汽并向第一吸收器 1 提供, 再一路冷剂液经第三节流阀 14节流后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二 吸收器 2提供; 第一吸收器 1的稀溶液经第二溶液热交换器 E4进入吸收-蒸发器 C4、 吸收来 自蒸发器 B4的冷剂蒸汽并放热于流经其内的冷剂液, 吸收-蒸发器 C4的稀溶液经第二溶液 泵 5和第二溶液热交换器 E4进入第二吸收器 2。
图 19所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第一节流 阀、 第二溶液热交换器、 冷剂液泵、 第三节流闽和第三吸收器, 形成基于回热式吸收-发生系 统的单发生器两级回热式第一类吸收式热泵; 将第二吸收器 2有稀溶液管路经第一溶液泵 4 和第一溶液热交换器 6与发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热交换器 E4与发生器 3连通,将发生器 3有浓溶液管路经第 一溶液热交换器 6和第二吸收器 2与分汽室 7连通调整为发生器 3有浓溶液管路经第二溶液 热交换器 E4与第三吸收器 J4连通,第三吸收器 J4还有稀溶液管路经第一溶液热交换器 6和 第二吸收器 2与分汽室 7连通, 将发生器 3有冷剂蒸汽通道与外部连通确定为发生器 3有冷 剂蒸汽通道与冷凝器 A4连通,冷凝器 A4还有冷剂液管路经第一节流阀 D4与蒸发器 B4连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B4有冷剂蒸汽通道与第一吸收器 1 连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸 收器 2连通确定为蒸发器 B4有冷剂液管路经冷剂液泵 F4与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 将第一吸收器 1有被加热介质管路与外部连通调 整为冷凝器 A4有冷剂液管路经第三节流阀 14与第一吸收器 1连通后第一吸收器 1再有冷剂 蒸汽通道与第三吸收器 J4连通,第三吸收器 J4和冷凝器 A4还分别有被加热介质管路与外部 连通, 蒸发器 B4还有余热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 E4进入发生器 3, 驱动热介质加热进入发生器 3的溶液释放冷剂蒸汽向冷凝器 A4提 供, 进入冷凝器 A4的冷剂蒸汽放热于被加热介质成冷剂液; 发生器 3的浓溶液经第二溶液 热交换器 E4进入第三吸收器 J4、 吸收来自第一吸收器 1 的冷剂蒸汽并放热于被加热介质, 第三吸收器 J4的稀溶液经第一溶液热交换器 6和第一吸收器 2进入分汽室 7; 冷凝器 A4的 冷剂液分成两路 路经第一节流阀 D4进入蒸发器 B4,另一路经第三节流阀 14后再流经 第一吸收器 1、 吸热成冷剂蒸汽并向第三吸收器 J4提供; 进入蒸发器 B4的冷剂液又分成两 路——一路吸收余热成冷剂蒸汽向第一吸收器 1提供,另一路经冷剂液泵 F4后再流经第一吸 收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供。
图 20所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节流阀和第二节流阀, 形成基于回 热式吸收 -发生系统、由第一发生器向第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类 吸收式热泵; 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通 道与第三吸收器 D5连通,第三吸收器 D5有稀溶液管路经第三溶液泵 E5和第二溶液热交换器 F5与第二发生器 C5连通, 第二发生器 C5还有浓溶液管路经第二溶液热交换器 F5与第三吸 收器 D5连通, 第二发生器 C5还有冷剂蒸汽通道与冷凝器 A5连通, 冷凝器 A5还有冷剂液管 路经第一节流阀 G5与蒸发器 B5连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸 发器 B5有冷剂蒸汽通道与第一吸收器 1连通,将外部有冷剂液管路与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A5有冷剂液管路经第二节流 阀 H5与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,第二发生 器 C5还有驱动热介质管路与外部连通,第三吸收器 D5和冷凝器 A5还分别有被加热介质管路 与外部连通, 蒸发器 B5还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽进入第三吸收器 D5、 被来自第二发生器 C5的浓溶液吸收并放热于被加热介质,第三吸收器 D5的稀溶液经第三溶 液泵 E5和第二溶液热交换器 F5进入第二发生器 C5, 驱动热介质加热进入第二发生器 C5的 溶液释放冷剂蒸汽并向冷凝器 A5提供, 第二发生器 C5的浓溶液经第二溶液热交换器 F5进 入第三吸收器 D5 ; 进入冷凝器 A5的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 A5的冷 剂液分成两路 路经第一节流阀 G5进入蒸发器 B5、 吸收余热成冷剂蒸汽并向第一吸收 器 1提供, 另一路冷剂液经第二节流阀 H5后再流经第一吸收器 1、吸热成冷剂蒸汽并向第二 吸收器 2提供。
图 21所示的双发生器两级回热式第一类吸收式热泵, 与图 20所示的双发生器两级回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 21中采用冷剂液泵 15取代了 图 20中的第二节流阔 H5, 蒸发器 B5有冷剂液管路经冷剂液泵 15与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 21中冷凝器 A5的冷剂液 全部经第一节流阔 G5进入蒸发器 B5后分成两路——一路吸收余热成冷剂蒸汽并向第一吸收 器 1提供, 另一路经冷剂液泵 15后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2 提供。
图 22所示的双发生器两级回热式第一类吸收式热泵是这样实现的-
①结构上, 以图 1所示的回热式吸收-发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节流阀、 第二节 流阀和冷剂液泵, 形成基于回热式吸收 -发生系统、 由第一发生器分别向第三吸收器和第二冷 凝器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器 3有冷剂蒸汽通 道与外部连通确定为第一发生器 3有冷剂蒸汽通道分别与第三吸收器 D5和第二冷凝器 J5 通, 第三吸收器 D5有稀溶液管路经第三溶液泵 Ε5和第二溶液热交换器 F5与第二发生器 C5 连通, 第二发生器 C5还有浓溶液管路经第二溶液热交换器 F5与第三吸收器 D5连通, 第二发 生器 C5还有冷剂蒸汽通道与第一冷凝器 Α5连通,第一冷凝器 Α5还有冷剂液管路经第一节流 阔 G5与第二冷凝器 J5连通,第二冷凝器 J5还有冷剂液管路经第二节流阔 Η5与蒸发器 Β5连 通,将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 Β5有冷剂蒸汽通道与第一吸收 器 1连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第 二吸收器 2连通确定为蒸发器 Β5有冷剂液管路经冷剂液泵 15与第一吸收器 1连通后第一吸 收器 1再有冷剂蒸汽通道与第二吸收器 2连通,第二发生器 C5还有驱动热介质管路与外部连 通, 第二冷凝器 J5、 第三吸收器 D5和第一冷凝器 A5还分别有被加热介质管路与外部连通, 蒸发器 B5还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽分别进入第三吸收器 D5和第二冷凝器 J5, 进入第三吸收器 D5的冷剂蒸汽被来自第二发生器 C5的浓溶液吸收并 放热于被加热介质, 第三吸收器 D5的稀溶液经第三溶液泵 E5和第二溶液热交换器 F5进入 第二发生器 C5,驱动热介质加热进入第二发生器 C5的溶液释放冷剂蒸汽并向第一冷凝器 A5 提供, 第二发生器 C5的浓溶液经第二溶液热交换器 F5进入第三吸收器 D5; 进入第一冷凝 器 A5的冷剂蒸汽放热于被加热介质成冷剂液, 第一冷凝器 A5的冷剂液经第一节流阀 G5进 入第二冷凝器 J5,进入第二冷凝器 J5的冷剂蒸汽放热于被加热介质后成冷剂液; 第二冷凝器 J5的冷剂液经第二节流阀 H5进入蒸发器 B5, 进入蒸发器 B5的冷剂液分成两路——一路吸 收余热成冷剂蒸汽并向第一吸收器 1提供, 另一路冷剂液经冷剂液泵 15后再流经第一吸收.器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供。
图 23所示的双发生器两级回热式第一类吸收式热泵, 与图 22所示的双发生器两级回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 23中采用第三节流阔 K5取代 了图 22中的冷剂液泵 15, 第二冷凝器 J5有冷剂液管路经第三节流阀 K5与第一吸收器 1连 通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通; ②流程上, 图 23中第二冷凝器 J5的冷剂液分成两路 路经第二节流阀 H5进入蒸发器 B5、 吸收余热成冷剂蒸汽并向第 一吸收器 1提供, 另一路经第三节流阀 K5节流后再流经第一吸收器 1、 吸热成冷剂蒸汽并向 第二吸收器 2提供。
图 24所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第三溶液热交换器、 第一节流阀、 第二节流阀和第三节流阀, 形成基于回热式吸收 -发生系统、 由第一发生器分别 向第三吸收器和第二冷凝器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一 发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道分别与第三吸收器 D5和第二冷凝器 J5连通, 第三吸收器 D5还有稀溶液管路经第三溶液泵 E5和第三溶液热交 换器 L5与第一发生器 3连通,将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第二吸 收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第三溶液热交换器 L5、 第一溶液 热交换器 6和第二吸收器 2与分汽室 7连通, 将第二吸收器 2有稀溶液管路经第一溶液泵 4 和第一溶液热交换器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热交换器 F5与第二发生器 C5连通, 第二发生器 C5还有 浓溶液管路经第二溶液热交换器 F5与第三吸收器 D5连通,第二发生器 C5还有冷剂蒸汽通道 与第一冷凝器 A5连通, 第一冷凝器 A5还有冷剂液管路经第一节流阀 G5与第二冷凝器 J5连 通,第二冷凝器 J5还有冷剂液管路经第二节流阔 H5与蒸发器 B5连通, 将第一吸收器 1·有冷 剂蒸汽通道与外部连通确定为蒸发器 B5有冷剂蒸汽通道与第一吸收器 1连通,将外部有,冷剂 液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为第 一冷凝器 A5有冷剂液管路经第三节流阀 K5与第一吸收器 1连通后第一吸收器 1再有冷剂蒸 汽通道与第二吸收器 2连通, 第二发生器 C5还有驱动热介质管路与外部连通, 第二冷凝器 J5、 第三吸收器和第一冷凝器 A5还分别有被加热介质管路与外部 通, 蒸发器 B5还有余热 介质管路与外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽分别进入第三吸收器 D5和第二冷凝器 J5, 进入第三吸收器 D5的冷剂蒸汽被来自第二发生器 C5的浓溶液吸收并 放热于被加热介质, 第三吸收器 D5的稀溶液经第三溶液泵 E5第三溶液热交换器 L5进入第 一发生器 3 , 第一发生器 3的浓溶液经第三溶液热交换器 L5、 第一溶液热交换器 6和第二吸 收器 2进入分汽室 7; 第二吸收器 2的稀溶液经第一溶液热交换器 6和第二溶液热交换器 F5 进入第二发生器 C5 , 驱动热介质加热进入第二发生器 C5的溶液释放冷剂蒸汽并向第一冷凝 器 A5提供, 第二发生器 C5的浓溶液经第二溶液热交换器 F5进入第三吸收器 D5 ; 进入第一 冷凝器 A5的冷剂蒸汽放热于被加热介质成冷剂液,第一冷凝器 A5的冷剂液分成两路——第 一路经第一节流阀 G5进入第二冷凝器 J5 , 第二路经第三节流阀 K5后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供;进入第二冷凝器 J5的冷剂蒸汽放热于被加热介质后 成冷剂液, 第二冷凝器 J5的冷剂液经第二节流阀 H5进入蒸发器 B5、吸收余热成冷剂蒸汽并 向第一吸收器 1提供, 另一路冷剂液。
图 25所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 节流阀和冷剂液泵, 形成基于回热式吸 收-发生系统、由第二发生器向第一吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式 热泵; 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与冷 凝器 A5连通, 冷凝器 A5还有冷剂液管路经节流阀 G5与蒸发器 B5连通, 蒸发器 B5还有冷剂 蒸汽通道与第三吸收器 D5连通,第三吸收器 D5有稀溶液管路经第三溶液泵 E5和第二溶液热 交换器 F5与第二发生器 C5连通, 第二发生器 C5还有浓溶液管路经第二溶液热交换器 F5与 第三吸收器 D5连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为第二发生器 C5有冷 剂蒸汽通道与第一吸收器 1连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1 再有冷剂蒸汽通道与第二吸收器 2连通确定为蒸发器 B5有冷剂液管路经冷剂液泵 15与第一 吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,第二发生器 C5还有驱 动热介质管路与外部连通,第三吸收器 D5和冷凝器 A5还分别有被加热介质管路与外部连通, 蒸发器 B5还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽进入冷凝器 A5, 进入 冷凝器 A5的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 A5的冷剂液经节流阀 G5节流后 进入蒸发器 B5 ; 进入蒸发器 B5的冷剂液分成两路 ^ "一路吸收余热成冷剂蒸汽并向第三吸 收器 D5提供, 另一路经冷剂液泵 15后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收 器 2提供;进入第三吸收器 D5的冷剂蒸汽被来自第二发生器 C5的浓溶液吸收并放热于被加 热介质, 第三吸收器 D5的稀溶液经第三溶液泵 E5和第二溶液热交换器 F5进入第二发生器 C5 , 驱动热介质加热进入第二发生器 C5的溶液释放冷剂蒸汽并向第一吸收器 1提供, 第二 发生器 C5的浓溶液经第二溶液热交换器 F5进入第三吸收器 D5。
图 26所示的双发生器两.级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节流阀、 第二节 流阀和第三节流阀, 形成基于回热式吸收 -发生系统、 由第二发生器分别向第一吸收器和第二 冷凝器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器 3有冷剂蒸汽 通道与外部连通确定为第一发生器 3有冷剂蒸汽通道与第一冷凝器 A5连通, 第一冷凝器 A5 还有冷剂液管路经第一节流阀 G5与第二冷凝器 J5连通,第二冷凝器 J5还有冷剂液管路经第 二节流阀 H5与蒸发器 B5连通, 蒸发器 B5还有冷剂蒸汽通道与第三吸收器 D5连通, 第三吸 收器 D5有稀溶液管路经第三溶液泵 E5和第二溶液热交换器 F5与第二发生器 C5连通, 第工 发生器 C5还有浓溶液管路经第二溶液热交换器 F5与第三吸收器 D5连通,将第一吸收器 1有 冷剂蒸汽通道与外部连通确定为第二发生器 C5有冷剂蒸汽通道与第一吸收器 1连通,第二发 生器 C5还有冷剂蒸汽通道与第二冷凝器 J5连通, 将外部有冷剂液管路与第一吸收器 1连通 后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为第一冷凝器 A5有冷剂液管路经 第三节流阀 K5与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 第二发生器 C5还有驱动热介质管路与外部连通, 第二冷凝器 J5、 第三吸收器 D5和第一冷凝 器 A5还分别有被加热介质管路与外部连通, 蒸发器 B5还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽进入第一冷凝器 A5, 进入第一冷凝器 A5的冷剂蒸汽放热于被加热介质成冷剂液,第一冷凝器 A5的冷剂液分成两 路 路经第一节流阀 G5节流后进入第二冷凝器 J5而另一路经第三节流阀 K5节流再经 第一吸收器 1 ; 驱动热介质加热由第三吸收器 D5经第三溶液泵 E5和第二溶液热交换器 F5 进入第二发生器 C5的溶液释放冷剂蒸汽并分别向第一吸收器 1和第二冷凝器 J5提供, 第二 发生器 C5的浓溶液经第二溶液热交换器 F5进入第三吸收器 D5; 进入第二冷凝器 J5的冷剂 蒸汽放热于被加热介质成冷剂液; 第二冷凝器 J5的冷剂液经第二节流阀 H5进入蒸发器 B5、 吸收余热成冷剂蒸汽并向第三吸收器 D5提供,进入第三吸收器 D5的冷剂蒸汽被来自第二发 生器 C5的浓溶液吸收并放热于被加热介质; 流经第一吸收器 1 的冷剂液吸热成冷剂蒸汽并 向第二吸收器 2提供。
图 27所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节流阀和第二节流阀, 形成基于回 热式吸收 -发生系统、由第一吸收器和第一发生器共同向第三吸收器提供冷剂蒸汽的双发生器 两级回热式第一类吸收式热泵; 第三吸收器 D6有稀溶液管路经第三溶液泵 E6和第二溶液热 交换器 F6与第二发生器 C6连通, 第二发生器 C6还有浓溶液管路经第二溶液热交换器 F6与 第三吸收器 D6连通, 第二发生器 C6还有冷剂蒸汽通道与冷凝器 A6连通, 冷凝器 A6还有冷 剂液管路经第一节流阀 G6与蒸发器 B6连通, 将第一吸收器 1有被加热介质管路与外部连通 和外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2 连通确定为冷凝器 A6有冷剂液管路经第二节流阀 H6与第一吸收器 1连通后第一吸收器 1再 有冷剂蒸汽通道分别与第三发生器 D6和第二吸收器 2连通,将第一发生器 3有冷剂蒸汽通道 与外部连通确定为第一发生器 3有冷剂蒸汽通道与第三吸收器 D6连通,将第一吸收器 1有冷 剂蒸汽通道与外部连通确定为蒸发器 B6有冷剂蒸汽通道与第一吸收器 1连通, 第二发生器 C6还有驱动热介质管路与外部连通, 第三吸收器 D6和冷凝器 A6还分别有被加热介质管路与 外部连通, 蒸发器 B6还有余热介质管路与外部连通。
