WO2011132859A2 - 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소 - Google Patents

내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소 Download PDF

Info

Publication number
WO2011132859A2
WO2011132859A2 PCT/KR2011/001859 KR2011001859W WO2011132859A2 WO 2011132859 A2 WO2011132859 A2 WO 2011132859A2 KR 2011001859 W KR2011001859 W KR 2011001859W WO 2011132859 A2 WO2011132859 A2 WO 2011132859A2
Authority
WO
WIPO (PCT)
Prior art keywords
screw
resistant
angle
thread
vibration
Prior art date
Application number
PCT/KR2011/001859
Other languages
English (en)
French (fr)
Other versions
WO2011132859A3 (ko
Inventor
우상하
Original Assignee
주식회사 아세아볼트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아세아볼트 filed Critical 주식회사 아세아볼트
Publication of WO2011132859A2 publication Critical patent/WO2011132859A2/ko
Publication of WO2011132859A3 publication Critical patent/WO2011132859A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms

Definitions

  • the present invention relates to a screw and a screw-type mechanical element, and more particularly, it is strong against external impact during fastening, and excellent in preventing loosening after fastening against vibrations in up, down, left and right directions, and according to repeated use.
  • the present invention relates to a screw and a threaded mechanical element having an impact-resistant, vibration-resistant and fastening force reinforcing structure having a structure capable of suppressing a decrease in a loosening torque.
  • Machine screw is a rolling (rolling) of the spiral groove along the outer circumferential surface of the round bar, is used for fastening and fixing between mechanical parts, as well as widely used in the transmission of other power.
  • the screw As its kind, first, according to the arrangement of the screw, it can be roughly divided into a male screw which is a screw formed on a cylindrical outer circumferential surface such as a bolt, and a female screw which is a screw formed on a hollow cylindrical inner circumferential surface such as a nut. Called by the name.
  • Screws can be divided into triangular screws, square screws, trapezoidal screws, saw blades, and round screws, depending on the shape of the threads. Among them, triangular screws with triangular threads are widely used as one of the most common coupling screws. It is becoming.
  • a triangular screw In the case of a triangular screw, it is divided into a metric system and an inch system. According to this division, the shape of the thread may be slightly different, and a typical metric thread angle is 60 degrees.
  • Mechanical screws which are usually the most commonly used triangular screws, have a shape in which only one side of the threads contacts the opposite face of the opposite female threads when the female screw is subjected to a tension force after being fastened to the female screw.
  • the contact surface is formed only between the flanks of the other by the axial force at the time of fastening and the compression force after the fastening between the conventional mechanical screw and the female screw corresponding to each other, an external impact (for example, Impact) when the vibration occurs in the vertical direction as well as the left and right directions, the clamping force is sharply lowered.
  • an external impact for example, Impact
  • the present invention has been made to solve the above problems, to provide a screw and screw mechanical element of a structure that can improve the fastening force by expanding the mutual contact area between the mechanical screw and the female screw as a technical problem. Do it.
  • the present invention has a structure that is strong against external impact, and excellent in preventing the loosening effect after tightening against vibration in the up, down, left and right directions, and can suppress the decrease of the loosening torque value due to repeated use. It is an object to provide a threaded screw and a threaded mechanical element.
  • the valley between the screw thread is preferably further provided with a flat portion that is formed to extend flat to a certain width. As a result, the breaking strength of the screw can be improved.
  • the length of the flat portion may be made of 0.24 ⁇ 0.28 times compared to the pitch length.
  • the screw angle that is the sum of the angle of the front flank surface and the angle of the upper rear flank surface with respect to the flat surface may be 40 ⁇ 2.5 °.
  • the angle of the front flank surface is 10 ⁇ 1 °
  • the angle of the upper rear flank surface is 30 ⁇ 1.5 °
  • the angle of the bottom rear flank surface based on the flat surface may be 10 ⁇ 1 °.
  • the flat portion may be formed on the position of 0.45 ⁇ 0.50 times the height corresponding to the height of the thread, the outer diameter of the flat portion may be formed the same as or smaller than the inner diameter of the female screw.
  • the length of the flat portion may be made of 0.20 ⁇ 0.25 times compared to the pitch length of the screw.
  • a predetermined thread is formed along the outer circumferential surface of the round bar, the angle of the front flank surface forming the inclined direction of the thread in the entry direction of the thread relative to the center of the thread,
  • the screw-type mechanical element is formed smaller than the angle of the rear flank surface constituting the reclining direction, wherein the rear flank surface has a flat portion formed in a horizontal direction in the inclined section is formed in a constant trajectory along the outer circumferential surface of the round bar To provide.
  • the screw-type mechanical element refers to the mechanical element (mechanical elements) formed in the body portion, the screw is a unit component constituting most of the machine, a fastening bolt, a connecting screw, a power transmission shaft, a support It can be understood as a concept including all axes.
  • the screw and screw mechanical elements having the impact-resistant, vibration-resistant and fastening force reinforcing structure of the present invention it is possible to extend the mutual contact area between the mechanical screw and the corresponding female thread correspondingly to exert more enhanced screw tightening force than in the related art. It has a beneficial effect.
  • the screw and screw-type mechanical elements having a shock-resistant, vibration-resistant and fastening force-reinforcing structure of the present invention when the external impact, it suppresses the self-vibration of the up, down, left, right direction, preventing the loosening effect after screwing
  • it is made of a structure that can suppress the deterioration of the loosening torque (torque) value due to repeated use, the durability of the product is improved, as well as the life of the product has an advantageous effect compared to the conventional.
  • FIG. 2 is a structural diagram showing a state in which a general mechanical screw shown in FIG. 1 enters a female screw fastened thereto;
  • FIG. 3 is a structural diagram showing a state in which the fastening is completed after the general mechanical screw shown in FIG. 1 enters a female screw fastened thereto;
  • FIG. 4 is a cross-sectional view showing an embodiment of a screw having an impact resistance, vibration resistance, and fastening force strengthening structure according to the present invention
  • FIG. 5 is an enlarged view of a region A shown in FIG. 4;
  • FIG. 6 is a view structurally showing a state in which an embodiment of a screw having a shock-resistant, vibration-resistant and fastening force-reinforcing structure according to the present invention enters a female screw fastened thereto;
  • FIG. 7 is a structural diagram showing a state in which an embodiment of a screw having an impact resistance, vibration resistance, and a tightening force reinforcing structure according to the present invention is completed after entering a female screw fastened thereto;
  • FIG. 8 is a view showing the actual manufacturing shape by giving a dimension and an angle to one embodiment of a screw having a shock-resistant, vibration-resistant and fastening force reinforcing structure according to the present invention.
  • FIG. 1 is a view showing a cross section of a general mechanical screw (mechanical screw).
  • the illustrated general mechanical screw 1 includes a body part 3 in which a constant thread 10 is formed along a trajectory of a spiral along the outer circumferential surface of a round bar, and formed on an upper end of the body part 3. It is commonly used as a mechanical element with a head 5.
  • a general mechanical screw 1 has the same height f and pitch g along the entire longitudinal section between the inner diameter a and the outer diameter b of the screw 1.
  • a thread 10 having a length is provided.
  • such a mechanical screw (1) has an inclined surface to form a slanted surface at a predetermined angle to the bone 16 with respect to the center of the thread (10), this inclined surface is referred to as flank (12, 14) .
  • flanks 12 and 14 are retracted from the front flank 14 and the screw 1 arranged in the entry direction of the screw 1 on the basis of the crest of the thread 10 for convenience of explanation. It can be seen divided into a rear flank 12 arranged in the direction.
  • the inclined angle (hereinafter referred to as the "plane angle") of the front flank 14 and rear flank 12 from the crest of the thread 10 is It is formed identically to each other.
  • the angles d and e of the flank surfaces 12 and 14 of the general mechanical screw 1 are each set at about 30 degrees, and the sum of these screw angles is set at about 60 degrees.
  • FIG. 2 is a structural view showing a state in which a general mechanical screw enters a female screw mutually fastened thereto
  • FIG. 3 is a structural view showing a state in which a general mechanical screw is mutually completed after entering a female screw fastened thereto.
  • the mechanical screw enters a female screw that is fastened to the screw.
  • the screw thread 10 of the screw contacts only the screw thread 20 with the female thread, and the contact region is the front flank 14 of the thread 10 and the outer flank 24 of the female thread.
  • the screw in this case is complete entry and a strong tightening is applied to the screw. And the same axial force is no longer applied when the screw is tightened, and as opposed to the previous case, the tightening reaction can be made from the female thread, and the screw is pushed in the opposite direction of the axial force (indicated by the arrow in FIG. 3). .
  • the thread 10 of the screw comes into contact only with a certain area with the thread 20 of the female thread, and the contact area is the rear flank 12 of the thread 10 and the inner flank 22 of the female thread. do.
  • such a general mechanical screw has a structure that is not suitable to continuously maintain a stable fastening state because the vibration of the upper, lower, left, right when the external shock is caused.
  • the present invention provides a screw and a threaded mechanical element having such a screw that can change the structure, to suppress vibration even when an external impact is applied, and to secure a stronger tightening force.
  • Figure 4 is a cross-sectional view showing an embodiment of a screw having a shock-resistant, vibration-resistant and fastening force reinforcing structure according to a preferred embodiment of the present invention, which is intended to clearly understand the structural relationship of the present invention. Only the parts characterized are clearly shown.
  • the illustrated screw 100 has an inner diameter (a) and an outer diameter (b) of the screw 100, and a middle having a constant step between the inner diameter (a) and the outer diameter (b). It is a shape which has diameter c further.
  • the middle diameter (c) will be described in more detail when explaining the flat portion in FIG. 5, where one step surface made through the middle diameter (c) is to expand the contact area between the screw and the female screw I will shorten the explanation just to the extent that it is used.
