WO2011129364A1 - パターン検査装置およびパターン検査方法 - Google Patents

パターン検査装置およびパターン検査方法 Download PDF

Info

Publication number
WO2011129364A1
WO2011129364A1 PCT/JP2011/059178 JP2011059178W WO2011129364A1 WO 2011129364 A1 WO2011129364 A1 WO 2011129364A1 JP 2011059178 W JP2011059178 W JP 2011059178W WO 2011129364 A1 WO2011129364 A1 WO 2011129364A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
disk medium
electron beam
bit
signal
Prior art date
Application number
PCT/JP2011/059178
Other languages
English (en)
French (fr)
Inventor
浩 山下
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2012510670A priority Critical patent/JPWO2011129364A1/ja
Priority to US13/640,834 priority patent/US20130092837A1/en
Publication of WO2011129364A1 publication Critical patent/WO2011129364A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a pattern inspection apparatus and a pattern inspection method applied when inspecting a pattern formed on a disk medium.
  • a disk medium called a bit patterned type is known as one of disk media used in a magnetic recording / reproducing apparatus such as a hard disk drive.
  • a plurality of recording tracks are concentrically formed on this type of disk medium.
  • the patterns constituting each track are separated in the radial direction and the circumferential direction of the disk medium with 1 bit as one unit.
  • a pattern separated for each bit as described above is referred to as a “bit pattern”.
  • the “imprint method” has been used as a method for forming a pattern on a disk medium.
  • the imprint method is a technique in which an uneven pattern is formed on an original disk medium called a stamper, and an inverted pattern obtained by inverting the unevenness of the uneven pattern is formed on another disk medium by transfer from the stamper. is there. In that case, it is common to form a concavo-convex pattern on the original disk medium using a photolithography method.
  • a resist pattern is formed by sequentially performing “resist film formation”, “resist film exposure”, and “resist film development” on a substrate (material) of a disk medium.
  • an electron beam drawing apparatus is used for exposure of the resist film.
  • the electron beam lithography apparatus is an apparatus that exposes a resist film by irradiating an electron beam onto a resist film formed on a substrate.
  • Some electron beam lithography systems include a rotary stage that rotates a substrate with a resist film in the circumferential direction.
  • a pattern is drawn by irradiating a resist film on a substrate with an electron beam while rotating the substrate by driving a rotary stage.
  • the resist film exposed by the pattern drawing is developed to form a resist pattern on the substrate. Further, by etching the substrate using this resist pattern as a mask, a disk medium (substrate) on which the bit pattern is formed is obtained.
  • the bit pattern formed on the disc medium constitutes one track in one round.
  • the bit pattern depends on the drawing data applied to the pattern drawing of the electron beam exposure.
  • the bit pattern that is finally obtained may be misaligned or have dimensional variations due to various factors at the lithography (exposure / development) stage or before and after. May occur.
  • a pattern inspection method using a scanning electron microscope is known as one of methods for inspecting the pattern of a disk medium (see, for example, Patent Document 1).
  • SEM Scanning Electron Microscope
  • a pattern constituting a track of a disk medium is irradiated with an electron beam, and secondary electrons generated there are detected by a secondary electron detector. Furthermore, the detected electrons are converted into electric signals and amplified, and a two-dimensional scanning image (hereinafter referred to as “secondary electron image”) is obtained from the amplified electric signals.
  • JP 2008-299912 paragraphs 0006, 0008, FIG. 5
  • the main object of the present invention is to provide a technique capable of easily inspecting the pattern of a disk medium as compared with the case of grasping the shape and position of a pattern from a secondary electron image obtained using a scanning electron microscope. There is to do.
  • the first aspect of the present invention is: A pattern inspection apparatus for inspecting a bit pattern of a disk medium in which a plurality of tracks are formed concentrically and the pattern form of each track is separated in a radial direction and a circumferential direction for each bit, A rotating stage on which the disk medium is mounted; An irradiation optical system for irradiating the disk medium rotating with the rotating stage with an electron beam; An electron detector for detecting electrons generated from a disk medium on the rotary stage by irradiation of an electron beam by the irradiation optical system;
  • the pattern inspection apparatus is characterized in that a spot diameter of the electron beam by the irradiation optical system is set to be equal to or larger than a pattern diameter of the bit pattern.
  • the second aspect of the present invention is: A determination means for determining whether the bit pattern is good or bad by comparing a detection signal obtained for each bit as a detection result of the electronic detector with a preset reference signal. It is a pattern inspection apparatus as described in an aspect.
  • the third aspect of the present invention is: The pattern according to the second aspect, wherein the determination unit compares the detection signal with the reference signal with respect to an intensity profile of a signal expressed with the signal intensity on the vertical axis and the time on the horizontal axis. Inspection equipment.
  • the fourth aspect of the present invention is:
  • the determination means determines the quality of the bit pattern by comparing the output timing of the detection signal defined on the horizontal axis with the output timing of the reference signal. It is a pattern inspection apparatus as described in an aspect.
  • the determination means compares the signal intensity of the detection signal defined on the vertical axis with the signal intensity of the reference signal, and the signal width of the detection signal defined on the horizontal axis and the reference signal.
  • the pattern inspection apparatus according to the third or fourth aspect, wherein the quality of the bit pattern is determined by comparing the signal width with the signal width.
  • the sixth aspect of the present invention is: A pattern inspection method for inspecting a bit pattern of a disk medium in which a plurality of tracks are formed concentrically, and a pattern form of each track is separated in a radial direction and a circumferential direction for each bit, Rotating the disk medium, irradiating the rotating disk medium with an electron beam, detecting electrons generated from the disk medium at the irradiation position of the electron beam, and setting the spot diameter of the electron beam to the bit
  • the pattern inspection method is characterized by inspecting the bit pattern of each track by setting the pattern diameter to be larger than the pattern diameter.
  • the present invention it is possible to easily inspect the pattern of the disk medium as compared with the case where the shape and position of the pattern are grasped from the secondary electron image obtained using the scanning electron microscope.
  • FIG. 5 is a diagram (part 1) illustrating a correlation between a bit pattern and a detection signal.
  • FIG. 6 is a diagram (part 2) illustrating the correlation between a bit pattern and a detection signal.
  • FIG. 6 is a diagram (part 3) for explaining a correlation between a bit pattern and a detection signal;
  • FIG. 1 is a schematic diagram showing a configuration example of a pattern inspection apparatus according to an embodiment of the present invention.
  • the illustrated pattern inspection apparatus 1 includes an irradiation optical system 2 that irradiates an electron beam, an electron detector 3 that detects electrons, a stage mechanism 5 that supports a disk medium 4 to be subjected to pattern inspection, A stage control system 6 for controlling the drive of the stage mechanism 5 is provided.
  • the irradiation optical system 2 irradiates a disk medium 4 placed on a rotating stage 14 described later with an electron beam.
  • the irradiation optical system 2 is mainly composed of an electron gun 7, a blanking electrode 8, a focusing lens 9, an aperture 10, a deflector 11, and an objective lens 12.
  • the electron gun 7 is a source for generating an electron beam.
  • the electron gun 7 is disposed so as to face the disk medium 4 supported by the stage mechanism 5.
  • the electron gun 7 generates an electron beam downward.
  • the blanking electrode 8 controls the progress of the electron beam to the downstream side.
  • the blanking electrode 8 deflects the electron beam axis so that the electron beam is blocked by the aperture 10 by an electric field when blanking, and allows the electron beam to pass through the opening 13 of the aperture 10 when blanking is not performed.
  • the blanking electrode 8 is disposed between the electron gun 7 and the focusing lens 9 on the trajectory of the electron beam from the electron gun 7 to the disk medium 4.
  • the focusing lens 9 suppresses the spread of the beam diameter of the electron beam emitted from the electron gun 7.
  • the focusing lens 9 is disposed between the blanking electrode 8 and the aperture 10 on the trajectory of the electron beam from the electron gun 7 to the disk medium 4.
  • the aperture 10 functions to block an unnecessary electron beam in order to selectively irradiate the disk medium with the electron beam when irradiating the electron beam.
  • the aperture 10 integrally has an opening 13 for allowing the electron beam to pass therethrough.
  • the aperture 10 is disposed between the focusing lens 9 and the deflector 11 on the trajectory of the electron beam from the electron gun 7 to the disk medium 4.
  • the deflector 11 changes the irradiation position of the electron beam on the disk medium by changing the direction (traveling direction) of the electron beam that has passed through the opening 13 of the aperture 10.
  • the deflector 11 is disposed between the aperture 10 and the objective lens 12 on the trajectory of the electron beam from the electron gun 7 to the disk medium 4.
  • the objective lens 12 narrows the beam diameter of the electron beam that has passed through the opening 13 of the aperture 10.
  • the objective lens 12 is disposed between the deflector 11 and the stage mechanism 5 on the trajectory of the electron beam from the electron gun 7 to the disk medium 4.
  • the electron detector 3 detects electrons generated by the disk medium 4 on the rotary stage 14 by irradiation of the electron beam by the irradiation optical system 2. More specifically, when the electron detector 3 irradiates the disk medium 4 supported by the stage mechanism 5 with an electron beam from the irradiation optical system 2, the surface of the disk medium 4 (irradiated with the electron beam). The generated electrons are detected.
  • the electron detector 3 is disposed so as to be located obliquely above the disk medium 4 supported by the stage mechanism 5.
  • the electron detector 3 mainly detects secondary electrons among the electrons generated by the disk medium 4 by irradiation of the electron beam, but the actually detected electrons include reflected electrons. In any case, the detection signal of electrons detected by the electron detector 3 reflects the surface state (unevenness state) of the disk medium 4. An electron detection signal obtained by the electron detector 3 is sent to the signal processing unit 18.
  • the signal processing unit 18 takes in the detection signal sent from the electron detector 3 and performs various processes using this detection signal. Specifically, the signal processing unit 18 performs, for example, processing (details will be described later) for determining pass / fail of the pattern to be inspected.
