WO2011129127A1 - Multi-layer flexible printed circuit board and method of manufacturing thereof - Google Patents

Multi-layer flexible printed circuit board and method of manufacturing thereof Download PDF

Info

Publication number
WO2011129127A1
WO2011129127A1 PCT/JP2011/050818 JP2011050818W WO2011129127A1 WO 2011129127 A1 WO2011129127 A1 WO 2011129127A1 JP 2011050818 W JP2011050818 W JP 2011050818W WO 2011129127 A1 WO2011129127 A1 WO 2011129127A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
printed wiring
flexible printed
wiring board
base material
Prior art date
Application number
PCT/JP2011/050818
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 松田
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to CN201180001769.XA priority Critical patent/CN102396300B/en
Publication of WO2011129127A1 publication Critical patent/WO2011129127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09845Stepped hole, via, edge, bump or conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections

Definitions

  • the present invention relates to a multilayer flexible printed wiring board and a manufacturing method thereof, and more particularly to a multilayer flexible printed wiring board having a step via structure and a manufacturing method thereof.
  • This build-up type multilayer flexible printed wiring board has a double-sided flexible printed wiring board or a multilayer flexible printed wiring board as a core substrate (inner layer), and about one or two build-up layers (outer layer) on both sides or one side of the core substrate.
  • a high density of the flexible printed wiring board is achieved.
  • the build-up type multilayer flexible printed wiring board is advantageous in terms of thinning and high density of the printed wiring board.
  • CSP chip size package
  • a build-up type multilayer flexible printed wiring board having a so-called step via structure is known (see FIGS. 5 and 9 of Patent Document 1).
  • the outline of the manufacturing method of this printed wiring board is as follows. First, fine wiring is formed on a core substrate that is an inner layer, and then a buildup layer that is an outer layer is laminated on the core substrate. Then, a stepped step via hole (double hole) composed of a large-diameter upper hole and a small-diameter pilot hole is formed by laser processing (see FIG. 9 (14) of Patent Document 1). Thereafter, a step via functioning as an interlayer conductive path is formed by plating the inner wall (bottom surface and side surface) of the step via hole (see FIGS. 5 and 9 (15) of Patent Document 1).
  • the step via structure it is possible to miniaturize the wiring of the outer layer, so that it is possible to obtain a multilayer flexible printed wiring board that is advantageous for mounting multi-pin and narrow pitch package components.
  • FIG. 7 (1) is a top view of the multilayer flexible printed wiring board
  • FIG. 7 (2) is a cross-sectional view taken along the line AA ′ of FIG. 7 (1)
  • FIG. 7 (3) is FIG.
  • FIG. 2 is a cross-sectional view taken along line BB ′ of 1).
  • step vias 51A, 51B, 51C and 51D have a circular upper interlayer conductive path 51a and a circular lower interlayer conductive path 51b.
  • the upper interlayer conductive path 51a electrically connects the land portion 52 on the surface of the multilayer flexible printed wiring board and the land portion 53 of the inner layer.
  • the lower interlayer conductive path 51b electrically connects the land portion 54 on the back surface of the multilayer flexible printed wiring board and the land portion 53 of the inner layer.
  • upper interlayer conductive paths 51a and lower interlayer conductive paths 51b are formed concentrically like step vias 51A, 51B, 51D shown in FIG.
  • the build-up type multilayer flexible printed wiring board having the above step via structure can be mounted with CSP of about 300 pins at a pitch of 500 ⁇ m, for example.
  • CSP CSP
  • the number of pins on mounting parts and the narrowing of pitch are increasing, and the number of pins on mounting parts has increased from several hundred to several thousand.
  • the pitch of the land portions for joining the components is the same as the pitch of the mounting pads of the mounting components, it is necessary to reduce the pitch of the land portions in accordance with the narrowing of the pitch of the mounting components.
  • the multilayer flexible printed wiring board is required to electrically connect a land portion joined to a large number of pins and a predetermined connector portion. Therefore, as can be seen from FIG. 7B, a large number of fine wirings 55, 55,... Are provided between the step vias 51A and 51B (between the step vias 51C and 51D).
  • the step via pitch is 400 ⁇ m and the distance between the land portions in the layer (inner layer) where the fine wiring is formed is 200 ⁇ m, as shown in FIG.
  • the wiring pitch of the wiring 55 is about 30 ⁇ m.
  • the region in which the wirings 55, 55,... Are provided is a region requiring the smallest pitch among the multilayer flexible printed wiring boards.
  • a flexible copper-clad laminate in which a copper foil is provided on one or both sides of a flexible insulating base material is used as a starting material.
  • This copper-clad laminate is long and wound up in a roll. While this long copper-clad laminate is unwound by an unwinding roll, a process such as exposure is performed for each predetermined area called a sheet area. Then, when the process is finished for a certain sheet area, the copper-clad laminate is conveyed in the roll direction (conveyance direction), and the next sheet area is processed.
  • the long double-sided copper-clad laminate 61 is wound around one end by an unwinding roll 62 and wound at the other end by a winding roll 63. Processing such as exposure is performed with the sheet region 64 of the double-sided copper clad laminate 61 as a unit.
  • the unwinding roll 62 and the take-up roll 63 rotate to convey the sheet area 64 in the roll direction, and process the next adjacent sheet area.
  • the double-sided copper-clad laminate 61 unwound from the unwinding roll 62 tends to expand and contract in the roll direction.
  • the double-sided copper-clad laminate 61 wound up on the winding roll is turned over, and the back surface is exposed sequentially for each sheet region using another glass mask to form a resist layer in the sheet region on the back surface.
  • the length in the roll direction of the exposure area 66 on the double-sided copper-clad laminate 61 exposed by one exposure is the double-sided copper-clad laminate.
  • the width of the plate 61 is preferably about 1.5 to 2 times.
  • the number of products (multilayer flexible printed wiring boards) 65 that can be taken from one sheet region 64 can be increased, and productivity can be improved.
  • the exposure area 66 is increased in the roll direction of the double-sided copper-clad laminate 61, it becomes difficult to ensure the parallelism of the exposure light, and as the exposure area 66 goes to the left and right ends in FIG.
  • the positional deviation accompanying expansion and contraction of the double-sided copper-clad laminate 61 increases. That is, if the exposure area 66 is expanded with respect to the roll direction of the double-sided copper-clad laminate 61 in order to improve productivity, the influence of expansion and contraction of the double-sided copper-clad laminate 61 on the alignment accuracy increases.
  • the lower interlayer conductive path 51b of the step via 51C shown in FIGS. 7 (1) and 7 (3) has a positional shift greater than the allowable amount with respect to the roll direction (vertical direction in the figure).
  • the conformal mask does not function properly when forming the step via hole, and a minute dent, burring or the like occurs on the inner wall of the step via hole.
  • the plating layer is not formed in the recessed portion of the inner wall because the renewability of the plating solution or the like is poor.
  • the void as shown in FIG. 56 is generated. When such a void 56 is generated, the plating layer is easily broken, and the reliability of the step via as the interlayer conductive path may be lowered.
  • the positional deviation occurs only in the step via 51C.
  • the step via hole is formed using a conformal laser processing method or the like, the flexible base material is in the roll direction.
  • the possibility of positional deviation also occurring in step vias near the step via 51C is high.
  • the diameter of the step via hole needs to be 100 ⁇ m or less as described above. However, if the diameter of the step via hole is reduced to this extent, a position deviation of only about 20 to 30 ⁇ m is generated and the state becomes like the step via 51C in FIG.
  • An object of the present invention is to provide a method for stably and inexpensively manufacturing a multilayer flexible printed wiring board having a small diameter step via structure.
  • a multilayer flexible printed wiring board starting from a roll-shaped flexible base material, wherein the first flexible insulating base is a part of the flexible base material. And a second flexible member having first and second surfaces opposite to each other, wherein the first surface is laminated on the back surface of the first flexible insulating base material via an adhesive layer.
  • a conductive insulating base material, an upper hole penetrating the first flexible insulating base material in a thickness direction, a diameter smaller than the upper hole, communicating with the upper hole, and the adhesive layer and the first 2 is a pilot hole that penetrates the flexible insulating base material 2 in the thickness direction and exposes the first outer layer land portion provided on the second surface of the second flexible insulating base material on the bottom surface.
  • a step via hole having a surface of the first flexible insulating base material around the upper hole.
  • An upper interlayer conductive path that electrically connects the outer land portion and the inner land portion, and a lower interlayer that is formed on the inner wall of the pilot hole and electrically connects the first outer land portion and the inner land portion.
  • a first via which is a difference between the diameter of the upper hole and the diameter of the lower hole with respect to the roll direction of the roll-shaped flexible base material.
  • a multilayer flexible printed wiring board is provided that is larger than a second difference that is a difference between the diameter of the upper hole and the diameter of the lower hole in a direction perpendicular to the vertical direction.
  • a roll having a first flexible insulating base material and a first copper foil and a second copper foil on the front surface and the back surface, respectively, and wound on an unwinding roll A double-sided copper-clad laminate in the form of a roll, one end of the double-sided copper-clad laminate in the form of a roll is pulled out from the take-up roll in the roll direction, Forming a first conductive pattern layer having an opening for an upper hole and a second conductive pattern layer having an opening for a lower hole; a second flexible insulating base material; A single-sided copper-clad laminate having a copper foil, and laminating and adhering the single-sided copper-clad laminate to the back surface of the double-sided copper-clad laminate via an adhesive layer, A laser beam is irradiated from the side, and the upper hole opening and the lower hole opening are formed as a conformal mask.
  • an upper hole penetrating the first flexible insulating base material in the thickness direction, and communicating with the upper hole, the adhesive layer and the second flexible insulating base Forming a step via hole that penetrates the material in the thickness direction and has a pilot hole in which the third copper foil is exposed on the bottom surface, and subjecting the inner wall of the step via hole to an electrolytic copper plating treatment, Forming a step via for electrically connecting the conductive pattern layer, the second conductive pattern layer, and the third copper foil, the method for manufacturing a multilayer flexible printed wiring board, wherein
  • the first difference that is the difference between the diameter of the hole opening and the diameter of the lower hole opening is that the diameter of the upper hole opening and the diameter of the lower hole opening with respect to the direction perpendicular to the roll direction. This is greater than the second difference, which is the difference in diameter.
  • the present invention has the following effects.
  • the difference between the diameters of the upper hole (upper hole opening) and the lower hole (lower hole opening) in the roll direction of the flexible insulating base material is the upper hole in the direction perpendicular to the roll direction. It is larger than the difference between the diameter of the (upper hole opening) and the diameter of the lower hole (lower hole opening). For this reason, the positional deviation allowable amount of the pilot hole (the pilot hole opening) with respect to the roll direction can be made larger than the positional deviation allowable amount in the direction perpendicular to the roll direction. As a result, a normal step via hole can be obtained even when the flexible insulating base material expands and contracts in the roll direction.
  • the opening area of the upper hole of the step via hole is increased, when forming a plating layer on the inner wall of the step via hole, the renewability of the plating solution and the like is improved. Can be a good step via.
  • a multilayer flexible printed wiring board having a small-diameter step via with high reliability as an interlayer conductive path can be obtained inexpensively and stably.
  • FIG. 4 is a cross-sectional view taken along line C-C ′ of FIG. It is a top view which shows the modification of the step via hole which concerns on embodiment of this invention. It is a figure which shows the example of mounting of the components to the multilayer flexible printed wiring board which concerns on this embodiment.
  • (1) is a top view of a multilayer flexible printed wiring board on which components are mounted, and (2) is a cross-sectional view taken along line A-A ′ of (1). It is a figure for demonstrating the structure of the buildup type multilayer flexible printed wiring board which has the conventional step-via structure.
  • (1) is a top view of the multilayer flexible printed wiring board
  • (2) is a cross-sectional view taken along the line AA ′ in (1)
  • (3) is a line BB ′ in (1).
  • a double-sided copper clad laminate 14 having a copper foil 12 and a copper foil 13 each having a thickness of 1 ⁇ m is prepared on both sides of a flexible insulating base material 11 (for example, a polyimide film having a thickness of 25 ⁇ m).
  • This double-sided copper-clad laminate 14 is in the form of a roll wound around an unwinding roll.
  • 1 (1) is a cross-sectional view showing a part of a double-sided copper-clad laminate 14 in which one end of a roll-shaped double-sided copper-clad laminate 14 is drawn out from a roll in the roll direction. is there.
  • the roll direction is the direction perpendicular to the paper surface
  • the horizontal direction is the width direction of the roll material.
  • a resist layer (not shown) is formed in the sheet region on the copper foil 12 of the double-sided copper clad laminate 14.
  • the thickness of the resist layer is preferably about 1.2 to 2 times the thickness of the wiring layer to be formed. Because, when the thickness of the resist layer is thinner than 1.2 times the thickness of the wiring layer, when plating is performed by the semi-additive method, the plating film grows beyond the thickness of the resist layer due to variations in the plating thickness, As a result, wiring failure may occur. On the other hand, when the thickness of the resist layer is thicker than twice the thickness of the wiring layer, it becomes difficult to form fine wiring, which may result in poor wiring. Therefore, here, the thickness of the designed wiring is 10 ⁇ m, and the thickness of the resist layer is 15 ⁇ m.
  • the resist layer on the copper foil 12 formed in the previous step is exposed and developed to pattern the resist layer into a predetermined pattern.
  • the plating resist layer 15A is formed on the copper foil 12 of the double-sided copper clad laminate 14.
  • the plating resist layer 15A is used for forming a desired conductive pattern layer by a semi-additive method.
  • the above process is performed for each sheet region to form the plating resist layer 15A.
  • the double-sided copper-clad laminate 14 wound around the take-up roll is turned over, and then one end is unwound, Process the back side as follows.
  • a resist layer (not shown) is formed in the sheet region on the copper foil 13 of the double-sided copper clad laminate 14.
  • the thickness of this resist layer was 15 ⁇ m for the same reason as in the case of the resist layer on the copper foil 12.
  • a plating resist layer 15 B is formed on the copper foil 13 of the double-sided copper-clad laminate 14.
  • This plating resist layer 15B is used for forming a desired conductive pattern layer by a semi-additive method, similarly to the above-described plating resist layer 15A.
  • electrolytic copper plating is performed on both surfaces of the double-sided copper clad laminate 14 on which the plating resist layers 15A and 15B are formed.
  • the electrolytic copper plating layers 16 and 17 are formed on the copper foil 12 and the copper foil 13 exposed in the openings of the plating resist layers 15A and 15B, respectively.
  • the thickness of the electrolytic copper plating layers 16 and 17 was 10 ⁇ m.
  • the copper foil 12 and the copper foil 13 not covered with the electrolytic copper plating layers 16 and 17 are formed by flash etching. Remove.
  • an etchant having selectivity for the metal contained in the seed layer is used.
  • the seed layer contains nickel
  • a mixed solution of nitric acid and hydrochloric acid can be used as the etchant.
  • FIG. 1 (4) shows a top view of the double-sided circuit substrate 18.
  • the conductive pattern layer has an opening at a predetermined position.
  • a conformal mask 19 (upper hole opening) that is an opening of the conductive pattern layer formed on the surface of the double-sided circuit substrate 18 functions to form an upper hole of a step via hole.
  • the conformal mask 20 (opening for pilot holes) that is an opening of the conductive pattern layer formed on the back surface of the double-sided circuit substrate 18 functions to form pilot holes for step via holes.
  • the conformal mask 19 is formed in an oval shape, and the major axis of this oval is parallel to the roll direction.