  • the screw 100 is provided with a screw thread 110 having a unique shape along the outer circumferential surface of the round bar, the screw thread 110 is formed along the trajectory of the spiral. And further provided with a head 150 may be used as a screw machine element.
  • mechanical elements refers to the unit parts constituting most of the machine, all the fastening bolts, coupling screws, power transmission shaft, support shaft with a screw according to this configuration It can be understood as including concepts. It is apparent that such threaded mechanical elements are included in the scope of the present invention.
  • FIG. 5 is an enlarged view of region A shown in FIG. 4, and as shown, each thread 110 has the same height f and pitch g length along the entire lengthwise section. It is arranged regularly.
  • the angle e of the front flank 114 is formed smaller than the angle d1 of the rear flanks 112a and 112b with respect to the main core of the thread 110.
  • the front flank 114 is rubbed with the female thread when the screw enters and is tightened through the female thread. This friction acts as a resistance to the rotation of the screw being tightened.
  • the angle e of this front flank 114 may be 10 ⁇ 1 °, and if it has a smaller angle than this, it will lead to a drop in strength of the thread 110 and in extreme cases a thread This can lead to failure of 110.
  • the angle e of the front flank 114 is preferably set at a range of 10 ⁇ 1 ° that can minimize friction with the female screw when the screw is tightened at a level to secure its structural strength.
  • the rear flanks 112a and 112b are portions that come into contact with the female screw after the screw enters through the female screw to complete the fastening.
  • the shape of the rear flanks 112a and 112b according to the present embodiment has a flat portion 113 which forms a single layer in a horizontal direction in the inclined section connected from the top to the bottom and serves as a contact surface with another female screw. It is.
  • the flat portion 113 may be divided into a rear flank 112a at the top and a rear flank 112b at the bottom, and the angle d1 of the rear flank 112a at the top may be a flank at the bottom ( It may be formed differently from the angle d2 of 112b) (that is, d1> d2), and the angle d1 of the rear flank 112a at the top is 30 ⁇ 1.5 °, which satisfies the existing triangular screw standard. (The 1/2 thread standard for metric triangular screws is 30 °).
  • angle d2 of the bottom flank 112b formed under the flat portion 113 may be 10 ⁇ 1 °.
  • the screw-type mechanical element produced by such a screw shape can be determined at a screw angle of 40 ⁇ 2.5 ° the sum of the angle of the front flank 114 and the rear flank (112a) of the top.
  • the flat portion 113 has a middle diameter between the inner diameter of the screw (reference numeral a in FIG. 4) and the outer diameter of the screw (reference numeral b in FIG. 4) through a circumferential surface formed along its outer circumference (FIG. 4). And part c).
  • the flat portion 113 has a shape of a form that can be in contact with each other corresponding to the threaded crest shape of the female thread.
  • the flat portion 113 is located on the height to be 0.45 to 0.50 times from the valley corresponding to the height of the thread 110, the length is preferably 0.20 to 0.25 times the length of the pitch g of the screw.
  • the flat portion 113 is fastened by tightening the screw through the female thread, when the clamp load (clamp load) is applied by an external force for a firm coupling of the screw, the tighter restrained to close to the threaded crest (crest) of the female screw, The left and right clearances of the screw are suppressed, and skin friction is generated between them to strengthen the tightening force.
  • the fastened screw is suppressed up and down vibration, as well as left and right shake caused by external impact, and can prevent the phenomenon that the fastening force is weakened over time, given to the screw during the initial tightening
  • the tension can be sustained as long as possible.
  • valleys 116 between the thread 110 is provided with a flat portion 117 is formed to extend flatly along a predetermined width along the inner diameter of the screw (reference numeral a in FIG. 4).
  • the bone part was formed in a notch shape, and it is easy to cause stress concentration in such a bone part, resulting in a weakening of the breaking strength of the screw.
  • a flat surface that is, a flat portion 117 formed on the valley 116 between the threads 110 is formed on the same line as the inner diameter of the screw, thereby strengthening the breaking strength of the screw.
  • the planar portion 117 may have a length range that is proportional to the length of the screw thread g, and as a preferred embodiment, may be 0.24 to 0.28 times the pitch g length.
  • the length of the flat portion 117 is less than 0.24 times the length of the pitch g, the effect of improving the breaking strength by the flat portion 117 may be insignificant. On the contrary, the length of the flat portion 117 When the pitch g is greater than 0.28 times the length, the number and width of the threads 110 for fastening may be reduced to lower the fastening force of the screws.
  • the flat portion 117 is 0.24 to 0.28 times the length of the pitch g, which helps to secure the clamping force and to improve the breaking strength.
  • FIG. 6 is a view structurally illustrating a state in which an embodiment of a screw having an impact resistance, vibration resistance, and fastening force reinforcing structure according to the present invention enters a female screw fastened thereto.
  • the axial force exerted in the direction in which the screw is engaged by the rotation of the screw causes the thread 110 of the screw to the thread 210 of the female thread with a constant lead width. They are fastened to each other by entering rotation.
  • the threaded thread 110 provided in the screw and the threaded thread 210 provided in the female thread are engaged with each other, and contact with each other in a local area causes friction.
  • the predetermined area of the front flank 114 forming the inclined surface of the thread 110 in the direction of entry of the screw contacts and presses the outer flank 214 of the outer thread 210 of the female thread, thereby resisting the resistance that interferes with the fastening of the screw. To cause.
  • the present invention by changing the design angle of the front flank 114 to 10 ⁇ 1 ° different from the conventional case (30 °), the portion of the thread in contact with the outer flank surface 214 of the thread 210 of the internal thread By reducing the, it is to improve the convenience when screwing.
  • Figure 7 is a view structurally illustrating a state in which an embodiment of the screw having a shock-resistant, vibration-resistant and fastening force reinforcing structure according to the present invention after the fastening is completed after entering the female screw fastened thereto.
  • the screws are tightened to such an extent that they are no longer rotationally fastened and are firmly fastened to the female threads.
  • the screw is no longer applied with the same axial force as when tightening, on the contrary, the tightening repulsion, that is, the compression force (the arrow in Fig. 7) pushes the thread 110 of the screw already tightened by the thread 210 of the female thread. May be operated. That is, a force opposite to the axial force of FIG. 6 may be applied.
  • the thread 110 of the screw is in contact with the thread 20 of the female thread in a predetermined area.
  • the upper rear flank 112a and the flat portion 113 of the thread 110 of the screw The inner flank surface 212 and the crest of the female thread are brought into close contact with each other.
  • the upper rear flank 112a of the thread 110 of the screw is in inclined contact with the flank 212 of the inner thread 210 of the female thread to maximize the friction force, thereby improving the fastening force of the screw.
  • the flat thread 113 of the thread 110 is tightly constrained to the crest of the thread 210 of the female thread, thereby restraining the left and right clearances of the fastened screw and mutual skin friction (skin friction). Improve the fastening force of the screw.
  • the screw according to the preferred embodiment of the present invention by suppressing up and down vibrations due to external impact, as well as left and right shake, to solve the problem of weakening of the tightening force due to vibration or shaking, given to the screw during the first tightening It allows the tension to be sustained as long as possible (eg clamp load).
  • FIG. 8 is a view showing the actual manufacturing shape by giving a dimension and an angle to one embodiment of a screw having a shock-resistant, vibration-resistant and fastening force reinforcing structure according to the present invention.
  • the fabricated screw has a pitch length of 0.3 mm, a flat portion length of 0.08 mm, a thread height of 0.17 mm, and a formation position of the flat portion is formed by 0.1 mm downward from the peak of the thread (i.e., 0.09 mm upward from the valleys of the threads), the screw angle is 40 °, the angle of the front flank is 10 °, and the angle of the upper rear flank is 30 °.
  • the length of the flat portion is 0.07 mm.
  • Table 1 is prepared by comparing the degree of difference in the loosening torque (torque) value due to the external impact between the screw manufactured according to the embodiment shown in FIG. Test result table.
  • the fastening depth in Table 1 is the length of the screw minus the thickness of the iron plate through which the screw is fastened.
  • Table 1 through the test to give an artificial external shock called a drop test through the present example and a comparative example, four tests from one to four times are individually conducted to measure the respective loosening torque values. The loosening torque value corresponding to the average value of is derived.
  • the fastening force is very high compared to the comparative example to which the conventional screw structure is applied, and the fastening force is increased according to the vibration and shaking of up, down, left, and right due to external impact such as falling. It can be seen that it is effectively preventing the weakening phenomenon.
  • Table 2 is a test result table prepared by comparing the degree of difference in the loosening torque value according to the reusability by repeatedly applying the fastening and loosening five times the Example and Comparative Example shown in FIG.
  • the fastening depth in Table 2 is the length of the screw minus the thickness of the iron plate through which the screw is fastened.
  • This test result which is repeatedly derived from fastening and loosening, is a problem directly related to the increase in the endurance life of the product with a screw, and this embodiment can be judged to have a longer endurance life compared to the conventional comparative example. .
  • Table 3 is a test result table prepared by comparing the degree of difference in the loosening torque value according to the reusability by repeatedly applying the fastening and loosening five times the embodiment and comparative example shown in FIG.
  • Table 3 shows the average value of the measured breaking strength torque values by measuring the breaking strength five times through the present example and the comparative example.
  • This improvement in breaking strength is due to the presence of the flat part (reference numeral 117 in FIG. 5) applied to the structure of the present embodiment, and the presence or absence of the flat portion (reference numeral 117 in FIG. 5) which is a difference between the present embodiment and the comparative example. It can be judged that the result.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)
  • Bolts, Nuts, And Washers (AREA)
  • Clamps And Clips (AREA)