  • the stage mechanism 5 rotates or moves the disk medium 4 while supporting the disk medium 4.
  • the stage mechanism 5 includes a rotating stage 14 that rotates and a linear motion stage 15 that linearly moves the rotating stage 14.
  • the rotary stage 14 and the linear motion stage 15 constitute an “r- ⁇ system” stage having both a function of rotating the disk medium 4 and a function of moving the disk medium 4.
  • the rotary stage 14 horizontally supports the disk medium 4 placed on the rotary stage 14 and rotates the supported disk medium 4 in the circumferential direction.
  • the rotary stage 14 is rotated by a drive source such as a spindle motor (not shown).
  • the linear motion stage 15 moves linearly in a uniaxial direction parallel to the horizontal plane (hereinafter also simply referred to as “horizontal direction”).
  • the linear motion stage 15 is not limited to movement in only one axial direction, but may be one that moves in an orthogonal biaxial direction (so-called XY direction) parallel to the horizontal plane.
  • the linear motion stage 15 moves in the horizontal direction integrally with the rotary stage 14 and the disk medium 4.
  • the linear motion stage 15 serves as a moving means for moving the disk medium 4 supported by the rotary stage 14 in the radial direction (radial direction) of the disk medium 4.
  • the stage control system 6 includes a rotary stage controller 16 that controls the rotary stage 14 and a linear motion stage controller 17 that controls the linear motion stage 15.
  • the rotary stage control unit 16 controls the drive (rotation operation) of the rotary stage 14. More specifically, the rotary stage control unit 16 controls the rotational speed and direction of the rotary stage 14 in addition to basic operations such as rotation and stop of the rotary stage 14, for example.
  • the rotation speed of the rotary stage 14 described here is represented by the number of rotations per unit time (unit: rpm).
  • the rotation stage control unit 16 recognizes the current position (rotation phase) in the rotation direction of the rotation stage 14 using, for example, a rotation position detection sensor (not shown) provided in the pattern inspection apparatus 1.
  • the linear motion stage control unit 17 controls the drive (movement operation) of the linear motion stage 15. More specifically, the linear motion stage control unit 17 controls the moving speed and the moving direction of the linear motion stage 15 in addition to basic operations such as movement and stop of the linear motion stage 15, for example.
  • the linear motion stage control unit 17 may be configured to recognize the current position in the movement direction of the linear motion stage 15 using, for example, a movement position detection sensor (not shown) provided in the pattern inspection apparatus 1 as necessary.
  • FIG. 2 is a diagram showing an example of the structure of a disk medium to be subjected to pattern inspection.
  • the illustrated disk medium 4 is a disk medium for bit patterned media, and has a disk shape as a whole. Although not shown, a plurality of tracks are formed concentrically on one main surface of the disk medium 4.
  • the form of each track pattern is a bit pattern 4a separated in the radial direction and circumferential direction of the disk medium 4 for each bit.
  • a plurality of bit patterns 4a are arranged on the circumference of the same radius from the center of the disk medium 4, thereby forming one track.
  • Each bit pattern 4a is formed in a circular shape in plan view.
  • Each bit pattern 4 a is a convex pattern protruding from one main surface of the disk medium 4 in the thickness direction of the disk medium 4. For this reason, the surface (pattern forming surface) of the disk medium 4 is formed in a concavo-convex shape due to the presence of a plurality of bit patterns 4a constituting each track.
  • Pattern inspection method Next, the pattern inspection method according to the embodiment of the present invention will be described.
  • the pattern inspection apparatus 1 described above is used.
  • the spot diameter of the electron beam by the irradiation optical system 2 is set larger than the pattern diameter of the bit pattern 4 a of the disk medium 4.
  • the spot diameter of the electron beam by the irradiation optical system 2 can be adjusted using, for example, optical characteristics such as the electron gun 7, the focusing lens 9, and the objective lens 12 as parameters.
  • the spot diameter of the electron beam described here is defined by the diameter of the spot of the electron beam formed with the surface of the disk medium 4 as the sight when the surface (pattern forming surface) of the disk medium 4 is irradiated with the electron beam. Is.
  • the bit pattern 4a is a circular pattern in plan view as described above, the pattern diameter of the bit pattern 4a is defined by the diameter of the bit pattern 4a.
  • FIG. 3 is a plan view showing a setting example of the dimensional relationship between the spot diameter of the electron beam and the pattern diameter of the bit pattern. As shown in the figure, when the spot diameter of the electron beam is Ds and the pattern diameter of the bit pattern 4a is Dp, these dimensional relationships are preferably set in consideration of variations in the pattern diameter of the bit pattern 4a. .
  • the disk medium 4 to be inspected is placed on the rotary stage 14, and the disk medium 4 is fixedly supported on the rotary stage 14 by, for example, a mechanical chuck. At this time, the disk medium 4 is horizontally arranged so that the surface of the disk medium 4 on which the bit pattern 4a is formed faces upward.
  • initialization processing for example, processing for detecting the reference position in the rotational direction of the rotary stage 14 or processing for detecting the reference position in the moving direction of the linear motion stage 15
  • initialization processing is performed as necessary. Etc.).
  • Each reference position is detected using, for example, the rotational position detection sensor and the movement position detection sensor described above.
  • the disk medium 4 supported on the rotation stage 14 is arranged at a predetermined initial position, and the disk medium 4 is rotated by driving the rotation stage 14 based on a control command from the rotation stage control unit 16.
  • the rotational speed of the disk medium 4 is stabilized at a predetermined speed
  • the electron beam is irradiated from the irradiation optical system 2 toward the disk medium 4.
  • the surface (main surface) of the disk medium 4 is scanned in the circumferential direction by the electron beam according to the rotation operation of the rotary stage 14.
  • the electron beam draws a spiral locus by the rotation of the disk medium 4. For this reason, it is necessary to correct the position of the electron beam by the deflector 11 so that the electron beam draws one circle instead of a spiral.
  • the irradiation of the electron beam from the irradiation optical system 2 to the disk medium 4 is performed on the bit pattern 4a of any one of the plurality of tracks formed concentrically on the disk medium 4. .
  • the electron beam from the irradiation optical system 2 is irradiated onto a position on the circumference where the bit pattern 4 a of the track to be inspected is formed on the disk medium 4.
  • the electron detector 3 detects electrons (mainly secondary electrons) generated from the disk medium 4 by irradiation of an electron beam. Further, the electron detector 3 sends a detection signal generated by the detection of electrons to the signal processing unit 18.
  • the signal processing unit 18 receives the detection signal from the electron detector 3 and executes a process related to the pattern inspection under the following preconditions, for example.
  • Prerequisite 1 When a bit pattern 4a constituting a certain track is an object to be inspected and an electron beam is irradiated from the irradiation optical system 2 to the disk medium 4, the bit pattern 4a formed on the surface of the disk medium 4 and the irradiation thereof The intensity of the detection signal obtained from the electron detector 3 varies depending on the “relative positional relationship” with the electron beam spot.
  • Precondition 2 When the above-mentioned “relative positional relationship” changes continuously (with time) as the disk medium 4 placed on the rotary stage 14 rotates, the intensity of the detection signal obtained from the electron detector 3 is accordingly increased. It changes continuously.
  • (Precondition 3) In the above “relative positional relationship”, the larger the area of the bit pattern 4a in the spot of the electron beam, the higher the intensity of the detection signal obtained from the electron detector 3, and conversely, in the spot of the electron beam. The intensity of the detection signal obtained from the electron detector 3 becomes lower as the area of the bit pattern 4a occupying becomes smaller.
  • the signal processing unit 18 internally or externally holds reference signal data applied to the comparison with the detection signal as one of various data applied to the pattern inspection. Internal data retention is realized, for example, by the memory function of the signal processing unit 18 itself. External data retention is realized by, for example, an external memory function such as a hard disk drive.
  • the reference signal thus held as data includes, for example, the pattern form (shape, dimension, etc.) of the disk medium 4 to be inspected, the rotational speed of the rotary stage 14, the spot diameter of the electron beam by the irradiation optical system 2, and the like. It is preset in accordance with.
  • This reference signal is set in accordance with the waveform (intensity profile) of the detection signal obtained from the electron detector 3 when the bit pattern 4a is formed as designed.
  • the spot of the electron beam moves (scans) relatively from one to the other along the circumferential direction (rotation direction) of the disk medium 4 in a certain bit pattern 4a forming part of one track.
  • the intensity profile of the detection signal obtained by detecting the electrons generated at the irradiation position of the electron beam by the electron detector 3 is a mountain-shaped profile as shown in FIG. 4 according to the above “Preconditions 1 to 3”. It becomes.
  • the signal intensity profile is represented in the form of a graph (two-dimensional coordinates) in which the vertical axis represents signal intensity and the horizontal axis represents time.
  • the intensity profile of the detection signal has the same shape even if the horizontal axis is replaced with the rotational phase angle of the rotary stage 14.
  • the detection obtained from the electronic detector 3 The form of the signal is as shown in the lower part of FIG. That is, the detection signals having the chevron-shaped intensity profile are constant from the electronic detector 3 with the same signal intensity and the same signal width so as to correspond to each bit pattern 4a in a 1: 1 relationship. Are output at a pitch (time interval).
  • the pattern inspection pass / fail determination process by the signal processing unit 18 is performed as follows.
  • the quality of the bit pattern is determined based on the shift in the output timing of the detection signal caused by this position shift. Specifically, the following processing is performed.
  • the position of the bit pattern 4 a-2 among the plurality of bit patterns 4 a-1, 4 a-2, 4 a-3, 4 a-4 arranged in order in the circumferential direction of the disk medium 4 is Suppose a case where the reference position is shifted by an ⁇ dimension in the circumferential direction of the disk medium 4 from a normal position (a position indicated by a one-dot chain line in the figure).