  • the length of the major axis of the ellipse of the conformal mask 19 is twice the length of the minor axis. That is, the length of the major axis was 160 ⁇ m, and the length of the minor axis was 80 ⁇ m.
  • the conformal mask 20 was formed in a perfect circular shape (diameter 60 ⁇ m).
  • the positional deviation allowable amount with respect to the direction intersecting with the roll direction at 90 ° that is, the width direction of the double-sided copper-clad laminate 14
  • the positional deviation tolerance in the roll direction is within ⁇ 50 ⁇ m, and the positional deviation tolerance in the direction in which expansion and contraction occurs can be greatly increased.
  • an adhesive layer 24 (for example, 15 ⁇ m thick) is provided on one side.
  • the copper-clad laminate 23 is laminated and bonded.
  • This single-sided copper-clad laminate 23 has, for example, a copper foil 22 having a thickness of 12 ⁇ m on one side of a flexible insulating base material 21 (for example, a polyimide film having a thickness of 25 ⁇ m).
  • the single-sided copper-clad laminate 23 is laminated on the back surface of the double-sided circuit substrate 18 so that the flexible insulating base material 21 is in contact with the adhesive layer 24.
  • the adhesive layer 24 is preferably formed using a low-flow type prepreg or an adhesive with a low flow-out such as a bonding sheet.
  • the conformal mask 19 is irradiated with laser light from the side of the conformal mask 19 (the upper side in FIG. 2 (2)), and the conformal lasers 19 and 20 are used. Processing. Thereby, a step via hole (conduction hole) 25 having an upper hole 26 and a lower hole 27 is formed.
  • the upper hole 26 penetrates the flexible insulating base material 11, and the electrolytic copper plating layer 17 is exposed on the bottom surface.
  • the lower hole 27 communicates with the upper hole 26 and penetrates the adhesive layer 24 and the flexible insulating base material 21.
  • the lower hole 27 has a smaller diameter than the upper hole 26, and the copper foil 22 is exposed on the bottom surface of the lower hole 27.
  • the conformal mask 19 functions as a mask for forming the upper hole 26, and the conformal mask 20 functions as a mask for forming the lower hole 27.
  • laser processing for forming the step via hole 25 it is possible to use laser light such as UV-YAG laser, carbonic acid laser, and excimer laser.
  • the details of the laser processing in this step will be described.
  • a carbon dioxide gas laser manufactured by Mitsubishi Electric Corporation, ML605GTXIII-5100U2 having a high processing speed and excellent productivity was used.
  • 5 shots of a laser pulse with a pulse width of 10 ⁇ Sec and a pulse energy of 5 mJ were irradiated to form a step via hole 25.
  • the diameter of the laser beam is adjusted to be larger than the length of the major axis of the elliptical conformal mask 19, and a laser pulse is irradiated toward the center of the ellipse of the conformal mask 19.
  • the irradiation target position is divided into, for example, three or four points on the major axis, and the laser pulse is shifted in the major axis direction. You may make it irradiate, carrying out.
  • the galvanometer mirror By oscillating the galvanometer mirror, the irradiation target position of the laser beam can be moved in a wider range than the length of the long axis. Therefore, even if the irradiation target position is divided, laser processing can be performed without affecting the productivity. Under the above laser conditions, it is possible to form the step via hole 25 having the oval upper hole 26 in the same manner as the conventional concentric step via hole.
  • the electrolytic copper plating layer 28 is formed on the inner wall (side surface and bottom surface) of the step via hole 25 and the electrolytic copper plating layer 16.
  • the thickness of the electrolytic copper plating layer 28 is, for example, 15 to 20 ⁇ m.
  • the upper interlayer conductive path 29a of the step via 29 is to electrically connect the land portion 30 on the front surface side and the land portion 17b on the inner layer, and the lower interlayer conductive path 29b is connected to the land portion 17b on the inner layer and the land portion on the back surface side. 31 is electrically connected.
  • the plating process in this step is so-called single-sided plating in which the opening surface of the step via hole 25 is only on one side (upper side in the drawing), and thus the plating process is performed only on the opening surface side of the step via hole 25. For this reason, the electrolytic copper plating layer 28 is not formed on the copper foil 22 on the back surface.
  • the single-sided plating may be realized by performing a plating process after forming a plating mask so as to cover the copper foil 22 on the back side, or after a shielding plate is provided on a plating apparatus or a plating jig or the like. It may be realized by performing.
  • the land portion 30 is formed by processing the electrolytic copper plating layer 28 into a predetermined pattern using a photofabrication method.
  • the land portion 31 is formed on the back surface by processing the copper foil 22 into a predetermined pattern using a photofabrication method.
  • the multilayer flexible printed wiring board 32 having the step via structure according to the present embodiment is obtained. Thereafter, if necessary, a protective photo solder resist layer is formed on a portion where soldering is unnecessary, and the surface of the land portion or the like is subjected to surface treatment such as solder plating, nickel plating, or gold plating. Thereafter, the roll material on which the plurality of multilayer flexible printed wiring boards 32, 32,... Are manufactured is cut for each sheet region. Finally, the outer shape is processed by punching with a mold. The roll material can be cut in any step as long as it is after the formation of the plating resist layers 15A and 15B and before the outer shape processing.
  • FIG. 3 is a top view and a sectional view of the multilayer flexible printed wiring board 32 having the long hole step via structure according to the present embodiment.
  • FIG. 3A is a top view of the multilayer flexible printed wiring board 32.
  • 3 (2) is a cross-sectional view taken along the line A-A 'of FIG. 3 (1)
  • FIG. 3 (3) is a cross-sectional view taken along the line B-B' of FIG. 3 (1).
  • the step via 29 formed in the multilayer flexible printed wiring board 32 has an oval upper interlayer conductive path 29a and a regular circular lower interlayer conductive path 29b.
  • the land portion 30 is provided on the front surface of the multilayer flexible printed wiring board 32, and the land portion 31 is provided on the back surface.
  • the land portion 31 has good flatness since there is no step via opening surface, and is therefore suitable as a land for mounting components.
  • Inner layer wiring 17a and land portion 17b are formed by processing electrolytic copper plating layer 17 in the above-described manufacturing process.
  • the wiring 17a electrically connects the land portion 17b of the multilayer flexible printed wiring board 32 and the connector portion with the outside.
  • the land portion 17 b is electrically connected to the land portion 30 and the land portion 31 by the step via 29.
  • FIG. 4 is a cross-sectional view taken along the line C-C ′ of FIG.
  • the wiring 17 a is disposed between the step vias 29 and 29 so as to run in parallel with the major axis direction of the upper interlayer conductive path 29 a (upper hole 26).
  • the opening area of the step via 29 (upper hole 26) can be increased without reducing the wiring density of the wiring 17a.
  • Table 1 shows the ratio of the major axis to the minor axis of the positional deviation allowance for each of the case where the conventional upper hole and the lower hole are both circular, and the upper hole of the present embodiment is an oval and the lower hole is a perfect circle.
  • the “major axis / minor axis ratio of allowable positional deviation” means the ratio (x / y) of the allowable positional deviation (x) in the major axis direction and the allowable positional deviation (y) in the minor axis direction.
  • Table 1 shows three examples in which the length of the major axis of the upper hole is different. That is, the length of the major axis of the upper hole is 120 ⁇ m in Example 1, 160 ⁇ m in Example 2, and 240 ⁇ m in Example 3. In all cases, the length of the short axis is 80 ⁇ m.
  • the length of the major axis of the upper hole (conformal mask 19) is preferably about 1.5 to 3 times the length of the minor axis. If it is smaller than 1.5 times, there is a possibility that the positional deviation allowable amount is not sufficient. On the other hand, if it is larger than three times, the positional displacement tolerance increases, but the time required to form the above-described step via hole 25 by laser processing increases, and as a result, the productivity may decrease.
  • the ratio of the length of the major axis to the length of the minor axis is 1.5 times, 2 times and 3 times in Example 1, Example 2 and Example 3, respectively.
  • the ratio of the length of the major axis to the length of the minor axis is converted into the “major axis / minor axis ratio of the allowable positional deviation”, the ratio becomes three times, five times and nine times.
  • the positional deviation allowable amount in the major axis direction is significantly increased to 3 to 9 times the positional deviation allowable amount in the short axis direction (that is, the conventional positional deviation allowable amount). Can be increased.
  • the upper hole 26 of the step via hole 25 is an oval and the lower hole 27 is a regular circle.
  • the upper hole 26 of the step via hole 25 is larger than in the conventional case, the renewability of the plating solution and the like when the plating process is performed on the inner wall of the step via hole is improved. For this reason, the stable step via around plating can be formed. As a result, according to the present embodiment, the reliability of the step via as the interlayer conductive path can be further improved.
  • FIGS. 5 (1) to 5 (4) all show a top view of a step via hole that can increase the positional displacement tolerance with respect to the roll direction (vertical direction in the figure).
  • the opening area of the pilot hole 101b is also larger than that of a conventional regular circle, so that the renewability of the plating solution and the like can be further improved.
  • the step via hole 102 shown in FIG. 5 (2) has an oval upper hole 102a and an elliptical lower hole 102b. Since the pilot hole 102b is elliptical, it is possible to improve the renewability of the plating solution and the like, and it is possible to increase the positional deviation margin in the rotation direction (the direction of the arrow in FIG. 5 (2)). That is, when the resist layer is exposed to form the plating resist layer 15B described above, the corner of the pilot hole 102b is rounder than the oval in the rotation direction as compared with the step via hole 101 in FIG. The allowable amount of positional deviation can be increased.
  • the step via hole 103 shown in FIG. 5 (3) has a regular circular upper hole 103a and an oval lower hole 103b. As shown in FIG. 5 (3), although the oval pilot hole 103b is provided in a direction perpendicular to the roll direction, the upper hole 103a is a perfect circle, so that the rotation direction (FIG. 5 (3) It is possible to increase the positional displacement tolerance with respect to (in the direction of arrow).
  • the step via hole 104 shown in FIG. 5 (4) has a substantially square upper hole 104a and a substantially rectangular lower hole 104b.
  • the substantially rectangular pilot hole 104b is provided in a direction perpendicular to the roll direction, but the upper hole 104a is substantially square, so that the rotation direction (the direction of the arrow in FIG. 5 (4)) is relative to the rotation direction. It is possible to increase the positional displacement tolerance.
  • the upper hole and the lower hole in each example can be combined.
  • a step via hole in which both the upper hole and the lower hole are elliptical may be used.
  • the direction of the major axis of the pilot hole is parallel to the direction of the major axis of the upper hole.
  • it may be a step via hole constituted by a regular circular upper hole and a substantially rectangular lower hole.
  • the direction of the long side of the pilot hole is a direction perpendicular to the roll direction.
  • the upper hole may be an ellipse having a major axis parallel to the roll direction
  • the pilot hole may be a perfect circle or an ellipse having a major axis in the same direction as the upper hole.
  • FIG. 6A is a top view showing a state in which the component 44 is mounted on the multilayer flexible printed wiring board according to the present embodiment.
  • FIG. 6B is a cross-sectional view taken along the line A-A ′ of FIG. As can be seen from FIG. 6 (1), the component 44 is mounted in the component mounting area 41.
  • the component 44 is mounted on the land portion 31 on the back surface of the multilayer flexible printed wiring board 32 via bumps 45. As a result, the component 44 can be mounted with a higher flatness than when mounted on the land portion 30. As a result, there is no possibility that voids or the like are generated in the joint portion, and a highly reliable joint can be obtained.
  • the wiring 17a provided in the inner layer of the multilayer flexible printed wiring board 32 passes from the component mounting area 41A (41B) to the connector section 43A (43B) through the wiring area 42A (42B).
  • the land portion 31 of the component mounting area 41 is electrically connected to the connector portions 43A and 43B. More specifically, the wiring 17a that electrically connects the land portion 31 of the component mounting region 41A, which is the upper half region of the component mounting region 41, and the connector portion 43A extends from the land portion 31 arranged in the component mounting region 41A. It is routed to the connector portion 43A through the wiring area 42A.
  • the mounted component 44 is, for example, a sensor module having a very large number of pins, and the direction in which the fine wiring 17a is drawn is limited to approximately one direction. In such a case, by providing the wiring 17a so as to run in the major axis direction of the step via 29, it is possible to increase the area of the opening of the step via 29 without impairing the wiring density of the wiring 17a. is there.
  • the upper hole of the step via hole is formed into an oval shape, and the major axis direction thereof is parallel to the roll direction of the roll material of the flexible printed wiring board.
  • the renewability of the plating solution and the like when the plating layer is formed on the inner wall of the step via hole is improved. For this reason, it is possible to form a step via with a good surrounding shape with plating. That is, according to the present embodiment, a multilayer flexible printed wiring board having step vias with higher reliability as interlayer conductive paths can be obtained.
  • the exposure area can be expanded in the roll direction and the area of one sheet region can be expanded by increasing the positional deviation allowable amount.
  • region can be increased, and productivity can be improved.
  • a multi-layer flexible printed wiring board having a small-diameter step via structure stably and inexpensively without introducing a new process or apparatus. Can be manufactured.
  • the shape of the upper hole and the lower hole of the step via hole according to the present invention is not limited to the above-described embodiment and modification. More generally, the difference between the diameter of the conformal mask 19 (the upper hole 26) and the diameter of the conformal mask 20 (the lower hole 27) with respect to the roll direction of the flexible base material is a direction perpendicular to the roll direction. The difference between the diameter of the conformal mask 19 (the upper hole 26) and the diameter of the conformal mask 20 (the lower hole 27) may be larger. By doing in this way, it becomes possible to increase the positional shift allowable amount with respect to the roll direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Disclosed is a method of manufacturing, inexpensively and with stability, a multi-layer flexible printed circuit board having a small-diameter step-via structure. The multi-layer flexible printed circuit board is provided with: a flexible insulation base material (11); an insulation base material (21) laminated onto the back-face of the insulation base material (11) with an adhesive layer (24) interposed therebetween; step-via holes (25) comprising upper holes (26) that penetrate through the insulation base material (11), and lower holes (27) that penetrate through the adhesive layer (24) and the flexible insulation base material (21), and that has land sections (31) exposed at the bottom face thereof; land sections (30) formed on the surface of the insulation base material (11); land sections (17b) formed on the back-face of the insulation base material (11); and step-vias (29) comprising inter-layer conductor paths (29a) that connect the land sections (30) and the land sections (17b), and inter-layer conductor paths (29b) that connect the land sections (31) and the land sections (17b). The difference in the diameters of the upper holes (26) and the lower holes (27) in the roll direction of the flexible base material, which is the starting material, is made to be greater than the difference in the diameters of the upper holes (26) and the lower holes (27) in a direction perpendicular to the roll direction.

Description

多層フレキシブルプリント配線板及びその製造方法Multilayer flexible printed wiring board and manufacturing method thereof
 本発明は、多層フレキシブルプリント配線板及びその製造方法に関し、より詳しくは、ステップビア構造を有する多層フレキシブルプリント配線板及びその製造方法に関する。 The present invention relates to a multilayer flexible printed wiring board and a manufacturing method thereof, and more particularly to a multilayer flexible printed wiring board having a step via structure and a manufacturing method thereof.