②流程上, 驱动热介质加热进入第二发生器 3的溶液释放冷剂蒸汽并向冷凝器 A6提供, 第二发生器 C6的浓溶液经第二溶液热交换器 F6进入第三吸收器 D6,进入冷凝器 A6的冷剂 蒸汽放热于被加热介质成冷剂液;冷凝器 A5的冷剂液分成两路——一路经第一节流阀 G6节 流进入蒸发器 B5、 吸收余热成冷剂蒸汽并向第一吸收器 1提供, 而另一路经第二节流阀 H6 节流后再流经第一吸收器 1、 吸热成冷剂蒸汽并分别向第三吸收器 D6和第二吸收器 2提供; 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽并向第三吸收器 D6提供; 进入第三 吸收器 D6的冷剂蒸汽被来自第二发生器 C6的浓溶液吸收并放热于被加热介质,第三吸收器 D6的稀溶液经第三溶液泵 E6和第二溶液热交换器 F6进入第二发生器 C6。
图 28所示的双发生器两级回热式第一类吸收式热泵, 与图 27所示的双发生器两级回热 式第一类吸收式热泵相比, 二者的差别仅在于: ①结构上, 图 28中采用冷剂液泵 16取代了 图 27中的第二节流阀 H6, 蒸发器 B6有冷剂液管路经冷剂液泵 16与第一吸收器 1连通后第 一吸收器 1再有冷剂蒸汽通道分别与第三吸收器 D6第二吸收器 2连通; ②流程上, 图 28中 冷凝器 A6的冷剂液全部经节流阀 G6进入蒸发器 B6, 进入蒸发器 B5的冷剂液分成两路—— 一路吸收余热成冷剂蒸汽并向第一吸收器 1提供,另一路经冷剂液泵 16后再流经第一吸收器 1、 吸热成冷剂蒸汽并分别向第三吸收器 D6和第二吸收器 2提供。
图 29所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、吸收-蒸发器、第三溶液泵、第二溶液热交换器、节流阀、第一冷剂液泵和第二冷剂液泵, 形成基于回热式吸收 -发生系统、 由吸收-蒸发器和第二发生器共同向第一吸收器提供冷剂蒸 汽的双发生器两级回热式第一类吸收式热泵;第二发生器 C6有浓溶液管路经第二溶液热交换 器 E6与吸收-蒸发器 J6连通, 吸收-蒸发器 J6还有稀溶液管路经第三溶液泵 E6和第二溶液 热交换器 F6与第二发生器 C6连通, 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一 发生器 3有冷剂蒸汽通道与冷凝器 A6连通,冷凝器 A6还有冷剂液管路经节流阀 G6与蒸发器 B6连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B6有冷剂液管路经第一 冷剂液泵 16与吸收-蒸发器 J6连通后吸收-蒸发器 J6再有冷剂蒸汽通道与第一吸收器 1连通 和第二发生器 C6有冷剂蒸汽通道与第一吸收器 1连通,蒸发器 B6还有冷剂蒸汽通道与吸收- 蒸发器 J6连通,将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道 与第二吸收器 2连通确定为蒸发器 B6有冷剂液管路经第二冷剂液泵 K6与第一吸收器 1连通 后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,第二发生器 C6还有驱动热介质管路 与外部连通, 冷凝器 A6还有被加热介质管路与外部连通, 蒸发器 B6还有余热介质管路与外 部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽进入冷凝器 A6, 进入 冷凝器 A6的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝液经节流阀 G6节流后进入蒸发器 B6; 进入蒸发器 B6的冷剂液分成三路——一路吸收余热成冷剂蒸汽并向吸收-蒸发器 J6提 供, 另一路经第一冷剂液泵 16后再流经吸收-蒸发器 J6、 吸热成冷剂蒸汽并向第一吸收器 1 提供, 再一路经第二冷剂液泵 K6后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2 提供;进入吸收-蒸发器 J6的冷剂蒸汽被来自第二发生器 C6的浓溶液吸收并放热于流经吸收 -蒸发器 J6的冷剂液, 吸收-蒸发器 J6的稀溶液经第三溶液泵 E6和第二溶液热交换器 F6进 入第二发生器 C6, 驱动热介质加热进入第二发生器 C6的溶液释放冷剂蒸汽并向第一吸收器 1提供, 第二发生器 C6的浓溶液经第二溶液热交换器 F6进入吸收-蒸发器 J6。
图 30所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 以图 1所示的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生 器、吸收-蒸发器、第三溶液泵、第二溶液热交换器、第一节流阀、第二节流阀和第三节流阀, 形成基于回热式吸收 -发生系统、 由吸收 -蒸发器和第二发生器共同向第一吸收器提供冷剂蒸 汽的双发生器两级回热式第一类吸收式热泵;第二发生器 C6有浓溶液管路经第二溶液热交换 器 E6与吸收-蒸发器 J6连通, 吸收-蒸发器 J6还有稀溶液管路经第三溶液泵 E6和第二溶液 热交换器 F6与第二发生器 C6连通, 将第一发生器 3有冷剂蒸汽通道与外部连通确定为第一 发生器 3有冷剂蒸汽通道与冷凝器 A6连通,冷凝器 A6还有冷剂液管路经第一节流阀 G6与蒸 发器 B6连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为冷凝器 A6有冷剂液管路经 第二节流阀 H6与吸收-蒸发器 J6连通后吸收-蒸发器 J6再有冷剂蒸汽通道与第一吸收器 1连 通和第二发生器 C6有冷剂蒸汽通道与第一吸收器 1连通, 蒸发器 B6还有冷剂蒸汽通道与吸 收-蒸发器 J6连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽 通道与第二吸收器 2连通确定为冷凝器 A6有冷剂液管路经第三节流阀 L6与第一吸收器 1连 通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通,第二发生器 C6还有驱动热介质管 路与外部连通, 冷凝器 A6还有被加热介质管路与外部连通, 蒸发器 B6还有余热介质管路与 外部连通。
②流程上, 驱动热介质加热进入第一发生器 3的溶液释放冷剂蒸汽进入冷凝器 A6, 进入 冷凝器 A6 的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝液分成三路——一路经第一节流阀 G6节流后进入蒸发器 B6、 吸收余热成冷剂蒸汽并向吸收-蒸发器 J6提供, 另一路经第二节 流阀 H6节流后再流经吸收-蒸发器 J6、 吸热成冷剂蒸汽并向第一吸收器 1提供, 再一路经第 三节流阀 L6节流后再流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供; 进入吸收 -蒸发器 J6的冷剂蒸汽被来自第二发生器 C6的浓溶液吸收并放热于流经吸收-蒸发器 J6的冷 剂液,吸收-蒸发器 J6的稀溶液经第三溶液泵 E6和第二溶液热交换器 F6进入第二发生器 C6, 驱动热介质加热进入第二发生器 C6的溶液释放冷剂蒸汽并向第一吸收器 1提供, 第二发生 器 C6的浓溶液经第二溶液热 换器 F6进入吸收-蒸发器 J6。
图 31所示的增加了相邻高温供热端的单级单效回热式第一类吸收式热泵是这样实现的: ①结构上, 在图 3所示的单级单效回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器和新增节流阀, 由第一发生器 3增设浓溶液管路经新增第二溶液热交换器 el与新增吸收器 bl连通, 新增吸 收器 bl还有稀溶液管路经新增第一溶液热交换器 dl与新增吸收-蒸发器 al连通,新增吸收- 蒸发器 al还有稀溶液管路经新增溶液泵 cl、 新增第一溶液热交换器 dl和新增第二溶液热交 换器 el与第一发生器 3连通, 由蒸发器 B1增设冷剂蒸汽通道与新增吸收-蒸发器 al连通, 由冷凝器 A1增设冷剂液管路经新增节流阀 fl与新增吸收-蒸发器 al连通后新增吸收-蒸发器 al再有冷剂蒸汽通道与新增吸收器 bl连通,新增吸收器 bl还有被加热介质管路与外部连通, 新增吸收器 bl为冷凝器 Al或第一吸收器 1的相邻高温供热端。
②流程上, 相邻高温供热端是这样形成的: 由第一发生器 3经新增第二溶液热交换器 el 进入新增吸收器 bl的溶液, 吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于被加热介质; 新增吸收器 bl 的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自蒸 发器 B1的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽; 新增吸收-蒸发器 al的稀溶液经新增溶液泵 cl、新增第一溶液热交换器 dl和新增第二溶液热交换器 el进入第 一发生器 3; 驱动热介质加热进入第一发生器 3的该路溶液释放冷剂蒸汽向冷凝器 A1提供, 进入冷凝器 A1的冷剂蒸汽放热于被加热介质成冷剂液;冷凝器 A1的冷剂液分成两路——一 路经节流阀 C1进入蒸发器 Bl、 吸收余热成冷剂蒸汽并向新增吸收-蒸发器 al提供, 另一路 经新增节流阔 fl后再流经新增吸收-蒸发器 al、 吸热成冷剂蒸汽并向新增吸收器 bl提供。
图 32所示的增加了相邻高温供热端的单级单效回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 3所示的单级单效回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增蒸发器、 新增节流阀和新增冷剂液泵,由第一发生器 3增设浓溶液管路经新增第二溶液热交换器 el与 新增吸收器 bl连通,新增吸收器 bl还有稀溶液管路经新增第一溶液热交换器 dl与新增吸收 -蒸发器 al连通, 新增吸收-蒸发器 al还有稀溶液管路经新增溶液泵 cl、 新增第一溶液热交 换器 dl和新增第二溶液热交换器 el与第一发生器 3连通,由蒸发器 B1增设冷剂液管路经新 增节流阀 Π与新增蒸发器 hi连通, 由新增蒸发器 hi增设冷剂蒸汽通道与新增吸收-蒸发器 al连通, 由新增蒸发器 hi增设冷剂液管路经新增冷剂液泵 gl与新增吸收-蒸发器 al连通后 新增吸收-蒸发器 al再有冷剂蒸汽通道与新增吸收器 bl连通, 新增吸收器 bl还有被加热介 质管路与外部连通, 新增吸收器 bl为冷凝器 Al或第一吸收器 1的相邻高温供热端。
②流程上, 相邻高温供热端是这样形成的: 由第一发生器 3经新增第二溶液热交换器 el 进入新增吸收器 bl的溶液, 吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于被加热介质; 新增吸收器 bl 的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自新 增蒸发器 hi的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽; 新增吸收-蒸 发器 al 的稀溶液经新增溶液泵 cl、 新增第一溶液热交换器 dl 和新增第二溶液热交换器 el 进入第一发生器 3; 驱动热介质加热进入第一发生器 3的该路溶液释放冷剂蒸汽向冷凝器 A1 提供, 进入冷凝器 A1的冷剂蒸汽放热于被加热介质成冷剂液; 冷凝器 A1的冷剂液经节流阔 C1进入蒸发器 B1后再经新增节流阀 fl进入新增蒸发器 hi, 进入新增蒸发器 hi的冷剂液分 成两路 路吸收余热成冷剂蒸汽并向新增吸收-蒸发器 al提供, 另一路经新增冷剂液泵 gl后再流经新增吸收-蒸发器 al.、 吸热成冷剂蒸汽并向新增吸收器 bl提供。
图 33所示的增加了相邻高温供热端的单级单效回热式第一类吸收式热泵是这样实现的: ①结构上, 在图 3所示的单级单效回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、新增溶液泵、新增第一溶液热交换器、新增第二溶液热交换器和新增冷剂液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调 整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与新增吸收器 bl连通, 新增吸收器 bl还有稀溶液管路经新增第一溶液热交换器 dl与新增吸收-蒸发器 al连通, 新 增吸收-蒸发器 al还有稀溶液管路经新增溶液泵 cl、 新增第一溶液热交换器 dl和新增第二 溶液热交换器 el与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6 和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经新增第二溶液热交换器 el、第一溶液热交换器 6和第二吸收器 2与分汽室 7连通, 由蒸发器 B1增设冷剂蒸汽通道与 新增吸收-蒸发器 al连通,由蒸发器 B1增设冷剂液管路经新增冷剂液泵 gl与新增吸收 -蒸发 器 al连通后新增吸收-蒸发器 al再有冷剂蒸汽通道与新增吸收器 bl连通,新增吸收器 bl还 有被加热介质管路与外部连通, 新增吸收器 bl为为冷凝器 A1或第一吸收器 1的相邻高温供 热端。
②流程上, 相邻高温供热端是这样形成的: 由第二吸收器 2经第一溶液泵 4和第一溶液 热交换器 6进入新增吸收器 bl的溶液,吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于被 加热介质; 新增吸收器 M 的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自蒸发器 Bl的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽;新增吸 收-蒸发器 al的稀溶液经新增溶液泵 cl、新增第一溶液热交换器 dl和新增第二溶液热交换器 el进入第一发生器 3 ; 驱动热介质加热进入第一发生器 3的该路溶液释放冷剂蒸汽向冷凝器 A1提供, 进入冷凝器 A1的冷剂蒸汽放热于被加热介质成冷剂液, 第一发生器 3的浓溶液经 新增第二溶液热交换器 el、 第一溶液热交换器 6和第二吸收器 2进入分汽室 7; 冷凝器 A1 的该部分冷剂液经节流阀 C1进入蒸发器 B1后分成两路 路吸收余热成冷剂蒸汽并向新 增吸收-蒸发器 al提供, 另一路经新增冷剂液泵 gl后再流经新增吸收-蒸发器 al、 吸热成冷 剂蒸汽并向新增吸收器 bl提供。
图 34所示增加相邻高温供热端的单级串联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 10所示的单级串联双效回热式第一类吸收式热泵中, 增加新增吸收-蒸 发器、 新增吸收器、 新增溶液泵、 新增冷剂液泵、 新增第一溶液热交换器和新增第二溶液热 交换器, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第二发生器 C2连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与新增吸收 器 bl连通, 新增吸收器 bl还有稀溶液管路经新增第一溶液热交换器 el与新增吸收-蒸发器 al连通, 新增吸收-蒸发器 al还有稀溶液管路经新增溶液泵 cl、 新增第一溶液热交换器 dl 和新增第二溶液热交换器 el与第二发生器 C2连通, 将第一发生器 3有浓溶液管路经第二溶 液热交换器 G2、 第一溶液热交换器 6和第二吸收器 2与分汽室 7连通改为第一发生器 3有浓 溶液管路经第二溶液热交换器 G2、新增第二溶液热交换器 el、第一溶液热交换器 6和第二吸 收器 2与分汽室 7连通, 由蒸发器 B2增设冷剂蒸汽通道与新增吸收-蒸发器 al连通, 由蒸发 器 B2增设冷剂液管路经新增冷剂液泵 gl与新增吸收-蒸发器 al连通后新增吸收-蒸发器 al 再有冷剂蒸汽通道与新增吸收器 bl连通, 新增吸收器 bl还有被加热介质管路与外部连通, 新增吸收器 bl为新增相邻高温供热端。
②流程上, 相邻高温供热端是这样形成的: 由第二吸收器 2经第一溶液泵 4和第一溶液 热交换器 6进入新增吸收器 bl的溶液,吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于被 加热介质; 新增吸收器 bl 的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自蒸发器 B2的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽;新增吸 收-蒸发器 al的稀溶液经新增溶液泵 cl、新增第一溶液热交换器 dl和新增第二溶液热交换器 el进入第二发生器 C2; 作为驱动热介质的冷剂蒸汽加热进入第二发生器 C2的该路溶液释放 冷剂蒸汽向冷凝器 A2提供, 进入冷凝器 A2的冷剂蒸汽放热于被加热介质成冷剂液; 第二发 生器 C2的浓溶液经第三溶液泵 12和第二溶液热交换器 G2进入第一发生器 3,驱动热介质加 热进入第一发生器 3的溶液释放冷剂蒸汽并向第二发生器 C2提供以作为其驱动热介质, 第 一发生器 3的浓溶液经第二溶液热交换器 G2、 新增第二溶液热交换器 el、 第一溶液热交换 器 6和第二吸收器 2进入分汽室 7; 冷凝器 A2的该部分冷剂液经第二节流阀 E2进入蒸发器
B2后分成两路 路吸收余热成冷剂蒸汽并向新增吸收-蒸发器 al提供, 另一路经新增冷 剂液泵 gl后再流经新增吸收-蒸发器 al、 吸热成冷剂蒸汽并向新增吸收器 bl提供。
.图 35所示增加相邻高温供热端的单级并联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的单级并联双效回热式第一类吸收式热泵中, 增加新增吸收 -蒸发 器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增蒸发 器、 新增第一节流阀和新增第二节流阀, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第 二溶液热交换器 G2与第二发生器 C2连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4 和第二溶液热交换器 G2与新增吸收器 bl连通,新增吸收器 bl还有稀溶液管路经新增第一溶 液热交换器 dl与新增吸收-蒸发器 al连通,新增吸收-蒸发器 al还有稀溶液管路经新增溶液 泵 cl、 新增第一溶液热交换器 dl和新增第二溶液热交换器 el与第二发生器 C2连通, 将第 二发生器 C2有浓溶液管路经第二溶液热交换器 G2之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液管路汇合调整为第二发生器 C2有浓溶液管路经新增第二溶液热交换器 el和 第二溶液热交换器 G2之后与第一发生器 3经第一溶液热交换器 6之后的浓溶液管路汇合,由 蒸发器 B2增设冷剂液管路经新增第一节流阀 f 1与新增蒸发器 hi连通, 由新增蒸发器 hi增 设冷剂蒸汽通道与新增吸收-蒸发器 al连通,由冷凝器 A2增设冷剂液管路经新增第二节流阀 i l与新增吸收-蒸发器 al连通后新增吸收-蒸发器 al再有冷剂蒸汽通道与新增吸收器 bl连 通, 新增吸收器 bl还有被加热介质管路与外部连通, 新增吸收器 bl为冷凝器 A2或第一吸收 器 1的相邻高温供热端。
②流程上, 相邻高温供热端是这样形成的: 由第二吸收器 2经第一溶液泵 4和第二溶液 热交换器 G2进入新增吸收器 bl的溶液, 吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于 被加热介质; 新增吸收器 bl的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自新增蒸发器 hi的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽; 新 增吸收-蒸发器 al的稀溶液经新增溶液泵 cl、新增第一溶液热交换器 dl和新增第二溶液热交 换器 el进入第二发生器 C2;来自第一发生器 3的冷剂蒸汽加热进入第二发生器 C2的溶液释 放冷剂蒸汽向冷凝器 A2提供, 进入冷凝器 A2的冷剂蒸汽放热于被加热介质成冷剂液, 第二 发生器 C2的浓溶液经新增第二溶液热交换器 el和第一溶液热交换器 6与第一发生器 3经第 一溶液热交换器 6之后的浓溶液汇合、而后再经第二吸收器 2进入分汽室 7; 冷凝器 A2的冷 剂液分成两路 路经新增第二节流阀 il后再流经新增吸收-蒸发器 al、 吸热成冷剂蒸汽 并向新增吸收器 bl提供, 另一路经节流阀 E2进入蒸发器 B2后再经新增第一节流阔 fl进入 新增蒸发器 hl、 吸收余热成冷剂蒸汽并向新增吸收-蒸发器 al提供。