  • the pitch (physical interval) between the bit pattern 4a-1 and the bit pattern 4a-2 adjacent in the circumferential direction of the disk medium 4 is smaller than the reference pitch by the ⁇ dimension, Accordingly, the pitch (physical interval) between the bit pattern 4a-2 and the bit pattern 4a-3 is wider than the reference pitch by the ⁇ dimension.
  • the detection obtained from the electron detector 3 The signal has a waveform as shown in the lower side of FIG. That is, a chevron detection signal obtained when the electron beam spot Bs scans the formation part of the bit pattern 4a-1, and a chevron detection signal obtained when the formation part of the bit pattern 4a-2 is scanned.
  • the pitch (time interval) between them becomes shorter than the reference pitch with the positional deviation ⁇ of the bit pattern 4a-2 described above.
  • the pitch (temporal interval) between the chevron detection signals becomes longer than the reference pitch with the positional deviation ⁇ of the bit pattern 4a-2 described above.
  • the “reference pitch” described here assumes that the bit patterns 4a-3 and 4a-4 are formed in the circumferential direction of the disk medium 4 without misalignment. -4 corresponds to the pitch (time interval) between the two chevron-shaped detection signals obtained when the electron beam spot Bs scans the formation site -4.
  • the signal processing unit 18 determines the quality of the bit pattern 4a based on the following determination criteria, for example. First, regarding the output timing of the detection signal obtained when the spot Bs of the electron beam scans the formation site of each bit pattern 4a, the temporal deviation between the two is recognized by comparison with the output timing of the reference signal described above. To do. This output timing comparison is performed for each bit pattern 4a.
  • the output timing of the detection signal is defined by a timing that is uniquely determined in the period in which the detection signal is output, for example, a timing that is intermediate between the output periods of the detection signal having a mountain-shaped intensity profile. The same applies to the output timing of the reference signal.
  • the output timing of the detection signal obtained when the electron beam spot Bs scans the formation site of the bit pattern 4a-2, and the corresponding reference signal (in the figure, If there is a temporal deviation between the output timing (shown by a broken line), this deviation amount ⁇ T is recognized. Then, the recognized deviation amount ⁇ T is compared with a preset allowable amount Tk, and based on the comparison result, it is determined whether the bit pattern 4a-2 is good, that is, whether the pattern is a good product pattern or a defective product pattern. To do. Specifically, if the above-described deviation amount ⁇ T exceeds the allowable amount Tk, it is determined that the bit pattern 4a-2 is a defective product pattern.
  • the allowable amount Tk used as a comparison criterion for pass / fail determination is given (for example, stored in a memory) to the signal processing unit 18 in advance in accordance with a desired pattern accuracy.
  • the quality of the bit pattern is determined based on the signal intensity and the signal width of the detection signal caused by this position shift. Specifically, the following processing is performed.
  • the position of the bit pattern 4a-2 among the plurality of bit patterns 4a-1, 4a-2, 4a-3, 4a-4 arranged in order in the circumferential direction of the disk medium 4 is as follows. Assume that the disc medium 4 is displaced in the radial direction from the reference normal position. In such a case, when the amount of positional deviation of the bit pattern 4a-2 exceeds a certain level, a part of the bit pattern 4a-2 from the area scanned by the electron beam spot Bs (in the illustrated example, the bit pattern 4a-2). Will be removed.
  • the spot Bs of the electron beam moves so as to sequentially irradiate (scan) the formation site of each bit pattern 4a-1, 4a-2, 4a-3, 4a-4, the detection obtained from the electron detector 3
  • the signal has a waveform as shown in the lower side of FIG.
  • the electron beam spot Bs is obtained when the bit pattern 4a-2 forming portion is scanned as compared with the signal intensity of the chevron detection signal obtained when the bit pattern 4a-1 forming portion is scanned.
  • the signal strength of the Yamagata detection signal is lowered.
  • the signal widths of the signals are equal to each other.
  • the signal processing unit 18 determines the quality of the bit pattern 4a based on the following determination criteria, for example. First, regarding the signal intensity of the detection signal obtained when the spot Bs of the electron beam scans the formation site of each bit pattern 4a, the intensity difference between the two is recognized by comparison with the signal intensity of the reference signal described above. This signal strength comparison is performed for each bit pattern 4a.
  • the signal intensity of the detection signal obtained when the electron beam spot Bs scans the formation site of the bit pattern 4a-2, and the corresponding reference signal (in the figure, If there is a difference between the signal intensity (shown by a broken line), the intensity difference ⁇ L is recognized. Then, the recognized intensity difference ⁇ L is compared with a preset allowable value Lk, and the quality of the bit pattern 4a-2 (good product pattern / defective product pattern) is determined based on the comparison result. Specifically, if the intensity difference ⁇ L described above exceeds the allowable value Lk, it is determined that the bit pattern 4a-2 is a defective product pattern.
  • the permissible value Lk which is used as a comparison criterion for pass / fail judgment, is given to the signal processing unit 18 in advance according to the desired pattern accuracy.
  • the quality of the bit pattern is determined based on the signal intensity and the signal width of the detection signal caused by the difference in the pattern diameter. Specifically, the following processing is performed.
  • the diameter is smaller than the reference pattern diameter.
  • the area of the bit pattern 4a-4 in the spot becomes narrower than the reference area.
  • the reference area refers to the area of the bit pattern 4a occupied in the spot when the bit pattern 4a matching the reference pattern diameter is positioned at the center of the electron beam spot.
  • a detection signal obtained from the electron detector 3 Has a waveform as shown in the lower side of FIG. That is, the signal intensity and the signal width of the chevron detection signal obtained when the electron beam spot Bs scans the formation site of the bit pattern 4a-4 are smaller than the signal intensity and the signal width of the reference signal, respectively. That is, the signal intensity of the chevron detection signal obtained when the electron beam spot Bs scans the formation site of the bit pattern 4a-4 is smaller by ⁇ L than the signal intensity of the reference signal (indicated by a broken line in the figure). Become. Further, the signal width W1 of the chevron detection signal obtained when the spot Bs of the electron beam scans the formation site of the bit pattern 4a-4 is smaller by ⁇ W than the signal width W2 of the reference signal.
  • the spot of the electron beam scans the formation site of the bit pattern 4a to be inspected.
  • the signal strength and the signal width of the obtained mountain-shaped detection signal are larger than the signal strength and the signal width of the reference signal, respectively.
  • the signal processing unit 18 determines the quality of the bit pattern 4a based on the following determination criteria, for example. First, regarding the signal intensity and the signal width of the detection signal obtained when the spot Bs of the electron beam scans the formation site of each bit pattern 4a, each of the signal intensity and the signal width of the reference signal is compared with each other. Recognize relative deviation amounts ⁇ L and ⁇ W. Then, the recognized deviation amounts ⁇ L and ⁇ W are compared with preset allowable amounts Lk and Wk, and the quality of the bit pattern 4a-4 (good product pattern / defective product pattern) is determined based on the comparison result. .
  • the bit pattern 4a-4 is a defective product pattern. Is determined. If both the above-described deviation amounts ⁇ L and ⁇ W are equal to or less than the corresponding allowable amounts Lk and Wk, it is determined that the bit pattern 4a-4 is a non-defective pattern. At this time, the permissible amounts Lk and Wk, which are used as comparison criteria for the pass / fail judgment, are given to the signal processing unit 18 in advance according to the desired pattern accuracy.
  • the position of the track to be inspected is changed.
  • the position of the track is changed by changing the direction of the electron beam by the deflector 11 or by driving the linear motion stage 15 based on a control command from the linear motion stage controller 17.
  • 4 is performed by displacing in the radial direction.
  • the pattern inspection similar to the above is performed on the bit pattern 4a (usually the bit pattern 4a of the adjacent track) different from the bit pattern 4a of the track inspected earlier.
  • This pattern inspection is performed on the bit patterns 4a of all the tracks on the disk medium 4 or the bit patterns 4a of a plurality of preset tracks.
  • the pattern inspection can be performed by using the detection signal obtained from the electron detector 3 as it is. This makes it possible to easily inspect the pattern of the disk medium as compared to the case where the shape and position of the pattern are grasped from the secondary electron image obtained using the scanning electron microscope.
  • the quality of the bit pattern is determined with respect to the positional deviation and dimensional variation of the bit pattern by comparing the detection signal with a reference signal. Can do.
  • the bit pattern position of the disk medium 4 can be determined.
  • the quality of the bit pattern can be determined with respect to such positional deviation and dimensional variation.
  • the quality of the bit pattern can be determined.
  • the quality of the bit pattern is determined with respect to such positional deviation and dimensional variation. Can do.
  • the spot diameter of the electron beam by the irradiation optical system 2 is set to be larger than the pattern diameter of the bit pattern 4a. It may be set to be the same as the pattern diameter of 4a. However, when the spot diameter of the electron beam is set to be larger than the pattern diameter of the bit pattern 4a, the type of the positional deviation or dimensional variation of the bit pattern 4a can be determined more finely. The reason is that when the spot diameter of the electron beam is set to be the same as the pattern diameter of the bit pattern 4a, for example, when the pattern diameter of the bit pattern 4a is larger than the reference pattern diameter, this is the signal of the detection signal. Although not reflected in the intensity, if the spot diameter of the electron beam is set larger than the pattern diameter of the bit pattern 4a, the difference in the pattern diameter is reflected in the signal intensity of the detection signal and can be discriminated. It is.
  • planar shape of the bit pattern of the disk medium to be inspected in the present invention is not limited to the circular shape described above, and may be, for example, a polygon such as a rectangle or an ellipse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 複数のトラックが同心円状に形成されるとともに、各々のトラックのパターンの形態が1ビットごとに径方向および周方向に分離されているディスク媒体4のビットパターンを検査するパターン検査装置1の構成として、ディスク媒体が載せられる回転ステージ14と、回転ステージ14とともに回転するディスク媒体4に対して電子ビームを照射する照射光学系2と、照射光学系2による電子ビームの照射によって回転ステージ14上のディスク媒体4から発生する電子を検出する電子検出器3とを備え、照射光学系2による電子ビームのスポット径を、ビットパターンのパターン径以上に設定して、パターンの検査を行う。

