WO2011134030A2 - Sistema de refrigeração de um refrigerador e sistema de aspiração para um fluido compressor - Google Patents

Sistema de refrigeração de um refrigerador e sistema de aspiração para um fluido compressor Download PDF

Info

Publication number
WO2011134030A2
WO2011134030A2 PCT/BR2011/000120 BR2011000120W WO2011134030A2 WO 2011134030 A2 WO2011134030 A2 WO 2011134030A2 BR 2011000120 W BR2011000120 W BR 2011000120W WO 2011134030 A2 WO2011134030 A2 WO 2011134030A2
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fluid
suction
valve
line
Prior art date
Application number
PCT/BR2011/000120
Other languages
English (en)
French (fr)
Other versions
WO2011134030A3 (pt
Inventor
Dietmar Erich Bernhard Lilie
Original Assignee
Whirlpool S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BRC11001359-8A external-priority patent/BRPI1001359C1/pt
Priority claimed from BRPI1101972-7A external-priority patent/BRPI1101972B1/pt
Application filed by Whirlpool S.A. filed Critical Whirlpool S.A.
Priority to JP2013506415A priority Critical patent/JP6023043B2/ja
Priority to CN201180028408.4A priority patent/CN102947652B/zh
Priority to EP11730872.6A priority patent/EP2581690A2/en
Priority to KR1020127028991A priority patent/KR20130058683A/ko
Priority to US13/643,862 priority patent/US9335084B2/en
Publication of WO2011134030A2 publication Critical patent/WO2011134030A2/pt
Publication of WO2011134030A3 publication Critical patent/WO2011134030A3/pt
Priority to US14/511,455 priority patent/US20150020538A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a refrigeration system of a refrigerator, particularly a domestic refrigerator with a refrigeration compartment and a freezer, as well as a process for operating the system.
  • the present invention also relates to the fluid compressor suction system belonging to the disclosed cooling system.
  • a refrigeration system basically comprises a compressor, a condenser, an expansion device and an evaporator.
  • the refrigerant in the gas phase
  • the refrigerant is compressed in the compressor and flows into the condenser, where it is cooled, for example, by ambient air, and passes into the liquid phase.
  • High pressure refrigerant flows to the expansion device, where its pressure is reduced, and then flows to the evaporator, where it absorbs heat from the charge (food, for example) and into the gas phase.
  • the refrigerant is aspirated by the compressor, thus completing the refrigeration cycle.
  • the most commonly used refrigeration system comprises a compressor and a condenser, from which a line of refrigerant to the freezer evaporator departs, and then that line passes through the evaporator of the refrigeration compartment and returns to the compressor.
  • the system described above has a lower cost, however it is low efficiency as it operates at the lowest temperature, ie the freezer temperature.
  • This type of suction system allows a single compressor with a single suction inlet to work at two different pressures. This also allows the compressor "C” to operate at high and low pressure in alternating cycles, optimizing its energy coefficient (compared to other arrangements pertaining to the current state of the art).
  • the present invention aims to provide a home cooling system which has a high efficiency and a reduced cost.
  • Another object of the present invention is to provide a fluid compressor suction system free from any occurrence of high pressure / low pressure parasitic volume during switching between high and low pressure cycles.
  • the cooling system now treated comprises a compressor associated by means of a refrigerant discharge pipe portion to at least one condenser of a refrigeration system, with a first refrigerant line departing from the condenser and returning to the refrigerant. compressor and a second line of refrigerant departs from the condenser and returns to the compressor.
  • each suction line operates sequentially at a slow rate, or preferably at a very fast rate where the exchange of operation of a line of suction. suction to the other suction line proceeds very quickly so that the system interprets as if the two lines were operating simultaneously.
  • This fast-changing line feature provides high system efficiency, allowing the refrigeration compartment and freezer to operate at virtually constant temperature simultaneously. Thus, losses of prior art systems which operate on the basis of temperature ranges as described above are avoided.
  • Another advantage of the system according to the invention is the fact that it is possible to control the time each line is triggered, which enables the control of the capacity required for each line.
  • This valve opening time control can be associated with a variable capacity compressor. This combination allows to cover a wide range of capacities for each suction line, with full control of the capacity of each suction line, independently and concomitantly.
  • Another advantage of the system according to the invention is the fact that there is no stretch of the suction lines subject to two operating pressures, as occurs in the prior art system shown in figure 1. Thus, the losses described above are eliminated. .
  • the compressor suction is equalized with its housing.
  • the housing is at the same pressure as the suction and in the case of compressors that use lubricating oil for their bearings, it can easily return to the crankcase.
  • one of the suction lines can be chosen to be equalized with the interior of the casing and also allow oil coming in this line to return to the crankcase. Oil returning from the unequal line will be pumped back to the discharge line, where it will mix with the gas coming from the other suction line and a part will be taken to the crankcase when it returns to the compressor via the equalized suction line. This way there will always be a way for the oil to return to the compressor.
  • the two lines could be airtight if desired.
  • the present invention discloses, according to its preferred embodiment, a refrigeration system of a refrigerator, particularly of a A cooler with a refrigeration compartment and a freezer, which comprises a compressor attached to at least one condenser by means of a refrigerant discharge pipe portion, with a first refrigerant line provided from the condenser and returning to the compressor. (said first line sequentially carrying an expansion device and an evaporator disposed in the refrigeration compartment), and a second line of refrigerant starting from the condenser and returning to the compressor (said second line sequentially carrying a refrigerant). expansion and an evaporator arranged in the freezer).
  • the compressor has at least two suction inlets, the first refrigerant line being connected to the first inlet and the second refrigerant line being connected to the second inlet, and the two inlets each have a suction valve.
  • the suction valve of the first suction inlet is a remotely controllable valve, preferably a solenoid valve or a pneumatic valve or a hydraulic valve.
  • the suction valve of the second suction inlet is a mechanically operable valve.
  • the first and second suction valves operate alternately, with alternating valve operation preferably proceeding rapidly.
  • the respective expansion devices of the first and second refrigerant lines are preferably capillary tubes.
  • At least one inlet line is hermetically coupled to the compressor compression chamber. At least one input line is equalized to the compressor housing volume. At least one inlet nozzle is spaced from the compressor casing and has at least one end spaced from its respective inlet line.
  • the present invention also discloses, according to its optional embodiment, a fluid compressor suction system associated with a fluid compressor and comprises at least one fluid selection device directly connected to at least one suction inlet of the fluid compressor. fluid compressor. Said fluid selection device receives at least two supply lines, and is capable of selectively switching pressurized fluid from one of at least two supply lines to the suction inlet of the fluid compressor.
  • the fluid selection device comprises at least one fluid outlet port and at least two fluid inlet ports.
  • the fluid selection device comprises a pneumatic directional valve of three way / two positions. Also preferably, the actuation of the fluid selection device is electric via the solenoid.
  • the fluid selection device comprises interconnecting a single directional valve - on / off - with a one-way valve.
  • Each fluid inlet of the fluid selector receives a single supply line, and each supply line has its own internal pressure and is different from the internal pressure of the other supply lines.
  • at least one of the supply lines is airtight.
  • at least one of the supply lines is equalized with the pressure of the fluid compressor housing.
  • FIG 1 illustrates schematically and briefly the suction system of the refrigeration system described in US 5,531,078 (with the indicative references previously used);
  • FIG. 2 shows a preferred embodiment of the cooling system according to the invention