 近年、電子機器の小型化および高機能化がますます進展している。それにつれて、プリント配線板及びプリント配線板に搭載される部品に対する、高密度化の要求が高まっている。特に、携帯機器に使用されるパッケージ部品については、ピン数が増加するとともに、ピン間の狭ピッチ化が進んでいる。一方、プリント配線板に対しては、パッケージ部品を搭載するための配線ルール及び携帯機器への組み込みを考慮して、薄型化が要求されている。プリント配線板を薄型化するために、ポリイミドフィルム等の可撓性絶縁ベース材を出発材料としたフレキシブルプリント配線板を採用することが考えられる。 In recent years, miniaturization and higher functionality of electronic devices are progressing more and more. Along with this, there is an increasing demand for higher density of printed wiring boards and components mounted on the printed wiring boards. In particular, for package parts used in portable devices, the number of pins is increasing and the pitch between pins is becoming narrower. On the other hand, the printed wiring board is required to be thin in consideration of wiring rules for mounting package parts and incorporation into portable devices. In order to reduce the thickness of the printed wiring board, it is conceivable to employ a flexible printed wiring board starting from a flexible insulating base material such as a polyimide film.
 また、従来、電子部品等を高密度に実装するのに有利であるビルドアップ型多層フレキシブルプリント配線板が知られている(特許文献1の図15等を参照)。このビルドアップ型多層フレキシブルプリント配線板は、両面フレキシブルプリント配線板又は多層フレキシブルプリント配線板をコア基板(内層)として、このコア基板の両面又は片面に1~2層程度のビルドアップ層(外層)を形成し、それにより、フレキシブルプリント配線板の高密度化を図ったものである。 Also, conventionally, a build-up type multilayer flexible printed wiring board that is advantageous for mounting electronic components and the like at high density is known (see FIG. 15 of Patent Document 1). This build-up type multilayer flexible printed wiring board has a double-sided flexible printed wiring board or a multilayer flexible printed wiring board as a core substrate (inner layer), and about one or two build-up layers (outer layer) on both sides or one side of the core substrate. Thus, a high density of the flexible printed wiring board is achieved.
 上述のように、ビルドアップ型多層フレキシブルプリント配線板は、プリント配線板の薄型化および高密度化の点で有利である。しかしながら、その構造上、内層にもめっき層を厚く形成する必要があることから、外層の配線を微細化することは困難である。そのため、チップサイズパッケージ(CSP:Chip Size Package)のような多ピン且つ狭ピッチのパッケージ部品を搭載することは困難であった。 As described above, the build-up type multilayer flexible printed wiring board is advantageous in terms of thinning and high density of the printed wiring board. However, because of the structure, it is necessary to form a thick plating layer on the inner layer, so it is difficult to miniaturize the wiring on the outer layer. For this reason, it has been difficult to mount a multi-pin, narrow-pitch package component such as a chip size package (CSP).
 この問題を解決するため、いわゆるステップビア構造を有するビルドアップ型多層フレキシブルプリント配線板が知られている(特許文献1の図5及び図9参照)。このプリント配線板の製造方法の概略は次の通りである。まず、内層となるコア基板上に微細な配線を形成し、その後、コア基板に外層となるビルドアップ層を積層する。そして、レーザ加工により、大径の上穴と小径の下穴から構成される階段状のステップビアホール(二重穴)を形成する(特許文献1の図9(14)参照)。その後、このステップビアホールの内壁(底面及び側面)にめっき処理を施すことにより、層間導電路として機能するステップビアを形成する(特許文献1の図5及び図9(15)参照)。ステップビア構造を採用することにより、外層の配線を微細化することが可能となるため、多ピン且つ狭ピッチのパッケージ部品の搭載に有利な多層フレキシブルプリント配線板を得ることができる。 In order to solve this problem, a build-up type multilayer flexible printed wiring board having a so-called step via structure is known (see FIGS. 5 and 9 of Patent Document 1). The outline of the manufacturing method of this printed wiring board is as follows. First, fine wiring is formed on a core substrate that is an inner layer, and then a buildup layer that is an outer layer is laminated on the core substrate. Then, a stepped step via hole (double hole) composed of a large-diameter upper hole and a small-diameter pilot hole is formed by laser processing (see FIG. 9 (14) of Patent Document 1). Thereafter, a step via functioning as an interlayer conductive path is formed by plating the inner wall (bottom surface and side surface) of the step via hole (see FIGS. 5 and 9 (15) of Patent Document 1). By adopting the step via structure, it is possible to miniaturize the wiring of the outer layer, so that it is possible to obtain a multilayer flexible printed wiring board that is advantageous for mounting multi-pin and narrow pitch package components.
 次に、図7を用いて、従来のステップビア構造を有するビルドアップ型多層フレキシブルプリント配線板の構造及び問題点について説明する。図7(1)は多層フレキシブルプリント配線板の上面図であり、図7(2)は図7(1)のA-A’線に沿う断面図であり、図7(3)は図7(1)のB-B’線に沿う断面図である。 Next, the structure and problems of a conventional build-up type multilayer flexible printed wiring board having a step via structure will be described with reference to FIG. 7 (1) is a top view of the multilayer flexible printed wiring board, FIG. 7 (2) is a cross-sectional view taken along the line AA ′ of FIG. 7 (1), and FIG. 7 (3) is FIG. FIG. 2 is a cross-sectional view taken along line BB ′ of 1).
 図7(1)、(2)及び(3)からわかるように、ステップビア51A、51B、51C及び51Dは、円形の上部層間導電路51aと円形の下部層間導電路51bを有する。上部層間導電路51aは、多層フレキシブルプリント配線板の表面のランド部52と、内層のランド部53とを電気的に接続する。一方、下部層間導電路51bは、多層フレキシブルプリント配線板の裏面のランド部54と、内層のランド部53とを電気的に接続する。 7 (1), (2) and (3), step vias 51A, 51B, 51C and 51D have a circular upper interlayer conductive path 51a and a circular lower interlayer conductive path 51b. The upper interlayer conductive path 51a electrically connects the land portion 52 on the surface of the multilayer flexible printed wiring board and the land portion 53 of the inner layer. On the other hand, the lower interlayer conductive path 51b electrically connects the land portion 54 on the back surface of the multilayer flexible printed wiring board and the land portion 53 of the inner layer.
 従来のステップビアは、図7(1)に示すステップビア51A,51B,51Dのように、上部層間導電路51a及び下部層間導電路51bが同心円状に形成されている。 In the conventional step via, upper interlayer conductive paths 51a and lower interlayer conductive paths 51b are formed concentrically like step vias 51A, 51B, 51D shown in FIG.
 上記のステップビア構造を有するビルドアップ型多層フレキシブルプリント配線板は、例えば500μmピッチで300ピン前後のCSPを実装することは可能である。しかしながら、例えばセンサーモジュールに代表されるように、実装部品の多ピン化及び狭ピッチ化はますます進展しており、実装部品のピン数は数百から、多いものでは数千にまで増加している。部品を接合するためのランド部のピッチは実装部品の搭載パッドのピッチと同じ寸法であるから、実装部品の狭ピッチ化に合わせて、ランド部のピッチを狭くする必要がある。さらに、多層フレキシブルプリント配線板には、膨大なピンと接合されたランド部と所定のコネクタ部とを電気的に接続することが要求される。そのため、図7(2)からわかるように、ステップビア51A及び51B間(ステップビア51C及び51D間)には多数の微細な配線55,55,・・・が設けられている。 The build-up type multilayer flexible printed wiring board having the above step via structure can be mounted with CSP of about 300 pins at a pitch of 500 μm, for example. However, as typified by sensor modules, for example, the number of pins on mounting parts and the narrowing of pitch are increasing, and the number of pins on mounting parts has increased from several hundred to several thousand. Yes. Since the pitch of the land portions for joining the components is the same as the pitch of the mounting pads of the mounting components, it is necessary to reduce the pitch of the land portions in accordance with the narrowing of the pitch of the mounting components. Furthermore, the multilayer flexible printed wiring board is required to electrically connect a land portion joined to a large number of pins and a predetermined connector portion. Therefore, as can be seen from FIG. 7B, a large number of fine wirings 55, 55,... Are provided between the step vias 51A and 51B (between the step vias 51C and 51D).
 例えば、ステップビアのピッチが400μm、微細な配線が形成される層(内層)におけるランド部の間隔が200μmの場合、図7(2)に示すように内層のランド部53,53間に6本の配線55を配置した場合、配線55の配線ピッチは約30μmとなる。このように、配線55,55,・・・の設けられる領域は、多層フレキシブルプリント配線板の中でも最も小さいピッチを要求される領域である。ステップビア間に微細な配線を設けるためには、ランド部だけでなくステップビアホールの径についても、50~100μm程度まで小さくする必要がある。 For example, when the step via pitch is 400 μm and the distance between the land portions in the layer (inner layer) where the fine wiring is formed is 200 μm, as shown in FIG. When the wiring 55 is arranged, the wiring pitch of the wiring 55 is about 30 μm. As described above, the region in which the wirings 55, 55,... Are provided is a region requiring the smallest pitch among the multilayer flexible printed wiring boards. In order to provide fine wiring between step vias, it is necessary to reduce not only the land portion but also the diameter of the step via hole to about 50 to 100 μm.
 従来、ステップビアホールを小径化しようとした場合、ロール状の可撓性ベース材料を用いることに起因してステップビアホールの上穴と下穴の位置合わせが困難になるという問題や、小径ビアホールである下穴へのめっき付きまわりが悪化する問題があった。次に、これらの問題について詳しく説明する。 Conventionally, when trying to reduce the diameter of a step via hole, it is difficult to align the upper hole and the lower hole of the step via hole due to the use of a roll-shaped flexible base material. There was a problem in that the plating around the pilot hole deteriorated. Next, these problems will be described in detail.
 まず、ステップビアホールの上穴と下穴の位置ズレの問題について説明する。多層フレキシブルプリント配線板を製造する際、出発材料として可撓性絶縁ベース材の片面若しくは両面に銅箔が設けられた可撓性の銅張積層板が用いられる。この銅張積層板は長尺で、ロール状に巻き取られている。この長尺の銅張積層板を巻き出しロールにより巻き出しながら、シート領域と呼ばれる所定の領域ごとに露光等のプロセスを行う。そして、あるシート領域について処理を終えると銅張積層板をロール方向(搬送方向)に搬送し、次のシート領域について処理を行う。これを繰り返して、銅張積層板の表面の全てのシート領域について処理を終えると、次に、銅張積層板をひっくり返し、裏面について同様にシート領域単位で処理を行う。このように、多層フレキシブルプリント配線板の製造においては、可撓性の銅張積層板を巻き出し・巻き取りながら使用する。このため、ロール方向に銅張積層板の伸縮が生じ、露光時の位置合わせが困難になっている。 First, the problem of misalignment between the upper and lower holes of the step via hole will be explained. When manufacturing a multilayer flexible printed wiring board, a flexible copper-clad laminate in which a copper foil is provided on one or both sides of a flexible insulating base material is used as a starting material. This copper-clad laminate is long and wound up in a roll. While this long copper-clad laminate is unwound by an unwinding roll, a process such as exposure is performed for each predetermined area called a sheet area. Then, when the process is finished for a certain sheet area, the copper-clad laminate is conveyed in the roll direction (conveyance direction), and the next sheet area is processed. This process is repeated to finish the process for all the sheet regions on the surface of the copper clad laminate, and then the copper clad laminate is turned over, and the back surface is similarly treated in sheet region units. Thus, in the manufacture of a multilayer flexible printed wiring board, a flexible copper-clad laminate is used while being unwound and wound. For this reason, expansion and contraction of the copper-clad laminate occurs in the roll direction, and alignment during exposure is difficult.
 図8を参照して、より具体的に説明する。図8(1)及び(2)に示すように、長尺の両面銅張積層板61は、一端を巻き出しロール62により巻き取られ、他端を巻き取りロール63に巻き取られている。この両面銅張積層板61のシート領域64を単位として露光等の処理が行われる。あるシート領域64に対して処理が終了すると、巻き出しロール62及び巻き取りロール63が回転し、シート領域64をロール方向に搬送し、隣接する次のシート領域に対して処理を施す。このことからわかるように、巻き出しロール62から巻き出された両面銅張積層板61は、ロール方向に伸縮が生じやすい。この伸縮が問題になる工程として、フォトファブリケーション手法により、両面銅張積層板61の表面及び裏面にコンフォーマルマスクを形成する場合を考える。このコンフォーマルマスクは、コンフォーマルレーザ加工法を用いてステップビアホールを形成するために用いられるものである。図8(2)に示すように、シート領域64の表面にレジスト層(図示せず)を形成した後、シート領域64上のアライメントマークM1と露光用のガラスマスクに形成されたアライメントマークM2を用いて位置合わせを行う。この位置合わせの後、露光及び現像を行い、所定のパターンに加工されたレジスト層が形成される。しかし、たとえ高精度の位置合わせが可能な装置を用いてアライメントマークM1,M2の位置合わせを精密に行ったとしても、両面銅張積層板61がロール方向に伸縮することに起因する位置ズレを十分に防止することは困難である。ステップビアホール形成用のコンフォーマルマスクを形成するために、両面銅張積層板61の両面にレジスト層を形成する場合、位置ズレの回避は特に困難である。なぜなら、それぞれ所定のパターンに加工されたレジスト層を両面銅張積層板61の両面に形成するには、通常、まず両面銅張積層板61の表面における複数のシート領域に順次レジスト層を形成し、その後、巻き取りロールに巻き取られた両面銅張積層板61をひっくり返して、別のガラスマスクを用いて裏面の露光をシート領域ごとに順次行い、裏面のシート領域にレジスト層を形成する。この際、表面を露光するときの両面銅張積層板61の伸縮度合いと、裏面を露光するときの両面銅張積層板61の伸縮度合いを完全に一致させることは実際上極めて困難である。 More specific description will be given with reference to FIG. As shown in FIGS. 8A and 8B, the long double-sided copper-clad laminate 61 is wound around one end by an unwinding roll 62 and wound at the other end by a winding roll 63. Processing such as exposure is performed with the sheet region 64 of the double-sided copper clad laminate 61 as a unit. When the process is completed for a certain sheet area 64, the unwinding roll 62 and the take-up roll 63 rotate to convey the sheet area 64 in the roll direction, and process the next adjacent sheet area. As can be seen from this, the double-sided copper-clad laminate 61 unwound from the unwinding roll 62 tends to expand and contract in the roll direction. As a process in which this expansion and contraction becomes a problem, consider a case where a conformal mask is formed on the front and back surfaces of the double-sided copper-clad laminate 61 by a photofabrication technique. This conformal mask is used to form a step via hole using a conformal laser processing method. As shown in FIG. 8B, after a resist layer (not shown) is formed on the surface of the sheet region 64, the alignment mark M1 on the sheet region 64 and the alignment mark M2 formed on the glass mask for exposure are used. Use to align. After this alignment, exposure and development are performed to form a resist layer processed into a predetermined pattern. However, even if the alignment marks M1 and M2 are precisely aligned using an apparatus capable of high-accuracy alignment, misalignment caused by expansion and contraction of the double-sided copper-clad laminate 61 in the roll direction will not occur. It is difficult to prevent it sufficiently. When forming a resist layer on both sides of the double-sided copper-clad laminate 61 in order to form a conformal mask for forming a step via hole, it is particularly difficult to avoid misalignment. This is because, in order to form a resist layer processed into a predetermined pattern on both sides of the double-sided copper-clad laminate 61, first, a resist layer is first formed sequentially on a plurality of sheet regions on the surface of the double-sided copper-clad laminate 61. Thereafter, the double-sided copper-clad laminate 61 wound up on the winding roll is turned over, and the back surface is exposed sequentially for each sheet region using another glass mask to form a resist layer in the sheet region on the back surface. . At this time, it is practically very difficult to completely match the expansion / contraction degree of the double-sided copper-clad laminate 61 when exposing the front surface with the expansion / contraction degree of the double-sided copper-clad laminate 61 when exposing the back surface.