Description

パターン検査装置およびパターン検査方法
 本発明は、ディスク媒体に形成されたパターンを検査する際に適用されるパターン検査装置およびパターン検査方法に関する。
 ハードディスク駆動装置などの磁気記録再生装置に用いられるディスク媒体の一つとして、たとえば、ビットパターンド型と呼ばれるディスク媒体が知られている。この種のディスク媒体には、同心円状に複数の記録用のトラックが形成されている。各々のトラックを構成するパターンは、1ビットを一つの単位として、ディスク媒体の径方向および周方向に分離されている。本明細書では、前述のように1ビットごとに分離されたパターンを「ビットパターン」と呼ぶ。
 近年、ディスク媒体にパターンを形成する手法として、「インプリント法」が用いられている。インプリント法は、スタンパと呼ばれる元型のディスク媒体に凹凸のパターンを形成しておき、この凹凸パターンの凹凸を反転させた反転パターンを、スタンパからの転写によって他のディスク媒体に形成する手法である。その場合、元型となるディスク媒体には、フォトリソグラフィ法を利用して凹凸のパターンを形成するのが一般的である。
 フォトリソグラフィ法では、ディスク媒体の元(素材)になる基板に対して、「レジスト膜の形成」、「レジスト膜の露光」および「レジスト膜の現像」を順に行うことによってレジストパターンを形成する。このうち、レジスト膜の露光には、電子ビーム描画装置が用いられている。電子ビーム描画装置は、基板上に形成されたレジスト膜に電子ビームを照射することにより、レジスト膜を露光する装置である。
 電子ビーム描画装置のなかには、レジスト膜付きの基板を周方向に回転させる回転ステージを備えたものがある。この種の電子ビーム描画装置では、回転ステージを駆動して基板を回転させながら、基板上のレジスト膜に電子ビームを照射してパターン描画する。
 また、上述のようにレジスト膜への電子ビーム照射によってパターン描画を終えたら、このパターン描画によって露光されたレジスト膜を現像することにより、基板上にレジストパターンを形成する。さらに、このレジストパターンをマスクに用いて基板をエッチングすることにより、上記のビットパターンが形成されたディスク媒体(基板)を得る。
 こうしてディスク媒体に形成されたビットパターンは、1周で一つのトラックを構成するものとなる。また、ビットパターンは、電子ビーム露光のパターン描画に適用した描画データに依存したものとなる。ただし、パターン付きのディスク媒体を製造するにあたっては、たとえば、リソグラフィ(露光・現像)の段階やその前後の段階で、種々の要因により、最終的に得られるビットパターンに位置ズレや寸法ばらつきなどが生じることがある。
 このようにビットパターンに位置ズレや寸法ばらつきが生じたディスク媒体をたとえば元型に用いてインプリントを実施すると、それらの位置ズレや寸法ばらつきを反映したかたちでパターンが転写されてしまう。このため、パターンの位置ズレや寸法ばらつきが許容範囲を超えるディスク媒体を元型に用いてインプリントすると、不良品が多発することになる。そうした不都合を回避するには、ビットパターンの位置ズレや寸法ばらつきが許容範囲にあるかどうかを事前に検査し、この検査で良品とされたディスク媒体を元型に用いる必要がある。
 ディスク媒体のパターンを検査する手法の一つに、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いたパターン検査方法が知られている(たとえば、特許文献1を参照)。このパターン検査方法では、ディスク媒体のトラックを構成するパターンに電子ビームを照射し、そこで発生する二次電子を二次電子検出器で検出する。さらに、検出した電子を電気信号に変換して増幅し、増幅後の電気信号から二次元的な走査像(以下、「二次電子像」と記す)を得る。
特開2008-299912号公報(段落0006,0008、図5)
 しかしながら、従来においては、ディスク媒体のパターンを検査するにあたって、二次電子検出器の検出結果を基に二次電子像を生成し、この二次電子像からパターンの形状や位置を把握することから、パターン検査に係る一連の信号処理が面倒なものとなっていた。
 本発明の主たる目的は、走査型電子顕微鏡を用いて得られる二次電子像からパターンの形状や位置を把握する場合に比べて、ディスク媒体のパターンの検査を簡単に行うことができる技術を提供することにある。
 本発明の第1の態様は、
 複数のトラックが同心円状に形成されるとともに、各々のトラックのパターンの形態が1ビットごとに径方向および周方向に分離されているディスク媒体のビットパターンを検査するパターン検査装置であって、
 前記ディスク媒体が載せられる回転ステージと、
 前記回転ステージとともに回転する前記ディスク媒体に対して電子ビームを照射する照射光学系と、
 前記照射光学系による電子ビームの照射によって前記回転ステージ上のディスク媒体から発生する電子を検出する電子検出器と
 を備え、
 前記照射光学系による電子ビームのスポット径が、前記ビットパターンのパターン径以上に設定されている
 ことを特徴とするパターン検査装置である。
 本発明の第2の態様は、
 前記電子検出器の検出結果として1ビットごとに得られる検出信号と予め設定されている基準信号との比較により、前記ビットパターンの良否を判定する判定手段を備える
 ことを特徴とする上記第1の態様に記載のパターン検査装置である。
 本発明の第3の態様は、
 前記判定手段は、縦軸を信号強度とし横軸を時間として表現される信号の強度プロファイルに関して、前記検出信号と前記基準信号とを比較する
 ことを特徴とする上記第2の態様に記載のパターン検査装置である。
 本発明の第4の態様は、
 前記判定手段は、前記横軸上で規定される前記検出信号の出力タイミングと前記基準信号の出力タイミングとを比較することにより、前記ビットパターンの良否を判定する
 ことを特徴とする上記第3の態様に記載のパターン検査装置である。
 本発明の第5の態様は、
 前記判定手段は、前記縦軸上で規定される前記検出信号の信号強度と前記基準信号の信号強度とを比較するとともに、前記横軸上で規定される前記検出信号の信号幅と前記基準信号の信号幅とを比較することにより、前記ビットパターンの良否を判定する
 ことを特徴とする上記第3または第4の態様に記載のパターン検査装置である。
 本発明の第6の態様は、
 複数のトラックが同心円状に形成されるとともに、各々のトラックのパターンの形態が1ビットごとに径方向および周方向に分離されているディスク媒体のビットパターンを検査するパターン検査方法であって、
 前記ディスク媒体を回転させて、当該回転中のディスク媒体に電子ビームを照射し、当該当該電子ビームの照射位置で前記ディスク媒体から発生する電子を検出するとともに、前記電子ビームのスポット径を前記ビットパターンのパターン径以上に設定して、各々のトラックのビットパターンを検査する
 ことを特徴とするパターン検査方法である。
 本発明によれば、走査型電子顕微鏡を用いて得られる二次電子像からパターンの形状や位置を把握する場合に比べて、ディスク媒体のパターンの検査を簡単に行うことができる。
本発明の実施の形態に係るパターン検査装置の構成例を示す概略図である。 パターン検査の対象となるディスク媒体の構造の一例を示す図である。 電子ビームのスポット径とビットパターンのパターン径の寸法関係の設定例を示す平面図である。 ビットパターンの形成部位を電子ビームで走査したときに得られる検出信号の強度プロファイルの一例を示す図である。 ビットパターンと検出信号の相関を説明する図(その1)である。 ビットパターンと検出信号の相関を説明する図(その2)である。 ビットパターンと検出信号の相関を説明する図(その3)である。
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本発明の実施の形態においては、次の順序で説明を行う。
 1.パターン検査装置の構成
 2.ディスク媒体の構造
 3.パターン検査方法
 4.実施の形態の効果に関する説明
 5.変形例
<1.パターン検査装置の構成>
 図1は本発明の実施の形態に係るパターン検査装置の構成例を示す概略図である。図示したパターン検査装置1は、大きくは、電子ビームを照射する照射光学系2と、電子を検出する電子検出器3と、パターン検査の対象となるディスク媒体4を支持するステージ機構5と、このステージ機構5の駆動を制御するステージ制御系6とを備えた構成となっている。
(照射光学系の構成)
 照射光学系2は、後述する回転ステージ14に載せられたディスク媒体4に対して電子ビームを照射するものである。照射光学系2は、主として、電子銃7と、ブランキング電極8と、集束レンズ9と、アパーチャ10と、偏向器11と、対物レンズ12とを用いて構成されている。
 電子銃7は、電子ビームの発生源となるものである。電子銃7は、ステージ機構5に支持されたディスク媒体4と対向する状態に配置されている。電子銃7は、電子ビームを下向きに発生するものとなっている。
 ブランキング電極8は、電子ビームの下流側への進行を制御するものである。ブランキング電極8は、ブランキングするときは電界によって電子ビームをアパーチャ10で遮るように電子ビームの軸を偏向し、ブランキングしないときは電子ビームをアパーチャ10の開口部13に通すようにする。ブランキング電極8は、電子銃7からディスク媒体4に至る電子ビームの軌道上において、電子銃7と集束レンズ9との間に配置されている。