  • Figure 3 shows a first embodiment of the remotely controllable suction valve of the system according to the invention in the closed condition
  • Figure 4 shows the same view as Figure 3, but with the remotely controllable suction valve in the open condition;
  • Figure 5 shows a second embodiment of the remotely controllable suction valve of the system according to the invention in open condition
  • Fig. 6 shows the valve of Fig. 5 in the closed condition
  • Figure 7 shows an operation graph of the system according to the invention, where a variable capacity compressor is used
  • Figure 8 shows an operation graph of the system according to the invention, where a fixed capacity compressor is used
  • Figure 9 shows an enlarged detail of a compressor containing an equalized suction inlet with the casing thereof (in addition to another hermetic suction inlet);
  • Figure 10 also shows schematically an optional embodiment of the fluid compressor suction system.
  • Preferred Embodiment Figure 2 shows the system according to the invention, where a compressor 1 is attached to a condenser 3 by means of a refrigerant discharge pipe section 2, said portion starting from a discharge valve 2a. Also noted are a first refrigerant line 4 with an expansion device 5 and an evaporator 6 disposed in the refrigeration compartment 7, as well as a second refrigerant line 8 with an expansion device 9 and an evaporator 10 arranged in the freezer 11 Preferably the expansion devices are capillary tubes.
  • Compressor 1 has two suction inlets 12 and 13, where the first refrigerant line 4 is connected to the first inlet 12 and the second refrigerant line 8 is connected to the second inlet 13. In the first refrigerant line 4 the pressure is larger than in the second row 8.
  • a remotely controllable suction valve 14 which is preferably a solenoid valve.
  • the solenoid valve opens and the refrigerant of line 4, which is at a higher pressure, occupies the compression chamber and prevents the opening of the other suction valve 15 arranged in the second suction inlet 13.
  • the solenoid valve 14 then closes and the refrigerant is compressed and flows through the discharge duct 2.
  • the solenoid valve 14 remains closed and the valve 15 opens, allowing the second line refrigerant 8 to be aspirated. and then compressed and drained.
  • this change of operation from one suction line to another is performed very quickly, and thus the system interprets as if the two lines were operating simultaneously, which enables the system operation.
  • a constant temperature in the freezer for example -18 ° C
  • another constant temperature in the refrigeration compartment for example 5 ° C.
  • FIG 3 shows a first embodiment of remotely controllable valve 14 consisting of a solenoid valve disposed at suction inlet 12. It is shown in Figure that valve coil 16 is mounted within suction inlet 12 and the counter valve seat 17 is within the compression chamber 18 in the closed condition. In this condition the coil 16 is actuated, preventing the opening of the solenoid valve 14, and thereby enabling the opening of the valve 15 as shown in the figure.
  • Figure 4 shows the same view as figure 3, in which in this figure the coil 16 is not energized and the solenoid valve 14 is open, thus preventing opening of suction valve 15.
  • Figure 5 shows a second embodiment of solenoid valve 14, where it is observed that the valve coil 16 is mounted on the first refrigerant line 4 and the valve counter seat 17 acts outside the chamber This embodiment has the advantage of using a smaller space inside the cylinder as the electromagnetic circuit is located in the suction line. It is further noted in the figure that solenoid valve 14 is in the open condition while suction valve 15 is closed. While valve 17 is open the suction valve 18 may open and close several times.
  • Fig. 6 shows the valve of Fig. 5 in closed condition, i.e. with its counter-seat 17 closing suction inlet 12 while suction valve 15 is open.
  • Figures 7 and 8 show capacity and operating time graphs of compressors used in the system according to the invention, where Figure 6 shows the operation of a variable capacity compressor, and Figure 7 the operation of a fixed capacity compressor. .
  • the variable capacity compressor operates continuously, without any downtime, only increasing or slowing it down as needed, while the fixed capacity compressor stops operating at certain intervals, depending on sections indicated with "off" in figure 7.
  • the fixed capacity compressor shutdown intervals are very small.
  • the same inventive concept may be applied to other alternatives or possibilities of use of the invention.
  • the system according to the invention may employ any type of compressor and not only the linear compressor shown in the figures.
  • the system could have multiple multi-compartment suction inlets with different operating temperatures.
  • FIG. 9 is an enlarged detail of a compressor containing an equalized suction inlet with the housing thereof, showing a compressor 1b provided with three nozzles: an outlet nozzle provided with a discharge valve 2b for connection of a discharge pipe. refrigerant fluid (not shown); an inlet nozzle 3b connected to a hole 31b of the compressor housing 1b; and a second inlet nozzle 4b not connected to that of compressor housing 1b.
  • refrigerant fluid (not shown); an inlet nozzle 3b connected to a hole 31b of the compressor housing 1b; and a second inlet nozzle 4b not connected to that of compressor housing 1b.
  • In the inlet nozzle 4b there is a solenoid valve 6b internally containing a coil 61b and a counter seat 62b located within the compression chamber 7b.
  • the first refrigerant line 8b is hermetically coupled to housing bore 31b and compressor 1b.
  • the second refrigerant inlet 9b engages the housing, however, it has no physical connection to the end 41b of the inlet nozzle 4b. This configuration allows pressure equalization between refrigerant inlet 9b and compressor housing 1b.
  • a suction system for a fluid compressor with only one suction inlet is shown.
  • Such a suction system allows a compressor with only one suction inlet to operate similarly to the compressor with two suction inlets described above, so fluid compressor suction can also be implemented in a refrigeration system of a refrigerator, particularly of a household refrigerator with a cooling compartment and a freezer.
  • the fluid compressor suction system has no limitation on its range of applications.
  • the suction system for fluid compressor is schematically illustrated in Figure 10.
  • the fluid compressor 1c preferably of the electric type, is housed inside the housing 2c, and has at least one suction inlet. 11c and at least one fluid outlet 12c.
  • the fluid compressor suction system itself comprises at least one fluid selection device 3c which provides at least one fluid outlet path 31c and at least two flow paths. fluid inlets 32c.
  • the fluid outlet 31c of fluid selection device 3c is directly connected to at least one suction inlet 11c of fluid compressor 1c.
  • Each of the fluid inlets 32c receives a single fluid line and / or tubing 41c, 42c.
  • Each of the lines and / or pipes 41c, 42c has its own internal pressure and preferably is different from the internal pressure of the other lines and / or pipes 41c, 42c. This allows the fluid compressor 1c to work at different supply pressures.
  • the fluid selection device 3c comprises a three position / two position pneumatic directional solenoid operated valve.
  • the solenoid drive is remote.
  • the 41c (high pressure) line and / or tubing is connected to either of the 32c fluid inlets, while the 42c (low pressure) line and / or tubing is connected to the other 32c fluid inlets.
  • the fluid outlet path 31c of fluid selection device 3c is directly connected to at least one suction inlet 11c of fluid compressor 1c.
  • one of the lines and / or pipes 41c, 42c is airtight (with pressurized fluid isolated from the external medium), while the other line and / or piping 41c, 42c is equalized with the fluid compressor housing 1c.
  • the operation of the proposed fluid compressor suction system is now simple:
  • the fluid selection device 3c when actuated, selectively directs pressurized fluid from one of the lines and / or pipes 41c, 42c into the fluid compressor. 1c, where the conventional process of compression and exhaustion of pressurized fluids occurs.
  • Direct connection between the fluid outlet path 31c of the fluid selection device 3c and a suction inlet 11c of the fluid compressor 1c eliminates any possibility of high pressure / low pressure parasitic volume during switching between high and low cycles. pressure. This allows the fluid selection device 3c to be operated repeatedly over a short period of time, triggering (high frequency) alternation of working pressure, which is selectively obtained through lines and / or lines 41c, 42c .
  • fluid selection device 3c may further comprise (in place of a three-way / two position pneumatic directional valve) an interconnection of a single directional valve (on / off) with a one-way valve.
  • simple directional valve switching is performed via solenoid by remote actuation.