 また、上記の露光プロセスにおいては、図8(1)からわかるように、1回の露光により露光される両面銅張積層板61上の露光エリア66のロール方向の長さは、両面銅張積層板61の幅に対して例えば約1.5~2倍にすることが好ましい。これにより、1つのシート領域64から取れる製品(多層フレキシブルプリント配線板)65の数を増やし、生産性を向上させることができる。しかし、露光エリア66を両面銅張積層板61のロール方向に大きくするにつれて、露光光の平行度を確保するのが難しくなるほか、露光エリア66の図8(1)中左右の端にいくほど両面銅張積層板61の伸縮に伴う位置ズレが大きくなる。即ち、生産性を向上させるために露光エリア66を両面銅張積層板61のロール方向に対して広げると、両面銅張積層板61の伸縮が位置合わせ精度に与える影響が大きくなってしまう。 Further, in the above exposure process, as can be seen from FIG. 8A, the length in the roll direction of the exposure area 66 on the double-sided copper-clad laminate 61 exposed by one exposure is the double-sided copper-clad laminate. For example, the width of the plate 61 is preferably about 1.5 to 2 times. Thereby, the number of products (multilayer flexible printed wiring boards) 65 that can be taken from one sheet region 64 can be increased, and productivity can be improved. However, as the exposure area 66 is increased in the roll direction of the double-sided copper-clad laminate 61, it becomes difficult to ensure the parallelism of the exposure light, and as the exposure area 66 goes to the left and right ends in FIG. The positional deviation accompanying expansion and contraction of the double-sided copper-clad laminate 61 increases. That is, if the exposure area 66 is expanded with respect to the roll direction of the double-sided copper-clad laminate 61 in order to improve productivity, the influence of expansion and contraction of the double-sided copper-clad laminate 61 on the alignment accuracy increases.
 上記の理由により、図7(1)及び(3)に示すステップビア51Cの下部層間導電路51bは、ロール方向(図中上下方向)に対して許容量以上の位置ズレを生じている。このような大きな位置ズレが発生する場合、ステップビアホールを形成するときにコンフォーマルマスクが適正に機能せず、ステップビアホールの内壁に微小な凹みやえぐれ等が発生する。このため、ステップビアホールの内壁にめっき層を形成する際、めっき液等の更新性が悪いために内壁の凹み部分にめっき層が形成されず、その結果、図7(3)に示すようなボイド56が発生する。このようなボイド56が発生するとめっき層が破断し易くなり、層間導電路としてのステップビアの信頼性が低下する虞がある。 For the above reasons, the lower interlayer conductive path 51b of the step via 51C shown in FIGS. 7 (1) and 7 (3) has a positional shift greater than the allowable amount with respect to the roll direction (vertical direction in the figure). When such a large misalignment occurs, the conformal mask does not function properly when forming the step via hole, and a minute dent, burring or the like occurs on the inner wall of the step via hole. For this reason, when forming the plating layer on the inner wall of the step via hole, the plating layer is not formed in the recessed portion of the inner wall because the renewability of the plating solution or the like is poor. As a result, the void as shown in FIG. 56 is generated. When such a void 56 is generated, the plating layer is easily broken, and the reliability of the step via as the interlayer conductive path may be lowered.
 なお、図7(1)ではステップビア51Cにのみ位置ズレが生じているが、実際には、コンフォーマルレーザ加工法などを用いてステップビアホールを形成する場合、可撓性のベース材料がロール方向に伸縮することにより、ステップビア51Cの近傍のステップビア(例えばステップビア51A,51B,51D)にも位置ズレが生じる可能性が高い。 In FIG. 7 (1), the positional deviation occurs only in the step via 51C. However, in actuality, when the step via hole is formed using a conformal laser processing method or the like, the flexible base material is in the roll direction. By expanding or contracting, the possibility of positional deviation also occurring in step vias near the step via 51C (for example, step vias 51A, 51B, 51D) is high.
 高密度実装に対応するためには、上述のようにステップビアホールの径を100μm以下にすることが必要となる。しかし、この程度までステップビアホールの小径化が進むと、わずか20~30μm程度の位置ズレが発生するだけで図7のステップビア51Cのような状態になってしまう。 In order to support high-density mounting, the diameter of the step via hole needs to be 100 μm or less as described above. However, if the diameter of the step via hole is reduced to this extent, a position deviation of only about 20 to 30 μm is generated and the state becomes like the step via 51C in FIG.
 次に、ステップビアホールを小径化した場合における、めっき付きまわり形状の悪化について説明する。ステップビアホールの内壁にめっき処理を施し、層間導電路であるステップビアを形成する際、ステップビアホールの上穴の径が小さい(例えばφ100μm以下)場合には、めっき前処理における洗浄液や、めっき処理におけるめっき液等の更新性が悪い。その結果、図7(2)及び(3)のステップビア51Aの下部層間導電路51bに示すように、めっきの付きまわり不良が発生することがある。より具体的には、ステップビアホール内壁に形成されるめっき層の厚みの設計上の下限値を10μmとしたとき、この下限値の1/2以下の厚みになる箇所が発生する場合がある。このような場合、温度サイクル等の熱衝撃によりめっき層が破断するおそれがあり、ステップビアの層間導電路としての信頼性を確保することができない。 Next, a description will be given of the deterioration of the surrounding shape with plating when the diameter of the step via hole is reduced. When plating the inner wall of the step via hole to form a step via which is an interlayer conductive path, if the diameter of the upper hole of the step via hole is small (for example, φ100 μm or less), The renewability of the plating solution is poor. As a result, as shown in the lower interlayer conductive path 51b of the step via 51A in FIGS. 7 (2) and 7 (3), a plating contact failure may occur. More specifically, when the design lower limit value of the thickness of the plating layer formed on the inner wall of the step via hole is 10 μm, there may be a portion where the thickness is 1/2 or less of the lower limit value. In such a case, the plating layer may be broken by a thermal shock such as a temperature cycle, and the reliability of the step via as an interlayer conductive path cannot be ensured.
 従来、2層間を電気的に接続する層間接続部に関して、長円形状等の非正円形を有するブラインドビアホール及びスルーホールが知られている(特許文献2、3及び4参照)。しかしながら、これらの文献はいずれも、ステップビア構造を対象としたものではなく、小径のステップビアホールを形成する際における、可撓性のベース材料の伸縮に起因した位置合わせ精度の低下という課題及びこれに対する解決手段を何ら開示していない。 Conventionally, blind via holes and through holes having a non-circular shape such as an oval shape are known for interlayer connection portions that electrically connect two layers (see Patent Documents 2, 3, and 4). However, none of these documents is directed to the step via structure, and the problem of a decrease in alignment accuracy due to expansion and contraction of the flexible base material when forming a small diameter step via hole and this No solution is disclosed.
特開2007-128970号公報JP 2007-128970 A 特開2000-151111号公報JP 2000-151111 A 特開2002-064274号公報JP 2002-064274 A 特開平11-274677号公報Japanese Patent Application Laid-Open No. 11-274677
 本発明は、小径のステップビア構造を有する多層フレキシブルプリント配線板を安価に且つ安定的に製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for stably and inexpensively manufacturing a multilayer flexible printed wiring board having a small diameter step via structure.
 本発明の一態様によれば、ロール状の可撓性ベース材料を出発材料とする多層フレキシブルプリント配線板であって、前記可撓性ベース材料の一部である第1の可撓性絶縁ベース材と、互いに対向する第1及び第2の面を有し、接着剤層を介して前記第1の面が前記第1の可撓性絶縁ベース材の裏面に積層された第2の可撓性絶縁ベース材と、前記第1の可撓性絶縁ベース材を厚さ方向に貫通する上穴と、前記上穴よりも径が小さく、前記上穴と連通し、前記接着剤層及び前記第2の可撓性絶縁ベース材を厚さ方向に貫通し、底面に前記第2の可撓性絶縁ベース材の前記第2の面上に設けられた第1の外層ランド部が露出した下穴と、を有するステップビアホールと、前記第1の可撓性絶縁ベース材の表面における、前記上穴の周囲に形成された第2の外層ランド部と、前記第1の可撓性絶縁ベース材の裏面における、前記下穴の周囲に形成された内層ランド部と、前記上穴の内壁に形成され、前記第2の外層ランド部と前記内層ランド部を電気的に接続する上部層間導電路と、前記下穴の内壁に形成され、前記第1の外層ランド部と前記内層ランド部を電気的に接続する下部層間導電路とを有するステップビアと、を備え、前記ロール状の可撓性ベース材料のロール方向に対する、前記上穴の径と前記下穴の径の差である第1の差が、前記ロール方向と垂直な方向に対する、前記上穴の径と下穴の径の差である第2の差よりも大きいことを特徴とする多層フレキシブルプリント配線板が提供される。 According to one aspect of the present invention, there is provided a multilayer flexible printed wiring board starting from a roll-shaped flexible base material, wherein the first flexible insulating base is a part of the flexible base material. And a second flexible member having first and second surfaces opposite to each other, wherein the first surface is laminated on the back surface of the first flexible insulating base material via an adhesive layer. A conductive insulating base material, an upper hole penetrating the first flexible insulating base material in a thickness direction, a diameter smaller than the upper hole, communicating with the upper hole, and the adhesive layer and the first 2 is a pilot hole that penetrates the flexible insulating base material 2 in the thickness direction and exposes the first outer layer land portion provided on the second surface of the second flexible insulating base material on the bottom surface. And a step via hole having a surface of the first flexible insulating base material around the upper hole. A second outer layer land portion formed on the back surface of the first flexible insulating base material, an inner layer land portion formed around the pilot hole, and an inner wall of the upper hole. An upper interlayer conductive path that electrically connects the outer land portion and the inner land portion, and a lower interlayer that is formed on the inner wall of the pilot hole and electrically connects the first outer land portion and the inner land portion. A first via which is a difference between the diameter of the upper hole and the diameter of the lower hole with respect to the roll direction of the roll-shaped flexible base material. A multilayer flexible printed wiring board is provided that is larger than a second difference that is a difference between the diameter of the upper hole and the diameter of the lower hole in a direction perpendicular to the vertical direction.
 本発明の別態様によれば、第1の可撓性絶縁ベース材と、その表面及び裏面にそれぞれ第1の銅箔及び第2の銅箔とを有し、巻き出しロールに巻かれたロール状の両面銅張積層板を準備し、前記ロール状の両面銅張積層板の一端を、前記巻き取りロールからロール方向に引き出し、前記第1の可撓性絶縁ベース材の表面及び裏面にそれぞれ、上穴用開口部を有する第1の導電パターン層と、下穴用開口部を有する第2の導電パターン層とを形成し、第2の可撓性絶縁ベース材と、その片面に第3の銅箔とを有する片面銅張積層板を準備し、前記片面銅張積層板を、接着材層を介して、前記両面銅張積層板の裏面に積層接着し、前記上穴用開口部の側からレーザ光を照射し、前記上穴用開口部及び前記下穴用開口部をコンフォーマルマスクとしたレーザ加工を行うことにより、前記第1の可撓性絶縁ベース材を厚さ方向に貫通する上穴と、前記上穴と連通し、前記接着剤層及び前記第2の可撓性絶縁ベース材を厚さ方向に貫通し、底面に前記第3の銅箔が露出した下穴と、を有するステップビアホールを形成し、前記ステップビアホールの内壁に電解銅めっき処理を施すことにより、前記第1の導電パターン層、前記第2の導電パターン層及び前記第3の銅箔を電気的に接続するステップビアを形成する、多層フレキシブルプリント配線板の製造方法であって、前記ロール方向に対する、前記上穴用開口部の径と前記下穴用開口部の径の差である第1の差が、前記ロール方向と垂直な方向に対する、前記上穴用開口部の径と前記下穴用開口部の径の差である第2の差よりも大きいことを特徴とする多層フレキシブルプリント配線板の製造方法が提供される。 According to another aspect of the present invention, a roll having a first flexible insulating base material and a first copper foil and a second copper foil on the front surface and the back surface, respectively, and wound on an unwinding roll A double-sided copper-clad laminate in the form of a roll, one end of the double-sided copper-clad laminate in the form of a roll is pulled out from the take-up roll in the roll direction, Forming a first conductive pattern layer having an opening for an upper hole and a second conductive pattern layer having an opening for a lower hole; a second flexible insulating base material; A single-sided copper-clad laminate having a copper foil, and laminating and adhering the single-sided copper-clad laminate to the back surface of the double-sided copper-clad laminate via an adhesive layer, A laser beam is irradiated from the side, and the upper hole opening and the lower hole opening are formed as a conformal mask. By performing laser processing, an upper hole penetrating the first flexible insulating base material in the thickness direction, and communicating with the upper hole, the adhesive layer and the second flexible insulating base Forming a step via hole that penetrates the material in the thickness direction and has a pilot hole in which the third copper foil is exposed on the bottom surface, and subjecting the inner wall of the step via hole to an electrolytic copper plating treatment, Forming a step via for electrically connecting the conductive pattern layer, the second conductive pattern layer, and the third copper foil, the method for manufacturing a multilayer flexible printed wiring board, wherein The first difference that is the difference between the diameter of the hole opening and the diameter of the lower hole opening is that the diameter of the upper hole opening and the diameter of the lower hole opening with respect to the direction perpendicular to the roll direction. This is greater than the second difference, which is the difference in diameter. Method for manufacturing a multilayer flexible printed wiring board, wherein is provided.
 これらの特徴により、本発明は次のような効果を奏する。 Due to these features, the present invention has the following effects.
 本発明によれば、可撓性絶縁ベース材のロール方向に対する上穴(上穴用開口部)と下穴(下穴用開口部)の径の差が、ロール方向と垂直な方向に対する上穴(上穴用開口部)の径と下穴(下穴用開口部)の径の差よりも大きい。このため、ロール方向に対する下穴(下穴用開口部)の位置ズレ許容量を、ロール方向と垂直な方向の位置ズレ許容量よりも大きくすることができる。その結果、可撓性絶縁ベース材がロール方向に対して伸縮した場合にも、正常なステップビアホールを得ることができる。 According to the present invention, the difference between the diameters of the upper hole (upper hole opening) and the lower hole (lower hole opening) in the roll direction of the flexible insulating base material is the upper hole in the direction perpendicular to the roll direction. It is larger than the difference between the diameter of the (upper hole opening) and the diameter of the lower hole (lower hole opening). For this reason, the positional deviation allowable amount of the pilot hole (the pilot hole opening) with respect to the roll direction can be made larger than the positional deviation allowable amount in the direction perpendicular to the roll direction. As a result, a normal step via hole can be obtained even when the flexible insulating base material expands and contracts in the roll direction.
 さらに、本発明によれば、ステップビアホールの上穴の開口面積が増大するため、ステップビアホールの内壁にめっき層を形成する際、めっき液等の更新性が向上し、その結果、めっき付きまわり形状の良好なステップビアことができる。 Furthermore, according to the present invention, since the opening area of the upper hole of the step via hole is increased, when forming a plating layer on the inner wall of the step via hole, the renewability of the plating solution and the like is improved. Can be a good step via.
 よって、本発明によれば、層間導電路として信頼性が高い小径のステップビアを有する多層フレキシブルプリント配線板を、安価に且つ安定的に得ることができる。 Therefore, according to the present invention, a multilayer flexible printed wiring board having a small-diameter step via with high reliability as an interlayer conductive path can be obtained inexpensively and stably.