 集束レンズ9は、電子銃7から出射された電子ビームのビーム径の広がりを抑制するものである。集束レンズ9は、電子銃7からディスク媒体4に至る電子ビームの軌道上において、ブランキング電極8とアパーチャ10との間に配置されている。
 アパーチャ10は、電子ビームを照射する際に、ディスク媒体への電子ビームの照射を選択的に行うために、不要な電子ビームを遮断する機能を果たすものである。アパーチャ10は、電子ビームを通過させるための開口部13を一体に有している。アパーチャ10は、電子銃7からディスク媒体4に至る電子ビームの軌道上において、集束レンズ9と偏向器11との間に配置されている。
 偏向器11は、アパーチャ10の開口部13を通過した電子ビームの向き(進行方向)を変えることにより、ディスク媒体上の電子ビームの照射位置を変えるものである。偏向器11は、電子銃7からディスク媒体4に至る電子ビームの軌道上において、アパーチャ10と対物レンズ12との間に配置されている。
 対物レンズ12は、アパーチャ10の開口部13を通過した電子ビームのビーム径を絞るものである。対物レンズ12は、電子銃7からディスク媒体4に至る電子ビームの軌道上において、偏向器11とステージ機構5との間に配置されている。
(電子検出器の構成)
 電子検出器3は、照射光学系2による電子ビームの照射によって回転ステージ14上のディスク媒体4が発生する電子を検出するものである。より具体的に記述すると、電子検出器3は、ステージ機構5に支持されたディスク媒体4に対して照射光学系2から電子ビームを照射したときに、このディスク媒体4の表面(電子ビームが照射された部分)で発生する電子を検出する。電子検出器3は、ステージ機構5に支持されるディスク媒体4の斜め上方に位置するように配置されている。電子検出器3は、電子ビームの照射によってディスク媒体4が発生する電子のうち、主に二次電子を検出するものであるが、実際に検出される電子には反射電子も含まれる。いずれにしても、電子検出器3によって検出される電子の検出信号は、ディスク媒体4の表面状態(凹凸の状態)を反映したものとなる。この電子検出器3で得られる電子の検出信号は、信号処理部18に送られる。
 信号処理部18は、電子検出器3から送られる検出信号を取り込み、この検出信号を用いて種々の処理を行うものである。具体的には、信号処理部18は、たとえば、検査対象のパターンの良否を判定する処理(詳細は後述)などを行う。
(ステージ機構の構成)
 ステージ機構5は、ディスク媒体4を支持しつつ、このディスク媒体4を回転させたり移動させたりするものである。ステージ機構5は、回転する回転ステージ14と、この回転ステージ14を直線的に移動させる直動ステージ15とを用いて構成されている。回転ステージ14および直動ステージ15は、ディスク媒体4を回転させる機能と、ディスク媒体4を移動させる機能とを兼ね備えた「r-θ系」のステージを構成している。
 回転ステージ14は、この回転ステージ14の上に載せられるディスク媒体4を水平に支持するとともに、支持したディスク媒体4を周方向に回転させるものである。回転ステージ14は、たとえば、図示しないスピンドルモータ等の駆動源によって回転する仕組みになっている。
 直動ステージ15は、水平面に平行な一軸方向(以下、単に「水平方向」とも記す)に直線的に移動するものである。ただし、直動ステージ15は、一軸方向だけの移動に限らず、水平面に平行な直交二軸方向(いわゆるXY方向)に移動するものであってもよい。直動ステージ15は、回転ステージ14およびディスク媒体4と一体になって水平方向に移動する。直動ステージ15は、回転ステージ14で支持したディスク媒体4を、このディスク媒体4の径方向(半径方向)に移動させる移動手段となる。
(ステージ制御系)
 ステージ制御系6は、回転ステージ14を制御する回転ステージ制御部16と、直動ステージ15を制御する直動ステージ制御部17とを有している。
 回転ステージ制御部16は、回転ステージ14の駆動(回転の動作)を制御するものである。さらに詳述すると、回転ステージ制御部16は、たとえば、回転ステージ14の回転・停止といった基本的な動作に加えて、回転ステージ14の回転速度および回転方向の制御を行う。ここで記述する回転ステージ14の回転速度は、単位時間当たりの回転数(単位;rpm)で表されるものである。回転ステージ制御部16は、回転ステージ14の回転方向の現在位置(回転位相)を、たとえば、パターン検査装置1が備える図示しない回転位置検知センサを用いて認識する。
 直動ステージ制御部17は、直動ステージ15の駆動(移動の動作)を制御するものである。さらに詳述すると、直動ステージ制御部17は、たとえば、直動ステージ15の移動・停止といった基本的な動作に加えて、直動ステージ15の移動速度および移動方向の制御を行う。直動ステージ制御部17は、必要に応じて、直動ステージ15の移動方向の現在位置を、たとえば、パターン検査装置1が備える図示しない移動位置検知センサを用いて認識する構成としてもよい。
<2.ディスク媒体の構造>
 図2はパターン検査の対象となるディスク媒体の構造の一例を示す図である。
 図示したディスク媒体4は、ビットパターンドメディア用のディスク媒体であって、全体に円板状をなしている。ディスク媒体4の一主面には、図示はしないが、同心円状に複数のトラックが形成されている。そして、各々のトラックのパターンの形態が、1ビットごとにディスク媒体4の径方向および周方向に分離されたビットパターン4aとなっている。このビットパターン4aは、ディスク媒体4の中心から同一半径の円周上に複数並ぶことによって、一つのトラックを構成する。個々のビットパターン4aは、平面視円形に形成されている。また、各々のビットパターン4aは、ディスク媒体4の一主面から、当該ディスク媒体4の厚み方向に突出した凸状のパターンとなっている。このため、ディスク媒体4の表面(パターン形成面)は、各々のトラックを構成する複数のビットパターン4aの存在によって凹凸状に形成されている。
<3.パターン検査方法>
 続いて、本発明の実施の形態に係るパターン検査方法について説明する。
 このパターン検査方法では、上述したパターン検査装置1を用いる。また、パターン検査装置1の構成として、照射光学系2による電子ビームのスポット径を、ディスク媒体4のビットパターン4aのパターン径よりも大きく設定しておく。照射光学系2による電子ビームのスポット径は、たとえば、電子銃7、集束レンズ9、対物レンズ12などの光学的な特性をパラメータとして調整可能である。
 ここで記述する電子ビームのスポット径は、ディスク媒体4の表面(パターン形成面)に電子ビームを照射したときに、ディスク媒体4の表面を照準として形成される電子ビームのスポットの直径で規定されるものである。これに対して、ビットパターン4aのパターン径は、上述したようにビットパターン4aが平面視円形のパターンであるとすると、このビットパターン4aの直径で規定されるものである。
 図3は電子ビームのスポット径とビットパターンのパターン径の寸法関係の設定例を示す平面図である。図示のように、電子ビームのスポット径をDsとし、ビットパターン4aのパターン径をDpとすると、これらの寸法関係は、ビットパターン4aのパターン径の寸法ばらつきなどを考慮して設定することが好ましい。
 以下に、パターン検査装置1を用いたパターン検査方法の手順を記述する。
 まず、検査の対象物となるディスク媒体4を回転ステージ14の上に載せて、たとえば、メカニカルチャック等により回転ステージ14上でディスク媒体4を固定状態に支持する。このとき、ディスク媒体4のビットパターン4aが形成されている面が上を向くようにディスク媒体4を水平に配置する。
 次に、必要に応じて、予め設定されたイニシャライズ処理(たとえば、回転ステージ14の回転方向の基準位置を検知するための処理や、直動ステージ15の移動方向の基準位置を検知するための処理など)を行う。各々の基準位置は、たとえば、前述した回転位置検出センサおよび移動位置検知センサを用いて検知されるものである。
 次に、回転ステージ14に支持したディスク媒体4を予め決められた初期位置に配置するとともに、回転ステージ制御部16からの制御指令に基づく回転ステージ14の駆動によってディスク媒体4を回転させる。そして、ディスク媒体4の回転速度が予め決められた速度で安定したら、照射光学系2からディスク媒体4に向けて電子ビームを照射する。そうすると、ディスク媒体4の表面(主面)が、回転ステージ14の回転動作にしたがって電子ビームにより周方向に走査される。このとき、直動ステージ15の駆動によってディスク媒体4を径方向に移動させながら電子ビームを照射すると、ディスク媒体4の回転によって電子ビームが螺旋状の軌跡を描くことになる。このため、電子ビームが螺旋状ではなく一つの円を描くように偏向器11で電子ビームの位置を補正する必要がある。
 また、ディスク媒体4に対する照射光学系2からの電子ビームの照射は、ディスク媒体4上に同心円状に形成されている複数のトラックのうち、いずれか一つのトラックのビットパターン4aを対象に行われる。このため、照射光学系2からの電子ビームは、ディスク媒体4上で検査対象としたトラックのビットパターン4aが形成されている円周上の位置に照射される。