Abstract

본 발명은 내충격, 내진동 및 체결력 강화 구조를 갖는 나사에 관한 것으로, 특히, 나사산의 중심을 기준으로, 나사산의 진입 방향 빗면을 이루는 전측플랭크(flank)면의 각도가, 나사산의 후퇴 방향 빗면을 이루는 후측플랭크면의 각도에 비해 작게 형성되고, 후측플랭크면은 경사 구간 내에서 수평 방향으로 단층 형성된 평탄부를 구비하여, 나사와, 나사에 대응하여 상호 체결되는 암나사 사이에서의 접촉 면적을 확장하는 형상으로 이루어져, 외부 충격으로 인한 상, 하, 좌, 우 방향의 진동을 억제하여 나사 체결 후의 자체 풀림 현상을 방지함은 물론, 반복 사용으로 인한 풀림 토크(torque) 저하 문제를 효과적으로 방지할 수 있는 기술에 관한 것이다.

Description

내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소
본 발명은 나사 및 나사식 기계요소에 관한 것으로, 보다 상세하게는 체결 시, 외부 충격에 강하고, 상, 하, 좌, 우 방향의 진동에 대해서도 체결 후 풀림 방지 효과가 탁월하며, 반복 사용에 따른 풀림 토크(torque)값의 저하를 억제할 수 있는 구조로 갖는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소에 관한 기술이다.
기계식 나사(machine screw)는 환봉의 외주면을 따라서 나선 모양의 홈을 전조(rolling)한 것으로서, 기계 부품 간의 체결 및 고정에 활용됨은 물론, 그 외의 동력 전달에도 널리 이용되는 기계요소이다.
그 종류로서, 먼저, 나사의 배치 형태에 따라, 볼트와 같이 원통 외주면에 형성된 나사인 수나사와, 너트와 같이 속이 빈 원통 내주면에 형성된 나사인 암나사로 대별될 수 있으며, 통상적으로는 상기 수나사를 나사라는 명칭으로 지칭한다.
그리고 나사는 나사산의 모양에 따라, 삼각나사, 사각나사, 사다리꼴나사, 톱날나사 및 둥근나사 등으로 나누어질 수 있는데, 이 중 나사산이 삼각형인 삼각나사가 가장 일반적인 결합용 나사의 한 형태로서 널리 이용되고 있다.
삼각나사의 경우, 미터 계 및 인치 계로 나누어지는데, 이러한 구분에 따라 나사산의 모양은 조금씩 차이가 있을 수 있으며, 통상적인 미터 계 나사각은 60도이다.
통상적으로 가장 흔하게 이용되는 삼각나사인 기계식 나사는 암나사에 체결 후 인장력을 받을 때, 나사산의 한쪽 면만이 상호 대향된 암나사의 대응면에 접촉 되는 형상으로 이루어진다.
이러한 종래의 기계식 나사와 이에 대응하는 상호 체결되는 암나사 사이에는 상기와 같은 접촉 형상에 따라, 체결력 강화를 위하여 상호 마찰 면적을 더 확장하기에는 다소 불리한 구조로 이루어질 수밖에 없었으며, 아울러, 상호 체결력을 향상시키기에는 다소 어려움이 따랐다.
아울러, 종래의 기계식 나사와 이에 대응하여 상호 체결되는 암나사 사이에는 체결 시의 축력 및 체결 후의 압축력 발생에 의해 서로 다른 한쪽의 플랭크(flank)에서만 접촉면이 형성되므로, 외부 충격(예를 들면, 낙하 시 충격)으로 인해 상하 방향은 물론 좌우 방향으로 진동 발생 시, 체결력이 급격히 저하되는 문제점이 따랐다.
이에, 본 발명은 상기한 문제점을 해결하기 위해 창안된 것으로, 기계식 나사와 암나사 사이에 상호 접촉 면적을 확장하여 체결력을 향상시킬 수 있는 구조로 된 나사 및 나사식 기계요소를 제공하는 것을 기술적 과제로 삼는다.
또한, 본 발명은 외부 충격에 강하고, 상, 하, 좌, 우 방향의 진동에 대해서도 체결 후 풀림 방지 효과가 탁월하며, 반복 사용에 따른 풀림 토크(torque)값의 저하를 억제할 수 있는 구조로 된 나사 및 나사식 기계요소를 제공하는 것을 그 목적으로 한다.
상기 기술적 과제를 달성하기 위한 본 발명의 사상에 따르면, 나사산의 중심을 기준으로, 상기 나사산의 진입 방향 빗면을 이루는 전측플랭크(flank)면의 각도가, 상기 나사산의 후퇴 방향 빗면을 이루는 후측플랭크면의 각도에 비해 작게 형성되고, 상기 후측플랭크면은 경사 구간 내에서 수평 방향으로 단층 형성된 평탄부를 구비하여, 나사와, 상기 나사에 대응하여 상호 체결되는 암나사 사이에서의 접촉 면적을 확장하는 형상으로 이루어지는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사를 제공한다.
이때, 상기 나사산 사이의 골은 일정폭으로 편평하게 확장 형성되는 평면부를 더 구비하는 것이 좋다. 이로써, 나사의 파단 강도가 향상될 수 있다.
그리고 상기 평면부의 길이는 피치 길이에 비해 0.24~0.28배로 이루어질 수 있다.
또한, 상기 전측플랭크면의 각도와, 상기 평탄면을 기준으로 상단 후측플랭크면의 각도의 합인 나사각은 40±2.5°일 수 있다.
이때, 전측플랭크면의 각도는 10±1°이고, 상단 후측플랭크면의 각도는 30±1.5°이며, 상기 평탄면을 기준으로 하단 후측플랭크면의 각도는 10±1°일 수 있다.
그리고 상기 평탄부는 상기 나사산의 높이에 대응하여 0.45~0.50배 높이의 위치상에 형성될 수 있으며, 상기 평탄부의 외주 직경은 상기 암나사의 안지름과 동일하거나 작게 형성될 수 있다.
또한, 상기 평탄부의 길이는 상기 나사의 피치 길이에 비해 0.20~0.25배로 이루어질 수 있다.
한편, 본 발명의 또 하나의 사상에 따르면, 환봉의 외주면을 따라 일정한 나사산이 형성되되, 나사산의 중심을 기준으로 상기 나사산의 진입 방향 빗면을 이루는 전측플랭크(flank)면의 각도가, 상기 나사산의 후퇴 방향 빗면을 이루는 후측플랭크면의 각도에 비해 작게 형성되고, 상기 후측플랭크면은 경사 구간 내에서 수평 방향으로 단층 형성된 평탄부를 구비하는 나사가 환봉의 외주면을 따라 일정한 궤적으로 형성되는 나사식 기계요소를 제공한다.
여기서, 나사식 기계요소란, 전술한 나사가 몸체부에 형성된 기계요소(mechanical elements)를 말하며, 대부분의 기계를 구성하는 단위 부품으로서, 체결용 볼트, 연결용 스크류, 동력전달용 샤프트, 지지용 축 등을 모두 포함하는 개념으로 이해될 수 있다.
본 발명의 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소에 따르면, 기계식 나사와 이에 대응하여 상호 체결되는 암나사 사이의 상호 접촉 면적을 확장하여 종래에 비해 더 증강된 나사 체결력을 발휘할 수 있는 유리한 효과가 있다.
또한, 본 발명의 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소에 따르면, 외부 충격 시, 상, 하, 좌, 우 방향의 자체 진동을 억제하여, 나사 체결 후의 풀림 방지 효과가 뛰어나며, 아울러 반복 사용에 따른 풀림 토크(torque) 값의 저하를 억제할 수 있는 구조로 이루어져, 제품의 내구성이 향상됨은 물론, 제품의 수명이 기존에 비해 길어지는 유리한 효과가 있다.
도 1은 일반적인 기계식 나사의 단면을 도시한 도면,