图 36所示增加相邻高温供热端的单级并联双效回热式第一类吸收式热泵是这样实现的- ①结构上, 在图 5所示的单级并联双效回热式第一类吸收式热泵中, 增加新增吸收 -蒸发 器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器和新增节流 阀, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连 通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 3与新增吸收器 bl 连通, 新增吸收器 bl还有稀溶液管路经新增第一溶液热交换器 dl与新增吸收-蒸发器 al连 通, 新增吸收-蒸发器 al还有稀溶液管路经新增溶液泵 cl和新增第一溶液热交换器 dl之后 分成两路、 分别再经第二溶液热交换器 G2与第二发生器 C2连通和再经新增第二溶液热交换 器 el与第一发生器 3连通, 取消第二吸收器 2经第一溶液泵 4和第二溶液热交换器 G2与第 二发生器 C2连通的浓溶液管路,将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第二 吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经新增第二溶液热交换器 el、 第 一溶液热交换器 6和第二吸收器 2与分汽室 7连通,由蒸发器 B2增设冷剂蒸汽通道与新增吸 收-蒸发器 al连通, 由冷凝器 A2增设冷剂液管路经新增节流阀 f 1与新增吸收-蒸发器 al连 通后新增吸收-蒸发器 al再有冷剂蒸汽通道与新增吸收器 bl连通, 新增吸收器 bl还有被加 热介质管路与外部连通, 新增吸收器 bl为冷凝器 A2或第一吸收器 1的相邻高温供热端。
②流程上, 相邻高温供热端是这样形成的: 由第二吸收器 2经第一溶液泵 4和第一溶液 热交换器 6进入新增吸收器 M的溶液, 吸收来自新增吸收-蒸发器 al的冷剂蒸汽并放热于被 加热介质; 新增吸收器 bl 的稀溶液经新增第一溶液热交换器 dl进入新增吸收-蒸发器 al、 吸收来自蒸发器 B2的冷剂蒸汽并加热流经新增吸收-蒸发器 al的冷剂液成冷剂蒸汽;新增吸 收-蒸发器 al的稀溶液经新增溶液泵 cl、新增第一溶液热交换器 dl之后分别再经第二溶液热 交换器 G2进入第二发生器 C2和再经新增第二溶液热交换器 el进入第一发生器 3 ;驱动热介 质加热进入第一发生器 3的溶液释放冷剂蒸汽向第二发生器 C2提供以作为其驱动热介质, 第一发生器 3的浓溶液经新增第二溶液热交换器 el、第一溶液热交换器 6并与第二发生器 C2 经第二溶液热交换器 G2的浓溶液汇合后再经第二吸收器 2进入分汽室 7; 来自第一发生器 3 的冷剂蒸汽加热进入第二发生器 C2的溶液释放冷剂蒸汽向冷凝器 A2提供, 进入冷凝器 A2 的冷剂蒸汽放热于被加热介质成冷剂液; 冷凝器 A2 的冷剂液分成两路 路经新增节流 阀 fl后再流经新增吸收-蒸发器 al、吸热成冷剂蒸汽并向新增吸收器 bl提供, 另一路经节流 阀 E2进入蒸发器 B2、 吸收余热成冷剂蒸汽并向新增吸收-蒸发器 al提供。
特别指出的是,图 31-图 35所示的是基于回热式吸收-发生系统并增加了相邻高温供热端 的回热式第一类吸收式热泵的代表; 图 3-图 29所示的基于回热式吸收-发生系统回热式第一 类吸收式热泵, 均可以此为技术范例来增加相邻高温供热端。
图 37所示的增加了高温供热端的单级串联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 7所示的单级串联双效回热式第一类吸收式热泵中, 增加再增冷凝器 a2 和再增节流阀 b2, 由高压发生器 3增设冷剂蒸汽通道与再增冷凝器 a2连通, 再增冷凝器 a2 还有冷剂液管路经再增节流阀 b2与冷凝器 A2连通,再增冷凝器 a2还有被加热介质管路与外 部连通, 再增冷凝器 a2成为回热式第一类吸收式热泵的再增高温供热端。
②流程上, 形成再增高温供热端的流程是这样的: 驱动介质加热进入高压发生器 3的溶 液释放冷剂蒸汽, 冷剂蒸汽的一部分进入再增冷凝器 a2; 进入再增冷凝器 a2的该部分冷剂 蒸汽放热于被加热介质成冷剂液, 冷剂液经再增节流阔 b2、 冷凝器 A2和第二节流阀 E2进入 蒸发器 B2; 进入蒸发器 B2的该部分冷剂液吸收余热成冷剂蒸汽进入第一吸收器 1, 含有该部 分冷剂介质的稀溶液经第二溶液泵 5进入第二吸收器 并再经第一溶液泵 4、 第一溶液热交 换器 6和第二溶液热交换器 G2进入高压发生器 3, 驱动热介质加热进入高压发生器 3的溶液 将该部分冷剂蒸汽重新释放并向再增冷凝器 a2提供。
图 38所示的增加了高温供热端的单级并联三效回热式第一类吸收式热泵是这样实现的- ①结构上, 在图 11 所示的单级并联三效回热式第一类吸收式热泵中, 增加再增冷凝器 a2和再增节流阀 b2, 由中压发生器 C3增设冷剂蒸汽通道与再增冷凝器 a2连通, 再增冷凝器 a2还有冷剂液管路经再增节流阀 b2与冷凝器 A3连通, 再增冷凝器 a2还有被加热介质管路 与外部连通, 再增冷凝器 a2成为回热式第一类吸收式热泵的再增高温供热端。
②流程上, 形成再增高温供热端的流程是这样的: 作为驱动介质的冷剂蒸汽加热进入中 压发生器 C3的溶液释放冷剂蒸汽, 冷剂蒸汽的一部分进入再增冷凝器 a2; 进入再增冷凝器 a2的该部分冷剂蒸汽放热于被加热介质成冷剂液, 冷剂液经再增节流阀 b2、 冷凝器 A3和第 三节流阀 G3进入蒸发器 B3; 进入蒸发器 B3的该部分冷剂液吸收余热成冷剂蒸汽后进入第一 吸收器 1, 含有该部分冷剂介质的稀溶液经第二溶液泵 5进入第二吸收器 2并再经第一溶液 泵 4和第二溶液热交换器 13进入中压发生器 C3, 来自高压发生器 3的冷剂蒸汽加热进入中 压发生器 C3的溶液将该部分冷剂蒸汽重新释放并向再增冷凝器 a2提供。
特别指出的是, 图 36-图 37所示的是基于回热式吸收-发生系统单级双效和单级三效回 热式第一类吸收式热泵再增加高温供热端的两个代表; 图 5-图 16所示的基于回热式吸收-发 生系统单级双效或单级三效回热式第一类吸收式热泵, 均可以此为参照来增加高温供热端。 还要指出的是, 在单级双效回热式第一类吸收式热泵中增加高温供热端时, 高压发生器有冷 剂蒸汽通道与再增冷凝器 a2 连通; 在单级三效回热式第一类吸收式热泵中增加高温供热端 时, 中压发生器有冷剂蒸汽通道与再增冷凝器 a2连通。
图 39所示的以单级串联双效为第一级的两级回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 9所示的单级串联双效回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级节流阀, 自低压发生器 C2 增设冷剂蒸汽通道与二级吸收器 b3连通,二级吸收器 b3还有稀溶液管路经二级溶液泵 c3和 二级溶液热交换器 d3与二级发生器 a3连通,二级发生器 a3还有浓溶液管路经二级溶液热交 换器 d3与二级吸收器 b3连通, 二级发生器 a3还有冷剂蒸汽通道与二级冷凝器 e3连通, 二 级冷凝器 e3还有冷剂液管路经二级节流阀 f3与冷凝器 A2连通, 二级吸收器 b3和二级冷凝 器 e3还分别有被加热介质管路与外部连通,二级发生器 a3还有驱动热介质管路与外部连通。
②流程上, 提升余热温度的第二级流程是这样进行的: 低压发生器 C2 产生的一部分冷 剂蒸汽进入二级吸收器 b3、 被来自二级发生器 a3 的浓溶液吸收并放热于被加热介质, 二级 吸收器 b3的稀溶液经二级溶液泵 c3和二级溶液热交换器 d3进入二级发生器 a3 ,驱动热介质 加热进入二级发生器 a3的溶液释放冷剂蒸汽向二级冷凝器 e3提供, 二级发生器 a3的浓溶液 经二级溶液热交换器 d3回到二级吸收器 b3 ; 进入二级冷凝器 e3的冷剂蒸汽放热于被加热介 质成冷剂液, 二级冷凝器 e3的该部分冷剂液经二级节流阀 £3、 冷凝器 A2和第二节流阀 E2 进入蒸发器 B2, 余热介质加热进入蒸发器 B2的该部分冷剂液成冷剂蒸汽并进入第一吸收器 1、 再随稀溶液经第二溶液泵 5进入第二吸收器 2、 再经第一溶液泵 4和第一溶液热交换器 6 进入低压发生器 C2, 来自高压发生器 3的冷剂蒸汽流经低压发生器 C2并加热进入低压发生 器 C2的溶液释放出该冷剂蒸汽。
图 40所示的以单级并联三效为第一级的两级回热式第一类吸收式热泵是这样实现的- ①结构上, 在图 11所示的单级并联三效回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将低压发生器 D3 有冷剂蒸汽通道与冷凝器 A3连通调整为低压发生器 D3有冷剂蒸汽通道与二级吸收器 b3连通, 二级吸收器 b3还有稀 溶液管路经二级溶液泵 c3和二级溶液热交换器 d3与二级发生器 a3连通, 二级发生器 a3还 有浓溶液管路经二级溶液热交换器 d3与二级吸收器 b3连通,二级发生器 a3还有冷剂蒸汽通 道与冷凝器 A3连通, 将高压发生器 3有冷剂蒸汽通道与中压发生器 C3连通后中压发生器 C3 再有冷剂液管路经第一节流阀 E3与冷凝器 A3连通调整为高压发生器 3有冷剂蒸汽通道与中 压发生器 C3连通后中压发生器 C3再有冷剂液管路经第一节流阀 E3与蒸发器 B3连通, 将中 压发生器 C3有冷剂蒸汽通道与低压发生器 D3连通后低压发生器 D3再有冷剂液管路经第二节 流阀 F3与冷凝器 A3连通调整为中压发生器 C3有冷剂蒸'汽通道与低压发生器 D3连通后低压 发生器 D3再有冷剂液管路经第二节流阀 F3与蒸发器 B3连通, 二级吸收器 b3还有被加热介 质管路与外部连通, 二级发生器 a3还有驱动热介质管路与外部连通。
②流程上, 提升余热温度的第二级流程是这样进行的: 低压发生器 D3产生 d的一部分 冷剂蒸汽中进入二级吸收器 b3、 被来自二级发生器 a3 的浓溶液吸收并放热于被加热介质, 二级吸收器 b3的稀溶液经二级溶液泵 c3和二级溶液热交换器 d3进入二级发生器 a3,驱动热 介质加热进入二级发生器 a3的溶液释放冷剂蒸汽向冷凝器 A3提供,二级发生器 a3的浓溶液 经二级溶液热交换器 d3进入二级吸收器 b3 ;进入冷凝器 A3的该部分冷剂蒸汽放热于被加热 介质成冷剂液, 冷凝器 A3的冷剂液经第三节流阀 G3进入蒸发器 B3, 余热介质加热进入蒸 发器 B3的该部分冷剂液成冷剂蒸汽向第一吸收器 1提供; 进入第一吸收器 1的该部分冷剂 介质再随稀溶液经第二溶液泵 5进入第二吸收器 2、 再经第一溶液泵 4和第三溶液热交换器 J3进入低压发生器 D3 , 来自中压发生器 C3的冷剂蒸汽流经低压发生器 D3并加热进入低压 发生器 D3的溶液释放该部分冷剂蒸汽。
特别指出的是, 图 39-图 40所示的是基于回热式吸收 -发生系统并以单级双效或单级三 效为第一级的两级回热式第一类吸收式热泵的两个代表; 图 5-图 16所示的基于回热式吸收- 发生系统单级双效或单级三效回热式第一类吸收式热泵, 均可以此为参照来形成相应的以单 级双效或单级三效为第一级的两级回热式第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的回热式吸收 -发生系统与回热式第一类 吸收式热泵, 具有如下的效果和优势:
1. 回热式吸收-发生系统, 结构和流程简单合理。 比较传统的由吸收器、 溶液泵、 溶液 热交换器和发生器所组成、用于第一类吸收式热泵的吸收 -发生系统, 本发明提出的回热式吸 收-发生系统主要增加了第二吸收器、 溶液泵和分汽室, 构思巧妙, 结构和流程简单合理。
2. 利用本发明提供的多种回热式第一类吸收式热泵, 结合机组所选择的回热程度, 实现 了机组工作参数和性能指数之间的连续对应, 能够实现第一类吸收式热泵机组之间在工作参 数和性能指数上的无间断衔接。
3. 提出的多种回热式第一类吸收式热泵, 实现了热泵种类的多样性, 可更好地实现热泵 供热与用户热需求的相互匹配。
4. 作为热泵使用时, 本发明提供的回热式第一类吸收式热泵能够根据余热参数和供热温 度的高低来选择回热的程度, 实现供热温度与性能指数之间的逐步对应, 有利于保持较高性 能指数, 可提高余热利用效率; 作为制冷机使用时, 本发明提供的回热式第一类吸收式热泵 能够根据驱动热介质、 冷却介质和被制冷介质的温度高低来选择相应结构的回热式第一类吸 收式热泵机组, 并选择适当的回热程度来实现机组制冷系数的最大化。
总之, 本发明提供的回热式吸收 -发生系统与回热式第一类吸收式热泵, 实现了第一类吸 收式热泵机组种类的多样性, 实现了第一类吸收式热泵机组之间在工作参数和性能指数上的 无间断衔接, 并保持较高性能指数; 能够更好地满足用户的供热或制冷需求, 具有极好的创 造性、 新颖性和实用性。

Claims

1. 回热式吸收-发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第 二溶液泵、 溶液热交换器和分汽室组成; 第一吸收器 (1) 有稀溶液管路经第二溶液泵 (5) 与第二吸收器 (2) 连通, 第二吸收器 (2) 还有稀溶液管路经第一溶液泵 (4) 和溶液热交 换器 (6) 与发生器 (3) 连通, 发生器 (3) 还有浓溶液管路经溶液热交换器 (6)和第二吸 收器 (2) 与分汽室 (7) 连通, 分汽室 (7) 还有浓溶液管路与第一吸收器 (1) 连通; 第一 吸收器 (1) 还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 外部有冷 剂液管路与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 分汽室 (7) 还有冷剂蒸汽通道与第一吸收器 (1) 连通, 发生器 (3) 还分别有驱动 热介质管路与外部连通和有冷剂蒸汽通道与外部连通; 发生器变为精馏塔时, 精馏塔分别有 驱动热介质管路与外部连通、 有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 分汽室还有被加热介质管路与外部连通。
2. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收-发生系统为基础, 增 加冷凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收-发生系统 的单级单效回热式第一类吸收式热泵; 将发生器 (3) 有冷剂蒸汽通道与外部连通确定为发 生器 (3) 有冷剂蒸汽通道与冷凝器 (A1) 连通, 冷凝器 (A1) 还有冷剂液管路经第一节流 阀 (C1) 与蒸发器 (B1) 连通, 将第一吸收器 (1) 有冷剂蒸汽通道与外部连通确定为蒸发 器 (B1) 有冷剂蒸汽通道与第一吸收器 (1) 连通, 将外部有冷剂液管路与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为蒸发器 (B1) 有冷 剂液管路经冷剂液泵 (D1) 与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与 第二吸收器 (2) 连通、 或确定为冷凝器 (A1) 有冷剂液管路经第二节流阀 (E1) 与第一吸 收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 冷凝器 (A1) 还有被加热介质管路与外部连通, 蒸发器 (B1) 还有余热介质管路与外部连通。
3. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收-发生系统为基础, 增 加冷凝器、 蒸发器、 第二发生器、 第一节流闽、 第二节流阀、 第二溶液热交换器、 冷剂液泵 或第三节流阀, 以第一发生器为高压发生器、 第二发生器为低压发生器, 形成基于回热式吸 收 -发生系统的单级并联双效回热式第一类吸收式热泵; 由第二吸收器(2)经第一溶液泵(4) 增设稀溶液管路再经第二溶液热交换器(G2) 与第二发生器 (C2) 连通, 第二发生器 (C2) 还有浓溶液管路经第二溶液热交换器(G2)之后与第一发生器(3)经第一溶液热交换器(6) 之后的浓溶液管路汇合、 再经第二吸收器 (2) 与分汽室 (7) 连通, 将第一发生器 (3) 有 冷剂蒸汽通道与外部连通确定为第一发生器 (3) 有冷剂蒸汽通道与第二发生器 (C2) 连通 后第二发生器 (C2) 再有冷剂液管路经第一节流阀 (D2) 与冷凝器 (A2) 连通——第一发生 器 (3) 产生的冷剂蒸汽作为第二发生器 (C2) 的驱动热介质, 第二发生器 (C2) 还有冷剂 蒸汽通道与冷凝器 (A2) 连通, 冷凝器 (A2) 还有冷剂液管路经第二节流阀 (E2) 与蒸发器
(B2) 连通, 将第一吸收器 (1) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B2) 有冷剂蒸 汽通道与第一吸收器 (1) 连通, 将外部有冷剂液管路与第一吸收器 (1) 连通后第一吸收器
(1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为蒸发器 (B2) 有冷剂液管路经冷剂液 泵 (F2) 与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为冷凝器 (A2) 有冷剂液管路经第三节流阀 (H2) 与第一吸收器 (1) 连通后 第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 冷凝器 (A.2) 还有被加热介质 管路与外部连通, 蒸发器 (B2)还有余热介质管路与外部连通; 第一发生器变为第一精馏塔 时, 第二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还 有被加热介质管路与外部连通。
4. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收-发生系统为基础, 增 加冷凝器、 蒸发器、 第二发生器、 第一节流阀、 第二节流阀、 第二溶液热交换器、 冷剂液泵 或第三节流阀, 形成基于回热式吸收 -发生系统的单级串联双效回热式第一类吸收式热泵; 将第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生 器(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)、第一溶液热交换器(6) 和第二溶液热交换器 (G2) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第 一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器 (3 ) 有浓溶 液管路经第二溶液热交换器 (G2) 与第二发生器 (C2) 连通后第二发生器 (C2.) 再有浓溶液 管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 将第一发生器 (3) 有冷剂蒸汽通道与外部连通确定为第一发生器 (3 ) 有冷剂蒸汽通道与第二发生器 (C2 ) 连 通后第二发生器 (C2 ) 再有冷剂液管路经第一节流阀 (D2 ) 与冷凝器 (A2) 连通——第一发 生器 (3 ) 产生的冷剂蒸汽作为第二发生器 (C2) 的驱动热介质, 第二发生器 (C2 ) 还有冷 剂蒸汽通道与冷凝器 (A2) 连通, 冷凝器 (A2) 还有冷剂液管路经第二节流阀 (E2) 与蒸发 器 (B2) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B2 ) 有冷剂 蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收 器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为蒸发器 (B2) 有冷剂液管路经冷剂 液泵 (F2) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为冷凝器 (A2 ) 有冷剂液管路经第三节流阀 (H2 ) 与第一吸收器 (1 ) 连通后 第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 冷凝器 (A2) 还有被加热介质 管路与外部连通, 蒸发器 (B2) 还有余热介质管路与外部连通; 第一发生器变为第一精馏塔 时, 第二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质 =路与外部连通, 分汽室还 有被加热介质管路与外部连通。
5. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收-发生系统为基础, 增 加第三溶液泵、 冷凝器、 蒸发器、 第二发生器、 第一节流阀、 第二节流阀、 第二溶液热交换 器、 冷剂液泵或第三节流阀, 形成基于回热式吸收 -发生系统的单级串联双效回热式第一类 吸收式热泵; 将第二吸收器 (2) 有稀溶液经第一溶液泵 (4) 和第一溶液热交换器 (6) 与 第一发生器 (3) 连通调整为第二吸收器 (2 ) 有稀溶液经第一溶液泵 (4) 和第一溶液热交 换器 (6) 与第二发生器 (C2) 连通, 第二发生器 (C2)还有浓溶液管路经第三溶液泵 (12) 和第二溶液热交换器 (G2) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第 一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶 液管路经第二溶液热交换器(G2 )、 第一溶液热交换器(6)和第二吸收器(2)与分汽室(7) 连通, 将第一发生器 (3)有冷剂蒸汽通道与外部连通确定为第一发生器 (3) 有冷剂蒸汽通 道与第二发生器 (C2 ) 连通后第二发生器 (C2) 再有冷剂液管路经第一节流阀 (D2) 与冷凝 器 (A2) 连通——第一发生器 (3 ) 产生的冷剂蒸汽作为第二发生器 (C2 ) 的驱动热介质, 第二发生器 (C2) 还有冷剂蒸汽通道与冷凝器 (A2) 连通, 冷凝器 (A2) 还有冷剂液管路经 第二节流阀 (E2 ) 与蒸发器 (B2 ) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确 定为蒸发器 (B2 ) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸 收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2 ) 连通确定为蒸发器 (B2) 有冷剂液管路经冷剂液泵 (F2) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂 蒸汽通道与第二吸收器 (2) 连通、 或确定为冷凝器 (A2 ) 有冷剂液管路经第三节流阀 (H2 ) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2 ) 连通, 冷 凝器 (A2) 还有被加热介质管路与外部连通, 蒸发器 (B2) 还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精镏塔, 第二精馏塔还有被加热介质 管路与外部连通, 分汽室还有被加热介质管路与外部连通。
6. 回热式第一类吸收式热泵, 是以权利要求 1所述回热式吸收-发生系统为基础, 增加 冷凝器、 蒸发器、 第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第二 溶液热交换器、 第三溶液热交换器、 冷剂液泵或第四节流阔, 形成基于回热式吸收-发生系 统的单级并联三效回热式第一类吸收式热泵; 由第二吸收器 (2) 经第一溶液泵 (4) 增设稀 溶液管路分别再经第二溶液热交换器 (13) 与第二发生器 (C3) 连通和再经第三溶液热交换 器(J3)与第三发生器(D3)连通,第二发生器(C3 )有浓溶液管路经第二溶液热交换器(13 ) 之后和第三发生器 (D3 ) 有浓溶液管路经第三溶液热交换器 (J3 ) 之后均与第一发生器 (3) 经第一溶液热交换器 (6) 之后的浓溶液管路汇合、 再经第二吸收器 (2 ) 与分汽室 (7 ) 连 通, 将第一发生器 (3 ) 有冷剂蒸汽通道与外部连通确定为第一发生器 (3) 有冷剂蒸汽通道 与第二发生器 (C3) 连通后第二发生器 (C3) 再有冷剂液管路经第一节流阀 (E3) 与冷凝器
(A3 ) 连通——第一发生器 (3 ) 释放的冷剂蒸汽作为第二发生器 (C3) 的驱动热介质, 第 二发生器 (C3) 还有冷剂蒸汽通道与第三发生器 (D3) 连通后第三发生器 (D3) 再有冷剂液 管路经第二节流阀 (F3) 与冷凝器 (A3) 连通——第二发生器 (C3)释放的冷剂蒸汽作为第 三发生器 (D3) 的驱动热介质, 第三发生器 (D3 ) 还有冷剂蒸汽通道与冷凝器 (A3) 连通, 冷凝器 (A3) 还有冷剂液管路经第三节流阀 (G3 ) 与蒸发器 (B3) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B3 ) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸收器(1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸 收器 (2) 连通确定为蒸发器 (B3) 有冷剂液管路经冷剂液泵 (H3) 与第一吸收器 (1 )连通 后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为冷凝器 (A3) 有冷 剂液管路经第四节流阀 (K3) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道 与第二吸收器 (2) 连通, 冷凝器 (A3) 还有被加热介质管路与外部连通, 蒸发器 (B3) 还 有余热介质管路与外部连通;第一发生器变为第一精馏塔时,第二发生器代之以第二精馏塔、 第二精馏塔还有被加热介质管路与外部连通, 第三发生器代之以第三精馏塔、 第三精馏塔还 有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
7. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收 -发生系统为基础, 增 加冷凝器、 蒸发器、 第二发生器、 第三发生器、 第一节流阀、 第二节流阀、 第三节流阀、 第 二溶液热交换器、 第三溶液热交换器、 冷剂液泵或第四节流阀, 形成基于回热式吸收 -发生 系统的单级串联三效回热式第一类吸收式热泵; 将第二吸收器 (2) 有稀溶液管路经第一溶 液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有稀溶 液管路经第一溶液泵 (4)、 第一溶液热交换器 (6)、 第二溶液热交换器 (13) 和第三溶液热 交换器 (J3) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换 器(6) 和第二吸收器 (2) 与分汽室 (7 ) 连通调整为第一发生器 (3) 有浓溶液管路经第三 溶液热交换器 (J3) 与第二发生器 (C3 ) 连通, 第二发生器 (C3) 还有浓溶液管路经第二溶 液热交换器 (13) 与第三发生器 (D3) 连通, 第三发生器 (D3) 还有浓溶液管路经第一溶液 热交换器 (6) 和第二吸收器 (2) 与分汽室 (6) 连通, 将第一发生器 (3) 有冷剂蒸汽通道 与外部连通确定为第一发生器 (3) 有冷剂蒸汽通道与第二发生器 (C3 ) 连通后第二发生器
(C3 ) 还有冷剂液管路经第一节流阀 (E3) 与冷凝器 (A3 ) 连通——第一发生器 (3)产生 的冷剂蒸汽作为第二发生器 (C3) 的驱动热介质, 第二发生器 (C3 ) 还有冷剂蒸汽通道与第 三发生器(D3)连通后第三发生器(D3)再有冷剂液管路经第二节流阀 (F3)与冷凝器(A3) 连通——第二发生器 (C3) 释放的冷剂蒸汽作为第三发生器 (D3) 的驱动热介质, 第三发生 器 (D3) 还有冷剂蒸汽通道与冷凝器 (A3)连通, 冷凝器 (A3) 还有冷剂液管路经第三节流 阀 (G3) 与蒸发器 (B3 ) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发 器 (B3) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为蒸发器 (B3)有冷 剂液管路经冷剂液泵 (H3) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与 第二吸收器 (2 ) 连通、 或确定为冷凝器 (A3 ) 有冷剂液管路经第四节流阀 (K3 ) 与第一吸 收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 冷凝器 (A3) 还有被加热介质管路与外部连通, 蒸发器 (C3 ) 还有余热介质管路与外部连通; 第一发生器 变为第一精馏塔时, 第二发生器代之以第二精熘塔、 第二精馏塔还有被加热介质管路与外部 连通, 第三发生器代之以第三精馏塔、 第三精镏塔还有被加热介质管路与外部连通, 分汽室 还有被加热介质管路与外部连通。
8. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收-发生系统为基础, 增 加冷凝器、 蒸发器、 第二发生器、'第三发生器、 第一节流阀、 第二节流阔、 第三节流阀、 第 二溶液热交换器、 第三溶液热交换器、 第三溶液泵、 第四溶液泵、 冷剂液泵或第四节流阀, 形成基于回热式吸收 -发生系统的单级串联三效回热式第一类吸收式热泵;将第二吸收器(2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为 第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第三发生器
(D3)连通,第三发生器(D3)还有浓溶液管路经第三溶液泵(L3)和第二溶液热交换器(13) 与第二发生器 (C3) 连通, 第二发生器 (C3)还有浓溶液管路经第四溶液泵 (M3) 和第三溶 液热交换器(J3) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第一溶液热 交换器(6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经 第三溶液热交换器.(J3 )、 第二溶液热交换器 (13 )、 第一溶液热交换器 (6) 和第二吸收器
(2) 与分汽室 (6) 连通, 将第一发生器 (3 ) 有冷剂蒸汽通道与外部连通确定为第一发生 器 (3 ) 有冷剂蒸汽通道与第二发生器 (C3) 连通后第二发生器 (C3 ) 再有冷剂液管路经第 一节流阀 (E3) 与冷凝器 (A3 ) 连通——第一发生器 (3 ) 产生的冷剂蒸汽作为第二发生器
(C3) 的驱动热介质, 第二发生器 (C3) 还有冷剂蒸汽通道与第三发生器(D3)连通后第三 发生器(D3)再有冷剂液管路经第二节流阀(F3)与冷凝器(A3)连通——第二发生器(C3) 释放的冷剂蒸汽作为第三发生器 (D3 ) 的驱动热介质, 第三发生器 (D3 ) 还有冷剂蒸汽通道 与冷凝器 (A3) 连通, 冷凝器 (A3) 还有冷剂液管路经第三节流阀 (G3 ) 与蒸发器 (B3) 连 通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B3 ) 有冷剂蒸汽通道与 第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再 有冷剂蒸汽通道与第二吸收器 (2) 连通确定为蒸发器(B3) 有冷剂液管路经冷剂液泵 (H3 ) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或 确定为冷凝器 (A3 ) 有冷剂液管路经第四节流阀 (K3) 与第一吸收器 (1 ) 连通后第一吸收 器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 冷凝器 (A3) 还有被加热介质管路与外 部连通, 蒸发器 (C3) 还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二 发生器代之以第二精馏塔、 第二精馏塔还有被加热介质管路与外部连通, 第三发生器代之以 第三精馏塔、 第三精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外 部连通。
9. 回热式第一类吸收式热泵, 是以权利要求 1所述的回热式吸收 -发生系统为基础, 增 加冷凝器、 蒸发器、 吸收-蒸发器、 第一节流阔、 第二溶液热交换器、 第一冷剂液泵或第二 节流阀、 第二冷剂液泵或第三节流阀, 形成基于回热式吸收-发生系统的单发生器两级回热 式第一类吸收式热泵; 将第一吸收器(1 )有稀溶液管路经第二溶液泵(5)与第二吸收器(2) 连通调整为第一吸收器 (1 )有稀溶液管路经第二溶液热交换器 (E4) 与吸收-蒸发器 (D4) 连通, 吸收-蒸发器 (D4) 再有稀溶液管路经第二溶液泵 (5) 和第二溶液热交换器 (E4) 与 第二吸收器 (2 ) 连通, 将发生器 (3) 有冷剂蒸汽通道与外部连通确定为发生器 (3) 有冷 剂蒸汽通道与冷凝器 (A4) 连通, 冷凝器 (A4) 还有冷剂液管路经第一节流阀 (D4) 与蒸发 器 (B4) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B4) 有冷剂 液管路经第一冷剂液泵 (F4) 与吸收-蒸发器 (D4) 连通后吸收-蒸发器 (D4) 再有冷剂蒸汽 通道与第一吸收器 (1 ) 连通、 或确定为冷凝器 (A4) 有冷剂液管路经第二节流阀 (H4) 与 吸收-蒸发器 (D4 ) 连通后吸收-蒸发器 (D4 ) 再有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 蒸发器 (B4) 还有冷剂蒸汽通道与吸收-蒸发器 (D4) 连通, 将外部有冷剂液管路与第一吸 收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2 ) 连通确定为蒸发器
(B4) 有冷剂液管路经第二冷剂液泵 (G4) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有 冷剂蒸汽通道与第二吸收器 (2 ) 连通、 或确定为冷凝器 (A4) 有冷剂液管路经第三节流阀
( 14) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连 通, 冷凝器 (A4) 还有被加热介质管路与外部连通, 蒸发器 (B4) 还有余热介质管路与外部 连通。
10. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第一节流阔、 第二溶液热交换器、 第二节流阀或第一冷剂液泵、 第三 吸收器、 第二冷剂液泵或第三节流阀, 形成基于回热式吸收-发生系统的单发生器两级回热 式第一类吸收式热泵; 将第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4)和第一溶液热交 换器 (6) 与发生器 (3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第 一溶液热交换器 (6) 和第二溶液热交换器 (E4) 与发生器 (3) 连通, 将发生器 (3 ) 有浓 溶液管路经第一溶液热交换器(6)和第二吸收器(2)与分汽室(7)连通调整为发生器(3 ) 有浓溶液管路经第二溶液热交换器 (E4) 与第三吸收器 (J4) 连通, 第三吸收器 (J4)还有 稀溶液管路经第一溶液热交换器(6)和第二吸收器(2)与分汽室(7 )连通, 将发生器(3) 有冷剂蒸汽通道与外部连通确定为发生器 (3) 有冷剂蒸汽通道与冷凝器 (A4) 连通, 冷凝 器 (A4) 还有冷剂液管路经第一节流阀 (D4) 与蒸发器 (B4) 连通, 将第一吸收器 (1 ) 有 冷剂蒸汽通道与外部连通确定为蒸发器 (B4) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将 外部有冷剂液管路与第一吸收器 (1 )连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收 器 (2) 连通确定为蒸发器 (B4) 有冷剂液管路经第一冷剂液泵 (F4) 与第一吸收器 (1 ) 连 通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为冷凝器 (A4) 有 冷剂液管路经第二节流阀 (H4) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通 道与第二吸收器 (2) 连通, 将第一吸收器 (1 ) 有被加热介质管路与外部连通调整为冷凝器 (A4) 有冷剂液管路经第三节流阀 (14) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷 剂蒸汽通道与第三吸收器 (J4) 连通、 或调整为蒸发器 (B4) 有冷剂液管路经第二冷剂液泵 (G4) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第三吸收器 (J4) 连 通, 第三吸收器 (J4) 和冷凝器 (A4) 还分别有被加热介质管路与外部连通, 蒸发器 (B4) 还有余热介质管路与外部连通。
11. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收-发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第一发生器向第三吸收 器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器 (3) 有冷剂蒸汽 通道与外部连通确定为第一发生器 (3) 有冷剂蒸汽通道与第三吸收器 (D5) 连通, 第三吸 收器(D5)有稀溶液管路经第三溶液泵(E5)和第二溶液热交换器(F5)与第二发生器(C5) 连通, 第二发生器 (C5) 还有浓溶液管路经第二溶液热交换器 (F5) 与第三吸收器 (D5 ) 连 通, 第二发生器 (C5) 还有冷剂蒸汽通道与冷凝器 (A5) 连通, 冷凝器 (A5) 还有冷剂液管 路经第一节流阀 (G5) 与蒸发器 (B5) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连 通确定为蒸发器 (B5) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第 一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为冷 凝器(A5)有冷剂液管路经第二节流阀 (H5) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再 有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为蒸发器 (B5 ) 有冷剂液管路经冷剂液泵
( 15) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连 通, 第二发生器 (C5) 还有驱动热介质管路与外部连通, 第三吸收器 (D5) 和冷凝器 (A5 ) 还分别有被加热介质管路与外部连通, 蒸发器 (B5) 还有余热介质管路与外部连通; 第一发 生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精镏塔还有被加热介质管路与 外部连通, 分汽室还有被加热介质管路与外部连通。
12. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第三溶 液热交换器、 第一节流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第 一发生器向第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生 器(3)有冷剂蒸汽通道与外部连通确定为第一发生器(3)有冷剂蒸汽通道与第三吸收器(D5) 连通, 第三吸收器 (D5) 还有稀溶液管路经第三溶液泵 (E5) 和第三溶液热交换器 (L5) 与 第一发生器 (3 ) 连通, 将第一发生器 (3 ) 有浓溶液管路经第一溶液热交换器 (6) 和第二 吸收器 (2) 与分汽室 (7 ) 连通调整为第一发生器 (3 ) 有浓溶液管路经第三溶液热交换器
(L5)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 将第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4 ) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为 第二吸收器(2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交 换器 (F5) 与第二发生器 (C5) 连通, 第二发生器 (C5) 还有浓溶液管路经第二溶液热交换 器 (F5) 与第三吸收器 (D5) 连通, 第二发生器 (C5) 还有冷剂蒸汽通道与冷凝器 (A5) 连 通, 冷凝器 (A5) 还有冷剂液管路经第一节流阀 (G5 ) 与蒸发器 (B5) 连通, 将第一吸收器
( 1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B5) 有冷剂蒸汽通道与第一吸收器 (1 ) 连 通, 将外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第 二吸收器(2)连通确定为冷凝器(A5)有冷剂液管路经第二节流阀 (H5)与第一吸收器(1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为蒸发器 (B5) 有冷剂液管路经冷剂液泵 (15) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通 道与第二吸收器 (2) 连通, 第二发生器 (C5 ) 还有驱动热介质管路与外部连通, 第三吸收 器(D5) 和冷凝器 (A5) 还分别有被加热介质管路与外部连通, 蒸发器 (B5) 还有余热介质 管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精馏 塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
13. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸,发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 形成基于回热式吸收 -发生 系统、 由第一发生器分别向第三吸收器和第二冷凝器提供冷剂蒸汽的双发生器两级回热式第 一类吸收式热泵; 将第一发生器 (3 ) 有冷剂蒸汽通道与外部连通确定为第一发生器 (3 ) 有 冷剂蒸汽通道分别与第三吸收器 (D5) 和第二冷凝器 (J5) 连通, 第三吸收器 (D5 ) 有稀溶 液管路经第三溶液泵 (E5) 和第二溶液热交换器 (F5) 与第二发生器 (C5) 连通, 第二发生 器 (C5) 还有浓溶液管路经第二溶液热交换器 (F5) 与第三吸收器 (D5) 连通, 第二发生器
(C5) 还有冷剂蒸汽通道与第一冷凝器 (A5)连通, 第一冷凝器 (A5) 还有冷剂液管路经第 一节流阀 (G5) 与第二冷凝器 (J5) 连通, 第二冷凝器 (J5 ) 还有冷剂液管路经第二节流阀 (H5) 与蒸发器 (B5 ) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B5)有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第一吸收器 (1 ) 连 通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为第二冷凝器 (J5) 或 第一冷凝器 (A5 ) 有冷剂液管路经第三节流阀 (K5) 与第一吸收器 (1 ) 连通后第一吸收器
( 1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或确定为蒸发器 (B5) 有冷剂液管路经冷 剂液泵(15)与第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道与第二吸收器(2 ) 连通, 第二发生器 (C5 ) 还有驱动热介质管路与外部连通, 第二冷凝器 (J5)、 第三吸收器
(D5 ) 和第一冷凝器 (A5) 还分别有被加热介质管路与外部连通, 蒸发器 (B5) 还有余热介 质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精 馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
14. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第三溶液热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 形成基 于回热式吸收 -发生系统、 由第一发生器分别向第三吸收器和第二冷凝器提供冷剂蒸汽的双 发生器两级回热式第一类吸收式热泵; 将第一发生器 (3) 有冷剂蒸汽通道与外部连通确定 为第一发生器 (3) 有冷剂蒸汽通道分别与第三吸收器 (D5) 和第二冷凝器 (J5) 连通, 第 三吸收器 (D5) 还有稀溶液管路经第三溶液泵 (E5) 和第三溶液热交换器 (L5) 与第一发生 器(3)连通, 将第一发生器(3)有浓溶液管路经第一溶液热交换器(6)和第二吸收器(2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经第三溶液热交换器 (L5)、 第一 溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 将第二吸收器 (2)有稀溶液管 路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器
(2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (F5) 与第二发生器 (C5 ) 连通, 第二发生器 (C5 ) 还有浓溶液管路经第二溶液热交换器 (F5) 与 第三吸收器 (D5) 连通, 第二发生器 (C5) 还有冷剂蒸汽通道与第一冷凝器 (A5) 连通, 第 一冷凝器 (A5) 还有冷剂液管路经第一节流阀 (G5 ) 与第二冷凝器 (J5) 连通, 第二冷凝器
(J5) 还有冷剂液管路经第二节流阀 (H5) 与蒸发器 (B5) 连通, 将第一吸收器 (1 ) 有冷 剂蒸汽通道与外部连通确定为蒸发器 (B5) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外 部有冷剂液管路与第一吸收器(1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器
(2) 连通确定为第二冷凝器 (J5) 或第一冷凝器 (A5 ) 有冷剂液管路经第三节流阀 (K5) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连通、 或 确定为蒸发器 (B5 ) 有冷剂液管路经冷剂液泵 (15 ) 与第一吸收器 (1 ) 连通后第一吸收器
( 1 ) 再有冷剂蒸汽通道与第二吸收器(2)连通, 第二发生器 (C5) 还有驱动热介质管路与 外部连通, 第三吸收器 (D5)、 第二冷凝器 (J5) 和第一冷凝器 (A5) 还分别有被加热介质 管路与外部连通, 蒸发器 (B5) 还有余热介质管路与外部连通; 第一发生器变为第一精馏塔 时, 第二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还 有被加热介质管路与外部连通。
15. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第二发生器向第一吸收 器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 将第一发生器 (3 ) 有冷剂蒸汽 通道与外部连通确定为第一发生器 (3) 有冷剂蒸汽通道与冷凝器 (A5) 连通, 冷凝器 (A5) 还有冷剂液管路经第一节流阀 (G5) 与蒸发器 (B5) 连通, 蒸发器 (B5) 还有冷剂蒸汽通道 与第三吸收器 (D5 ) 连通, 第三吸收器 (D5) 有稀溶液管路经第三溶液泵 (E5 ) 和第二溶液 热交换器 (F5) 与第二发生器 (C5) 连通, 第二发生器 (C5) 还有浓溶液管路经第二溶液热 交换器 (F5) 与第三吸收器 (D5 ) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通调 整为第二发生器 (C5 ) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将外部有冷剂液管路与第 一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2 ) 连通确定为冷 凝器 (A5) 有冷剂液管路经第二节流阀 (H5) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再 有冷剂蒸汽通道与第二吸收器 (2 ) 连通、 或确定为蒸发器 (B5 ) 有冷剂液管路经冷剂液泵
( 15) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2) 连 通, 第二发生器 (C5) 还有驱动热介质管路与外部连通, 第三吸收器 (D5) 和冷凝器 (A5) 还分别有被加热介质管路与外部连通, 蒸发器 (B5) 还有余热介质管路与外部连通; 第一发 生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与 外部连通, 分汽室还有被加热介质管路与外部连通。
16. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加第一冷凝器、 第二冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液 热交换器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 形成基于回热式吸收 -发生 系统、 由第二发生器分别向第一吸收器和第二冷凝器提供冷剂蒸汽的双发生器两级回热式第 一类吸收式热泵; 将第一发生器 (3) 有冷剂蒸汽通道与外部连通确定为第一发生器 (3) 有 冷剂蒸汽通道与第一冷凝器(A5)连通,第一冷凝器(A5)还有冷剂液管路经第一节流阀(G5) 与第二冷凝器 (J5 ) 连通, 第二冷凝器 (J5 ) 还有冷剂液管路经第二节流阀 (H5) 与蒸发器
(B5) 连通, 蒸发器 (B5) 还有冷剂蒸汽通道与第三吸收器 (D5) 连通, 第三吸收器 (D5) 有稀溶液管路经第三溶液泵 (E5) 和第二溶液热交换器 (F5) 与第二发生器 (C5) 连通, 第 二发生器 (C5) 还有浓溶液管路经第二溶液热交换器 (F5) 与第三吸收器 (D5) 连通, 将第 一吸收器 (1 ) 有冷剂蒸汽通道与外部连通调整为第二发生器 (C5 ) 有冷剂蒸汽通道与第一 吸收器 (1 ) 连通, 第二发生器 (C5 ) 还有冷剂蒸汽通道与第二冷凝器 (J5) 连通, 将外部 有冷剂液管路与第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道与第二吸收器(2) 连通确定为第一冷凝器 (A5) 或第二冷凝器 (J5) 有冷剂液管路经第三节流阀 (K5) 与第一 吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸收器 (2 ) 连通、 或确定为 蒸发器 (B5) 有冷剂液管路经冷剂液泵 (15) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再 有冷剂蒸汽通道与第二吸收器 (2) 连通, 第二发生器 (C5) 还有驱动热介质管路与外部连 通, 第三吸收器 (D5 )、 第二冷凝器 (J5 ) 和第一冷凝器 (A5 ) 还分别有被加热介质管路与 外部连通, 蒸发器 (B5) 还有余热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第 二发生器代之以第二精馏塔, 第二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加 热介质管路与外部连通。
17. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三吸收器、 第三溶液泵、 第二溶液热交换器、 第一节 流阀、 冷剂液泵或第二节流阀, 形成基于回热式吸收 -发生系统、 由第一吸收器和第一发生 器共同向第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 第三吸收器
(D6) 有稀溶液管路经第三溶液泵 (E6) 和第二溶液热交换器 (F6) 与第二发生器 (C6) 连 通, 第二发生器(C6)还有浓溶液管路经第二溶液热交换器(F6)与第三吸收器(D6)连通, 第二发生器 (C6) 还有冷剂蒸汽通道与冷凝器 (A6) 连通, 冷凝器 (A6) 还有冷剂液管路经 第一节流阀 (G6) 与蒸发器 (B6) 连通, 将第一吸收器 (1 ) 有被加热介质管路与外部连通 和外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂蒸汽通道与第二吸 收器 (2) 连通确定为冷凝器 (A6) 有冷剂液管路经第二节流阀 (H6) 与第一吸收器 (1 ) 连 通后第一吸收器 (1 ) 再有冷剂蒸汽通道分别与第三吸收器 (D6) 和第二吸收器 (2) 连通、 或确定为蒸发器 (B6) 有冷剂液管路经冷剂液泵 (16) 与第一吸收器 (1 ) 连通后第一吸收 器(1 ) 再有冷剂蒸汽通道分别与第三吸收器 (D6) 和第二吸收器 (2) 连通, 将第一发生器
(3)有冷剂蒸汽通道与外部连通确定为第一发生器(3)有冷剂蒸汽通道与第三吸收器(D6) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通确定为蒸发器 (B6) 有冷剂蒸汽通道 与第一吸收器 (1 ) 连通, 第二发生器 (C6) 还有驱动热介质管路与外部连通, 第三吸收器
(D6) 和冷凝器 (A6)还分别有被加热介质管路与外部连通, 蒸发器 (B6) 还有余热介质管 路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精镏塔, 第二精馏塔 还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
18. 回热式第一类吸收式热泵, 是以权利要求 1 所述的回热式吸收 -发生系统为基础, 增加冷凝器、 蒸发器、 第二发生器、 第三溶液泵、 第二溶液热交换器、 第一节流阀、 第一冷 剂液泵或第二节流阀、 吸收-蒸发器、 第二冷剂液泵或第三节流阀, 形成基于回热式吸收-发 生系统、 由吸收 -蒸发器和第二发生器共同向第一吸收器提供冷剂蒸汽的双发生器两级回热 式第一类吸收式热泵; 第二发生器 (C6 ) 有浓溶液管路经第二溶液热交换器 (E6) 与吸收- 蒸发器 (J6) 连通, 吸收-蒸发器 (J6) 还有稀溶液管路经第三溶液泵 (E6) 和第二溶液热 交换器 (F6) 与第二发生器 (C6) 连通, 将第一发生器 (3 ) 有冷剂蒸汽通道与外部连通确 定为第一发生器 (3 ) 有冷剂蒸汽通道与冷凝器 (A6) 连通, 冷凝器 (A6) 还有冷剂液管路 经第一节流阀 (G6) 与蒸发器 (B6) 连通, 将第一吸收器 (1 ) 有冷剂蒸汽通道与外部连通 确定为冷凝器 (A6) 有冷剂液管路经第二节流阀 (H6) 与吸收-蒸发器 (J6) 连通后吸收-蒸 发器 (J6) 再有冷剂蒸汽通道与第一吸收器 (1) 连通和第二发生器 (C6) 有冷剂蒸汽通道 与第一吸收器 (1) 连通、 或确定为蒸发器 (B6) 有冷剂液管路经第一冷剂液泵 (16) 与吸 收-蒸发器 (J6) 连通后吸收-蒸发器 (J6) 再有冷剂蒸汽通道与第一吸收器 (1) 连通和第 二发生器 (C6) 有冷剂蒸汽通道与第一吸收器 (1) 连通, 蒸发器 (B6) 还有冷剂蒸汽通道 与吸收-蒸发器 (J6) 连通, 将外部有冷剂液管路与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通确定为冷凝器 (A6) 有冷剂液管路经第三节流阀 (L6) 与第一吸收器 (1) 连通后第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连 通、 或确定为蒸发器 (B6) 有冷剂液管路经第二冷剂液泵 (K6) 与第一吸收器 (1) 连通后 第一吸收器 (1) 再有冷剂蒸汽通道与第二吸收器 (2) 连通, 第二发生器 (C6) 还有驱动热 介质管路与外部连通, 冷凝器 (A6)还有被加热介质管路与外部连通, 蒸发器 (B6) 还有余 热介质管路与外部连通; 第一发生器变为第一精馏塔时, 第二发生器代之以第二精馏塔, 第 二精馏塔还有被加热介质管路与外部连通, 分汽室还有被加热介质管路与外部连通。
19. 回热式第一类吸收式热泵, 是在权利要求 3所述的单级并联双效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第 一溶液泵 (4) 和第二溶液热交换器 (G2) 与第二发生器 (C2) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第二溶液热交换器 (G2) 与新增吸收器 (bl) 连通, 新 增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器
(dl) 和新增第二溶液热交换器 (el) 与第二发生器 (C2) 连通, 将第二发生器 (C2) 有浓 溶液管路经第二溶液热交换器 (G2) 之后与第一发生器 (3) 经第一溶液热交换器 (6) 之后 的浓溶液管路汇合调整为第二发生器(C2) 有浓溶液管路经新增第二溶液热交换器 (el) 和 第二溶液热交换器 (G2) 之后与第一发生器 (3) 经第一溶液热交换器 (6) 之后的浓溶液管 路汇合, 由蒸发器 (B2) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A2) 增设冷剂液管路经新增节流阀(Π)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器(bl)连通、 或蒸发器(B2) 增设冷剂液管路经新增冷剂液 泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增 吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
20. 回热式第一类吸收式热泵, 是在权利要求 3所述的单级并联双效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第二溶液热交换器 (G2) 与第二发生器