本発明の実施形態に係るステップビア構造を有する多層フレキシブルプリント配線板の製造方法を説明するための図である。(1)、(2)及び(3)は工程断面図であり、(4)は(3)に対応する上面図である。It is a figure for demonstrating the manufacturing method of the multilayer flexible printed wiring board which has the step-via structure concerning embodiment of this invention. (1), (2) and (3) are process sectional views, and (4) is a top view corresponding to (3). 図1に続く、本発明の実施形態に係るステップビア構造を有する多層フレキシブルプリント配線板の製造方法を説明するための工程断面図である。It is process sectional drawing for demonstrating the manufacturing method of the multilayer flexible printed wiring board which has the step via structure which concerns on embodiment of this invention following FIG. 本発明の実施形態に係るステップビア構造を有する多層フレキシブルプリント配線板の構造を説明するための図である。(1)は、多層フレキシブルプリント配線板の上面図であり、(2)は、(1)のA-A’線に沿う断面図であり、(3)は、(1)のB-B’線に沿う断面図である。It is a figure for demonstrating the structure of the multilayer flexible printed wiring board which has a step-via structure concerning embodiment of this invention. (1) is a top view of the multilayer flexible printed wiring board, (2) is a cross-sectional view taken along the line AA ′ in (1), and (3) is a line BB ′ in (1). It is sectional drawing which follows a line. 図3(2)のC-C’線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line C-C ′ of FIG. 本発明の実施形態に係るステップビアホールの変形例を示す上面図である。It is a top view which shows the modification of the step via hole which concerns on embodiment of this invention. 本実施形態に係る多層フレキシブルプリント配線板への部品の実装例を示す図である。(1)は部品が実装された多層フレキシブルプリント配線板の上面図であり、(2)は(1)のA-A’線に沿う断面図である。It is a figure which shows the example of mounting of the components to the multilayer flexible printed wiring board which concerns on this embodiment. (1) is a top view of a multilayer flexible printed wiring board on which components are mounted, and (2) is a cross-sectional view taken along line A-A ′ of (1). 従来のステップビア構造を有するビルドアップ型多層フレキシブルプリント配線板の構造を説明するための図である。(1)は、多層フレキシブルプリント配線板の上面図であり、(2)は、(1)のA-A’線に沿う断面図であり、(3)は、(1)のB-B’線に沿う断面図である。It is a figure for demonstrating the structure of the buildup type multilayer flexible printed wiring board which has the conventional step-via structure. (1) is a top view of the multilayer flexible printed wiring board, (2) is a cross-sectional view taken along the line AA ′ in (1), and (3) is a line BB ′ in (1). It is sectional drawing which follows a line. ロール状の両面銅張積層板に対するプロセスを説明するための図である。(1)は両面銅張積層板の上面図であり、(2)は両面銅張積層板と露光用ガラスマスクの側面図である。It is a figure for demonstrating the process with respect to a roll-shaped double-sided copper clad laminated board. (1) is a top view of a double-sided copper-clad laminate, and (2) is a side view of the double-sided copper-clad laminate and a glass mask for exposure.
 以下、図面を参照しながら、本発明の実施形態に係る多層フレキシブルプリント配線板について説明する。 Hereinafter, a multilayer flexible printed wiring board according to an embodiment of the present invention will be described with reference to the drawings.
 なお、各図において同等の機能を有する構成要素には同一の符号を付し、同一符号の構成要素の詳しい説明は繰り返さない。また、図面は模式的なものであり、実施形態に係る特徴部分を中心に示すものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。 In addition, in each figure, the same code | symbol is attached | subjected to the component which has an equivalent function, and the detailed description of the component of the same code | symbol is not repeated. Further, the drawings are schematic and show mainly the characteristic portions according to the embodiment, and the relationship between the thickness and the planar dimension, the ratio of the thickness of each layer, and the like are different from the actual ones.
 まず、図1乃至図3を参照して、本実施形態に係るステップビア構造を有する多層フレキシブルプリント配線板の製造方法を説明する。 First, with reference to FIG. 1 thru | or FIG. 3, the manufacturing method of the multilayer flexible printed wiring board which has the step-via structure which concerns on this embodiment is demonstrated.
(1)まず、可撓性絶縁ベース材11(例えば厚さ25μmのポリイミドフィルム)の両面に、それぞれ厚さ1μmの銅箔12および銅箔13を有する両面銅張積層板14を準備する。この両面銅張積層板14は巻き出しロールに巻かれたロール状のものである。図1(1)中の面銅張積層板14は、ロール状の両面銅張積層板14の一端を巻き出しロールからロール方向に引き出した両面銅張積層板14の一部を示す断面図である。図1(1)中、ロール方向は紙面垂直方向であり、水平方向がロール材料の幅方向である。 (1) First, a double-sided copper clad laminate 14 having a copper foil 12 and a copper foil 13 each having a thickness of 1 μm is prepared on both sides of a flexible insulating base material 11 (for example, a polyimide film having a thickness of 25 μm). This double-sided copper-clad laminate 14 is in the form of a roll wound around an unwinding roll. 1 (1) is a cross-sectional view showing a part of a double-sided copper-clad laminate 14 in which one end of a roll-shaped double-sided copper-clad laminate 14 is drawn out from a roll in the roll direction. is there. In FIG. 1 (1), the roll direction is the direction perpendicular to the paper surface, and the horizontal direction is the width direction of the roll material.
(2)次に、両面銅張積層板14の銅箔12上のシート領域にレジスト層(図示せず)を形成する。このレジスト層の厚みは形成する配線層の厚みの1.2~2倍程度が好ましい。なぜなら、レジスト層の厚みが配線層の厚みの1.2倍より薄い場合は、セミアディティブ工法によりめっきを行った際に、めっき厚みのばらつきにより、めっき皮膜がレジスト層の厚み以上に成長し、その結果、配線不良となる場合があるためである。一方、レジスト層の厚みが配線層の厚みの2倍より厚い場合は、微細な配線を形成することが困難になり、やはり配線不良となる場合がある。よって、ここでは、設計上の配線の厚みを10μmとし、レジスト層の厚みを15μmとした。 (2) Next, a resist layer (not shown) is formed in the sheet region on the copper foil 12 of the double-sided copper clad laminate 14. The thickness of the resist layer is preferably about 1.2 to 2 times the thickness of the wiring layer to be formed. Because, when the thickness of the resist layer is thinner than 1.2 times the thickness of the wiring layer, when plating is performed by the semi-additive method, the plating film grows beyond the thickness of the resist layer due to variations in the plating thickness, As a result, wiring failure may occur. On the other hand, when the thickness of the resist layer is thicker than twice the thickness of the wiring layer, it becomes difficult to form fine wiring, which may result in poor wiring. Therefore, here, the thickness of the designed wiring is 10 μm, and the thickness of the resist layer is 15 μm.
(3)次に、前工程において形成された銅箔12上のレジスト層に対して露光および現像処理を行い、レジスト層を所定のパターンにパターニングする。これにより、図1(1)に示すように、両面銅張積層板14の銅箔12上にめっきレジスト層15Aを形成する。このめっきレジスト層15Aは、後述するように、セミアディティブ工法によって所望の導電パターン層を形成するために用いられる。 (3) Next, the resist layer on the copper foil 12 formed in the previous step is exposed and developed to pattern the resist layer into a predetermined pattern. Thereby, as shown in FIG. 1 (1), the plating resist layer 15A is formed on the copper foil 12 of the double-sided copper clad laminate 14. As will be described later, the plating resist layer 15A is used for forming a desired conductive pattern layer by a semi-additive method.
 その後、両面銅張積層板14をロール方向に搬送しつつ、シート領域ごとに上記の工程を行い、めっきレジスト層15Aを形成する。両面銅張積層板14の表面の全てのシート領域についてめっきレジスト層15Aを形成し終えると、巻き取りロールに巻き取られた両面銅張積層板14をひっくり返し、その後、一端を巻き出しながら、下記のように裏面の処理を行う。 Thereafter, while carrying the double-sided copper-clad laminate 14 in the roll direction, the above process is performed for each sheet region to form the plating resist layer 15A. After forming the plating resist layer 15A for all the sheet regions on the surface of the double-sided copper-clad laminate 14, the double-sided copper-clad laminate 14 wound around the take-up roll is turned over, and then one end is unwound, Process the back side as follows.
(4)次に、両面銅張積層板14の銅箔13上のシート領域にレジスト層(図示せず)を形成する。このレジスト層の厚みは、銅箔12上のレジスト層の場合と同様の理由で15μmとした。 (4) Next, a resist layer (not shown) is formed in the sheet region on the copper foil 13 of the double-sided copper clad laminate 14. The thickness of this resist layer was 15 μm for the same reason as in the case of the resist layer on the copper foil 12.
(5)次に、前工程において形成された銅箔13上のレジスト層に対して露光および現像処理を行い、レジスト層を所定のパターンにパターニングする。これにより、図1(2)に示すように、両面銅張積層板14の銅箔13上にめっきレジスト層15Bを形成する。このめっきレジスト層15Bは、前述のめっきレジスト層15Aと同様、セミアディティブ工法によって所望の導電パターン層を形成するために用いられる。 (5) Next, the resist layer on the copper foil 13 formed in the previous step is exposed and developed to pattern the resist layer into a predetermined pattern. Thereby, as shown in FIG. 1 (2), a plating resist layer 15 B is formed on the copper foil 13 of the double-sided copper-clad laminate 14. This plating resist layer 15B is used for forming a desired conductive pattern layer by a semi-additive method, similarly to the above-described plating resist layer 15A.
(6)次に、図1(3)からわかるように、めっきレジスト層15A及び15Bが形成された両面銅張積層板14の両面に対して電解銅めっきを行う。これにより、めっきレジスト層15A及び15Bの開口部に露出した銅箔12及び銅箔13上にそれぞれ、電解銅めっき層16及び17を形成する。ここでは、電解銅めっき層16,17の厚みは10μmとした。 (6) Next, as can be seen from FIG. 1 (3), electrolytic copper plating is performed on both surfaces of the double-sided copper clad laminate 14 on which the plating resist layers 15A and 15B are formed. Thereby, the electrolytic copper plating layers 16 and 17 are formed on the copper foil 12 and the copper foil 13 exposed in the openings of the plating resist layers 15A and 15B, respectively. Here, the thickness of the electrolytic copper plating layers 16 and 17 was 10 μm.
(7)次に、図1(3)に示すように、めっきレジスト層15A及び15Bを剥離した後、フラッシュエッチングにより、電解銅めっき層16,17で被覆されていない銅箔12及び銅箔13を除去する。このフラッシュエッチングには、シード層(銅箔12及び銅箔13)に含まれる金属に対する選択性を有するエッチャントを用いる。例えば、シード層がニッケルを含有する場合、エッチャントとして、硝酸と塩酸の混合液を用いることができる。 (7) Next, as shown in FIG. 1 (3), after peeling the plating resist layers 15A and 15B, the copper foil 12 and the copper foil 13 not covered with the electrolytic copper plating layers 16 and 17 are formed by flash etching. Remove. In this flash etching, an etchant having selectivity for the metal contained in the seed layer (copper foil 12 and copper foil 13) is used. For example, when the seed layer contains nickel, a mixed solution of nitric acid and hydrochloric acid can be used as the etchant.
 ここまでの工程で、図1(3)及び(4)に示すように、銅箔12(13)及び電解銅めっき層16(17)から構成される導電パターン層を、可撓性絶縁ベース材11の両面に有する両面回路基材18を得る。図1(4)は両面回路基材18の上面図を示している。図1(3)及び(4)からわかるように、導電パターン層は、所定の位置に開口部を有する。両面回路基材18の表面に形成された導電パターン層の開口部であるコンフォーマルマスク19(上穴用開口部)は、ステップビアホールの上穴を形成するために機能する。一方、両面回路基材18の裏面に形成された導電パターン層の開口部であるコンフォーマルマスク20(下穴用開口部)は、ステップビアホールの下穴を形成するために機能する。本工程において、コンフォーマルマスク19に対してコンフォーマルマスク20の位置がずれてしまうと、ステップビアホールの下穴は上穴に対して位置ズレを起こす。その結果、前述のように、ボイドの発生やめっき付きまわり形状の悪化によりステップビアの信頼性が低下する。しかし、本実施形態では、図1(4)に示すように、コンフォーマルマスク19は長円形状に形成され、この長円の長軸はロール方向に平行である。このため、可撓性絶縁ベース材11(両面銅張積層板14)がロール方向に伸縮することによって、コンフォーマルマスク19に対してコンフォーマルマスク18がロール方向に位置ズレを起こしたとしても、ロール方向の位置ズレ許容量が大きいため、正常なステップビアホールを形成することができる。 Through the steps so far, as shown in FIGS. 1 (3) and (4), the conductive pattern layer composed of the copper foil 12 (13) and the electrolytic copper plating layer 16 (17) is formed into a flexible insulating base material. 11 is obtained. FIG. 1 (4) shows a top view of the double-sided circuit substrate 18. As can be seen from FIGS. 1 (3) and (4), the conductive pattern layer has an opening at a predetermined position. A conformal mask 19 (upper hole opening) that is an opening of the conductive pattern layer formed on the surface of the double-sided circuit substrate 18 functions to form an upper hole of a step via hole. On the other hand, the conformal mask 20 (opening for pilot holes) that is an opening of the conductive pattern layer formed on the back surface of the double-sided circuit substrate 18 functions to form pilot holes for step via holes. In this step, if the position of the conformal mask 20 is shifted with respect to the conformal mask 19, the prepared hole of the step via hole is displaced from the upper hole. As a result, as described above, the reliability of the step via is lowered due to the generation of voids and the deterioration of the surrounding shape with plating. However, in this embodiment, as shown in FIG. 1 (4), the conformal mask 19 is formed in an oval shape, and the major axis of this oval is parallel to the roll direction. For this reason, even if the conformal mask 18 is displaced in the roll direction with respect to the conformal mask 19 by the expansion and contraction of the flexible insulating base material 11 (double-sided copper clad laminate 14) in the roll direction, Since the positional deviation tolerance in the roll direction is large, a normal step via hole can be formed.
 なお、本実施形態では、コンフォーマルマスク19の長円の長軸の長さを、短軸の長さの2倍とした。即ち、長軸の長さを160μmとし、短軸の長さを80μmとした。一方、図1(4)からわかるように、コンフォーマルマスク20は正円形状(直径60μm)に形成した。この場合、ロール方向と90°で交わる方向(即ち、両面銅張積層板14の幅方向)に対する位置ズレ許容量は、±10μm以内である。それに対して、ロール方向の位置ズレ許容量は±50μm以内となり、伸縮の発生する方向に対する位置ズレ許容量を大幅に増大させることができる。 In this embodiment, the length of the major axis of the ellipse of the conformal mask 19 is twice the length of the minor axis. That is, the length of the major axis was 160 μm, and the length of the minor axis was 80 μm. On the other hand, as can be seen from FIG. 1 (4), the conformal mask 20 was formed in a perfect circular shape (diameter 60 μm). In this case, the positional deviation allowable amount with respect to the direction intersecting with the roll direction at 90 ° (that is, the width direction of the double-sided copper-clad laminate 14) is within ± 10 μm. On the other hand, the positional deviation tolerance in the roll direction is within ± 50 μm, and the positional deviation tolerance in the direction in which expansion and contraction occurs can be greatly increased.