Abstract

A presente invenção se refere a um sistema de refrigeração de um refrigerador, particularmente de um refrigerador com um compartimento de refrigeração e um freezer compreendendo um compressor ligado por meio de um trecho de tubo de fluido refrigerante a pelo menos um condensador, sendo que uma primeira linha de fluido refrigerante parte do condensador e retorna para o compressor, e uma segunda linha de fluido refrigerante parte do condensador e retorna para o compressor. Na concretização preferencial da invenção, o compressor apresenta pelo menos duas entradas de sucção sendo que a primeira linha de fluido refrigerante está conectada à primeira entrada e a segunda linha de fluido refrigerante está conectada à segunda entrada, e as duas entradas apresentam cada uma, uma válvula de sucção. Na concretização opcional da presente invenção, o compressor de fluidos compreende pelo menos um dispositivo de seleção de fluidos diretamente conectado à pelo menos pelo uma entrada de sucção, sendo que o dispositivo de seleção de fluidos recebe pelo menos duas linhas de alimentação), e é capaz de comutar, seletivamente, o fluido pressurizado de uma dentre as mesmas, para a entrada de sucção do compressor de fluidos.

Description

"SISTEMA DE REFRIGERAÇÃO DE UM REFRIGERADOR E SISTEMA DE ASPIRAÇÃO PARA UM FLUIDO COMPRESSOR"
CAMPO DA INVENÇÃO
A presente invenção se refere a um sistema de refrigeração de um refrigerador, particularmente de um refrigerador doméstico com um compartimento de refrigeração e um freezer, assim como a um processo para operar o sistema. A presente invenção também se refere ao sistema de sucção do compressor de fluidos pertencente ao sistema de refrigeração ora revelado.
FUNDAMENTOS DA INVENÇÃO
É de conhecimento geral que um sistema de refrigeração compreende, basicamente, um compressor, um condensador, um dispositivo de expansão e um evaporador. O fluido refrigerante (na fase gasosa) é comprimido no compressor e escoa até o condensador, onde é resfriado, por exemplo, por meio do ar ambiente, e passa para a fase líquida. O fluido refrigerante, à alta pressão, escoa até o dispositivo de expansão, onde a sua pressão é reduzida, e em seguida, escoa para o evaporador, onde absorve o calor da carga (alimentos, por exemplo) e passa para a fase gasosa. Finalmente, o refrigerante é aspirado pelo compressor, completando, assim, o ciclo de refrigeração.
São conhecidos vários tipos de sistemas de refrigeração de um refrigerador doméstico. O sistema de refrigeração mais utilizado compreende um compressor e um condensador, de onde parte uma linha de fluido refrigerante para o evaporador do freezer, e em seguida, essa linha passa pelo evaporador do compartimento de refrigeração e retorna para o compressor.
O sistema descrito acima tem um custo mais baixo, no entanto é de baixa eficiência, uma vez que opera na temperatura menor, ou seja, na temperatura do freezer.
Em outros sistemas de refrigeração da técnica anterior há dois sistemas totalmente independentes, um operando no freezer e o outro no compartimento de refrigeração. Esta configuração apresenta uma boa eficiência, no entanto seu custo é muito elevado, uma vez que possui dois compressores e dois condensadores.
Uma alternativa a estes sistemas de refrigeração é descrita no documento US 5,531 ,078, o qual apresenta um sistema especialmente adequado a um ciclo de refrigeração de evaporador duplo (com pelo menos duas câmaras climatizadas independentes). Tal sistema utiliza apenas um compressor de fluidos provido de uma única entrada de sucção e uma única saída pressurizada. A entrada de sucção é "alimentada" por um sistema de sucção que composto por uma única linha principal de sucção, a qual é oriunda da junção de duas linhas intermediárias de sucção. As citadas linhas de sucção são também conhecidas como linhas de retorno (portanto, o sistema de sucção descrito no documento US 5,531 ,078 prevê duas linhas intermediárias de retorno e uma linha final de retorno).
O sistema de refrigeração descrito no documento US 5,531 ,078 é melhor ilustrado na figura 1 , onde torna-se possível verificar que a junção das duas linhas intermediárias de sucção "LIS1" e "LIS2" ocorre com o auxílio de uma válvula unidirecional "VU", resultando em uma única linha principal de sucção "LPS", a qual é conectada à entrada de sucção "ES" do compressor "C". Ainda de acordo com a figura 1 , é possível verificar que pelo menos uma das duas linhas intermediárias de sucção "LIS1" ou "LIS2" conta com uma válvula de bloqueio (on-off) "VB".
O funcionamento do sistema de sucção do sistema de refrigeração descrito no documento US 5,531 ,078 é simples: A linha intermediária de sucção "LIS1" de maior pressão (a qual possui a válvula de bloqueio "VB") alimenta a linha principal de sucção "LPS", a qual alimenta o compressor "C". Neste momento, a válvula unidirecional "VU" impede que a pressão da linha intermediária de sucção "LIS1" invada a linha intermediária de sucção "LIS2", a qual contém menor pressão. Portanto, o compressor "C" é alimentado com "alta pressão". Quando a válvula de bloqueio "VB" interrompe a pressão da linha intermediária de sucção "LIS1", a baixa pressão da linha intermediária de sucção "LIS2" flui, através da válvula unidirecional "VU", para a linha principal de sucção "LPS", e conseq ientemente, para o compressor "C". Este tipo de do sistema de sucção permite que um único compressor, com uma única entrada de sucção, possa trabalhar com duas pressões diferentes. Isto permite também que o compressor "C" possa trabalhar com alta e baixa pressão em ciclos alternados, otimizando seu coeficiente energético (em relação aos demais arranjos pertencentes ao atual estado da técnica).
Entretanto, o sistema de sucção do sistema de refrigeração descrito no documento US 5,531 ,078 possui um grande inconveniente: a ocorrência de volume parasita de alta pressão/baixa pressão no inicio dos ciclos de baixa pressão/alta pressão. Este volume parasita ocorre principalmente pelo fato que no momento em que a válvula de bloqueio "VB" é acionada (momento em que se deseja alternar os ciclos de alta e baixa pressão) a linha intermediária de sucção "LIS1" ou a linha principal de sucção "LPS" encontra-se pressurizada com a pressão oposta à pressão de trabalho desejada. Ou seja, na alteração de alta pressão para baixa pressão, a linha intermediária de sucção "LIS1" continua pressurizada, portanto, parte do ciclo a ser alimentado por baixa pressão ainda continua sendo alimentado por alta pressão. Além disto, na alteração de baixa pressão para alta pressão, a linha principal de sucção "LPS" continua pressurizada com baixa pressão, portanto, parte do ciclo a ser alimentado por alta pressão ainda continua sendo alimentado por baixa pressão. Este aspecto negativo torna-se inadmissível em aplicação onde a frequência de alternância dos ciclos (alta pressão e baixa pressão) é alta e não fixa, afinal, a ocorrência de volume parasita de alta pressão/baixa pressão será constante.
Observa-se ainda que, de modo mais amplo e geral, outro inconveniente de todos os sistemas da técnica anterior consiste no fato de que estes operam sempre dentro de faixas de temperatura, ou seja, quando a temperatura atinge o valor máximo pré-estabelecido, o termostato emite um sinal para o compressor interromper seu funcionamento ou reduzir sua rotação (no caso de compressores de capacidade variável); e ao contrário, quando a temperatura atinge o valor mais baixo, o sistema volta a operar na máxima capacidade. Estas variações também geram perdas elevadas.
OBJETIVOS E VANTAGENS DA PRESENTE INVENÇÃO
A presente invenção tem como objetivo proporcionar um sistema de refrigeração de refrigeradores domésticos que tenha uma elevada eficiência e um custo reduzido.
Outro dos objetivos da presente invenção consiste em apresentar um sistema de sucção para compressor de fluidos isento de qualquer ocorrência de volume parasita de alta pressão/baixa pressão durante a alternância entre ciclos de alta e baixa pressão. Neste contexto, é também um objetivo da presente invenção apresentar um sistema de sucção para compressor de fluidos capaz de operar em alta frequência de alternância entre ciclos de alta e baixa pressão.