 一方、電子検出器3は、電子ビームの照射によってディスク媒体4から発生する電子(主に二次電子)を検出する。さらに、電子検出器3は、電子の検出によって生成された検出信号を信号処理部18に送出する。
 そうすると、信号処理部18では、電子検出器3からの検出信号を受け取って、たとえば、以下のような前提条件のもとで、パターン検査に係る処理を実行する。
(前提条件1)
 ある一つのトラックを構成するビットパターン4aを検査の対象として、照射光学系2からディスク媒体4に電子ビームを照射したときに、ディスク媒体4の表面に形成されているビットパターン4aとそこに照射される電子ビームのスポットとの「相対的な位置関係」により、電子検出器3から得られる検出信号の強度が変化する。
(前提条件2)
 回転ステージ14に載せたディスク媒体4の回転にともなって上記の「相対的な位置関係」が連続的(経時的)に変化すると、それに応じて、電子検出器3から得られる検出信号の強度が連続的に変化する。
(前提条件3)
 上記の「相対的な位置関係」において、電子ビームのスポット中に占めるビットパターン4aの面積が広くなるほど、電子検出器3から得られる検出信号の強度が高くなり、反対に、電子ビームのスポット中に占めるビットパターン4aの面積が狭くなるほど、電子検出器3から得られる検出信号の強度が低くなる。
(前提条件4)
 信号処理部18は、パターン検査に適用する種々のデータの一つとして、上記の検出信号との比較に適用する基準信号のデータを、内部的に、または外部的に保持している。内部的なデータ保持は、たとえば、信号処理部18自身のメモリ機能によって実現される。外部的なデータ保持は、たとえば、ハードディスクドライブなどの外部のメモリ機能によって実現される。こうしてデータ保持される基準信号は、たとえば、検査の対象物となるディスク媒体4のパターンの形態(形状、寸法など)や、回転ステージ14の回転速度、照射光学系2による電子ビームのスポット径などにあわせて、予め設定される。また、この基準信号は、ビットパターン4aが設計どおりに形成されているときに電子検出器3から得られる検出信号の波形(強度プロファイル)にあわせて設定される。
(パターン検査に係る処理の詳細)
 ある一つのトラックを構成する、ある一つのビットパターン4aの形成部位を、電子ビームのスポットが、ディスク媒体4の周方向(回転方向)に沿って相対的に一方から他方に移動(走査)するときに、当該電子ビームの照射位置で発生する電子を電子検出器3で検出して得られる検出信号の強度プロファイルは、上記の「前提条件1~3」にしたがって図4のような山形のプロファイルとなる。この図4においては、縦軸を信号強度とし横軸を時間として表現されるグラフ(二次元座標)の形式で、信号の強度プロファイルを表記している。ちなみに、検出信号の強度プロファイルは、横軸を回転ステージ14の回転位相角に置き換えても同様の形状となる。
 ディスク媒体4の表面には、ある一つのトラックに着目した場合、ディスク媒体4の周方向に1ビットごとにビットパターン4aが並んで形成されている。このため、ディスク媒体4の回転にしたがって電子ビームの照射位置(スポットの位置)がディスク媒体4の周方向に変位すると、各々のビットパターン4aの形成部位を電子ビームのスポットBsが横切るたびに、上記図4に示した山形の検出信号が得られる。
 このため、回転ステージ14の回転速度が一定である、という条件のもとで、たとえば図5の上側に示すように、ある一つのトラックを構成するビットパターン4a-1,4a-2,4a-3,4a-4が、すべて同じ形状および寸法をもって、ディスク媒体4の周方向に一定のピッチ(物理的な間隔)で並んで形成されているものと仮定すると、電子検出器3から得られる検出信号の形態は、図5の下側に示すような形態になる。すなわち、電子検出器3からは、各々のビットパターン4aと1:1の関係で対応するように、山形の強度プロファイルをもつ検出信号が、すべて同じ信号強度で、かつすべて同じ信号幅をもって、一定のピッチ(時間的な間隔)で出力されるものとなる。
 こうした事実に基づき、信号処理部18によるパターン検査の良否判定処理は、以下のように行われる。なお、ここでは、「ビットパターンの位置がディスク媒体の周方向にずれている場合」と、「ビットパターンの位置がディスク媒体の径方向にずれている場合」と、「ビットパターンのパターン径が基準のパターン径と異なる場合」に分けて、上記の良否判定処理を説明する。
 ビットパターンの位置がディスク媒体の周方向にずれている場合;
 ビットパターンの位置がディスク媒体の周方向にずれている場合は、この位置ズレによって生じる検出信号の出力タイミングのズレに基づいて、ビットパターンの良否を判定する。具体的には、以下のような処理を行う。
 いま、図6の上側に示すように、ディスク媒体4の周方向に順に並ぶ複数のビットパターン4a-1,4a-2,4a-3,4a-4のうち、ビットパターン4a-2の位置が、基準となる正規の位置(図中、一点鎖線で示す位置)よりもディスク媒体4の周方向にα寸法だけずれている場合を想定する。そうした場合、ディスク媒体4の周方向で隣り合うビットパターン4a-1とビットパターン4a-2との間のピッチ(物理的な間隔)は、基準とするピッチよりも上記α寸法だけ狭くなり、その分、ビットパターン4a-2とビットパターン4a-3との間のピッチ(物理的な間隔)は、基準とするピッチよりも上記α寸法だけ広くなる。
 したがって、電子ビームのスポットBsが各々のビットパターン4a-1,4a-2,4a-3,4a-4の形成部位を順に照射(走査)するように移動すると、電子検出器3から得られる検出信号は、上記図6の下側に示すような波形になる。
 すなわち、電子ビームのスポットBsがビットパターン4a-1の形成部位を走査したときに得られる山形の検出信号と、ビットパターン4a-2の形成部位を走査したときに得られる山形の検出信号との間のピッチ(時間的な間隔)は、前述したビットパターン4a-2の位置ズレαに伴って、基準となるピッチよりも短くなる。
 一方、電子ビームのスポットBsがビットパターン4a-2の形成部位を走査したときに得られる山形の検出信号と、ビットパターン4a-3の形成部位を電子ビームのスポットBsが走査したときに得られる山形の検出信号との間のピッチ(時間的な間隔)は、前述したビットパターン4a-2の位置ズレαに伴って、基準となるピッチよりも長くなる。
 ここで記述する「基準となるピッチ」は、ビットパターン4a-3,4a-4がディスク媒体4の周方向に位置ズレなく形成されているものと仮定すると、これらのビットパターン4a-3,4a-4の形成部位を電子ビームのスポットBsが走査したときに得られる、2つの山形の検出信号の間のピッチ(時間的な間隔)に相当するものとなる。
 そこで、信号処理部18は、たとえば、以下のような判定基準によって、ビットパターン4aの良否を判定する。
 まず、電子ビームのスポットBsが各々のビットパターン4aの形成部位を走査したときに得られる検出信号の出力タイミングに関して、上述した基準信号の出力タイミングとの比較により、両者の時間的なズレを認識する。この出力タイミングの比較は、ビットパターン4aごとに行う。また、検出信号の出力タイミングは、検出信号が出力されている期間のなかで一義的に求まるタイミング、たとえば、山形の強度プロファイルをもつ検出信号の出力期間の中間となるタイミングで規定する。この点は、基準信号の出力タイミングについても同様である。
 これにより、たとえば上記図6に示すように、電子ビームのスポットBsがビットパターン4a-2の形成部位を走査したときに得られる検出信号の出力タイミングと、これに対応する基準信号(図中、破線で示す)の出力タイミングとの間に、時間的なズレが生じている場合は、このズレ量ΔTを認識する。そして、認識したズレ量ΔTと予め設定されている許容量Tkとを比較し、この比較結果に基づいて、ビットパターン4a-2の良否、すなわち良品パターンであるか不良品パターンであるかを判定する。具体的には、上述したズレ量ΔTが許容量Tkを超えていれば、ビットパターン4a-2が不良品パターンであると判定する。また、上述したズレ量ΔTが許容量Tk以下であれば、ビットパターン4a-2が良品パターンであると判定する。このとき、良否判定の比較基準とされる許容量Tkは、所望のパターン精度にあわせて予め信号処理部18に付与(たとえば、メモリに記憶)されるものである。
 ビットパターンの位置がディスク媒体の径方向にずれている場合;
 ビットパターンの位置がディスク媒体の径方向にずれている場合は、この位置ズレによって生じる検出信号の信号強度および信号幅に基づいて、ビットパターンの良否を判定する。具体的には、以下のような処理を行う。
 いま、図7の上側に示すように、ディスク媒体4の周方向に順に並ぶ複数のビットパターン4a-1,4a-2,4a-3,4a-4のうち、ビットパターン4a-2の位置が、基準となる正規の位置よりもディスク媒体4の径方向にずれている場合を想定する。そうした場合は、そのビットパターン4a-2の位置ズレ量があるレベルを超えると、電子ビームのスポットBsが走査する領域からビットパターン4a-2の一部(図例の場合はビットパターン4a-2の上部)が外れることになる。
 したがって、電子ビームのスポットBsが各々のビットパターン4a-1,4a-2,4a-3,4a-4の形成部位を順に照射(走査)するように移動すると、電子検出器3から得られる検出信号は、上記図7の下側に示すような波形になる。