(8)次に、図2(1)に示すように、両面回路基材18の裏面(図2(1)中下側)に、接着材層24(例えば厚さ15μm)を介して、片面銅張積層板23を積層接着する。この片面銅張積層板23は、可撓性絶縁ベース材21(例えば厚さ25μmのポリイミドフィルム)の片面に、例えば厚さ12μmの銅箔22を有するものである。片面銅張積層板23は、可撓性絶縁ベース材21が接着剤層24に接するように両面回路基材18の裏面に積層される。なお、接着材層24は、ローフロータイプのプリプレグ、又はボンディングシート等の流れ出しの少ない接着剤を用いて形成することが好ましい。 
(9)次に、図2(2)に示すように、コンフォーマルマスク19の側(図2(2)中上側)からレーザ光を照射し、コンフォーマルマスク19及び20を用いてコンフォーマルレーザ加工を行う。これにより、上穴26と下穴27とを有するステップビアホール(導通用孔)25を形成する。上穴26は可撓性絶縁ベース材11を貫通し、底面に電解銅めっき層17が露出している。下穴27は、上穴26と連通しており、接着剤層24と可撓性絶縁ベース材21を貫通している。また、下穴27は上穴26よりも径が小さく、下穴27の底面には銅箔22が露出している。前述のように、本工程のレーザ加工を行う際に、コンフォーマルマスク19は上穴26を形成するためのマスクとして働き、コンフォーマルマスク20は下穴27を形成するためのマスクとして働く。なお、ステップビアホール25を形成するレーザ加工において、UV-YAGレーザ、炭酸レーザ、エキシマレーザ等のレーザ光を用いることが可能である。
(8) Next, as shown in FIG. 2 (1), on the back surface of the double-sided circuit substrate 18 (the lower side in FIG. 2 (1)), an adhesive layer 24 (for example, 15 μm thick) is provided on one side. The copper-clad laminate 23 is laminated and bonded. This single-sided copper-clad laminate 23 has, for example, a copper foil 22 having a thickness of 12 μm on one side of a flexible insulating base material 21 (for example, a polyimide film having a thickness of 25 μm). The single-sided copper-clad laminate 23 is laminated on the back surface of the double-sided circuit substrate 18 so that the flexible insulating base material 21 is in contact with the adhesive layer 24. Note that the adhesive layer 24 is preferably formed using a low-flow type prepreg or an adhesive with a low flow-out such as a bonding sheet.
(9) Next, as shown in FIG. 2 (2), the conformal mask 19 is irradiated with laser light from the side of the conformal mask 19 (the upper side in FIG. 2 (2)), and the conformal lasers 19 and 20 are used. Processing. Thereby, a step via hole (conduction hole) 25 having an upper hole 26 and a lower hole 27 is formed. The upper hole 26 penetrates the flexible insulating base material 11, and the electrolytic copper plating layer 17 is exposed on the bottom surface. The lower hole 27 communicates with the upper hole 26 and penetrates the adhesive layer 24 and the flexible insulating base material 21. The lower hole 27 has a smaller diameter than the upper hole 26, and the copper foil 22 is exposed on the bottom surface of the lower hole 27. As described above, when performing laser processing in this step, the conformal mask 19 functions as a mask for forming the upper hole 26, and the conformal mask 20 functions as a mask for forming the lower hole 27. In the laser processing for forming the step via hole 25, it is possible to use laser light such as UV-YAG laser, carbonic acid laser, and excimer laser.
 ここで、本工程のレーザ加工の詳細について説明する。加工用レーザとしては、加工速度が速く、生産性に優れた炭酸ガスレーザ(三菱電機(株)製,ML605GTXIII-5100U2)を用いた。アパーチャー等によりレーザのビーム径を200μmに調整した後、パルス幅10μSec,パルスエネルギー5mJのレーザパルスを5ショット照射して、ステップビアホール25を形成した。レーザのビーム径を長円形のコンフォーマルマスク19の長軸の長さよりも大きく調整しておき、コンフォーマルマスク19の長円の中心を狙ってレーザパルスを照射することで、長円形の上穴26及び正円形の下穴27を好適に形成することができる。なお、レーザのビーム径をコンフォーマルマスク19の長軸の長さよりも大きく調整できない場合は、照射ターゲット位置を長軸上の例えば3又は4つの点に分けて、レーザパルスを長軸方向にシフトさせながら照射するようにしてもよい。ガルバノミラーを揺動させることによって、レーザビームの照射ターゲット位置を、長軸の長さよりも広範囲に移動させることができる。よって、照射ターゲット位置を分割しても、生産性に影響を及ぼすことなくレーザ加工を行うことができる。上記のレーザ条件により、従来の同心円状のステップビアホールと同様にして、長円形の上穴26を有するステップビアホール25を形成することが可能である。 Here, the details of the laser processing in this step will be described. As the processing laser, a carbon dioxide gas laser (manufactured by Mitsubishi Electric Corporation, ML605GTXIII-5100U2) having a high processing speed and excellent productivity was used. After adjusting the laser beam diameter to 200 μm with an aperture or the like, 5 shots of a laser pulse with a pulse width of 10 μSec and a pulse energy of 5 mJ were irradiated to form a step via hole 25. The diameter of the laser beam is adjusted to be larger than the length of the major axis of the elliptical conformal mask 19, and a laser pulse is irradiated toward the center of the ellipse of the conformal mask 19. 26 and a perfect circular pilot hole 27 can be suitably formed. If the laser beam diameter cannot be adjusted larger than the length of the major axis of the conformal mask 19, the irradiation target position is divided into, for example, three or four points on the major axis, and the laser pulse is shifted in the major axis direction. You may make it irradiate, carrying out. By oscillating the galvanometer mirror, the irradiation target position of the laser beam can be moved in a wider range than the length of the long axis. Therefore, even if the irradiation target position is divided, laser processing can be performed without affecting the productivity. Under the above laser conditions, it is possible to form the step via hole 25 having the oval upper hole 26 in the same manner as the conventional concentric step via hole.
(10)次に、ステップビアホール25内の樹脂残渣を除去するためのデスミア工程として、プラズマ処理及びウェットエッチングを行う。このエッチングにより、図2(2)に示すように、ステップビアホール25内の銅箔13は除去される。 (10) Next, plasma processing and wet etching are performed as a desmear process for removing the resin residue in the step via hole 25. By this etching, the copper foil 13 in the step via hole 25 is removed as shown in FIG.
(11)次に、電解銅めっき層16上およびステップビアホール25の内壁に、導電化処理とそれに続く電解銅めっき処理を施す。これにより、図2(3)に示すように、ステップビアホール25の内壁(側面と底面)及び電解銅めっき層16の上に電解銅めっき層28を形成する。層間導通を確保するために、電解銅めっき層28の厚みは、例えば15~20μmとする。これにより、上部層間導電路29a及び下部層間導電路29bを有するステップビア29が形成される。ステップビア29の上部層間導電路29aは、表面側のランド部30と内層のランド部17bを電気的に接続するものであり、下部層間導電路29bは内層のランド部17bと裏面側のランド部31を電気的に接続する。 (11) Next, a conductive treatment and a subsequent electrolytic copper plating treatment are performed on the electrolytic copper plating layer 16 and the inner wall of the step via hole 25. Thereby, as shown in FIG. 2 (3), the electrolytic copper plating layer 28 is formed on the inner wall (side surface and bottom surface) of the step via hole 25 and the electrolytic copper plating layer 16. In order to ensure interlayer conduction, the thickness of the electrolytic copper plating layer 28 is, for example, 15 to 20 μm. Thereby, the step via 29 having the upper interlayer conductive path 29a and the lower interlayer conductive path 29b is formed. The upper interlayer conductive path 29a of the step via 29 is to electrically connect the land portion 30 on the front surface side and the land portion 17b on the inner layer, and the lower interlayer conductive path 29b is connected to the land portion 17b on the inner layer and the land portion on the back surface side. 31 is electrically connected.
 本工程のめっき処理は、ステップビアホール25の開口面が片側(図中上側)のみであることから、ステップビアホール25の開口面側に対してのみめっき処理を施す、いわゆる片面めっきとした。このため、裏面の銅箔22上には電解銅めっき層28は形成されない。なお、片面めっきは、裏面の銅箔22を覆うようにめっきマスクを形成した後にめっき処理を行うことで実現してもよいし、めっき装置若しくはめっき治具等に遮蔽板を設けた後にめっき処理を行うことで実現してもよい。このように両面めっきではなく片面めっきにすることで、銅箔22上に余分な銅めっき皮膜が形成されず、銅箔22の膜厚が厚くなることを防ぐことができる。銅箔22が薄く保たれることにより、銅箔22を高精度に加工して、ランド部等の微細なパターンを形成することが可能となる。 The plating process in this step is so-called single-sided plating in which the opening surface of the step via hole 25 is only on one side (upper side in the drawing), and thus the plating process is performed only on the opening surface side of the step via hole 25. For this reason, the electrolytic copper plating layer 28 is not formed on the copper foil 22 on the back surface. The single-sided plating may be realized by performing a plating process after forming a plating mask so as to cover the copper foil 22 on the back side, or after a shielding plate is provided on a plating apparatus or a plating jig or the like. It may be realized by performing. Thus, by using single-sided plating instead of double-sided plating, an excess copper plating film is not formed on the copper foil 22, and the thickness of the copper foil 22 can be prevented from becoming thick. By keeping the copper foil 22 thin, it is possible to process the copper foil 22 with high accuracy and form a fine pattern such as a land portion.
(12)次に、図2(4)に示すように、フォトファブリケーション法を用いて電解銅めっき層28を所定のパターンに加工することにより、ランド部30を形成する。同様に、フォトファブリケーション法を用いて銅箔22を所定のパターンに加工することにより、裏面にランド部31を形成する。 (12) Next, as shown in FIG. 2 (4), the land portion 30 is formed by processing the electrolytic copper plating layer 28 into a predetermined pattern using a photofabrication method. Similarly, the land portion 31 is formed on the back surface by processing the copper foil 22 into a predetermined pattern using a photofabrication method.
 以上の工程を経て、本実施形態に係るステップビア構造を有する多層フレキシブルプリント配線板32を得る。この後、必要に応じて、はんだ付けが不要な部分には保護用のフォトソルダーレジスト層を形成し、ランド部等の表面には半田めっき、ニッケルめっき、金めっき等の表面処理を施す。その後、複数の多層フレキシブルプリント配線板32,32,・・・が作製されたロール材料を、シート領域毎にカットする。最後に、金型による抜き打ち等により外形加工を行う。なお、ロール材料のカットは、めっきレジスト層15A及び15Bの形成後かつ外形加工前であれば、任意の工程で行うことができる。 Through the above steps, the multilayer flexible printed wiring board 32 having the step via structure according to the present embodiment is obtained. Thereafter, if necessary, a protective photo solder resist layer is formed on a portion where soldering is unnecessary, and the surface of the land portion or the like is subjected to surface treatment such as solder plating, nickel plating, or gold plating. Thereafter, the roll material on which the plurality of multilayer flexible printed wiring boards 32, 32,... Are manufactured is cut for each sheet region. Finally, the outer shape is processed by punching with a mold. The roll material can be cut in any step as long as it is after the formation of the plating resist layers 15A and 15B and before the outer shape processing.
 次に、図3を用いて、本実施形態に係る多層フレキシブルプリント配線板の構造について詳しく説明する。 Next, the structure of the multilayer flexible printed wiring board according to this embodiment will be described in detail with reference to FIG.
 図3は、本実施形態に係る長穴ステップビア構造を有する多層フレキシブルプリント配線板32の上面図および断面図である。図3(1)は多層フレキシブルプリント配線板32の上面図である。図3(2)は図3(1)のA-A’線に沿う断面図であり、図3(3)は図3(1)のB-B’線に沿う断面図である。 FIG. 3 is a top view and a sectional view of the multilayer flexible printed wiring board 32 having the long hole step via structure according to the present embodiment. FIG. 3A is a top view of the multilayer flexible printed wiring board 32. 3 (2) is a cross-sectional view taken along the line A-A 'of FIG. 3 (1), and FIG. 3 (3) is a cross-sectional view taken along the line B-B' of FIG. 3 (1).
 図3(1)、(2)及び(3)からわかるように、多層フレキシブルプリント配線板32に形成されたステップビア29は、長円形の上部層間導電路29aと正円形の下部層間導電路29bを有する。 As can be seen from FIGS. 3 (1), (2) and (3), the step via 29 formed in the multilayer flexible printed wiring board 32 has an oval upper interlayer conductive path 29a and a regular circular lower interlayer conductive path 29b. Have
 また、多層フレキシブルプリント配線板32の表面にはランド部30が設けられ、裏面にはランド部31が設けられている。ランド部31は、ステップビアの開口面がないため平坦性が良く、従って部品を実装するためのランドとして好適である。 The land portion 30 is provided on the front surface of the multilayer flexible printed wiring board 32, and the land portion 31 is provided on the back surface. The land portion 31 has good flatness since there is no step via opening surface, and is therefore suitable as a land for mounting components.
 内層の配線17a及びランド部17bは、前述の製造工程において電解銅めっき層17を加工して形成されたものである。この配線17aは、多層フレキシブルプリント配線板32のランド部17bと、外部とのコネクタ部とを電気的に接続する。ランド部17bは、ステップビア29により、ランド部30及びランド部31と電気的に接続されている。 Inner layer wiring 17a and land portion 17b are formed by processing electrolytic copper plating layer 17 in the above-described manufacturing process. The wiring 17a electrically connects the land portion 17b of the multilayer flexible printed wiring board 32 and the connector portion with the outside. The land portion 17 b is electrically connected to the land portion 30 and the land portion 31 by the step via 29.
 配線17a及びランド部17bについて、図4を用いて詳しく説明する。図4は、図3(2)のC-C’線に沿う断面図を示している。この図4からわかるように、配線17aは、上部層間導電路29a(上穴26)の長軸方向と平行に走るものとして、ステップビア29,29間に配置されている。このように配線17aを配置することにより、配線17aの配線密度を低下させずに、ステップビア29(上穴26)の開口面積を大きくすることができる。 The wiring 17a and the land portion 17b will be described in detail with reference to FIG. FIG. 4 is a cross-sectional view taken along the line C-C ′ of FIG. As can be seen from FIG. 4, the wiring 17 a is disposed between the step vias 29 and 29 so as to run in parallel with the major axis direction of the upper interlayer conductive path 29 a (upper hole 26). By arranging the wiring 17a in this way, the opening area of the step via 29 (upper hole 26) can be increased without reducing the wiring density of the wiring 17a.
 次に、ステップビアホールの上穴(コンフォーマルマスク19)及び下穴(コンフォーマルマスク20)の寸法と、位置ズレ許容量との関係について、数値を用いて具体的に説明する。 Next, the relationship between the size of the upper hole (conformal mask 19) and the lower hole (conformal mask 20) of the step via hole and the positional deviation allowable amount will be specifically described using numerical values.
 表1は、従来の上穴、下穴ともに正円形の場合と、本実施形態の上穴が長円形、下穴が正円形の場合のそれぞれについて、位置ズレ許容量の長軸短軸比をまとめたものである。ここで、“位置ズレ許容量の長軸短軸比”とは、長軸方向の位置ズレ許容量(x)と短軸方向の位置ズレ許容量(y)の比(x/y)を意味する。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the ratio of the major axis to the minor axis of the positional deviation allowance for each of the case where the conventional upper hole and the lower hole are both circular, and the upper hole of the present embodiment is an oval and the lower hole is a perfect circle. It is a summary. Here, the “major axis / minor axis ratio of allowable positional deviation” means the ratio (x / y) of the allowable positional deviation (x) in the major axis direction and the allowable positional deviation (y) in the minor axis direction. To do.