O sistema de refrigeração ora tratado compreende um compressor associado, por meio de um trecho de tubo de descarga de fluido refrigerante, a pelo menos um condensador de um sistema de refrigeração, sendo que uma primeira linha de fluido refrigerante parte do condensador e retorna para o compressor e uma segunda linha de fluido refrigerante parte do condensador e retorna para o compressor.
Assim, o sistema de acordo com a invenção pode operar de forma tradicional, onde cada linha de sucção opera sequencialmente em um ritmo lento, ou, de preferência, em um ritmo bem rápido em que a troca de operação de uma linha de sucção para a outra linha de sucção se processa de uma maneira muito rápida, de modo que o sistema interpreta como se as duas linhas estivessem operando simultaneamente.
Esta característica de troca rápida das linhas proporciona uma elevada eficiência do sistema, fazendo com que o compartimento de refrigeração e o freezer operem, simultaneamente, em uma temperatura praticamente constante. Assim, evitam-se as perdas dos sistemas da técnica anterior, os quais operam com base em faixas de temperatura, conforme descrito anteriormente.
Outra vantagem do sistema de acordo com a invenção é o fato de que é possível controlar o tempo em que cada linha fica acionada, o que possibilita o controle da capacidade requerida para cada uma delas. A este controle de tempo de abertura de válvulas pode ser associado um compressor de capacidade variável. Esta associação permite cobrir uma grande gama de capacidades para cada linha de sucção, com o total controle da capacidade de cada linha de sucção, independente e concomitantemente.
Outra vantagem do sistema de acordo com a invenção é o fato de que não há nenhum trecho das linhas de sucção sujeito a duas pressões de operação, conforme ocorre no sistema da técnica anterior mostrado na figura 1. Assim, eliminam- se as perdas descritas anteriormente.
Em compressores herméticos, recíprocos ou lineares, aplicados na refrigeração doméstica, comumente a sucção do compressor é equalizada com a carcaça do mesmo. Desta forma a carcaça fica na mesma pressão da sucção e no caso de compressores que usam óleo lubrificante para seus mancais, este pode retornar facilmente para o cárter. Assim, outra vantagem do sistema de acordo com a invenção é o fato de que pode-se optar por uma das linhas de sucção ser equalizada com o interior da carcaça e também permitir que o óleo vindo nesta linha retorne ao cárter. O óleo que retorna pela linha não equalizada será bombeado novamente para a linha de descarga, onde se misturará com o gás vindo da outra linha de sucção e uma parte será levada para o cárter quando voltar para o compressor pela linha de sucção equalizada. Desta forma sempre haverá um caminho para o óleo voltar ao compressor. Em compressores onde não é empregado óleo lubrificante, as duas linhas poderiam ser herméticas, caso for desejado.
SUMÁRIO DA INVENÇÃO
A presente invenção revela, de acordo com sua concretização preferencial, um sistema de refrigeração de um refrigerador, particularmente de um refrigerador com um compartimento de refrigeração e um freezer, o qual compreende um compressor unido a pelo menos um condensador por meio de um trecho de tubo de descarga de fluido refrigerante, sendo prevista uma primeira linha de fluido refrigerante partindo do condensador e retornando para o compressor (a dita primeira linha portando, sequencialmente, um dispositivo de expansão e um evaporador disposto no compartimento de refrigeração), e uma segunda linha de fluido refrigerante partindo do condensador e retornando para o compressor (a dita segunda linha portando, sequencialmente, um dispositivo de expansão e um evaporador disposto no freezer). O compressor apresenta pelo menos duas entradas de sucção, sendo que a primeira linha de fluido refrigerante está conectada à primeira entrada e a segunda linha de fluido refrigerante está conectada à segunda entrada, e as duas entradas apresentam, cada uma, uma válvula de sucção.
A válvula de sucção da primeira entrada de sucção é uma válvula comandável remotamente, sendo preferencialmente uma válvula solenóide ou uma válvula pneumática ou uma válvula hidráulica. A válvula de sucção da segunda entrada de sucção é uma válvula operável mecanicamente. A primeira e segunda válvulas de sucção operam de maneira alternada, sendo que a alternância da operação das válvulas se processa, de preferência, rapidamente.
Os respectivos dispositivos de expansão da primeira e segunda linhas de fluido refrigerante são, de preferência, tubos capilares.
Pelo menos uma linha de entrada é acoplada hermeticamente à câmara de compressão do compressor. Pelo menos uma linha de entrada é equalizada ao volume da carcaça do compressor. Pelo menos um bocal de entrada é espaçado da carcaça do compressor e apresenta pelo menos uma extremidade distanciada de sua respectiva linha de entrada.
A presente invenção revela também, de acordo com sua concretização opcional, um sistema de sucção para compressor de fluidos passível de associação a um compressor de fluidos e compreende pelo menos um dispositivo de seleção de fluidos diretamente conectado à pelo menos pelo uma entrada de sucção do compressor de fluidos. O citado dispositivo de seleção de fluidos recebe pelo menos duas linhas de alimentação, e é capaz de comutar, seletivamente, o fluido pressurizado de uma dentre as pelo menos duas linhas de alimentação para a entrada de sucção do compressor de fluidos. O dispositivo de seleção de fluidos compreende pelo menos uma via de saída fluidos e pelos menos duas vias de entradas de fluidos. O dispositivo de seleção de fluidos compreende uma válvula direcional pneumática de três vias / duas posições. Também preferencialmente, o acionamento do dispositivo de seleção de fluidos é elétrico, via solenóide. Opcionalmente, o dispositivo de seleção de fluidos compreende uma interconexão de uma válvula direcional simples - on/off - com uma válvula unidirecional.
Cada uma das entradas de fluidos do dispositivo de seleção de fluidos recebe uma única linha de alimentação, e cada linha de alimentação possui uma pressão interna própria e diferente da pressão interna das demais linhas de alimentação. Preferencialmente, pelo menos uma das linhas de alimentação é hermética. Também preferencialmente, pelo menos uma das linhas de alimentação é equalizada com a pressão da carcaça do compressor de fluidos.
DESCRIÇÃO RESUMIDA DOS DESENHOS
Figura 1 - ilustra, de forma esquemática e resumida, o sistema de sucção do sistema de refrigeração descrito no documento US 5,531 ,078 (com as referências indicativas anteriormente utilizadas);
A figura 2 mostra uma concretização preferida do sistema de refrigeração de acordo com a invenção;
A figura 3 mostra uma primeira concretização da válvula de sucção comandável remotamente, do sistema de acordo com a invenção, na condição fechada;
A figura 4 mostra a mesma vista da figura 3, mas com a válvula de sucção comandável remotamente na condição aberta;
A figura 5 mostra uma segunda concretização da válvula de sucção comandável remotamente, do sistema de acordo com a invenção, na condição aberta;
A figura 6 mostra a válvula da figura 5 na condição fechada; A figura 7 mostra um gráfico de operação do sistema de acordo com a invenção, onde é utilizado um compressor de capacidade variável;
A figura 8 mostra um gráfico de operação do sistema de acordo com a invenção, onde é utilizado um compressor de capacidade fixa;
A figura 9 mostra um detalhe ampliado de um compressor contendo uma entrada de sucção equalizada com a carcaça do mesmo (além de outra entrada hermética de sucção); e
A figura 10 mostra, também de forma esquemática, uma concretização opcional do sistema de sucção para compressor de fluidos.
DESCRIÇÃO DETALHADA DA INVENÇÃO
Concretização Preferencial A figura 2 mostra o sistema de acordo com a invenção, onde se observa um compressor 1 unido a um condensador 3 por meio de um trecho de tubo de descarga de fluido refrigerante 2, o dito trecho partindo de uma válvula de descarga 2a. Se observa ainda uma primeira linha de fluido refrigerante 4 com um dispositivo de expansão 5 e um evaporador 6 disposto no compartimento de refrigeração 7, assim como uma segunda linha de fluido refrigerante 8 com um dispositivo de expansão 9 e um evaporador 10 disposto no freezer 11. De preferência os dispositivos de expansão são tubos capilares. O compressor 1 apresenta duas entradas de sucção 12 e 13, onde a primeira linha de fluido refrigerante 4 está conectada à primeira entrada 12 e a segunda linha de fluido refrigerante 8 está conectada à segunda entrada 13. Na primeira linha de fluido refrigerante 4 a pressão é maior do que na segunda linha 8.