도 2는 도 1에 도시된 일반적인 기계식 나사가 이와 상호 체결되는 암나사에 진입하는 모습을 구조적으로 도시한 도면,
도 3은 도 1에 도시된 일반적인 기계식 나사가 이와 상호 체결되는 암나사에 진입 후 체결이 완료된 모습을 구조적으로 도시한 도면,
도 4는 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예를 단면으로 도시한 도면,
도 5는 도 4에 도시된 A영역을 확대하여 도시한 도면,
도 6은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예가 이와 상호 체결되는 암나사에 진입하는 모습을 구조적으로 도시한 도면,
도 7은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예가 이와 상호 체결되는 암나사에 진입 후 체결이 완료된 모습을 구조적으로 도시한 도면,
도 8은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예에 치수 및 각도를 부여하여 실제 제작 형상을 도시한 도면이다.
이하, 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소의 바람직한 실시예에 대하여 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
도 1은 일반적인 기계식 나사(mechanical screw)의 단면을 도시한 도면이다.
도 1을 참조하면, 도시된 일반적인 기계식 나사(1)는 환봉의 외주면을 따라 일정한 나사산(10)이 나선의 궤적을 따라 형성되는 몸체부(3)와, 상기 몸체부(3)의 상단에 형성되는 머리부(5)를 갖는 기계요소로 흔히 이용되는 것이다.
도 1을 통해 확인할 수 있듯이, 일반적인 기계식 나사(1)는 나사(1)의 안지름(a) 및 바깥지름(b) 사이에서, 길이방향 전 구간을 따라 동일한 높이(f)와, 피치(g) 길이를 갖는 나사산(10)을 구비한다.
아울러, 이러한 기계식 나사(1)는 나사산(10)의 중심을 기준으로 골(16)까지 소정의 각도로 빗면을 이루는 경사면을 가지는데, 이러한 경사면을 플랭크(flank)면(12, 14)이라 한다.
상기 플랭크면(12, 14)은 설명상의 편의를 위하여, 나사산(10)의 산봉우리(crest)를 기준으로 나사(1)의 진입방향으로 배치된 전측플랭크면(14)과 나사(1)의 후퇴방향으로 배치된 후측플랭크면(12)으로 나누어 살펴볼 수 있다.
일반적인 기계식 나사(1)의 경우, 상기 전측플랭크면(14)과 후측플랭크면(12)이 나사산(10)의 산봉우리(crest)로부터 이루는 경사진 각(이하 '플랭크면의 각도'라 한다)이 서로 동일하게 형성된다. 일반적인 기계식 나사(1)의 플랭크면(12, 14)의 각도(d, e)는 각각 대략 30°정도에서 정해지며, 이들의 합인 나사각은 대략 60° 정도에서 정해진다.
전측플랭크면(14)과 후측플랭크면(12)로 구분하여 설명하는 이유는 그 형상 및 경사 기울기는 서로 동일하나, 각각이 형성되는 위치가 다르기에 서로 다른 작용 효과를 발휘하기 때문이다. 이러한 전측플랭크면(14)과 후측플랭크면(12)의 각각의 작용 효과는 이어지는 도 2 및 도 3의 설명을 통해 상세히 확인할 수 있다.
도 2는 일반적인 기계식 나사가 이와 상호 체결되는 암나사에 진입하는 모습을 구조적으로 도시한 도면이며, 도 3은 일반적인 기계식 나사가 이와 상호 체결되는 암나사에 진입한 후 상호 체결이 완료된 모습을 구조적으로 도시한 도면이다.
먼저, 도 2를 참조하면, 기계식 나사가, 상기 나사와 상호 체결되는 암나사에 진입하는 모습을 확인할 수 있다.
나사의 회전에 의해 나사가 체결되는 방향으로 축력(도 2에서 화살표로 표시)을 받으면서, 나사의 나사산(10)은 암나사의 나사산(20)을 가압하며 일정한 리드(lead) 폭으로 진입하여 체결된다.
이때, 나사의 나사산(10)은 암나사의 나사산(20)과 일정 영역에서만 접촉하는데, 그 접촉 영역이 나사산(10)의 전측플랭크면(14)과 암나사의 바깥쪽 플랭크면(24)이 된다.
그리고 도 3을 참조하면, 기계식 나사가 상기 나사와 상호 체결되는 암나사에 진입한 이후 상호 간의 체결이 완료된 모습을 확인할 수 있다.
앞서 도 2에서 설명한 바와 달리, 이 경우의 나사는 진입이 완료되고 나사에는 강한 조임이 가해진다. 그리고 더 이상 나사의 체결 시와 동일한 축력은 가해지지 않으며, 앞서의 경우와 반대로, 암나사로부터 체결 반발이 이루어질 수 있으며, 축력의 반대 방향으로 나사가 밀리는 압축력(도 3에서 화살표로 표시)을 받게 된다.
이러한 경우에도, 나사의 나사산(10)은 암나사의 나사산(20)과 일정 영역에서만 접촉하게 되는데, 그 접촉 영역이 나사산(10)의 후측플랭크면(12)과 암나사의 안쪽 플랭크면(22)이 된다.
도 2 및 도 3을 통해 살펴본 바와 같이, 일반적이 기계식 나사는 체결 시 나사 및 암나사 사이에서 상호 접촉되는 영역이 서로 달리 적용되며, 그 접촉 면적이 협소하여 안정한 체결을 유지하기에 다소 어려움이 따른다.
특히, 이러한 일반적인 기계식 나사는 외부 충격을 받을 경우, 상, 하, 좌, 우의 진동이 유발되어, 안정적인 체결 상태를 지속적으로 유지하기에는 적합하지 못한 구조로 되어 있다.
본 발명에서는 이러한 구조를 변경하여, 외부 충격이 가해지는 경우에도 진동을 억제하여, 더욱 강화된 체결력을 확보할 수 있는 나사 및 이러한 나사를 구비한 나사식 기계요소를 제공한다.
도 4는 본 발명의 바람직한 실시예에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예를 단면적으로 도시한 도면으로서, 이러한 도면은 본 발명은 구조 관계를 개념적으로 명확히 이해시키기 위해서 그 특징되는 부분만을 명확히 도시한 것이다.
도 4를 참조하면, 도시된 나사(100)는 나사(100)의 안지름(a) 및 바깥지름(b)을 가지며, 이러한 안지름(a) 및 바깥지름(b)의 사이에서 일정 단차를 이룬 중간지름(c)을 더 가지는 형상으로 되어 있다.
이때, 중간지름(c)이란 도 5에서 평탄부를 설명할 때, 더욱 상세히 설명하기로 하고, 여기서는 이러한 중간지름(c)을 통해 이루어진 하나의 단차 면이 나사와, 암나사 간의 접촉 면적을 확장하는 기능을 발휘한다는 정도만으로 이에 대한 설명을 줄이기로 한다.
도 4에 도시된 바와 같이, 본 실시예에 따른 나사(100)는 환봉의 외주면을 따라 특유의 형상으로 이루어진 나사산(110)이 구비되며, 상기 나사산(110)은 나선의 궤적을 따라 형성된다. 그리고 머리부(150)를 더 구비하여 나사식 기계요소로도 이용될 수 있다.
여기서, 나사식 기계요소(mechanical elements)란, 대부분의 기계를 구성하는 단위 부품을 말하는 것으로, 본 구성에 따른 나사가 구비된 체결용 볼트, 연결용 스크류, 동력전달용 샤프트, 지지용 축 을 모두 포함하는 개념으로 이해될 수 있다. 이러한 나사식 기계요소가 본 발명의 범주에 포함됨은 자명하다.