(C2)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)和第二溶液热交换器(G2) 与新增吸收器(bl)连通, 新增吸收器(bl)还有稀溶液管路经新增第一溶液热交换器(dl) 与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第二发生器 (C2) 连通, 将 第二发生器 (C2) 有浓溶液管路经第二溶液热交换器 (G2) 之后与第一发生器 (3) 经第一 溶液热交换器 (6) 之后的浓溶液管路汇合调整为第二发生器 (C2) 有浓溶液管路经新增第 二溶液热交换器 (el) 和第二溶液热交换器 (G2) 之后与第一发生器 (3) 经第一溶液热交 换器 (6) 之后的浓溶液管路汇合, 由蒸发器 (B2) 增设冷剂液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A2) 增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发 器 (hi) 或蒸发器 (B2) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl)连通, 新增吸收器(bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
21. 回热式第一类吸收式热泵, 是在权利要求 3所述的单级并联双效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第 一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有 稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (3) 与新增吸收器 (bl) 连通, 新增吸 收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl) 和新增第一溶液热交换器 (dl) 之后分成两路、 并分别再经第二溶液热交换器 (G2) 与第二发生器 (C2) 连通和再经新增第 二溶液热交换器 (el) 与第一发生器 (3) 连通, 取消第二吸收器 (2) 经第一溶液泵 (4) 和第二溶液热交换器 (G2) 之后与第二发生器 (C2) 连通的浓溶液管路, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一 发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二 吸收器(2)与分汽室(7)连通, 由蒸发器(B2)增设冷剂蒸汽通道与新增吸收-蒸发器(al) 连通, 由冷凝器 (A2) 增设冷剂液管路经新增节流阀 (Π) 与新增吸收-蒸发器 (al) 连通 后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或蒸发器 (B2) 增 设冷剂液管路经新增冷剂液泵(gl)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部 连通, 新增吸收器 (bl) 为新增相邻高温供热端。
22. 回热式第一类吸收式热泵, 是在权利要求 3所述的单级并联双效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器
(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)和第一溶液热交换器(3) 与新增吸收器(bl)连通, 新增吸收器(bl)还有稀溶液管路经新增第一溶液热交换器(dl) 与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl) 和新增第一溶液热交换器 (dl) 之后分成两路、 分别再经第二溶液热交换器(G2) 与第二发 生器 (C2) 连通和再经新增第二溶液热交换器 (el) 与第一发生器 (3) 连通, 取消第二吸 收器 (2) 经第一溶液泵 (4) 和第二溶液热交换器 (G2) 之后与第二发生器 (C2) 连通的浓 溶液管路, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 由蒸发器 (B2) 增设冷剂 液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸 汽通道与新增吸收-蒸发器 (al)连通, 由冷凝器 (A2)增设冷剂液管路经新增第二节流阀 (Π)与新增吸收-蒸发器 (al)连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸 收器(bl)连通、或由新增蒸发器(HI)或蒸发器(B2)增设冷剂液管路经新增冷剂液泵(gl) 与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al )再有冷剂蒸汽通道与新增吸收器(bl ) 连通, 新增吸收器 (bl)还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高 温供热端。
23. 回热式第一类吸收式热泵, 是在权利要求 4所述的单级串联双效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2)有稀溶液管路经第 一溶液泵 (4)、 第一溶液热交换器 (6)和第二溶液热交换器 (G2) 与第一发生器 · (3)连通 调整为第二吸收器 (2)有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6)和第二溶 液热交换器 (G2) 与新增吸收器 (bl)连通, 新增吸收器 (bl)还有稀溶液管路经新增第一 溶液热交换器 (dl) 与新增吸收-蒸发器 (al)连通, 新增吸收-蒸发器 (al)还有稀溶液管 路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl)和新增第二溶液热交换器 (el) 与第 一发生器 (3)连通, 将第一发生器 (3)有浓溶液管路经第二溶液热交换器 (G2)与第二发 生器 (C2)连通调整为第一发生器 (3)有浓溶液管路经新增第二溶液热交换器 (el)和第 二溶液热交换器 (G2) 与第二发生器 (C2)连通, 由蒸发器 (B2)增设冷剂蒸汽通道与新增 吸收-蒸发器 (al)连通, 由冷凝器 (A2)增设冷剂液管路经新增节流阀 (fl)与新增吸收- 蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl)连通、 或由蒸发器 (B2) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后 新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl)连通, 新增吸收器 (bl) 还 有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
24. 回热式第一类吸收式热泵, 是在权利要求 4所述的单级串联双效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2)有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6)和第二溶液热交 换器(G2)与第一发生器(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (G2) 与新增吸收器 (bl)连通, 新增吸收器
(bl)还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al)连通, 新 增吸收-蒸发器 (al)还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl)和 新增第二溶液热交换器 (el) 与第一发生器 (3)连通, 将第一发生器 (3)有浓溶液管路经 第二溶液热交换器 (G2) 与第二发生器 (C2)连通调整为第一发生器 (3)有浓溶液管路经 新增第二溶液热交换器 (el)和第二溶液热交换器 (G2) 与第二发生器 (C2)连通, 由蒸发 器 (B2)增设冷剂液管路经新增第一节流阀与新增蒸发器 (hi)连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 1) 连通, 由冷凝器 (A2) 增设冷剂液管路经新增 第二节流阀 (il) 与新增吸收-蒸发器 (al)连通后新增吸收-蒸发器 (al)再有冷剂蒸汽通 道与新增吸收器 (bl)连通、 或由新增蒸发器 (hi)或蒸发器 (B2)增设冷剂液管路经新增 冷剂液泵 (gl) 与新增吸收-蒸发器 (al)连通后新增吸收-蒸发器 (al)再有冷剂蒸汽通道 与新增吸收器 (bl)连通, 新增吸收器 (bl)还有被加热介质管路与外部连通, 新增吸收器
(bl) 为新增相邻高温供热端。
25. 回热式第一类吸收式热泵, 是在权利要求 5所述的单级串联双效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增节 流阀或新增冷剂液泵, 将第二吸收器 (2)有稀溶液管路经第一溶液泵 (4) 和第一溶液热交 换器 (6) 与第二发生器 (C2) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经 新增溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶 液管路经新增溶液泵 (cl) 和新增溶液热交换器 (dl) 与第二发生器 (C2) 连通, 由蒸发器
(B2) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A2) 增设冷剂液管路 经新增节流阀 (Π) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽 通道与新增吸收器 (bl) 连通、 或由蒸发器 (B2) 增设冷剂液管路经新增冷剂液泵 (gl) 与 新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高 温供热端。
26. 回热式第一类吸收式热泵, 是在权利要求 5所述的单级串联双效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增蒸发器、 新增第一节流 阀、 新增第二节流阀或新增冷剂液泵、 新增第一溶液热交换器和新增第二溶液热交换器, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第二发生器
(C2)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)和第一溶液热交换器(6) 与新增吸收器(bl)连通, 新增吸收器(bl)还有稀溶液管路经新增第一溶液热交换器(dl) 与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第二发生器 (C2) 连通, 将 第一发生器 (3) 有浓溶液管路经第二溶液热交换器 (G2)、 第一溶液热交换器 (6) 和第二 吸收器(2)与分汽室(7)连通改为第一发生器(3)有浓溶液管路经第二溶液热交换器(G2)、 新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连 通, 由蒸发器 (B2) 增设冷剂液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由 新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A2) 增设 冷剂液管路经新增第二节流阀(il)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 或蒸发器 (B2) 增设冷 剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再 有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连 通, 新增吸收器(bl)为新增相邻高温供热端; 其中, 省略新增第二溶液热交换器(el)时, 新增吸收-蒸发器 (al) 有稀溶液管路经新增溶液泵 (cl) 和新增第一溶液热交换器 (dl) 与第二发生器 (C2) 连通, 第一发生器 (3) 有浓溶液管路经第二溶液热交换器 (G2) 和第 一溶液热交换器 (6) 与第二吸收器 (2) 连通。
27. 回热式第一类吸收式热泵, 是在权利要求 6所述的单级并联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第 一溶液泵 (4) 和第三溶液热交换器 (J3) 与第三发生器 (D3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第三溶液热交换器 (J3) 与新增吸收器 (bl) 连通, 新 增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第三发生器 (D3) 连通, 将第三发生器 (D3) 有浓 溶液管路经第三溶液热交换器 (J3) 之后与第一发生器 (3) 经第一溶液热交换器 (6)之后 的浓溶液管路汇合调整为第三发生器 (D3)有浓溶液管路经新增第二溶液热交换器 (el) 和 第三溶液热交换器 (J3) 之后与第一发生器 (3) 经第一溶液热交换器 (6) 之后的浓溶液管 路汇合, 由蒸发器 (B3) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增节流阀(Π)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由蒸发器 (B3) 增设冷剂液管路经新增冷剂 液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新 增吸收器(bl)连通, 新增吸收器(bl)还有被加热介质管路与外部连通, 新增吸收器(bl) 为新增相邻高温供热端。
28. 回热式第一类吸收式热泵, 是在权利要求 6所述的单级并联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第三溶液热交换器 (J3) 与第三发生器
(D3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)和第三溶液热交换器( J3) 与新增吸收器(bl)连通, 新增吸收器(bl)还有稀溶液管路经新增第一溶液热交换器(dl) 与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第三发生器 (D3) 连通, 将 第三发生器 (D3) 有浓溶液管路经第三溶液热交换器 (J3) 之后与第一发生器 (3) 经第一 溶液热交换器 (6) 之后的浓溶液管路汇合调整为第三发生器 (D3) 有浓溶液管路经新增第 二溶液热交换器 (el) 和第三溶液热交换器 (J3) 之后与第一发生器 (3) 经第一溶液热交 换器 (6) 之后的浓溶液管路汇合, 由蒸发器 (B3) 增设冷剂液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (fl) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发 器 (hi) 或蒸发器 (B3) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl)连通,新增吸收器(bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻髙温供热端。
29. 回热式第一类吸收式热泵, 是在权利要求 6所述的单级并联三效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第 一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有 稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与新增吸收器 (bl) 连通, 新增吸 收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)和新增第一溶液热交换器 (dl) 之后分成三路并分别再经第三溶液热交换器 (J3) 与第三发生器 (D3) 连通、 再经第二溶液 热交换器 (13) 与第二发生器 (C3) 连通和再经新增第二溶液热交换器 (el) 与第一发生器
(3) 连通, 取消第二吸收器 (2) 经第一溶液泵 (4) 之后分别经第二溶液热交换器 (13) 与第二发生器 (C3) 的溶液管路和经第三溶液热交换器 (J3) 与第三发生器 (D3) 连通的溶 液管路, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与 分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el)、 第 一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 由蒸发器 (B3) 增设冷剂蒸 汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增节流阀 (Π) 与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al )再有冷剂蒸汽通道与新增吸收器(bl ) 连通、 或由蒸发器 (B3) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl)连通,新增吸收器(bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
30. 回热式第一类吸收式热泵, 是在权利要求 6所述的单级并联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器
(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)和第一溶液热交换器(6) 与新增吸收器(bl)连通, 新增吸收器(bl)还有稀溶液管路经新增第一溶液热交换器(dl) 与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl) 和新增第一溶液热交换器 (dl)之后分成三路并分别再经第三溶液热交换器(J3) 与第三发 生器 (D3) 连通、 再经第二溶液热交换器 (13) 与第二发生器 (C3) 连通和再经新增第二溶 液热交换器 (el) 与第一发生器 (3) 连通, 取消第二吸收器 (2) 经第一溶液泵 (4) 之后 分别经第二溶液热交换器(13)与第二发生器(C3)的溶液管路和经第三溶液热交换器(J3) 与第三发生器 (D3) 连通的溶液管路, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换 器 (6)和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经新增 第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 由蒸发器 (B3) 增设冷剂液管路经新增第一节流阀 (fl) 与新增蒸发器 (hi) 连通, 由新增 蒸发器 (Π) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂 液管路经新增第二节流阀 (il) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再 有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 增设冷剂液管路经新增冷 剂液泵 (gl) 与新增吸收-蒸发器 (al)连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与 新增吸收器(bl)连通,新增吸收器(bl)还有被加热介质管路与外部连通,新增吸收器(bl) 为新增相邻高温供热端。
31. 回热式第一类吸收式热泵, 是在权利要求 7所述的单级串联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第 一溶液泵(4)、 第一溶液热交换器(6)、 第二溶液热交换器(13)和第三溶液热交换器(J3) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液 热交换器(6)、 第二溶液热交换器 (13) 和第三溶液热交换器 (J3) 与新增吸收器 (bl) 连 通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器