Na primeira entrada de sucção 12 está disposta uma válvula de sucção comandável remotamente 14, que é de preferência uma válvula solenóide. Assim, durante a operação, a válvula solenóide se abre e o fluido refrigerante da linha 4, que está a uma pressão maior, ocupa a câmara de compressão e impede a abertura da outra válvula de sucção 15 disposta na segunda entrada de sucção 13. Em seguida, a válvula solenóide 14 se fecha e o fluido refrigerante é comprimido e escoa pelo duto de descarga 2. Após esta etapa, a válvula solenóide 14 permanece fechada e a válvula 15 se abre, possibilitando que o fluido refrigerante da segunda linha 8 seja aspirado e, posteriormente, comprimido e escoado.
Conforme já citado anteriormente, de preferência, esta troca de operação de uma linha de sucção para a outra é efetuada de uma forma bem rápida, e assim, o sistema interpreta como se as duas linhas estivessem operando simultaneamente, o que possibilita a operação do sistema sem a utilização de faixas de temperatura, praticamente com uma temperatura constante no freezer, por exemplo -18 C°, e outra temperatura constante no compartimento de refrigeração, por exemplo 5 C°.
A figura 3 mostra uma primeira concretização da válvula comandável remotamente 14, que consiste em uma válvula solenóide disposta na entrada de sucção 12. Observa-se na figura que a bobina 16 da válvula está montada no interior da entrada de sucção 12 e a contra-sede 17 da válvula se encontra dentro da câmara de compressão 18, na condição fechada. Nesta condição a bobina 16 está acionada, impedindo a abertura da válvula solenóide 14, e, com isto, possibilitando a abertura da válvula 15 conforme mostra a figura.
A figura 4 mostra a mesma vista da figura 3, sendo que nesta figura a bobina 16 não está energizada e a válvula solenóide 14 está aberta, impedindo, assim, a abertura da válvula de sucção 15. A figura 5 mostra uma segunda concretização da válvula solenóide 14, onde se observa que a bobina 16 da válvula está montada na primeira linha de fluido refrigerante 4 e a contra-sede 17 da válvula atua fora da câmara de compressão 18. Esta concretização tem a vantagem de utilizar um espaço menor na parte interna do cilindro, uma vez que o circuito eletromagnético se situa na linha de sucção. Observa-se ainda na figura que a válvula solenóide 14 está na condição aberta, enquanto a válvula de sucção 15 está fechada. Enquanto a válvula 17 está aberta a válvula de sucção 18 pode abrir e fechar várias vezes.
A figura 6 mostra a válvula da figura 5 na condição fechada, ou seja, com a sua contra-sede 17 fechando a entrada de sucção 12, enquanto que a válvula de sucção 15 está aberta.
As figuras 7 e 8 mostram gráficos de capacidade e tempo de operação de compressores utilizados no sistema de acordo com a invenção, onde a figura 6 mostra a operação de um compressor de capacidade variável, e a figura 7 a operação de um compressor de capacidade fixa. Conforme já é conhecido, o compressor de capacidade variável opera de maneira contínua, sem paralisações, apenas aumentando ou reduzindo a sua velocidade de acordo com a necessidade de operação, enquanto que o compressor de capacidade fixa interrompe a sua operação em determinados intervalos, conforme os trechos indicados com "off" na figura 7. Tendo em vista que na presente invenção o freezer e o compartimento de refrigeração operam com temperaturas praticamente constantes, os intervalos de paralisação do compressor de capacidade fixa são muito reduzidos.
Além da concretização apresentada anteriormente, o mesmo conceito inventivo poderá ser aplicado a outras alternativas ou possibilidades de utilização do invento. Por exemplo, o sistema de acordo com a invenção pode empregar qualquer tipo de compressor e não somente o compressor linear mostrado nas figuras. Em outro exemplo, o sistema poderia apresentar várias entradas de sucção de múltiplos compartimentos de refrigeração com diferentes temperaturas de operação.
A figura 9 um detalhe ampliado de um compressor contendo uma entrada de sucção equalizada com a carcaça do mesmo, onde se observa um compressor 1 b provido de três bocais: um bocal de saída provido de válvula de descarga 2b para conexão de um tubo de descarga de fluido refrigerante (não mostrado); um bocal de entrada 3b conectado a um orifício 31b da carcaça do compressor 1b; e um segundo bocal de entrada 4b não conectado à da carcaça com compressor 1 b. No bocal de entrada 3b existe uma válvula de sucção 5b. No bocal de entrada 4b existe uma válvula solenóide 6b contendo internamente uma bobina 61b e uma contra-sede 62b localizada no interior da câmara de compressão 7b.
A primeira linha de fluido refrigerante 8b acopla-se hermeticamente ao orifício 31 b da carcaça e ao compressor 1 b.
A segunda entrada de fluido refrigerante 9b acopla-se à carcaça, entretanto, não possui ligação física com a extremidade 41b do bocal de entrada 4b. Esta configuração permite a equalização de pressão entre a entrada de fluido refrigerante 9b e a carcaça do compressor 1 b.
Cabe enfatizar que independentemente da quantidade de linhas de entrada eventualmente existentes no sistema, segundo o desenvolvimento aqui previsto, pelo menos uma das entradas de pelo menos uma destas linhas apresentará uma configuração similar à configuração da segunda entrada de fluido refrigerante 9b (para possibilitar a equalização de pressões além de permitir o retorno de eventual óleo lubrificante existente na linha de entrada para o interior da carcaça).
Concretização Opcional
De acordo com os objetivos da presente invenção, é também apresentada uma versão opcional da concretização anteriormente descrita.
Segundo esta concretização opcional, e conforme ilustrado na figura 10, é apresentado um sistema de sucção para compressor de fluidos com apenas uma entrada de sucção. Tal sistema de sucção permite que um compressor com apenas uma entrada de sucção opere de modo similar ao compressor com duas entradas de sucção anteriormente descrito, portanto, o sucção para compressor de fluidos pode ser igualmente implementado em um sistema de refrigeração de um refrigerador, particularmente de um refrigerador doméstico com um compartimento de refrigeração e um freezer. Entretanto, o sistema de sucção para compressor de fluidos não possui limitação quanto a sua gama de aplicações.
O sistema de sucção para compressor de fluidos é esquematicamente ilustrado na figura 10. Nesta figura é possível verificar que o compressor de fluidos 1c, preferencialmente do tipo elétrico, encontra-se alojado no interior do cárter 2c, e possui pelo menos uma entrada de sucção 11c e pelo menos uma saída de fluidos 12c.
Ainda de acordo com a figura 10, nota-se que o sistema de sucção para compressor de fluidos propriamente dito compreende pelo menos um dispositivo de seleção de fluidos 3c, o qual prevê pelo menos uma via de saída fluidos 31c e pelos menos duas vias de entradas de fluidos 32c. A saída de fluidos 31c do dispositivo de seleção de fluidos 3c encontra- se diretamente conectado à pelo menos pelo menos uma entrada de sucção 11c do compressor de fluidos 1c.
Cada uma das entradas de fluidos 32c recebe uma única linha e/ou tubulação 41c, 42c de fluidos. Cada uma dentre as linhas e/ou tubulações 41c, 42c possui uma pressão interna própria e preferencialmente diferente da pressão interna das demais linhas e/ou tubulações 41c, 42c. Isto permite que o compressor de fluidos 1c trabalhe com diferentes pressões de alimentação.
O dispositivo de seleção de fluidos 3c compreende uma válvula direcional pneumática de três vias / duas posições, de acionamento elétrico via solenóide. Preferencialmente, o acionamento do solenóide é remoto.