 すなわち、電子ビームのスポットBsがビットパターン4a-1の形成部位を走査したときに得られる山形の検出信号の信号強度に比較して、ビットパターン4a-2の形成部位を走査したときに得られる山形の検出信号の信号強度が低くなる。ただし、電子ビームのスポットBsがビットパターン4a-1の形成部位を走査したときに得られる山形の検出信号の信号幅と、ビットパターン4a-2の形成部位を走査したときに得られる山形の検出信号の信号幅とは、互いに等しくなる。
 そこで、信号処理部18は、たとえば、以下のような判定基準によって、ビットパターン4aの良否を判定する。
 まず、電子ビームのスポットBsが各々のビットパターン4aの形成部位を走査したときに得られる検出信号の信号強度に関して、上述した基準信号の信号強度との比較により、両者の強度差を認識する。この信号強度の比較は、ビットパターン4aごとに行う。
 これにより、たとえば上記図7に示すように、電子ビームのスポットBsがビットパターン4a-2の形成部位を走査したときに得られる検出信号の信号強度と、これに対応する基準信号(図中、破線で示す)の信号強度との間に差が生じている場合は、その強度差ΔLを認識する。そして、認識した強度差ΔLと予め設定されている許容値Lkとを比較し、この比較結果に基づいて、ビットパターン4a-2の良否(良品パターン/不良品パターン)を判定する。具体的には、上述した強度差ΔLが許容値Lkを超えていれば、ビットパターン4a-2が不良品パターンであると判定する。また、上述した強度差ΔLが許容値Lk以下であれば、ビットパターン4a-2が良品パターンであると判定する。このとき、良否判定の比較基準とされる許容値Lkは、所望のパターン精度にあわせて予め信号処理部18に付与されるものである。
 ビットパターンのパターン径が基準のパターン径と異なる場合;
 ビットパターンのパターン径が基準のパターン径と異なる場合は、このパターン径の違いによって生じる検出信号の信号強度および信号幅に基づいて、ビットパターンの良否を判定する。具体的には、以下のような処理を行う。
 いま、上記図7の上側に示すように、ディスク媒体4の周方向に順に並ぶ複数のビットパターン4a-1,4a-2,4a-3,4a-4のうち、ビットパターン4a-4のパターン径が、基準のパターン径よりも小さい場合を想定する。そうした場合は、電子ビームのスポットの中心にビットパターン4a-4が位置したときに、当該スポット中に占めるビットパターン4a-4の面積が、基準となる面積よりも狭くなる。基準となる面積とは、基準のパターン径に一致するビットパターン4aが電子ビームのスポットの中心に位置したときに、当該スポット中に占めるビットパターン4aの面積をいう。
 したがって、電子ビームのスポットが各々のビットパターン4a-1,4a-2,4a-3,4a-4の形成部位を順に照射(走査)するように移動すると、電子検出器3から得られる検出信号は、上記図7の下側に示すような波形になる。
 すなわち、電子ビームのスポットBsがビットパターン4a-4の形成部位を走査したときに得られる山形の検出信号の信号強度および信号幅は、それぞれ、基準信号の信号強度および信号幅よりも小さくなる。すなわち、電子ビームのスポットBsがビットパターン4a-4の形成部位を走査したときに得られる山形の検出信号の信号強度は、基準信号(図中破線で示す)の信号強度に比べてΔLだけ小さくなる。また、電子ビームのスポットBsがビットパターン4a-4の形成部位を走査したときに得られる山形の検出信号の信号幅W1は、基準信号の信号幅W2に比べてΔWだけ小さくなる。
 また、図示はしないが、検査対象とするビットパターン4aのパターン径が、基準のパターン径よりも大きい場合は、電子ビームのスポットが当該検査対象とするビットパターン4aの形成部位を走査したときに得られる山形の検出信号の信号強度および信号幅は、それぞれ、基準信号の信号強度および信号幅よりも大きくなる。
 そこで、信号処理部18は、たとえば、以下のような判定基準によって、ビットパターン4aの良否を判定する。
 まず、電子ビームのスポットBsが各々のビットパターン4aの形成部位を走査したときに得られる検出信号の信号強度および信号幅に関して、上述した基準信号の信号強度および信号幅との比較により、それぞれの相対的なズレ量ΔL、ΔWを認識する。そして、認識したズレ量ΔL、ΔWと予め設定されている許容量Lk、Wkとを比較し、この比較結果に基づいて、ビットパターン4a-4の良否(良品パターン/不良品パターン)を判定する。具体的には、信号強度および信号幅に関して、上述したズレ量ΔL、ΔWの少なくとも一方が、それぞれに対応する許容量Lk、Wkを超えていれば、ビットパターン4a-4が不良品パターンであると判定する。また、上述したズレ量ΔL、ΔWの両方が、それぞれに対応する許容量Lk、Wk以下であれば、ビットパターン4a-4が良品パターンであると判定する。このとき、良否判定の比較基準とされる許容量Lk、Wkは、所望のパターン精度にあわせて予め信号処理部18に付与されるものである。
 こうしてビットパターン4aの位置ズレや寸法ばらつきなどに関して、1トラック分のビットパターン4aの検査を終えたら、検査の対象とするトラックの位置を変更する。トラックの位置の変更は、たとえば、偏向器11によって電子ビームの向きを変えるか、あるいは直動ステージ制御部17からの制御指令に基づく直動ステージ15の駆動によって、電子ビームの照射位置をディスク媒体4の径方向に変位させることによって行う。これにより、先ほど検査したトラックのビットパターン4aとは異なるビットパターン4a(通常は隣のトラックのビットパターン4a)を対象に、上記同様のパターン検査を行う。そして、このパターン検査を、ディスク媒体4上のすべてのトラックのビットパターン4a、または予め設定された複数のトラックのビットパターン4aについて行う。
<4.実施の形態の効果に関する説明>
 本発明の実施の形態に係るパターン検査装置およびパターン検査方法によれば、以下のような効果が得られる。
 すなわち、ディスク媒体4のパターン検査を行う場合に、電子検出器3の検出結果を基に二次電子像を生成したり、この二次電子像からパターンの形状や寸法を把握したりしなくても、電子検出器3から得られる検出信号をそのまま用いて、パターン検査を行うことができる。これにより、走査型電子顕微鏡を用いて得られる二次電子像からパターンの形状や位置を把握する場合に比べて、ディスク媒体のパターンの検査を簡単に行うことが可能となる。
 また、電子検出器3から得られる検出信号を用いたパターン検査に際しては、その検出信号と基準信号とを比較することにより、ビットパターンの位置ズレや寸法ばらつきに関して、ビットパターンの良否を判定することができる。
 具体的には、縦軸を信号強度とし横軸を時間として表現される信号の強度プロファイルに関して、1ビットごとに検出信号と基準信号とを比較することにより、ビットパターンの位置がディスク媒体4の周方向や径方向にずれた場合、あるいはビットパターンのパターン径や基準のパターン径と異なる場合に、それらの位置ずれや寸法ばらつきに関して、ビットパターンの良否を判定することができる。
 さらに詳しくは、横軸上で規定される検出信号の出力タイミングと基準信号の出力タイミングとを比較することにより、ビットパターンの位置がディスク媒体4の周方向にずれた場合に、その位置ズレ量に関して、ビットパターンの良否を判定することができる。
 また、縦軸上で規定される検出信号の信号強度と基準信号の信号強度とを比較するとともに、横軸上で規定される検出信号の信号幅と基準信号の信号幅とを比較することにより、ビットパターンの位置がディスク媒体4の径方向にずれた場合や、ビットパターンのパターン径が基準のパターン径と異なる場合に、それらの位置ズレや寸法ばらつきに関して、ビットパターンの良否を判定することができる。
<5.変形例>
 なお、本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
 たとえば、上記実施の形態においては、照射光学系2による電子ビームのスポット径を、ビットパターン4aのパターン径よりも大きく設定するものとしたが、これに限らず、電子ビームのスポット径をビットパターン4aのパターン径と同一に設定してもよい。ただし、電子ビームのスポット径をビットパターン4aのパターン径よりも大きく設定した方が、ビットパターン4aの位置ズレや寸法ばらつきなどに関して、その種別をより細かく判別することが可能となる。その理由は、電子ビームのスポット径をビットパターン4aのパターン径と同一に設定した場合は、たとえば、ビットパターン4aのパターン径が基準のパターン径よりも大きかった場合に、それが検出信号の信号強度に反映されないが、電子ビームのスポット径をビットパターン4aのパターン径よりも大きく設定しておけば、上記のパターン径の違いが検出信号の信号強度に反映され、その判別が可能となるためである。
 また、本発明で検査の対象とするディスク媒体のビットパターンの平面形状は、前述した円形に限らず、たとえば、四角形などの多角形でも、あるいは楕円などでもよい。
 1…パターン検査装置
 2…照射光学系
 3…電子検出器
 4…ディスク媒体
 4a…ビットパターン
 5…ステージ機構
 11…偏向器
 13…光学系制御部
 14…回転ステージ
 16…回転ステージ制御部
 17…直動ステージ制御部
 18…信号処理部
 