(al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热 交换器 (dl) 和新增第二溶液热交换器 (el) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第三溶液热交换器 (J3) 与第二发生器 (C3) 连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器(el)和第三溶液热交换器(J3)与第二发生器(C3) 连通, 由蒸发器 (B3) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增节流阀(Π)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器 (bl)连通、 或由蒸发器 (B3) 增设冷剂液管路经新增冷剂 液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新 增吸收器(bl)连通, 新增吸收器(bl)还有被加热介质管路与外部连通, 新增吸收器(bl) 为新增相邻高温供热端。
32. 回热式第一类吸收式热泵, 是在权利要求 7所述的单级串联三效回热式第一类吸收 式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将 第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6)、 第二溶液热交 换器 (13) 和第三溶液热交换器 (J3) 与第一发生器 (3) 连通调整为第二吸收器 (2)有稀 溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6)、 第二溶液热交换器 (13) 和第三溶液 热交换器 (J3) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶 液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路 经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第一 发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第三溶液热交换器 (J3) 与第二发生 器 (C3) 连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el) 和第三 溶液热交换器 (J3) 与第二发生器 (C3) 连通, 由蒸发器 (B3) 增设冷剂液管路经新增第一 节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收 -蒸发器 (al) 连通, 由冷凝器. (A3) 增设冷剂液管路经新增节流阀 (Π) 与新增吸收-蒸发 器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由 新增蒸发器 (hi) 或蒸发器 (B3) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发 器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增 吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
33. 回热式第一类吸收式热泵, 是在权利要求 8所述的单级串联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增节流阀或新增冷剂液泵、 新增第一溶液热交换器和新增第二溶液热交换器, 将第二吸收器 (2) 有稀溶液管路经第一 溶液泵 (4) 和第一溶液热交换器 (6) 与第三发生器 (D3) 连通调整为第二吸收器 (2) 有 稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与新增吸收器 (bl) 连通, 新增吸 收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第三发生器 (D3) 连通, 将第一发生器 (3) 有浓溶液管 路经第三溶液热交换器 (J3)、 第二溶液热交换器 (13)、 第一溶液热交换器 (6) 和第二吸 收器(2)与分汽室(7)连通调整为第一发生器(3)有浓溶液管路经第三溶液热交换器(J3)、 第二溶液热交换器 (13)、 新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸 收器 (2) 与分汽室 (7) 连通, 由蒸发器 (B3) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增节流阀 (fl) 与新增吸收-蒸发器 (al) 连通 后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由蒸发器 (B3) 增设冷剂液管路经新增冷剂液泵(gl )与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al ) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部 连通, 新增吸收器 (bl) 为新增相邻高温供热端; 其中, 省略新增第二溶液热交换器 (el) 时, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl) 和新增第一溶液热交换器 (dl)与第三发生器(D3)连通, 第 发生器(3)有浓溶液管路经第三溶液热交换器(J3)、 第二溶液热交换器 (13)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通。
34. 回热式第一类吸收式热泵, 是在权利要求 8所述的单级串联三效回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增蒸 发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管 路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第三发生器 (D3) 连通调整为第二吸收器
(2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增溶液热^ ζ换器 (dl) 与新增吸收-蒸发器 (al) 连 通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl) 和新增溶液热交换器 (dl) 与第三发生器 (D3) 连通, 由蒸发器 (B3) 增设冷剂液管路经新增第一节流阀 (fl) 与新增 蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 (A3) 增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器 (al) 连通后 新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 或蒸发器 (B3) 增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新 增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有 被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
35. 回热式第一类吸收式热泵, 是在权利要求 2、 9、 15-16、 18所述的任一回热式第一 类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换 器、 新增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管 路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器
(2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器
(dl) 和新增第二溶液热交换器 (el) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶 液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通调整为第一发生器
(3) 有浓溶液管路经新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由 冷凝器增设冷剂液管路经新增节流阀 (Π) 与新增吸收-蒸发器 (al) 连通后新增吸收 -蒸发 器(al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由蒸发器增设冷剂液管路经新增冷 剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与 新增吸收器(bl)连通,新增吸收器(bl)还有被加热介质管路与外部连通,新增吸收器(bl) 为新增相邻高温供热端。
36. 回热式第一类吸收式热泵, 是在权利要求 2、 9、 15-16、 18所述的任一回热式第一 类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换 器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液 泵, 将第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一 发生器 (3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交 换器 (6) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热 交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新 增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第一发生 器(3)连通, 将第一发生器(3)有浓溶液管路经第一溶液热交换器(6)和第二吸收器(2) 与分汽室 (7) 连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7) 连通, 由蒸发器增设冷剂液管路 经新增第一节流阀 (fl) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道 与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增第二节流阀 (il) 与新增 吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连 通、 或由新增蒸发器 (hi) 或蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸 发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新 增吸收器(bl)还有被加热介质管路与外部连通, 新增吸收器(bl)为新增相邻高温供热端。
37. 回热式第一类吸收式热泵, 是在权利要求 10所述任一回热式第一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液 热交换器、新增节流阀或新增冷剂液泵,将第二吸收器(2)有稀溶液管路经第一溶液泵(4)、 第一溶液热交换器 (6) 和第二溶液热交换器与第一发生器 (3)连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器与新增吸收 器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸 收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增 第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第一发生器 (3) 连通, 将第一 发生器(3)有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为第一发生器(3)有 浓溶液管路经新增第二溶液热交换器 (el)和第二溶液热交换器与第三吸收器连通, 由蒸发 器增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增节流 阀 (Π) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增 吸收器 (bl) 连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器
(al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸 收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
38. 回热式第一类吸收式热泵, 是在权利要求 10所述任一回热式第一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液 热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第二吸收器
(2)有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器与第一 发生器 (3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换 器 (6) 和第二溶液热交换器与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路 经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还 有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器
(el) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路经第二溶液热交换器与第 三吸收器连通调整为第一发生器 (3) 有浓溶液管路经新增第二溶液热交换器 (el) 和第二 溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂液管路经新增第一节流阀 (fl) 与新增 蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增第二节流阔 (il) 与新增吸收-蒸发器 (al) 连通后新增吸 收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 或蒸 发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发 器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管 路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
39. 回热式第一类吸收式热泵, 是在权利要求 11、 13、 17所述的任一回热式第一类吸 收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第三吸收器有稀溶液管路经第三溶 液泵和第二溶液热交换器与第二发生器连通调整为第三吸收器有稀溶液管路经第三溶液泵 和第二溶液热交换器与新增吸收器 (bl)连通, 新增吸收器 (bl) 还有稀溶液管路经新增第 一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液 管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与 第二发生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为 第二发生器有浓溶液管路经新增第二溶液热交换器(el)和第二溶液热交换器与第三吸收器 连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管 路经新增节流阀 (fl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸 汽通道与新增吸收器 (bl)连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增 吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连 通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温 供热端。
40. 回热式第一类吸收式热泵, 是在权利要求 11、 13、 17所述的任一回热式第一类吸 收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 将第三吸收器有稀溶液管路经第三溶液泵和第二溶液热交换器与第二发生器连通调整为第 三吸收器有稀溶液管路经第三溶液泵和第二溶液热交换器与新增吸收器 (bl)连通, 新增吸 收器(bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第二发生器连通, 将第二发生器有浓溶液管路经第二溶液 热交换器与第三吸收器连通调整为第二发生器有浓溶液管路经新增第二溶液热交换器 (el) 和第二溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器 (al) 连通后 新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 或蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器(al)连通后新增吸收- 蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介 质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
41. 回热式第一类吸收式热泵, 是在权利要求 12、 14所述的任一回热式第一类吸收式 热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、 新增节流阀或新增冷剂液泵, 将第二吸收器 (2) 有稀溶液管路经第一 溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器与第二发生器连通调整为第二吸 收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器与 新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器(al)连通,新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第二发生器连通, 将第二发 生器有浓溶液管路经第二溶液热交换器与第三吸收器连通调整为第二发生器有浓溶液管路 经新增第二溶液热交换器 (el)和第二溶液热交换器与第三吸收器连通, 由蒸发器增设冷剂 蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增节流阀 (Π) 与 新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl) 连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后 新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还 有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