A linha e/ou tubulação 41c (de alta pressão) é conectada a qualquer uma das vias entradas de fluidos 32c, enquanto a linha e/ou tubulação 42c (de baixa pressão) é conectada à outra das vias entradas de fluidos 32c. Novamente deve-se salientar que a via saída fluidos 31c do dispositivo de seleção de fluidos 3c é diretamente conectada à pelo menos uma entrada de sucção 11c do compressor de fluidos 1c.
Preferencialmente, uma das linhas e/ou tubulações 41c, 42c é hermética (com fluido pressurizado isolado do meio externo), enquanto a outra linha e/ou tubulação 41c, 42c é equalizada com a carcaça do compressor de fluidos 1c.
O funcionamento do sistema de sucção para compressor de fluidos ora proposto simples: O dispositivo de seleção de fluidos 3c, quando acionado, direciona, seletivamente, o fluido pressurizado de uma das linhas e/ou tubulações 41c, 42c para o interior do compressor de fluidos 1c, onde ocorre o processo convencional de compressão e exaustão dos fluidos pressurizados.
A conexão direta entre a via saída fluidos 31c do dispositivo de seleção de fluidos 3c e uma entrada de sucção 11c do compressor de fluidos 1c anula qualquer possibilidade de existência de volume parasita de alta pressão/baixa pressão durante a alternância entre ciclos de alta e baixa pressão. Isto permite que o dispositivo de seleção de fluidos 3c possa ser acionado repetidas vezes em um curto período de tempo, desencadeando a alternância (em alta frequência) da pressão de trabalho, a qual é seletivamente obtida através das linhas e/ou tubulações 41c, 42c.
Opcionalmente, o dispositivo de seleção de fluidos 3c pode compreender ainda (no lugar de válvula direcional pneumática de três vias / duas posições) uma interconexão de uma válvula direcional simples (on/off) com uma válvula unidirecional. Preferencialmente, a comutação da válvula direcional simples é realizada via solenóide, por acionamento remoto.
Novamente, é importante enfatizar que a interconexão de uma válvula direcional simples (on/off) com uma válvula unidirecional (possuindo pelo menos duas vias de entrada e uma via de saída) encontra-se diretamente conectada a pelo menos uma entrada de sucção 11c do compressor de fluidos 1c.
Tendo sido descritos exemplos de concretização da presente invenção, deve ser entendido que o escopo da mesma abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1. Sistema de refrigeração de um refrigerador, particularmente de um refrigerador com um compartimento de refrigeração (7) e um freezer (11 ), o dito sistema compreendendo um compressor (1 ) unido a pelo menos um condensador (3) por meio de um trecho de tubo de descarga de fluido refrigerante (2); uma primeira linha de fluido refrigerante (4) partindo do condensador (3) e retornando para o compressor (1 ), a dita primeira linha (4) portando, sequencialmente, um dispositivo de expansão (5) e um evaporador (6) disposto no compartimento de refrigeração (7); e uma segunda linha de fluido refrigerante (8) partindo do condensador (3) e retornando para o compressor (1 ), a dita segunda linha (8) portando, sequencialmente, um dispositivo de expansão (9) e um evaporador (10) disposto no freezer (11 ), CARACTERIZADO pelo fato de que o compressor (1 ) apresenta pelo menos duas entradas de sucção (12, 13), sendo que a primeira linha de fluido refrigerante (4) está conectada à primeira entrada (12) e a segunda linha de fluido refrigerante (8) está conectada à segunda entrada (13), e as duas entradas apresentam, cada uma, uma válvula de sucção (14, 15).
2. Sistema de refrigeração de acordo com a reivindicação 1 , CARACTERIZADO pelo fato de que a válvula de sucção (14) da primeira entrada de sucção (12) é uma válvula comandável remotamente.
3. Sistema de refrigeração de acordo com a reivindicação 2,
CARACTERIZADO pelo fato de que a válvula comandável remotamente é uma válvula solenóide.
4. Sistema de refrigeração de acordo com a reivindicação 2, CARACTERIZADO pelo fato de que a válvula comandável remotamente é uma válvula pneumática.
5. Sistema de refrigeração de acordo com a reivindicação 2, CARACTERIZADO pelo fato de que a válvula comandável remotamente é uma válvula hidráulica.
6. Sistema de refrigeração de acordo com a reivindicação 1 , CARACTERIZADO pelo fato de que a válvula de sucção (15) da segunda entrada de sucção (13) é uma válvula operável mecanicamente.
7. Sistema de refrigeração de acordo com a reivindicação 1 , CARACTERIZADO pelo fato de que os respectivos dispositivos de expansão (5, 9) da primeira e segunda linhas de fluido refrigerante (4, 8) são, de preferência, tubos capilares.
8. Sistema de refrigeração de acordo com a reivindicação 1 , CARACTERIZADO pelo fato de que a primeira e segunda válvulas de sucção (14, 15) operam de maneira alternada, sendo que a alternância da operação das válvulas se processa, de preferência, rapidamente.
9. Sistema de refrigeração de acordo com qualquer uma das reivindicações de 1 a 8, caracterizado pelo fato de que prever: pelo menos uma linha de entrada (8c) acoplada hermeticamente à câmara de compressão (7c) do compressor (1c); pelo menos uma linha de entrada (9c) equalizada ao volume da carcaça do compressor (1c); e pelo menos um bocal de entrada (4c) sendo espaçado da carcaça do compressor (1c) e apresentando pelo menos uma extremidade (41c) distanciada de sua respectiva linha de entrada.
10. Sistema de sucção para compressor de fluidos, compreendendo um sistema passível de associação a um compressor de fluidos (1c), caracterizado pelo fato de compreender:
pelo menos um dispositivo de seleção de fluidos (3c) diretamente conectado à pelo menos pelo uma entrada de sucção (11c) do compressor de fluidos (1c);
o dispositivo de seleção de fluidos (3c) recebendo pelo menos duas linhas de alimentação (41c, 42c);
o dispositivo de seleção de fluidos (3c) sendo capaz de comutar, seletivamente, o fluido pressurizado de uma dentre as pelo menos duas linhas de alimentação (41c, 42c) para a entrada de sucção (11c) do compressor de fluidos (1c).
11. Sistema, de acordo com a reivindicação 10, caracterizado pelo fato de que o dispositivo de seleção de fluidos (3c) compreende pelo menos uma via de saída fluidos (31c) e pelos menos duas vias de entradas de fluidos (32c).
12. Sistema, de acordo com a reivindicação 11 , caracterizado pelo fato de que o dispositivo de seleção de fluidos (3c) compreende uma válvula direcional pneumática de três vias / duas posições.
13. Sistema, de acordo com a reivindicação 11 , caracterizado pelo fato de que o acionamento do dispositivo de seleção de fluidos (3c) é elétrico, via solenóide.
14. Sistema, de acordo com a reivindicação 10 ou 11 , caracterizado pelo fato de que cada uma das entradas de fluidos (32c) do dispositivo de seleção de fluidos (3c) recebe uma única linha de alimentação (41c, 42c).
15. Sistema, de acordo com a reivindicação 11 , caracterizado pelo fato de que cada linha de alimentação (41c, 42c) possui uma pressão interna própria e diferente da pressão interna das demais linhas de alimentação (41c, 42c).
16. Sistema, de acordo com a reivindicação 15, caracterizado pelo fato de que pelo menos uma das linhas de alimentação (41c, 42c) é hermética.
17. Sistema, de acordo com a reivindicação 15, caracterizado pelo fato de que pelo menos uma das linhas de alimentação (41c, 42c) é equalizada com a pressão da carcaça do compressor de fluidos (1c).
18. Sistema, de acordo com a reivindicação 10, caracterizado pelo fato de que o dispositivo de seleção de fluidos (3c) compreende uma interconexão de uma válvula direcional simples - on/off - com uma válvula unidirecional.
PCT/BR2011/000120 2010-04-26 2011-04-26 Sistema de refrigeração de um refrigerador e sistema de aspiração para um fluido compressor WO2011134030A2 (pt)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013506415A JP6023043B2 (ja) 2010-04-26 2011-04-26 冷蔵庫の冷却システムおよび流体圧縮器の吸引システム
CN201180028408.4A CN102947652B (zh) 2010-04-26 2011-04-26 冰箱的冷却系统和用于压缩机流体的吸入系统
EP11730872.6A EP2581690A2 (en) 2010-04-26 2011-04-26 Cooling system of a refrigerator and suction system for a compressor fluid
KR1020127028991A KR20130058683A (ko) 2010-04-26 2011-04-26 냉각장치의 냉각 시스템 및 컴프레서 유체를 위한 석션 시스템
US13/643,862 US9335084B2 (en) 2010-04-26 2011-04-26 Cooling system of a refrigerator and suction system for a compressor fluid
US14/511,455 US20150020538A1 (en) 2010-04-26 2014-10-10 Cooling system of a refrigerator and suction system for a compressor fluid