본 발명에 따른 나사의 나사산(110) 구조를 세분하여 명확하게 이해할 수 있도록, 도 4에서 나사산(110)을 포함하는 A영역을 도 5를 통해 확대하여 살펴보기로 한다.
도 5는 도 4에 도시된 A영역을 확대하여 도시한 도면으로서, 도시된 바와 같이, 각각의 나사산(110)은 길이방향 전 구간을 따라 동일한 높이(f)와 피치(g) 길이를 가지도록 규칙적으로 배치된다.
상기 나사산(110)의 주심을 기준으로 전측플랭크면(114)의 각도(e)는 후측플랭크면(112a, 112b)의 각도(d1)에 비해 작게 형성된다.
앞서 도 1 내지 도 3을 통해 확인하였듯이, 이는 전측플랭크면(114)과 후측플랭크면(112a, 112b)의 서로 다른 작용 효과에 따라 체결 시 편의성 확보와 동시에 체결 후의 체결강화를 고려하여 그 구조를 변경한 것이다. 및 체결 후 체결강화를 고려하여 구조 변경한 것이다.
전측플랭크면(114)의 각도(e) 및 후측플랭크면(112a, 112b)의 각도(d) 차이에 따른 기능 차이를 조금 더 상세히 살펴보기로 한다.
전측플랭크면(114)은 나사가 암나사를 통해 진입하여 체결될 때, 암나사와 마찰된다. 이러한 마찰은 체결 중인 나사의 회전에 저항력으로 작용된다.
따라서 본 발명에서는 전측플랭크면(114)의 각도(e)를 기존에 비해 작게 형성함으로써, 나사의 체결 시 저항을 감소하여 체결 편의성을 향상시킨 것이다.
바람직한 실시예에 따르면, 이러한 전측플랭크면(114)의 각도(e)는 10±1°가 될 수 있으며, 만일 이보다 작은 각도를 가질 경우, 나사산(110)의 강도 저하를 초래하여 극단적인 경우 나사산(110)의 파단으로 이어질 수 있다.
따라서 상기 전측플랭크면(114)의 각도(e)는 자체 구조 강도를 확보하는 수준에서, 나사의 체결 시 암나사와의 마찰을 최소화 할 수 있는 범위인 10±1°에서 정해지는 것이 좋다.
후측플랭크면(112a, 112b)은 나사가 암나사를 통해 진입하여 체결이 완료된 후, 암나사와 접촉되는 부분이다.
본 실시예에 따른 후측플랭크면(112a, 112b)의 형상은 상단에서 하단까지 연결되는 경사 구간 내에 수평 방향으로 단층을 이루어 또 하나의 암나사와의 접촉면으로 작용하는 평탄부(113)를 구비하는 형태로 되어 있다.
이러한 평탄부(113)에 의해 상단의 후측플랭크면(112a)과 하단의 후측플랭크면(112b)으로 구분될 수 있으며, 상단의 후측플랭크면(112a)의 각도(d1)는 하단의 플랭크면(112b)의 각도(d2)와 다르게 형성될 수 있는데(즉, d1>d2 임), 상단의 후측플랭크면(112a)의 각도(d1)는 30±1.5°로서 기존의 삼각나사의 기준에 부합된다(미터 계의 삼각나사의 1/2나사각 표준규격은 30°임).
이와 달리, 평탄부(113) 아래에 형성된 하단의 플랭크면(112b)의 각도(d2)는 10±1°가 될 수 있다.
따라서 기 출시된 대부분의 기계요소에 그대로 이용 가능하며, 제품 호환성이 뛰어나다.
아울러, 이러한 나사 형상을 이루어 제작되는 나사식 기계요소는 전측플랭크면(114)과 상단의 후측플랭크면(112a)의 각도의 합인 나사각이 40±2.5°에서 정해질 수 있다.
또한, 본 실시예에 따르면, 나사의 체결 완료 후 암나사와 접촉되는 부분으로서, 상단의 후측플랭크면(112a) 이외에 평탄부(113)가 있다.
평탄부(113)는 그 외주연을 따라 형성된 둘레면을 통해, 나사의 안지름(도 4에서 도면부호 a)과 나사의 바깥지름(도 4에서 도면부호 b) 사이에서 중간지름(도 4의 도면부호 c)을 형성하는 부분이다.
이러한 평탄부(113)는 암나사의 나사산 산봉우리(crest) 형상과 대응하여 상호 접촉 가능한 형태의 형상을 가진다.
그리고 평탄부(113)는 나사산(110)의 높이에 대응하여, 골에서부터 0.45~0.50배가 되는 높이 상에 위치하며, 그 길이는 나사의 피치(g) 길이에 비해 0.20~0.25배인 것이 좋다.
이러한 평탄부(113)는 암나사를 통해 나사를 체결한 이후, 나사의 견고한 결합을 위하여 외력에 의해 클램프 하중(clamp load)이 가해질 때, 암나사의 나사산 산봉우리(crest)에 더 밀착하여 구속됨으로써, 체결된 나사의 좌, 우 유격을 억제함과 동시에, 상호간의 주면 마찰력(skin friction)을 발생시켜 체결력을 강화한다.
이로 인하여, 체결된 나사는 외부 충격으로 인하여 유발되는 상, 하 진동은 물론, 좌, 우 흔들림까지 억제되어, 시간이 지남에 따라 체결력이 약화되는 현상을 방지할 수 있으며, 최초 체결 시 나사에 부여된 긴장력을 가능한 한 오래 지속할 수 있게 된다.
그리고 나사산(110) 사이의 골(116)에는 나사의 안지름(도 4의 도면부호 a)을 따라 일정폭으로 편평하게 확장 형성되는 평면부(117)가 구비된다.
기존의 일반적인 나사는 골 부위가 노치(notch) 형상으로 이루어져 있었으며, 이러한 골 부위에서는 응력 집중이 유발되기 쉬워, 나사의 파단강도가 약화되는 결과를 초래하였다.
따라서 본 발명에서는 상기 나사산(110) 사이의 골(116)에 나사의 안지름과 동일한 선상에서 형성되는 편평한 면 즉, 평면부(117)를 형성하여 나사의 파단강도를 강화시킨 것이다.
평면부(117)는 나사의 피치(g) 길이에 대응하여, 이에 비례하는 길이 범위를 가질 수 있는데, 바람직한 실시예로서, 피치(g) 길이에 비해 0.24~0.28배로 이루어지는 것이 좋다.
만일, 평면부(117)의 길이가 피치(g) 길이의 0.24배보다 작을 경우, 평면부(117)에 의한 파단 강도 향상의 효과가 미미할 수 있으며, 이와 반대로, 평면부(117)의 길이가 피치(g) 길이의 0.28배보다 클 경우에는, 체결을 위한 나사산(110)의 개수 및 폭이 줄어들어 나사의 체결력을 저하시킬 수 있다.
이러한 이유에 따라, 평면부(117)는 피치(g) 길이의 0.24~0.28배로 이루어지는 것이 체결력 확보는 물론, 파단 강도 향상에 도움이 된다.
도 6은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예가 이와 상호 체결되는 암나사에 진입하는 모습을 구조적으로 도시한 도면이다.
도 6을 참조하면, 암나사를 통해 나사가 회전 진입하여 상호 체결되는 형상을 확인할 수 있다.
도시된 바와 같이, 나사의 회전에 의해 나사가 체결되는 방향으로 발휘된 축력(도 6에서 화살표로 표시)에 의해 나사의 나사산(110)이 일정한 리드(lead) 폭으로 암나사의 나사산(210)쪽으로 회전 진입함으로써 상호 체결된다.
이때, 나사에 구비된 나사산(110)과, 암나사에 구비된 나사산(210)은 상호 치합(齒合)되어, 국부적인 영역에서 서로 접촉되어 마찰이 유발된다.
즉, 나사의 나사산(110) 진입 방향 빗면을 이루는 전측플랭크면(114)의 소정 영역은 암나사의 나사산(210) 바깥쪽 플랭크면(214)을 접촉 가압하여, 나사의 체결에 방해가 되는 저항력을 일으키는 것이다.