42. 回热式第一类吸收式热泵, 是在权利要求 12、 14所述的任一回热式第一类吸收式 热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增 第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阖或新增冷剂液泵, 将第 二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换 器与第二发生器连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热 交换器 (6) 和第二溶液热交换器与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液 管路经新增第一溶液热交换器(dl)与新增吸收-蒸发器(al)连通, 新增吸收-蒸发器(al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换 器(el) 与第二发生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器与第三吸收器 连通调整为第二发生器有浓溶液管路经新增第二溶液热交换器 (el)和第二溶液热交换器与 第三吸收器连通, 由蒸发器增设冷剂液管路经新增第一节流阀 (Π) 与新增蒸发器(hi)连 通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设 冷剂液管路经新增第二节流阀(il)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发器 (hi) 或蒸发器增设冷剂液管 路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂 蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新 增吸收器 (bl) 为新增相邻高温供热端。
43. 回热式第一类吸收式热泵, 是在权利要求 3-8所述的任一回热式第一类吸收式热泵 中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二 溶液热交换器、 新增节流阀或新增冷剂液泵, 由低压发生器增设浓溶液管路经新增第二溶液 热交换器 (el) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶 液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路 经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与低压 发生器连通,.由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器增设冷 剂液管路经新增节流阀 (Π) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有 冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al )再有冷剂蒸汽通道与新增吸收器(bl ) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高 温供热端。
44. 回热式第一类吸收式热泵, 是在 ¾1利要求 3-8所述的任一回热式第一类吸收式热泵 中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新增第二 溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 由低压发 生器增设浓溶液管路经新增第二溶液热交换器 (el) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新 增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和 新增第二溶液热交换器 (el) 与低压发生器连通, 由蒸发器增设冷剂液管路经新增第一节流 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收-蒸 发器(al)连通, 由冷凝器增设冷剂液管路经新增第二节流阀(il)与新增吸收-蒸发器(al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新增蒸发 器 (hi) 或蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后 新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还 有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
45. 回热式第一类吸收式热泵, 是在权利要求 2、 10、 15-16、 18所述的任一回热式第 一类吸收式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交 换器、 新增第二溶液热交换器、 新增节流阔或新增冷剂液泵, 由第一发生器 (3) 增设浓溶 液管路经新增第二溶液热交换器 (el) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀 溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连通, 新增吸收-蒸发器
(al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液 热交换器(el)与第一发生器(3)连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器(al) 连通, 由冷凝器增设冷剂液管路经新增节流阀 (fl) 与新增吸收-蒸发器 (al) 连通后新增 吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由蒸发器增设冷剂液管 路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂 蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新 增吸收器 (bl) 为新增相邻高 ^供热端。
46. 回热式第一类吸收式热泵, 是在权利要求 2、 10、 15-16、 18所述的任一回热式第 一类吸收式热泵中, 增加新增吸收 -蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交 换器、 新增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂 液泵, 由第一发生器(3)增设浓溶液管路经新增第二溶液热交换器(el)与新增吸收器(bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发 器 (al) 连通, 新增吸收-蒸发器 (al) 还有稀溶液管路经新增溶液泵 (cl)、 新增第一溶液 热交换器 (dl) 和新增第二溶液热交换器 (el) 与第一发生器 (3) 连通, 由蒸发器增设冷 剂液管路经新增第一节流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂 蒸汽通道与新增吸收-蒸发器(al)连通, 由冷凝器增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al )再有冷剂蒸汽通道与新增吸收器(bl ) 连通、 或由新增蒸发器 (hi) 或蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收- 蒸发器 (al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热 端。
47. 回热式第一类吸收式热泵, 是在权利要求 11-14、 17所述的任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增节流阀或新增冷剂液泵, 由第二发生器增设浓溶液管路经新增第 二溶液热交换器 (el) 与新增吸收器 (bl) 连通, 新增吸收器 (bl) 还有稀溶液管路经新增 第一溶液热交换器 (dl) 与新增吸收-蒸发器 1) 连通, 新增吸收-蒸发器 (al) 还有稀溶 液管路经新增溶液泵 (cl)、 新增第一溶液热交换器 (dl) 和新增第二溶液热交换器 (el) 与第二发生器连通, 由蒸发器增设冷剂蒸汽通道与新增吸收-蒸发器 (al) 连通, 由冷凝器 增设冷剂液管路经新增节流阀(fl)与新增吸收-蒸发器(al)连通后新增吸收-蒸发器(al) 再有冷剂蒸汽通道与新增吸收器( bl )连通、或由蒸发器增设冷剂液管路经新增冷剂液泵( gl ) 与新增吸收-蒸发器(al )连通后新增吸收-蒸发器(al )再有冷剂蒸汽通道与新增吸收器(bl ) 连通, 新增吸收器 (bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高 温供热端。
48. 回热式第一类吸收式热泵, 是在权利要求 11-14、 17所述的任一回热式第一类吸收 式热泵中, 增加新增吸收-蒸发器、 新增吸收器、 新增溶液泵、 新增第一溶液热交换器、 新 增第二溶液热交换器、 新增蒸发器、 新增第一节流阀、 新增第二节流阀或新增冷剂液泵, 由 第二发生器增设浓溶液管路经新增第二溶液热交换器 (el) 与新增吸收器 (bl) 连通, 新增 吸收器 (bl) 还有稀溶液管路经新增第一溶液热交换器 (dl) 与新增吸收-蒸发器 (al) 连 通,新增吸收-蒸发器(al)还有稀溶液管路经新增溶液泵(cl)、新增第一溶液热交换器(dl) 和新增第二溶液热交换器 (el) 与第二发生器连通, 由蒸发器增设冷剂液管路经新增第一节 流阀 (Π) 与新增蒸发器 (hi) 连通, 由新增蒸发器 (hi) 增设冷剂蒸汽通道与新增吸收- 蒸发器 (al) 连通, 由冷凝器增设冷剂液管路经新增第二节流阀 (il) 与新增吸收-蒸发器
(al) 连通后新增吸收-蒸发器 (al) 再有冷剂蒸汽通道与新增吸收器 (bl) 连通、 或由新 增蒸发器 (hi) 或蒸发器增设冷剂液管路经新增冷剂液泵 (gl) 与新增吸收-蒸发器 (al) 连通后新增吸收-蒸发器(al)再有冷剂蒸汽通道与新增吸收器(bl)连通, 新增吸收器(bl) 还有被加热介质管路与外部连通, 新增吸收器 (bl) 为新增相邻高温供热端。
49. 回热式第一类吸收式热泵, 是在权利要求 3-5所述的任一单级双效回热式第一类吸 收式热泵中, 增加再增冷凝器 (a2) 和再增节流阀 (b2), 由高压发生器增设冷剂蒸汽通道 与再增冷凝器 (a2) 连通, 再增冷凝器 (a2) 还有冷剂液管路经再增节流阀 (b2) 与冷凝器
(A2)连通, 再增冷凝器 (a2) 还有被加热介质管路与外部连通, 再增冷凝器 (a2) 成为回 热式第一类吸收式热泵的再增高温供热端。
50. 回热式第一类吸收式热泵, 是在权利要求 6-8所述的任一单级三效回热式第一类吸 收式热泵中, 增加再增冷凝器 (a2) 和再增节流阀 (b2), 由中压发生器增设冷剂蒸汽通道 与再增冷凝器 (a2) 连通, 再增冷凝器 (a2)还有冷剂液管路经再增节流阀 (b2) 与冷凝器
(A3)连通, 再增冷凝器 (a2) 还有被加热介质管路与外部连通, 再增冷凝器 (a2) 成为回 热式第一类吸收式热泵的再增高温供热端。
51. 回热式第一类吸收式热泵, 是在权利要求 3- 8所述的任一回热式第一类吸收式热泵 中, 增加二级发生器、 二级吸收器、 二级冷凝器、 二级溶液泵、 二级溶液热交换器和二级节 流阀, 自低压发生器增设冷剂蒸汽通道与二级吸收器 (b3) 连通, 二级吸收器 (b3) 还有稀 溶液管路经二级溶液泵 (c3) 和二级溶液热交换器 (d3) 与二级发生器 (a3) 连通, 二级发 生器 (a3) 还有浓溶液管路经二级溶液热交换器 (d3) 与二级吸收器 (b3) 连通, 二级发生 器 (a3) 还有冷剂蒸汽通道与二级冷凝器 (e3) 连通, 二级冷凝器 (e3) 还有冷剂液管路经 二级节流阀 (f3) 与冷凝器连通, 二级吸收器 (b3) 和二级冷凝器 (e3) 还分别有被加热介 质管路与外部连通, 二级发生器 (a3) 还有驱动热介质管路与外部连通。
52. 回热式第一类吸收式热泵, 是在权利要求 3-5所述的任一回热式第一类吸收式热泵 中, 增加二级发生器、 二级吸收器、 二级溶液泵和二级溶液热交换器, 将低压发生器有冷剂 蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸收器 (b3) 连通, 二级吸 收器(b3)还有稀溶液管路经二级溶液泵(c3 )和二级溶液热交换器(d3)与二级发生器(a3) 连通, 二级发生器 (a3) 还有浓溶液管路经二级溶液热交换器 (d3) 与二级吸收器 (b3) 连 通, 二级发生器 (a3) 还有冷剂蒸汽通道与冷凝器连通, 将高压发生器有冷剂蒸汽通道与低 压发生器连通后低压发生器再有冷剂液管路经第一节流阀与冷凝器连通调整为高压发生器 有冷剂蒸汽通道与低压发生器连通后低压发生器再有冷剂液管路经第一节流阀与蒸发器连 通, 二级吸收器 (b3) 还有被加热介质管路与外部连通, 二级发生器 (a3) 还有驱动热介质 管路与外部连通。
53. 回热式第一类吸收式热泵, 是在权利要求 6-8所述的任一回热式第一类吸收式热泵 中, 增加二级发生器、 二级吸收器、 二级溶液泵和二级溶液热交换器, 将低压发生器有冷剂 蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸收器(b3) 连通, 二级吸 收器(b3)还有稀溶液管路经二级溶液泵(c3)和二级溶液热交换器(d3 )与二级发生器(a3) 连通, 二级发生器 (a3) 还有浓溶液管路经二级溶液热交换器 (d3) 与二级吸收器 (b3) 连 通, 二级发生器 (a3) 还有冷剂蒸汽通道与冷凝器连通, 将高压发生器有冷剂蒸汽通道与中 压发生器连通后中压发生器再有冷剂液管路经第一节流阀与冷凝器连通调整为高压发生器 有冷剂蒸汽通道与中压发生器连通后中压发生器再有冷剂液管路经第一节流阀与蒸发器连 通, 将中压发生器有冷剂蒸汽通道与低压发生器连通后低压发生器再有冷剂液管路经第二节 流阀与冷凝器连通调整为中压发生器有冷剂蒸汽通道与低压发生器连通后低压发生器再有 冷剂液管路经第二节流阀与蒸发器连通,二级吸收器(b3)还有被加热介质管路与外部连通, 二级发生器 (a3) 还有驱动热介质管路与外部连通。
PCT/CN2010/000588 2010-04-29 2010-04-29 回热式吸收-发生系统与回热式第一类吸收式热泵 WO2011134103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000588 WO2011134103A1 (zh) 2010-04-29 2010-04-29 回热式吸收-发生系统与回热式第一类吸收式热泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000588 WO2011134103A1 (zh) 2010-04-29 2010-04-29 回热式吸收-发生系统与回热式第一类吸收式热泵

Publications (1)

Publication Number Publication Date
WO2011134103A1 true WO2011134103A1 (zh) 2011-11-03

Family

ID=44860726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000588 WO2011134103A1 (zh) 2010-04-29 2010-04-29 回热式吸收-发生系统与回热式第一类吸收式热泵

Country Status (1)

Country Link
WO (1) WO2011134103A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268652A (zh) * 1999-03-30 2000-10-04 三洋电机株式会社 吸收热泵及其控制方法
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101078576A (zh) * 2007-06-15 2007-11-28 李华玉 两端与多端供热的第二类吸收式热泵
CN101504217A (zh) * 2009-02-27 2009-08-12 李华玉 一种回热式发生-吸收体系与高温型第二类吸收式热泵
CN101504216A (zh) * 2009-02-28 2009-08-12 李华玉 复合吸收-发生体系与高效吸收式机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268652A (zh) * 1999-03-30 2000-10-04 三洋电机株式会社 吸收热泵及其控制方法
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101078576A (zh) * 2007-06-15 2007-11-28 李华玉 两端与多端供热的第二类吸收式热泵
CN101504217A (zh) * 2009-02-27 2009-08-12 李华玉 一种回热式发生-吸收体系与高温型第二类吸收式热泵
CN101504216A (zh) * 2009-02-28 2009-08-12 李华玉 复合吸收-发生体系与高效吸收式机组

Similar Documents

Publication Publication Date Title
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2011091560A1 (zh) 复合吸收-发生系统与第三类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2010118636A1 (zh) 提高热泵供热温度的方法与高温第二类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
CN101799222A (zh) 回热式发生-吸收系统与回热式第二类吸收式热泵
CN101832676B (zh) 提高热泵供热温度的方法与高温第二类吸收式热泵
CN101476798A (zh) 双效与多效及其基础上的第二类吸收式热泵
WO2014161369A1 (zh) 分路循环第一类吸收式热泵
CN101825370A (zh) 回热式双效和多效第二类吸收式热泵
CN205690733U (zh) 一种单双效复合型吸收式制冷机组
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2011134103A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
CN209270860U (zh) 一种双级压缩式热泵双效蒸发浓缩系统
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
CN101799221B (zh) 双效与多效及其基础上的第二类吸收式热泵
CN101644504A (zh) 一种两级第一类吸收式热泵
WO2013033860A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850436

Country of ref document: EP

Kind code of ref document: A1