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
BRPI1001359-8 2010-04-26
BRC11001359-8A BRPI1001359C1 (pt) 2010-04-26 2010-04-26 sistema de refrigeração de um refrigerador
BR018110015148 2011-04-25
BRC11001359-8 2011-04-25
BRPI1101972-7A BRPI1101972B1 (pt) 2011-04-25 2011-04-25 Sistema de sucção para compressor de fluidos
BR018110015157 2011-04-25
BRPI1101972-7 2011-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/643,862 A-371-Of-International US9335084B2 (en) 2010-04-26 2011-04-26 Cooling system of a refrigerator and suction system for a compressor fluid
US14/511,455 Division US20150020538A1 (en) 2010-04-26 2014-10-10 Cooling system of a refrigerator and suction system for a compressor fluid

Publications (2)

Publication Number Publication Date
WO2011134030A2 true WO2011134030A2 (pt) 2011-11-03
WO2011134030A3 WO2011134030A3 (pt) 2012-07-19

Family

ID=47846230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000120 WO2011134030A2 (pt) 2010-04-26 2011-04-26 Sistema de refrigeração de um refrigerador e sistema de aspiração para um fluido compressor

Country Status (6)

Country Link
US (2) US9335084B2 (pt)
EP (1) EP2581690A2 (pt)
JP (1) JP6023043B2 (pt)
KR (1) KR20130058683A (pt)
CN (1) CN102947652B (pt)
WO (1) WO2011134030A2 (pt)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255309A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Energy efficiency of room air conditioner or unitary air conditioning system by using dual suction compressor
US20130255290A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Energy efficiency of air conditioning system by using dual suction compressor
EP2772702A1 (en) * 2013-02-28 2014-09-03 Whirlpool Corporation Dual suction compressor with rapid suction port switching mechanism for matching appliance compartment thermal loads with cooling capacity
WO2015013617A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems for at least two rooms using a single outdoor unit
DE202018101608U1 (de) 2017-03-24 2018-06-22 Whirlpool S.A. Verdampfer für ein Kältesystem
US20180180041A1 (en) * 2014-03-26 2018-06-28 Whirlpool S.A. Reciprocating Compressor Provided with Arrangement of Suction Valves
US10539341B2 (en) 2015-09-15 2020-01-21 Embraco—Industria De Compressores E Solucoes Em Refrigeracao Ltda. Multi-evaporation cooling system
US10711777B2 (en) 2015-03-19 2020-07-14 Embraco Industria De Compressores E Solucoes Em Refrigeracao Ltda Suction acoustic filter for compressor
US10731642B2 (en) 2013-02-15 2020-08-04 Embraco—Industria De Compressores E Solucoes Em Refrigeracao Ltda. Method for actuating semi-commanded valve and system for actuating semi-commanded valve for multi-suction alternative compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023043B2 (ja) * 2010-04-26 2016-11-09 ワールプール・エシ・ア 冷蔵庫の冷却システムおよび流体圧縮器の吸引システム
DE102013011050A1 (de) * 2013-04-22 2014-10-23 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gerfriergerät
BR102013024565A2 (pt) * 2013-09-25 2015-09-15 Whirlpool Sa sistema para controle de operação de motor elétrico de compressor e método para controle de operação de motor elétrico de compressor
BR102014007252A2 (pt) * 2014-03-26 2015-12-08 Whirlpool Sa compressor alternativo provido de arranjo de válvulas de sucção
BR102014007254A2 (pt) * 2014-03-26 2015-12-08 Whirlpool Sa dispositivo seletor de fluidos para compressor alternativo e filtro acústico provido de dispositivo seletor de fluidos
BR102014029659B1 (pt) * 2014-11-27 2022-01-11 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Filtro acústico de sucção e linha de sucção incluindo filtro acústico de sucção
BR102015006163A2 (pt) * 2015-03-19 2016-10-18 Whirlpool Sa compressor alternativo incluindo filtro acústico de sucção
BR102015021009B1 (pt) * 2015-08-31 2022-05-03 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Método e sistema de proteção e diagnóstico de um compressor linear e compressor linear
CN109883104A (zh) * 2018-12-27 2019-06-14 青岛海尔特种制冷电器有限公司 冰箱及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531078A (en) 1994-12-27 1996-07-02 General Electric Company Low volume inlet reciprocating compressor for dual evaporator refrigeration system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333899A (en) 1934-05-25 1943-11-09 Gen Motors Corp Refrigerating apparatus
US2123497A (en) * 1936-11-11 1938-07-12 Westinghouse Electric & Mfg Co Two-temperature refrigerating apparatus
US2481605A (en) * 1944-07-10 1949-09-13 Seeger Refrigerator Co Refrigerator system
CH271484A (de) 1948-12-23 1950-10-31 Sulzer Ag Betriebsverfahren für Kälteanlagen und Wärmepumpen.
US2976698A (en) 1951-09-19 1961-03-28 Muffly Glenn Reversible refrigerating systems
US3108453A (en) * 1959-08-05 1963-10-29 Mrs Bonita E Runde Refrigerating apparatus including heat exchange stabilizer means
US3759057A (en) * 1972-01-10 1973-09-18 Westinghouse Electric Corp Room air conditioner having compressor with variable capacity and control therefor
US4184341A (en) 1978-04-03 1980-01-22 Pet Incorporated Suction pressure control system
US4373870A (en) * 1980-07-17 1983-02-15 General Motors Corporation Variable capacity positive displacement type compressor
JPS6048463A (ja) 1983-08-25 1985-03-16 株式会社デンソー 冷房冷凍装置
JPS6172966A (ja) * 1984-09-17 1986-04-15 株式会社デンソー 冷媒圧縮機
JPS61105059A (ja) * 1984-10-25 1986-05-23 株式会社東芝 圧縮機
JPS61184364A (ja) * 1985-02-13 1986-08-18 株式会社デンソー ロ−タリ−ベ−ン形圧縮機
US5228308A (en) * 1990-11-09 1993-07-20 General Electric Company Refrigeration system and refrigerant flow control apparatus therefor
TW222342B (pt) 1992-03-31 1994-04-11 Motorola Lac
JP3413857B2 (ja) 1992-12-09 2003-06-09 凸版印刷株式会社 金属酸化物蒸着フィルムの製造方法
JP3435189B2 (ja) * 1993-07-09 2003-08-11 株式会社東芝 冷凍冷蔵庫用の冷凍装置
US6213731B1 (en) 1999-09-21 2001-04-10 Copeland Corporation Compressor pulse width modulation
JP2005134080A (ja) * 2003-10-31 2005-05-26 Toshiba Corp 冷蔵庫
EP1783443A4 (en) 2004-08-06 2012-12-05 Daikin Ind Ltd FREEZING DEVICE
US7353660B2 (en) 2004-09-13 2008-04-08 Carrier Corporation Multi-temperature cooling system with unloading
US7114349B2 (en) 2004-12-10 2006-10-03 Carrier Corporation Refrigerant system with common economizer and liquid-suction heat exchanger
KR100747496B1 (ko) 2006-11-27 2007-08-08 삼성전자주식회사 로터리 압축기 및 그 제어방법 그리고 이를 이용한공기조화기
JP6023043B2 (ja) * 2010-04-26 2016-11-09 ワールプール・エシ・ア 冷蔵庫の冷却システムおよび流体圧縮器の吸引システム
BRPI1005090A2 (pt) * 2010-12-10 2013-04-02 Whirlpool Sa mÉtodos de controle de compressor com dupla sucÇço para sistemas de refrigeraÇço