따라서 본 발명에서는 전측플랭크면(114)의 각도를 기존의 경우(30°)와 다르게 10±1°로 설계 변경하여, 암나사의 나사산(210) 바깥쪽 플랭크면(214)에 접촉하는 나사산의 부위를 줄임으로써, 나사 체결 시의 편의성을 향상시킨 것이다.
도 7은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예가 이와 상호 체결되는 암나사에 진입 후 체결이 완료된 모습을 구조적으로 도시한 도면이다.
도 7을 참조하면, 암나사를 통해 나사의 체결이 완료된 모습을 확인할 수 있다.
도시된 바와 같이, 나사는 더 이상 회전 체결되지 않을 정도로 조임이 가해지며, 암나사에 견고하게 체결된다. 이때, 나사에는 더 이상 체결 시와 동등한 축력이 가해지지 않으며, 이와 반대로, 암나사의 나사산(210)이 이미 긴장 체결된 나사의 나사산(110)을 밀어내는 체결 반발, 즉 압축력(도 7에서 화살표로 표시)이 작용될 수 있다. 즉, 도 6의 축력과 반대 방향의 힘이 가해질 수 있는 것이다.
이러한 경우에도 나사의 나사산(110)은 암나사의 나사산(20)과 일정 영역에서 접촉 대응하게 되는데, 도시된 바와 같이, 나사의 나사산(110) 상단 후측플랭크면(112a) 및 평탄부(113)와, 암나사의 나사산(210) 안쪽 플랭크면(212) 및 산봉우리(crest)가 상호 접촉하여 밀착하게 되는 것이다.
나사의 나사산(110) 상단 후측플랭크면(112a)은 암나사의 나사산(210) 안쪽 플랭크면(212)과 경사 접촉되어 마찰력을 극대화시키며, 이로써 나사의 체결력을 향상시킨다.
이와 동시에, 나사의 나사산(110) 평탄부(113)는 암나사의 나사산(210) 산봉우리(crest)에 밀착하여 구속됨으로써, 체결된 나사의 좌, 우 유격을 억제시키며, 상호간의 주면 마찰력(skin friction)을 유발하여 나사의 체결력을 향상시킨다.
즉, 본 발명의 바람직한 실시예에 따른 나사는 외부 충격으로 인한 상, 하 진동은 물론, 좌, 우 흔들림까지 억제함으로써, 진동 또는 흔들림으로 인한 체결력 약화의 문제를 해결하며, 최초 체결 시 나사에 부여된 긴장력(예: clamp load)을 가능한 한 오래 지속할 수 있게 해준다.
도 8은 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사의 일실시예에 치수 및 각도를 부여하여 실제 제작 형상을 도시한 도면이다.
도시된 바와 같이, 제작된 나사는 피치 길이가 0.3mm이며, 평탄부의 길이는 0.08mm이며, 나사산의 높이는 0.17mm이고, 평탄부의 형성 위치는 나사산의 산봉우리로부터 0.1mm 만큼 하측으로 형성되며(즉, 나사산의 골로부터 0.09mm만큼 상측으로 형성됨), 나사각은 40°이고, 전측플랭크면의 각도는 10°이며, 상단 후측플랭크면의 각도는 30°이다. 그리고 평탄부의 길이는 0.07mm이다.
이러한 치수 및 각도는 전술된 본 발명의 바람직한 실시예에 따라, 나사의 각 부위의 치수 및 각도 범위에 부합되게 적용하여 설계한 치수일 뿐, 다양한 실시예를 통해 변경 가능한 것으로, 본 발명은 이러한 치수 및 각도 조건에 반드시 제한될 필요는 없다.
표 1은 도 8에 도시된 실시예에 따라 제작된 나사와, 기존의 일반적인 나사(이하, 이를 '비교예'라 함) 간의 외부 충격으로 인한 풀림 토크(torque) 값의 정도 차를 비교하여 작성한 시험 결과표이다.
[표 1]
Figure PCTKR2011001859-appb-I000001
표 1에서의 체결 깊이는 나사의 길이에서 나사가 관통하여 체결된 철판의 두께를 뺀 치수이다. 표 1은 본 실시예와 비교예를 통해, 낙하 테스트라는 인위적인 외부 충격을 가해주는 시험을 통해 1회~4회까지의 네 번의 시험을 개별적으로 진행하여, 각각의 풀림 토크 값을 측정하고, 이들의 평균값에 해당하는 풀림 토크 값을 도출해 낸 것이다.
표 1에 개시된 시험 결과에 따르면, 본 실시예의 평균적인 풀림 토크 값은 비교예와 비교하여 약 112%정도 대폭 증가된 것을 확인할 수 있다.
따라서 본 실시예는 기존의 나사 구조가 적용된 비교예에 비하여, 매우 높은 체결력을 확보하고 있음을 알 수 있으며, 아울러 낙하와 같은 외부 충격으로 인한 상, 하, 좌, 우의 진동 및 흔들림에 따라 체결력이 약화되는 현상을 효과적으로 방지하고 있음을 알 수 있다.
표 2는 도 8에 도시된 실시예와 비교예를 5회에 걸쳐 체결과 풀림을 반복 적용하여 재사용성에 따른 풀림 토크 값의 정도 차를 비교하여 작성한 시험 결과표이다.
[표 2]
Figure PCTKR2011001859-appb-I000002
표 2에서의 체결 깊이는 나사의 길이에서 나사가 관통하여 체결된 철판의 두께를 뺀 치수이다.
표 2는 본 실시예와 비교예를 통해, 5회에 걸쳐 체결과 풀림을 반복 적용하여, 나사의 재사용에 따른 풀림 토크 값이 약화되는 정도를 측정함하고, 이들의 평균값에 해당하는 풀림 토크 값을 도출해 낸 것이다.
표 2에 개시된 시험 결과에 따르면, 본 실시예의 재사용에 따른 평균적인 풀림 토크 값은 비교예와 비교하여 약 8%정도가 향상된 것을 확인할 수 있다.
체결과 풀림을 반복적으로 실시하여 도출해낸 본 시험 결과는 나사를 구비한 제품의 내구수명 증가와 직결되는 문제로서, 본 실시예는 기존의 비교예에 비해 더욱 길어진 내구수명을 가지는 것으로 판단할 수 있다.
표 3은 도 8에 도시된 실시예와 비교예를 5회에 걸쳐 체결과 풀림을 반복 적용하여 재사용성에 따른 풀림 토크 값의 정도 차를 비교하여 작성한 시험 결과표이다.
[표 3]
Figure PCTKR2011001859-appb-I000003
표 3은 본 실시예와 비교예를 통해, 5회에 걸쳐 파단 강도를 측정하고서, 측정된 파단 강도 토크 값의 평균값을 도출해 낸 것이다.
표 3에 개시된 시험 결과에 따르면, 본 실시예의 파단 강도 토크 값이 비교예와 비교하여 약 3%정도가 향상된 것을 확인할 수 있다.
이러한 파단 강도의 개선은 본 실시예의 구조상에 적용된 평면부(도 5의 도면부호 117)의 존재에 기인하는 것으로, 본 실시예와 비교예의 차이점인 상기 평면부(도 5의 도면부호 117)의 유무에 따른 결과라고 판단할 수 있다.
본 실시예를 이용할 경우, 기존에 비해 자체 파단 강도가 증가됨에 따라, 작업의 편의성은 물론, 나사의 파단으로 인한 재작업의 필요성이 감소되며, 아울러 완성된 제품의 체결 안정성을 확보하는 데에도 도움이 된다.
이상에서 본 발명에 따른 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소에 관한 바람직한 실시예에 대하여 설명하였다.
전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 실시예를 포함한 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 모두 본 발명의 범주에 포함되는 것으로 해석되어야만 한다.