Figure JPOXMLDOC01-appb-T000001
 表1には、上穴の長軸の長さが異なる3つの例を示している。即ち、上穴の長軸の長さは、例1では120μmであり、例2では160μmであり、例3では240μmである。短軸の長さはいずれ例も80μmである。このように、上穴(コンフォーマルマスク19)の長軸の長さは、短軸の長さの1.5~3倍程度とすることが好ましい。1.5倍より小さい場合、位置ズレ許容量が十分でない可能性がある。一方、3倍より大きい場合、位置ズレ許容量は増加するものの、前述のステップビアホール25をレーザ加工で形成するのに要する時間が増加し、その結果、生産性が低下する可能性がある。 Table 1 shows three examples in which the length of the major axis of the upper hole is different. That is, the length of the major axis of the upper hole is 120 μm in Example 1, 160 μm in Example 2, and 240 μm in Example 3. In all cases, the length of the short axis is 80 μm. Thus, the length of the major axis of the upper hole (conformal mask 19) is preferably about 1.5 to 3 times the length of the minor axis. If it is smaller than 1.5 times, there is a possibility that the positional deviation allowable amount is not sufficient. On the other hand, if it is larger than three times, the positional displacement tolerance increases, but the time required to form the above-described step via hole 25 by laser processing increases, and as a result, the productivity may decrease.
 表1に示すように、長軸の長さと短軸の長さの比は、例1、例2及び例3において、それぞれ1.5倍、2倍及び3倍である。この長軸の長さと短軸の長さの比をそれぞれ“位置ズレ許容量の長軸短軸比”に変換すると、3倍、5倍、9倍となる。このように、本実施形態によれば、長軸方向の位置ズレ許容量を短軸方向の位置ズレ許容量(即ち、従来の位置ズレ許容量)に比べて、3倍乃至9倍と大幅に増大させることができる。 As shown in Table 1, the ratio of the length of the major axis to the length of the minor axis is 1.5 times, 2 times and 3 times in Example 1, Example 2 and Example 3, respectively. When the ratio of the length of the major axis to the length of the minor axis is converted into the “major axis / minor axis ratio of the allowable positional deviation”, the ratio becomes three times, five times and nine times. As described above, according to the present embodiment, the positional deviation allowable amount in the major axis direction is significantly increased to 3 to 9 times the positional deviation allowable amount in the short axis direction (that is, the conventional positional deviation allowable amount). Can be increased.
 以上説明したように、本実施形態では、ステップビアホール25の上穴26を長円形とし、且つ下穴27を正円形とする。これにより、下穴27用のコンフォーマルマスク20の長軸方向の位置ズレに対する許容量を、従来よりも大幅に増大させることができる。このため、多層フレキシブルプリント配線板の製造過程において可撓性絶縁ベース材11がロール方向(搬送方向)に伸縮した場合にも、正常なステップビアホール25を形成することができる。その結果、本実施形態によれば、層間導電路として信頼性の高いステップビア29を有する多層フレキシブルプリント配線板を得ることができる。 As described above, in this embodiment, the upper hole 26 of the step via hole 25 is an oval and the lower hole 27 is a regular circle. Thereby, the tolerance | permissible_quantity with respect to the position shift of the major axis direction of the conformal mask 20 for the pilot holes 27 can be increased significantly conventionally. For this reason, even when the flexible insulating base material 11 expands and contracts in the roll direction (conveying direction) during the manufacturing process of the multilayer flexible printed wiring board, the normal step via hole 25 can be formed. As a result, according to the present embodiment, a multilayer flexible printed wiring board having the highly reliable step via 29 as an interlayer conductive path can be obtained.
 さらに、従来に比べてステップビアホール25の上穴26が大きくなるため、ステップビアホールの内壁にめっき処理を施す際における、めっき液等の更新性が向上する。このため、めっき付きまわりの安定したステップビアを形成できる。その結果、本実施形態によれば、層間導電路としてのステップビアの信頼性をさらに向上させることができる。 Furthermore, since the upper hole 26 of the step via hole 25 is larger than in the conventional case, the renewability of the plating solution and the like when the plating process is performed on the inner wall of the step via hole is improved. For this reason, the stable step via around plating can be formed. As a result, according to the present embodiment, the reliability of the step via as the interlayer conductive path can be further improved.
 次に、図5を用いて、本実施形態に係るステップビアホールの変形例について説明する。図5(1)~(4)はいずれも、ロール方向(図中上下方向)に対する位置ズレ許容量を増加させることが可能なステップビアホールの上面図を示している。 Next, a modified example of the step via hole according to the present embodiment will be described with reference to FIG. FIGS. 5 (1) to 5 (4) all show a top view of a step via hole that can increase the positional displacement tolerance with respect to the roll direction (vertical direction in the figure).
 図5(1)に示すステップビアホール101は、上穴101aだけでなく、下穴101bも長円形に形成されている。このような形状の場合にも、従来の同心円状のステップビアホールと比較して、長軸方向に対する位置ズレ許容量を増加させることができる。また、この変形例の場合、下穴101bの開口面積も従来の正円形に比べて大きくなるので、めっき液等の更新性をさらに向上させることができる。 In the step via hole 101 shown in FIG. 5 (1), not only the upper hole 101a but also the lower hole 101b are formed in an oval shape. Even in the case of such a shape, it is possible to increase the positional displacement tolerance with respect to the major axis direction as compared with the conventional concentric step via hole. In the case of this modification, the opening area of the pilot hole 101b is also larger than that of a conventional regular circle, so that the renewability of the plating solution and the like can be further improved.
 図5(2)に示すステップビアホール102は、長円形の上穴102aと、楕円形の下穴102bとを有する。下穴102bが楕円形であるため、めっき液等の更新性を向上させることができるとともに、回転方向(図5(2)中の矢印の方向)の位置ズレマージンを増大させることができる。つまり、前述のめっきレジスト層15Bを形成するためにレジスト層を露光する際、下穴102bの角が長円形と比較して丸い分だけ、図5(1)のステップビアホール101よりも回転方向に対する位置ズレの許容量を増加させることができる。 The step via hole 102 shown in FIG. 5 (2) has an oval upper hole 102a and an elliptical lower hole 102b. Since the pilot hole 102b is elliptical, it is possible to improve the renewability of the plating solution and the like, and it is possible to increase the positional deviation margin in the rotation direction (the direction of the arrow in FIG. 5 (2)). That is, when the resist layer is exposed to form the plating resist layer 15B described above, the corner of the pilot hole 102b is rounder than the oval in the rotation direction as compared with the step via hole 101 in FIG. The allowable amount of positional deviation can be increased.
 図5(3)に示すステップビアホール103は、正円形の上穴103aと、長円形の下穴103bとを有する。図5(3)に示すように、長円形の下穴103bは長軸がロール方向と直交する方向に設けられているものの、上穴103aが正円形であるため、回転方向(図5(3)中の矢印の方向)に対する位置ズレ許容量を増大させることができる。 The step via hole 103 shown in FIG. 5 (3) has a regular circular upper hole 103a and an oval lower hole 103b. As shown in FIG. 5 (3), although the oval pilot hole 103b is provided in a direction perpendicular to the roll direction, the upper hole 103a is a perfect circle, so that the rotation direction (FIG. 5 (3) It is possible to increase the positional displacement tolerance with respect to (in the direction of arrow).
 図5(4)に示すステップビアホール104は、略正方形の上穴104aと、略長方形の下穴104bとを有する。この略長方形の下穴104bは、長辺がロール方向と直交する方向に設けられているものの、上穴104aが略正方形であるため、回転方向(図5(4)中の矢印の方向)に対する位置ズレ許容量を増加させることができる。 The step via hole 104 shown in FIG. 5 (4) has a substantially square upper hole 104a and a substantially rectangular lower hole 104b. The substantially rectangular pilot hole 104b is provided in a direction perpendicular to the roll direction, but the upper hole 104a is substantially square, so that the rotation direction (the direction of the arrow in FIG. 5 (4)) is relative to the rotation direction. It is possible to increase the positional displacement tolerance.
 上記の変形例に限らず、各々の例の上穴と下穴を組み合わせることができる。例えば、上穴と下穴がともに楕円形のステップビアホールでもよい。この下穴の長軸の方向は上穴の長軸の方向と平行である。また、正円形の上穴と、略長方形の下穴から構成されるステップビアホールでもよい。この下穴の長辺の方向はロール方向と垂直な方向である。 Not limited to the above-described modifications, the upper hole and the lower hole in each example can be combined. For example, a step via hole in which both the upper hole and the lower hole are elliptical may be used. The direction of the major axis of the pilot hole is parallel to the direction of the major axis of the upper hole. Further, it may be a step via hole constituted by a regular circular upper hole and a substantially rectangular lower hole. The direction of the long side of the pilot hole is a direction perpendicular to the roll direction.
 その他、上穴がロール方向と平行な方向な長軸を有する楕円形であって、下穴が正円形、若しくは上穴と同じ方向に長軸を有する楕円形であってもよい。 In addition, the upper hole may be an ellipse having a major axis parallel to the roll direction, and the pilot hole may be a perfect circle or an ellipse having a major axis in the same direction as the upper hole.
 次に、図6を用いて、本実施形態に係る多層フレキシブルプリント配線板への部品の実装例について説明する。図6(1)は、本実施形態に係る多層フレキシブルプリント配線板に部品44が実装された様子を示す上面図である。図6(2)は図6(1)のA-A’線に沿う断面図である。図6(1)からわかるように、部品44は部品搭載領域41に実装されている。 Next, an example of mounting components on the multilayer flexible printed wiring board according to this embodiment will be described with reference to FIG. FIG. 6A is a top view showing a state in which the component 44 is mounted on the multilayer flexible printed wiring board according to the present embodiment. FIG. 6B is a cross-sectional view taken along the line A-A ′ of FIG. As can be seen from FIG. 6 (1), the component 44 is mounted in the component mounting area 41.
 図6(2)からわかるように、部品44は多層フレキシブルプリント配線板32の裏面のランド部31にバンプ45を介して実装されている。これにより、ランド部30に実装する場合に比べて平坦度の高い状態で部品44を実装することができる。その結果、接合部分にボイド等が発生する虞がなく、信頼性の高い接合を得ることができる。 As can be seen from FIG. 6 (2), the component 44 is mounted on the land portion 31 on the back surface of the multilayer flexible printed wiring board 32 via bumps 45. As a result, the component 44 can be mounted with a higher flatness than when mounted on the land portion 30. As a result, there is no possibility that voids or the like are generated in the joint portion, and a highly reliable joint can be obtained.
 図6(1)からわかるように、多層フレキシブルプリント配線板32の内層に設けられた配線17aは、部品搭載領域41A(41B)から配線領域42A(42B)を通ってコネクタ部43A(43B)に引きまわされており、部品搭載領域41のランド部31と、コネクタ部43A,43Bとを電気的に接続している。より詳細には、部品搭載領域41の上半分の領域である部品搭載領域41Aのランド部31とコネクタ部43Aを電気的に接続する配線17aは、部品搭載領域41Aに配置されたランド部31から配線領域42Aを通ってコネクタ部43Aに引き回されている。同様に、部品搭載領域41の下半分の領域である部品搭載領域41Bのランド部31とコネクタ部43Bを電気的に接続する配線17aは、部品搭載領域41Bに配置されたランド部31から配線領域42Bを通ってコネクタ部43Bに引き回されている。 As can be seen from FIG. 6A, the wiring 17a provided in the inner layer of the multilayer flexible printed wiring board 32 passes from the component mounting area 41A (41B) to the connector section 43A (43B) through the wiring area 42A (42B). The land portion 31 of the component mounting area 41 is electrically connected to the connector portions 43A and 43B. More specifically, the wiring 17a that electrically connects the land portion 31 of the component mounting region 41A, which is the upper half region of the component mounting region 41, and the connector portion 43A extends from the land portion 31 arranged in the component mounting region 41A. It is routed to the connector portion 43A through the wiring area 42A. Similarly, the wiring 17a that electrically connects the land portion 31 of the component mounting region 41B, which is the lower half region of the component mounting region 41, and the connector portion 43B is connected to the wiring region from the land portion 31 arranged in the component mounting region 41B. 42B is routed to the connector portion 43B.
 実装された部品44は、例えば、ピン数が非常に多いセンサーモジュールであり、微細な配線17aの引きまわし方向は略1方向に限定される。このような場合には、ステップビア29の長軸方向に走るように配線17aを設けることで、配線17aの配線密度を損なうことなく、ステップビア29の開口部の面積を大きくすることが可能である。 The mounted component 44 is, for example, a sensor module having a very large number of pins, and the direction in which the fine wiring 17a is drawn is limited to approximately one direction. In such a case, by providing the wiring 17a so as to run in the major axis direction of the step via 29, it is possible to increase the area of the opening of the step via 29 without impairing the wiring density of the wiring 17a. is there.
 以上説明したように、本実施形態では、ステップビアホールの上穴を長円形とし、その長軸方向がフレキシブルプリント配線板のロール材料のロール方向に対して平行になるようにする。これにより、ステップビアホール用のコンフォーマルマスクを形成する露光工程において、可撓性のベース材料がロール方向に伸縮した場合にも、正常なステップビアホールを形成することが可能となる。その結果、本実施形態によれば、層間導電路として信頼性の高いステップビアを有する多層フレキシブルプリント配線板を得ることができる。 As described above, in this embodiment, the upper hole of the step via hole is formed into an oval shape, and the major axis direction thereof is parallel to the roll direction of the roll material of the flexible printed wiring board. Thereby, in the exposure process for forming a conformal mask for a step via hole, a normal step via hole can be formed even when the flexible base material expands and contracts in the roll direction. As a result, according to the present embodiment, a multilayer flexible printed wiring board having a highly reliable step via as an interlayer conductive path can be obtained.
 さらに、本実施形態では、従来のステップビアホールに比べて上穴が大きくなるため、ステップビアホールの内壁にめっき層を形成する際における、めっき液等の更新性が向上する。このため、めっき付きまわり形状の良好なステップビアを形成できる。即ち、本実施形態によれば、層間導電路としてさらに信頼性の高いステップビアを有する多層フレキシブルプリント配線板を得ることができる。 Furthermore, in this embodiment, since the upper hole is larger than the conventional step via hole, the renewability of the plating solution and the like when the plating layer is formed on the inner wall of the step via hole is improved. For this reason, it is possible to form a step via with a good surrounding shape with plating. That is, according to the present embodiment, a multilayer flexible printed wiring board having step vias with higher reliability as interlayer conductive paths can be obtained.
 また、本実施形態によれば、位置ズレ許容量の増大により、露光エリアをロール方向に広げて1つのシート領域の面積を拡大することができる。これにより、1つのシート領域から取れる多層フレキシブルプリント配線板の数を増やすことができ、生産性を向上させることができる。 In addition, according to the present embodiment, the exposure area can be expanded in the roll direction and the area of one sheet region can be expanded by increasing the positional deviation allowable amount. Thereby, the number of the multilayer flexible printed wiring boards which can be taken from one sheet area | region can be increased, and productivity can be improved.
 以上の本実施形態の奏する効果から明らかなように、本発明によれば、新たな工程や装置を導入することなく、安価に且つ安定的に、小径のステップビア構造を有する多層フレキシブルプリント配線板を製造することができる。 As is apparent from the effects of the present embodiment described above, according to the present invention, a multi-layer flexible printed wiring board having a small-diameter step via structure stably and inexpensively without introducing a new process or apparatus. Can be manufactured.