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531078A (en) 1994-12-27 1996-07-02 General Electric Company Low volume inlet reciprocating compressor for dual evaporator refrigeration system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255309A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Energy efficiency of room air conditioner or unitary air conditioning system by using dual suction compressor
US20130255290A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Energy efficiency of air conditioning system by using dual suction compressor
US10731642B2 (en) 2013-02-15 2020-08-04 Embraco—Industria De Compressores E Solucoes Em Refrigeracao Ltda. Method for actuating semi-commanded valve and system for actuating semi-commanded valve for multi-suction alternative compressor
US10774827B2 (en) 2013-02-15 2020-09-15 Embraco Industria de Compressores e Solucoes em Refrigeracao Ltda. Method for actuating semi-commanded valve and system for actuating semi-commanded valve for multi-suction alternative compressor
EP2772702A1 (en) * 2013-02-28 2014-09-03 Whirlpool Corporation Dual suction compressor with rapid suction port switching mechanism for matching appliance compartment thermal loads with cooling capacity
US9347694B2 (en) 2013-02-28 2016-05-24 Whirlpool Corporation Dual suction compressor with rapid suction port switching mechanism for matching appliance compartment thermal loads with cooling capacity
WO2015013617A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems for at least two rooms using a single outdoor unit
WO2015013603A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Split air conditioning system with a single outdoor unit
US20180180041A1 (en) * 2014-03-26 2018-06-28 Whirlpool S.A. Reciprocating Compressor Provided with Arrangement of Suction Valves
US10711777B2 (en) 2015-03-19 2020-07-14 Embraco Industria De Compressores E Solucoes Em Refrigeracao Ltda Suction acoustic filter for compressor
US10539341B2 (en) 2015-09-15 2020-01-21 Embraco—Industria De Compressores E Solucoes Em Refrigeracao Ltda. Multi-evaporation cooling system
DE202018101608U1 (de) 2017-03-24 2018-06-22 Whirlpool S.A. Verdampfer für ein Kältesystem

Also Published As

Publication number Publication date
EP2581690A2 (en) 2013-04-17
CN102947652B (zh) 2015-04-08
KR20130058683A (ko) 2013-06-04
US9335084B2 (en) 2016-05-10
JP6023043B2 (ja) 2016-11-09
WO2011134030A3 (pt) 2012-07-19
JP2013528769A (ja) 2013-07-11
CN102947652A (zh) 2013-02-27
US20130160482A1 (en) 2013-06-27
US20150020538A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2011134030A2 (pt) Sistema de refrigeração de um refrigerador e sistema de aspiração para um fluido compressor
US9714785B2 (en) Higher efficiency appliance employing thermal load shifting in refrigerators having horizontal mullion
JPWO2019003291A1 (ja) 空気調和装置
WO2020015407A1 (zh) 一种具有深冷功能的双系统风冷冰箱及其制冷控制方法
JPH05223370A (ja) 冷蔵庫
KR100618212B1 (ko) 에어컨의 냉매 온도 제어 시스템 및 그 제어방법
CN107923667A (zh) 包括多个储存室的制冷器具
CN113286974B (zh) 用于器具的快速切换多蒸发器系统
BR102014004087A2 (pt) compressor de dupla sucção com mecanismo de comutação de orifício de sucção rápida para correspondência de cargas térmicas de compartimentos do aparelho com capacidade de refrigeração
BRPI1001359A2 (pt) sistema de refrigeração de um refrigerador e processo de operação do sistema
JP3321192B2 (ja) 冷凍回路
WO2018074370A1 (ja) 冷凍システムおよび室内ユニット
CN113983733B (zh) 冰箱及其制冷控制方法
KR102237596B1 (ko) 냉장고 및 그 제어방법
JP2003207220A (ja) 冷却装置
CN113091339A (zh) 双温制冷系统
KR20120044556A (ko) 냉장고 및 그 제어 방법
WO2014030237A1 (ja) 冷凍装置
KR100461657B1 (ko) 다수개의 증발기를 구비한 냉동사이클
CN219640471U (zh) 换热组件和制冷设备
KR102144467B1 (ko) 냉장고 및 그 제어방법
CN104094071B (zh) 具有两个存放室的制冷器具
KR100857564B1 (ko) 멀티 히트펌프
JP6914433B2 (ja) ショーケース
CN113091341A (zh) 双温制冷系统及制冷装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028408.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013506415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011730872

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028991

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11730872

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13643862

Country of ref document: US