Claims (14)

  1. 나사산의 중심을 기준으로,
    상기 나사산의 진입 방향 빗면을 이루는 전측플랭크(flank)면의 각도가, 상기 나사산의 후퇴 방향 빗면을 이루는 후측플랭크면의 각도에 비해 작게 형성되고,
    상기 후측플랭크면은 경사 구간 내에서 수평 방향으로 단층 형성된 평탄부를 구비하여,
    나사와, 상기 나사에 대응하여 상호 체결되는 암나사 사이에서의 접촉 면적을 확장하는 형상으로 이루어지는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  2. 제 1 항에 있어서,
    상기 나사산 사이의 골은 일정폭으로 편평하게 확장 형성되는 평면부를 더 구비하는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  3. 제 2 항에 있어서,
    상기 평면부는,
    피치 길이에 비해 0.24~0.28배의 길이로 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  4. 제 1 항에 있어서,
    상기 전측플랭크면의 각도와, 상기 평탄면을 기준으로 상단 후측플랭크면의 각도의 합인 나사각은 40±2.5°인 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  5. 제 4 항에 있어서,
    상기 전측플랭크면의 각도는 10±1°이고, 상기 상단 후측플랭크면의 각도는 30±1.5°인 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  6. 제 1 항에 있어서,
    상기 평탄부는,
    상기 나사산의 높이에 대응하여 0.45~0.50배 높이의 위치상에 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  7. 제 1 항에 있어서,
    상기 평탄부는,
    상기 나사의 피치 길이에 비해 0.20~0.25배의 길이로 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사.
  8. 환봉의 외주면을 따라 일정한 나사산이 형성되되, 나사산의 중심을 기준으로 상기 나사산의 진입 방향 빗면을 이루는 전측플랭크(flank)면의 각도가, 상기 나사산의 후퇴 방향 빗면을 이루는 후측플랭크면의 각도에 비해 작게 형성되고, 상기 후측플랭크면은 경사 구간 내에서 수평 방향으로 단층 형성된 평탄부를 구비하는 나사가 환봉의 외주면을 따라 일정한 궤적으로 형성되는 나사식 기계요소.
  9. 제 8 항에 있어서,
    상기 나사산 사이의 골은 일정폭으로 편평하게 확장 형성되거나 볼록하게 돌출하여 형성되는 평면부를 더 구비하는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
  10. 제 9 항에 있어서,
    상기 평면부는,
    피치 길이에 비해 0.24~0.28배의 길이로 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
  11. 제 8 항에 있어서,
    상기 전측플랭크면의 각도와, 상기 평탄면을 기준으로 상단 후측플랭크면의 각도의 합인 나사각은 40±2.5°인 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
  12. 제 11 항에 있어서,
    상기 전측플랭크면의 각도는 10±1°이고, 상기 상단 후측플랭크면의 각도는 30±1.5°인 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
  13. 제 8 항에 있어서,
    상기 평탄부는,
    상기 나사산의 높이에 대응하여 0.45~0.50배 높이의 위치상에 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
  14. 제 8 항에 있어서,
    상기 평탄부는,
    상기 나사의 피치 길이에 비해 0.20~0.25배인 길이로 형성되는 것을 특징으로 하는 내충격, 내진동 및 체결력 강화 구조를 갖는 나사식 기계요소.
PCT/KR2011/001859 2010-04-22 2011-03-17 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소 WO2011132859A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0037585 2010-04-22
KR1020100037585A KR100991015B1 (ko) 2010-04-22 2010-04-22 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소