Claims (6)

  1.  複数のトラックが同心円状に形成されるとともに、各々のトラックのパターンの形態が1ビットごとに径方向および周方向に分離されているディスク媒体のビットパターンを検査するパターン検査装置であって、
     前記ディスク媒体が載せられる回転ステージと、
     前記回転ステージとともに回転する前記ディスク媒体に対して電子ビームを照射する照射光学系と、
     前記照射光学系による電子ビームの照射によって前記回転ステージ上のディスク媒体から発生する電子を検出する電子検出器と
     を備え、
     前記照射光学系による電子ビームのスポット径が、前記ビットパターンのパターン径以上に設定されている
     ことを特徴とするパターン検査装置。
  2.  前記電子検出器の検出結果として1ビットごとに得られる検出信号と予め設定されている基準信号との比較により、前記ビットパターンの良否を判定する判定手段を備える
     ことを特徴とする請求項1に記載のパターン検査装置。
  3.  前記判定手段は、縦軸を信号強度とし横軸を時間として表現される信号の強度プロファイルに関して、前記検出信号と前記基準信号とを比較する
     ことを特徴とする請求項2に記載のパターン検査装置。
  4.  前記判定手段は、前記横軸上で規定される前記検出信号の出力タイミングと前記基準信号の出力タイミングとを比較することにより、前記ビットパターンの良否を判定する
     ことを特徴とする請求項3に記載のパターン検査装置。
  5.  前記判定手段は、前記縦軸上で規定される前記検出信号の信号強度と前記基準信号の信号強度とを比較するとともに、前記横軸上で規定される前記検出信号の信号幅と前記基準信号の信号幅とを比較することにより、前記ビットパターンの良否を判定する
     ことを特徴とする請求項3または4に記載のパターン検査装置。
  6.  複数のトラックが同心円状に形成されるとともに、各々のトラックのパターンの形態が1ビットごとに径方向および周方向に分離されているディスク媒体のビットパターンを検査するパターン検査方法であって、
     前記ディスク媒体を回転させて、当該回転中のディスク媒体に電子ビームを照射し、当該当該電子ビームの照射位置で前記ディスク媒体から発生する電子を検出するとともに、前記電子ビームのスポット径を前記ビットパターンのパターン径以上に設定して、各々のトラックのビットパターンを検査する
     ことを特徴とするパターン検査方法。
     
PCT/JP2011/059178 2010-04-13 2011-04-13 パターン検査装置およびパターン検査方法 WO2011129364A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012510670A JPWO2011129364A1 (ja) 2010-04-13 2011-04-13 パターン検査装置およびパターン検査方法
US13/640,834 US20130092837A1 (en) 2010-04-13 2011-04-13 Pattern inspection device and pattern inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-092298 2010-04-13
JP2010092298 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011129364A1 true WO2011129364A1 (ja) 2011-10-20

Family

ID=44798735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059178 WO2011129364A1 (ja) 2010-04-13 2011-04-13 パターン検査装置およびパターン検査方法

Country Status (3)

Country Link
US (1) US20130092837A1 (ja)
JP (1) JPWO2011129364A1 (ja)
WO (1) WO2011129364A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712659A4 (en) * 2017-11-16 2021-01-13 Nec Corporation DISTANCE MEASURING APPARATUS, DISTANCE MEASURING METHOD AND PROGRAM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080327A (ja) * 2005-09-13 2007-03-29 Hitachi Ltd 記録媒体欠陥検査装置及び欠陥検査方法
JP2007133985A (ja) * 2005-11-11 2007-05-31 Hitachi Ltd 磁気記録・光記録ディスク検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191542B2 (ja) * 2008-08-01 2013-05-08 パイオニア株式会社 電子ビーム記録装置及びその制御装置並びに制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080327A (ja) * 2005-09-13 2007-03-29 Hitachi Ltd 記録媒体欠陥検査装置及び欠陥検査方法
JP2007133985A (ja) * 2005-11-11 2007-05-31 Hitachi Ltd 磁気記録・光記録ディスク検査装置

Also Published As

Publication number Publication date
JPWO2011129364A1 (ja) 2013-07-18
US20130092837A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
KR101000982B1 (ko) 수차 평가용 패턴, 수차 평가 방법, 수차 보정 방법, 전자빔 묘화 장치, 전자 현미경, 마스터, 스탬퍼, 기록 매체, 및 구조체
JP3984019B2 (ja) 電子ビーム装置及び電子ビーム調整方法
CN1645257A (zh) 图形绘图装置、信息记录媒体的制造方法及母盘制造方法
WO2007105817A1 (en) Electron beam recording apparatus
US7388215B2 (en) Pattern drawing method, stamper manufacturing method, and pattern drawing apparatus
JP4466544B2 (ja) 光情報媒体の検査方法および光情報媒体検査装置
JP4746677B2 (ja) ディスク原盤製造方法
CN1542798A (zh) 电子束记录器和电子束照射位置检测方法
WO2011129364A1 (ja) パターン検査装置およびパターン検査方法
JP2009274347A (ja) ローラーモールド作製方法
JP2007080327A (ja) 記録媒体欠陥検査装置及び欠陥検査方法
JP2005084490A (ja) 電子ビーム描画方法および描画装置
TW202036150A (zh) 多電子束檢測方法及系統
JP4403417B2 (ja) 基準原盤、芯出し調整方法
JP4058367B2 (ja) エネルギー線照射装置
JP2011238603A (ja) パターン検査装置およびパターン検査方法
JP2011238335A (ja) パターン検査装置およびパターン検査方法
JP2004164762A (ja) ディスク原盤露光装置
JP2008140419A (ja) 電子ビームマスタリング装置及び回転ムラ補正方法
JP4440663B2 (ja) 電子線記録装置及び電子線照射位置検出方法
WO2008082000A1 (en) Aberration evaluation pattern, aberration evaluation method, aberration correction method, electron beam drawing apparatus, electron microscope, master, stamper, recording medium, and structure
JP4382550B2 (ja) パターン描画装置およびパターン描画方法
JP2004071954A (ja) ホールの検査方法
JP2005338755A (ja) 回転駆動装置と電子線描画装置及び光ディスク
JP2005302704A (ja) 電子線記録装置と電子線照射位置検出方法及び電子線照射位置制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510670

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13640834

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11768885

Country of ref document: EP

Kind code of ref document: A1