Publications (2)

Publication Number Publication Date
WO2011132859A2 true WO2011132859A2 (ko) 2011-10-27
WO2011132859A3 WO2011132859A3 (ko) 2012-01-05

Family

ID=43136007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001859 WO2011132859A2 (ko) 2010-04-22 2011-03-17 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소

Country Status (4)

Country Link
KR (1) KR100991015B1 (ko)
CN (1) CN102261365A (ko)
TW (1) TWI425152B (ko)
WO (1) WO2011132859A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020985A4 (en) * 2013-07-03 2017-02-22 Songlin Xu Anti-loosening cylindrical threaded part

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235162B (zh) * 2013-06-19 2016-04-20 卢小璇 防松螺丝
KR20160003314A (ko) * 2013-07-03 2016-01-08 쑹린 쉬 풀림 방지 원기둥 나사산 부재
CN103291730A (zh) * 2013-07-03 2013-09-11 许松林 一种防松动圆柱螺纹件
EP3805582B1 (en) * 2018-06-01 2024-07-31 Form Roll Tech Co., Ltd. Dual-thread structure and fastener for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047093A1 (en) * 2007-08-13 2009-02-19 Alan Pritchard Thread locking/prevailing torque fastener and fastener assembly
JP4361128B1 (ja) * 2008-12-08 2009-11-11 甲府精鋲株式会社 緩み防止ねじ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734002A (en) * 1986-07-11 1988-03-29 Holmes Horace D Locking thread form for male fastener
JPH08177839A (ja) * 1994-12-22 1996-07-12 Nitto Seiko Co Ltd 緩み防止ねじ
JP3109980B2 (ja) 1995-06-16 2000-11-20 日東精工株式会社 タッピンねじ
DE19960287C1 (de) * 1999-12-14 2001-07-26 Ejot Verbindungstech Gmbh & Co Selbstfurchende Schraube
US20060263171A1 (en) * 2003-02-20 2006-11-23 Manfred Schwarz Self-tapping screw for use in low ductile materials
TWM259859U (en) * 2003-12-17 2005-03-21 Fong Prean Ind Co Ltd Improved screw
JP2005195044A (ja) * 2003-12-26 2005-07-21 Nobuyuki Sugimura ねじ及びそのねじを用いた圧力容器
CN201074626Y (zh) * 2007-08-10 2008-06-18 南车资阳机车有限公司 一种防松螺栓
BRPI0815194B1 (pt) * 2007-08-13 2019-07-02 Research Engineering & Manufacturing, Inc. Fixador formador de rosca

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047093A1 (en) * 2007-08-13 2009-02-19 Alan Pritchard Thread locking/prevailing torque fastener and fastener assembly
JP4361128B1 (ja) * 2008-12-08 2009-11-11 甲府精鋲株式会社 緩み防止ねじ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020985A4 (en) * 2013-07-03 2017-02-22 Songlin Xu Anti-loosening cylindrical threaded part

Also Published As

Publication number Publication date
TWI425152B (zh) 2014-02-01
CN102261365A (zh) 2011-11-30
WO2011132859A3 (ko) 2012-01-05
TW201144624A (en) 2011-12-16
KR100991015B1 (ko) 2010-10-29

Similar Documents

Publication Publication Date Title
WO2011132859A2 (ko) 내충격, 내진동 및 체결력 강화 구조를 갖는 나사 및 나사식 기계요소
WO2016163628A1 (ko) 풀림방지용 나사산 구조 및 그 가공공구
WO2012060593A2 (ko) 철근 커플러
WO2019240566A1 (ko) Phc 파일 연결구
EP1777377B1 (en) Flange assembly and corresponding gas turbine engine
CA2573555C (en) Sucker rod connection with improved fatigue resistance, formed by applying diametrical interference to reduce axial interference
WO2015170896A1 (ko) 나선철근용 철근연결구
WO2020138594A1 (ko) 철근 커플러
EP0408239A1 (en) Quick-fastening nut
WO2018230810A1 (ko) 철근연결구
WO2020192261A1 (zh) 一种可消除孔隙的钢销
WO2014046322A1 (ko) 유,공압용 실린더의 피스톤 풀림방지 코킹 방법
WO2016171293A1 (ko) 풀림방지 기능을 갖는 방수 나사
WO2017159898A1 (ko) 체결력이 향상된 태핑나사
US4810149A (en) Screw-type fastening device
US6659878B2 (en) Method and apparatus for coupling male threads to female threads
WO2014054827A1 (ko) 다양한 상대물에 체결 가능한 범용 태핑 스크류 및 이를 이용한 체결방법
WO2017150896A1 (ko) 천장마감 시공용 작업공간 형성을 위한 천장 구조체
CN219715018U (zh) 保护旋转弯曲疲劳设备卡具的装置
EP1584826B1 (en) Threaded insert with knurl
WO2020213774A1 (ko) 너트 풀림방지 장치
US20060117861A1 (en) Material tester
WO2021112594A1 (ko) 철근의 이음을 위한 평행-테이퍼 일체형 나사결합구조
CN101179181B (zh) 一种鼠笼式跳线间隔棒
WO2013133582A1 (ko) 파이프용 클램프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772148

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772148

Country of ref document: EP

Kind code of ref document: A2