 なお、本発明に係るステップビアホールの上穴及び下穴の形状は、上述の実施形態及び変形例に限定されるものではない。より一般的には、可撓性のベース材料のロール方向に対する、コンフォーマルマスク19(上穴26)の径とコンフォーマルマスク20(下穴27)の径の差が、ロール方向と垂直な方向に対する、コンフォーマルマスク19(上穴26)の径とコンフォーマルマスク20(下穴27)の径の差よりも大きければよい。このようにすることで、ロール方向に対する位置ズレ許容量を増加させることが可能となる。 In addition, the shape of the upper hole and the lower hole of the step via hole according to the present invention is not limited to the above-described embodiment and modification. More generally, the difference between the diameter of the conformal mask 19 (the upper hole 26) and the diameter of the conformal mask 20 (the lower hole 27) with respect to the roll direction of the flexible base material is a direction perpendicular to the roll direction. The difference between the diameter of the conformal mask 19 (the upper hole 26) and the diameter of the conformal mask 20 (the lower hole 27) may be larger. By doing in this way, it becomes possible to increase the positional shift allowable amount with respect to the roll direction.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the above-described embodiments. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
11,21 可撓性絶縁ベース材
12,13,22 銅箔
14 両面銅張積層板
15A,15B めっきレジスト層
16,17,28 電解銅めっき層
17a,55 配線
17b,30,31,52,53,54 ランド部
18 両面回路基材
19,20 コンフォーマルマスク
23 片面銅張積層板
24 接着材層
25,101,102,103,104 ステップビアホール
26,101a,102a,103a,104a 上穴
27,101b,102b,103b,104b 下穴
29,51A,51B,51C,51D ステップビア
29a,51a 上部層間導電路
29b,51b 下部層間導電路
32 多層フレキシブルプリント配線板
41,41A,41B 部品搭載領域
42A,42B 配線領域
43A,43B コネクタ部
44 部品
45 バンプ
56 ボイド
61 (ロール状の)両面銅張積層板
62 巻き出しロール
63 巻き取りロール
64 シート領域
65 製品(多層フレキシブルプリント配線板)
66 露光エリア
11, 21 Flexible insulating base material 12, 13, 22 Copper foil 14 Double-sided copper clad laminate 15A, 15B Plating resist layer 16, 17, 28 Electrolytic copper plating layer 17a, 55 Wiring 17b, 30, 31, 52, 53 , 54 Land 18 Double-sided circuit base material 19, 20 Conformal mask 23 Single-sided copper-clad laminate 24 Adhesive layer 25, 101, 102, 103, 104 Step via hole 26, 101a, 102a, 103a, 104a Upper hole 27, 101b , 102b, 103b, 104b Pilot holes 29, 51A, 51B, 51C, 51D Step vias 29a, 51a Upper interlayer conductive paths 29b, 51b Lower interlayer conductive paths 32 Multilayer flexible printed wiring boards 41, 41A, 41B Component mounting areas 42A, 42B Wiring area 43A, 43B Connector portion 44 Component 45 Bump 56 Id 61 (roll) roll 63 winding unwinding double-sided copper-clad laminate 62 roll 64 seat area 65 product (multilayer flexible printed wiring board)
66 Exposure area

Claims (15)

  1.  ロール状の可撓性ベース材料を出発材料とする多層フレキシブルプリント配線板であって、
     前記可撓性ベース材料の一部である第1の可撓性絶縁ベース材と、
     互いに対向する第1及び第2の面を有し、接着剤層を介して前記第1の面が前記第1の可撓性絶縁ベース材の裏面に積層された第2の可撓性絶縁ベース材と、
     前記第1の可撓性絶縁ベース材を厚さ方向に貫通する上穴と、前記上穴よりも径が小さく、前記上穴と連通し、前記接着剤層及び前記第2の可撓性絶縁ベース材を厚さ方向に貫通し、底面に前記第2の可撓性絶縁ベース材の前記第2の面上に設けられた第1の外層ランド部が露出した下穴と、を有するステップビアホールと、
     前記第1の可撓性絶縁ベース材の表面における、前記上穴の周囲に形成された第2の外層ランド部と、
     前記第1の可撓性絶縁ベース材の裏面における、前記下穴の周囲に形成された内層ランド部と、
     前記上穴の内壁に形成され、前記第2の外層ランド部と前記内層ランド部を電気的に接続する上部層間導電路と、前記下穴の内壁に形成され、前記第1の外層ランド部と前記内層ランド部を電気的に接続する下部層間導電路と、を有するステップビアと、
     を備え、
     前記ロール状の可撓性ベース材料のロール方向に対する、前記上穴の径と前記下穴の径の差である第1の差が、前記ロール方向と垂直な方向に対する、前記上穴の径と下穴の径の差である第2の差よりも大きいことを特徴とする多層フレキシブルプリント配線板。
    A multilayer flexible printed wiring board starting from a rolled flexible base material,
    A first flexible insulating base material that is part of the flexible base material;
    A second flexible insulating base having first and second surfaces facing each other, wherein the first surface is laminated on the back surface of the first flexible insulating base material via an adhesive layer Material,
    An upper hole penetrating the first flexible insulating base material in a thickness direction, a diameter smaller than the upper hole, communicating with the upper hole, the adhesive layer and the second flexible insulation A step via hole penetrating through the base material in a thickness direction and having a bottom hole in which a first outer layer land portion provided on the second surface of the second flexible insulating base material is exposed on a bottom surface When,
    A second outer layer land portion formed around the upper hole on the surface of the first flexible insulating base material;
    An inner land land portion formed around the pilot hole on the back surface of the first flexible insulating base material;
    An upper interlayer conductive path formed on the inner wall of the upper hole and electrically connecting the second outer layer land portion and the inner layer land portion, and formed on the inner wall of the lower hole, the first outer layer land portion, A step via having a lower interlayer conductive path electrically connecting the inner layer land portion,
    With
    The first difference that is the difference between the diameter of the upper hole and the diameter of the pilot hole with respect to the roll direction of the roll-shaped flexible base material is the diameter of the upper hole with respect to the direction perpendicular to the roll direction. A multilayer flexible printed wiring board characterized by being larger than a second difference which is a difference in diameter of the pilot hole.
  2.  前記ステップビアホールの前記上穴は、前記ロール方向と平行な方向に長軸を有する長円形又は楕円形であり、前記下穴は、正円形、又は前記上穴の長軸と平行な方向に長軸を有する長円形若しくは楕円形であることを特徴とする請求項1に記載の多層フレキシブルプリント配線板。 The upper hole of the step via hole is an ellipse or an ellipse having a major axis in a direction parallel to the roll direction, and the lower hole is a regular circle or elongated in a direction parallel to the major axis of the upper hole. The multilayer flexible printed wiring board according to claim 1, wherein the multilayer flexible printed wiring board is an ellipse or an ellipse having an axis.
  3.  前記第1の差は前記第2の差の3倍乃至9倍の範囲にあることを特徴とする請求項2に記載の多層フレキシブルプリント配線板。 3. The multilayer flexible printed wiring board according to claim 2, wherein the first difference is in a range of 3 to 9 times the second difference.
  4.  前記第1の外層ランド部に実装された部品をさらに備えることを特徴とする請求項2に記載の多層フレキシブルプリント配線板。 The multilayer flexible printed wiring board according to claim 2, further comprising a component mounted on the first outer layer land portion.
  5.  一端が前記内層ランド部と電気的に接続され、他端が所定のコネクタ部と電気的に接続され、前記ロール方向と平行な方向に走る配線をさらに備えることを特徴とする請求項2に記載の多層フレキシブルプリント配線板。 3. The wiring according to claim 2, further comprising a wiring having one end electrically connected to the inner layer land portion, the other end electrically connected to a predetermined connector portion, and running in a direction parallel to the roll direction. Multilayer flexible printed wiring board.
  6.  前記第1の差は前記第2の差の3倍乃至9倍の範囲にあることを特徴とする請求項1に記載の多層フレキシブルプリント配線板。 The multilayer flexible printed wiring board according to claim 1, wherein the first difference is in a range of 3 to 9 times the second difference.
  7.  前記第1の外層ランド部に実装された部品をさらに備えることを特徴とする請求項6に記載の多層フレキシブルプリント配線板。 The multilayer flexible printed wiring board according to claim 6, further comprising a component mounted on the first outer layer land portion.
  8.  一端が前記内層ランド部と電気的に接続され、他端が所定のコネクタ部と電気的に接続され、前記ロール方向と平行な方向に走る配線をさらに備えることを特徴とする請求項6に記載の多層フレキシブルプリント配線板。 7. The wiring according to claim 6, further comprising a wiring having one end electrically connected to the inner layer land portion and the other end electrically connected to a predetermined connector portion, and running in a direction parallel to the roll direction. Multilayer flexible printed wiring board.
  9.  前記第1の外層ランド部に実装された部品をさらに備えることを特徴とする請求項1に記載の多層フレキシブルプリント配線板。 The multilayer flexible printed wiring board according to claim 1, further comprising a component mounted on the first outer layer land portion.
  10.  一端が前記内層ランド部と電気的に接続され、他端が所定のコネクタ部と電気的に接続され、前記ロール方向と平行な方向に走る配線をさらに備えることを特徴とする請求項9に記載の多層フレキシブルプリント配線板。 10. The wiring according to claim 9, further comprising a wiring that has one end electrically connected to the inner layer land portion, the other end electrically connected to a predetermined connector portion, and running in a direction parallel to the roll direction. Multilayer flexible printed wiring board.
  11.  一端が前記内層ランド部と電気的に接続され、他端が所定のコネクタ部と電気的に接続され、前記ロール方向と平行な方向に走る配線をさらに備えることを特徴とする請求項1に記載の多層フレキシブルプリント配線板。 2. The wiring according to claim 1, further comprising a wiring having one end electrically connected to the inner land portion and the other end electrically connected to a predetermined connector portion, and running in a direction parallel to the roll direction. Multilayer flexible printed wiring board.
  12.  第1の可撓性絶縁ベース材と、その表面及び裏面にそれぞれ第1の銅箔及び第2の銅箔とを有し、巻き出しロールに巻かれたロール状の両面銅張積層板を準備し、
     前記ロール状の両面銅張積層板の一端を、前記巻き取りロールからロール方向に引き出し、
     前記第1の可撓性絶縁ベース材の表面及び裏面にそれぞれ、上穴用開口部を有する第1の導電パターン層と、下穴用開口部を有する第2の導電パターン層とを形成し、
     第2の可撓性絶縁ベース材と、その片面に第3の銅箔とを有する片面銅張積層板を準備し、
     前記片面銅張積層板を、接着材層を介して、前記両面銅張積層板の裏面に積層接着し、
     前記上穴用開口部の側からレーザ光を照射し、前記上穴用開口部及び前記下穴用開口部をコンフォーマルマスクとしたレーザ加工を行うことにより、前記第1の可撓性絶縁ベース材を厚さ方向に貫通する上穴と、前記上穴と連通し、前記接着剤層及び前記第2の可撓性絶縁ベース材を厚さ方向に貫通し、底面に前記第3の銅箔が露出した下穴と、を有するステップビアホールを形成し、
     前記ステップビアホールの内壁に電解銅めっき処理を施すことにより、前記第1の導電パターン層、前記第2の導電パターン層及び前記第3の銅箔を電気的に接続するステップビアを形成する、多層フレキシブルプリント配線板の製造方法であって、
     前記ロール方向に対する、前記上穴用開口部の径と前記下穴用開口部の径の差である第1の差が、前記ロール方向と垂直な方向に対する、前記上穴用開口部の径と前記下穴用開口部の径の差である第2の差よりも大きいことを特徴とする多層フレキシブルプリント配線板の製造方法。
    A roll-shaped double-sided copper-clad laminate having a first flexible insulating base material and a first copper foil and a second copper foil on its front and back surfaces, respectively, wound around an unwinding roll is prepared. And
    One end of the roll-shaped double-sided copper-clad laminate is drawn out from the winding roll in the roll direction,
    Forming a first conductive pattern layer having an opening for an upper hole and a second conductive pattern layer having an opening for a lower hole, respectively, on the front surface and the back surface of the first flexible insulating base material;
    Preparing a single-sided copper-clad laminate having a second flexible insulating base material and a third copper foil on one side;
    The single-sided copper-clad laminate is laminated and bonded to the back surface of the double-sided copper-clad laminate via an adhesive layer,
    The first flexible insulating base is formed by irradiating a laser beam from the upper hole opening side and performing laser processing using the upper hole opening and the lower hole opening as a conformal mask. An upper hole penetrating the material in the thickness direction, communicating with the upper hole, penetrating the adhesive layer and the second flexible insulating base material in the thickness direction, and the third copper foil on the bottom surface Forming a step via hole having an exposed pilot hole, and
    A multilayer that forms a step via that electrically connects the first conductive pattern layer, the second conductive pattern layer, and the third copper foil by performing electrolytic copper plating on the inner wall of the step via hole A method for manufacturing a flexible printed wiring board, comprising:
    The first difference that is the difference between the diameter of the upper hole opening and the diameter of the lower hole opening with respect to the roll direction is the diameter of the upper hole opening with respect to the direction perpendicular to the roll direction. A method for producing a multilayer flexible printed wiring board, wherein the method is larger than a second difference that is a difference in diameter of the opening for the pilot hole.
  13.  前記第1の導電パターン層の前記上穴用開口部は、前記ロール方向と平行な方向に長軸を有する長円形又は楕円形であり、前記第2の導電パターン層の前記下穴用開口部は、正円形、又は前記ロール方向と平行な方向に長軸と有する長円形若しくは楕円形であることを特徴とする請求項12に記載の多層フレキシブルプリント配線板の製造方法。 The opening for the upper hole of the first conductive pattern layer is an oval or an ellipse having a major axis in a direction parallel to the roll direction, and the opening for the pilot hole of the second conductive pattern layer The method for producing a multilayer flexible printed wiring board according to claim 12, which is a regular circle or an oval or an ellipse having a major axis in a direction parallel to the roll direction.
  14.  前記第1の差は前記第2の差の3倍乃至9倍の範囲にあることを特徴とする請求項13に記載の多層フレキシブルプリント配線板の製造方法。 14. The method for manufacturing a multilayer flexible printed wiring board according to claim 13, wherein the first difference is in a range of 3 to 9 times the second difference.
  15.  前記第1の差は前記第2の差の3倍乃至9倍の範囲にあることを特徴とする請求項12に記載の多層フレキシブルプリント配線板の製造方法。 13. The method for manufacturing a multilayer flexible printed wiring board according to claim 12, wherein the first difference is in a range of 3 to 9 times the second difference.
PCT/JP2011/050818 2010-04-15 2011-01-19 Multi-layer flexible printed circuit board and method of manufacturing thereof WO2011129127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180001769.XA CN102396300B (en) 2010-04-15 2011-01-19 The manufacture method of multilayer flexible printed wiring plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010094174A JP5710152B2 (en) 2010-04-15 2010-04-15 Manufacturing method of multilayer flexible printed wiring board
JP2010-094174 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129127A1 true WO2011129127A1 (en) 2011-10-20

Family

ID=44798508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050818 WO2011129127A1 (en) 2010-04-15 2011-01-19 Multi-layer flexible printed circuit board and method of manufacturing thereof

Country Status (4)

Country Link
JP (1) JP5710152B2 (en)
CN (1) CN102396300B (en)
TW (1) TWI484884B (en)
WO (1) WO2011129127A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096059A (en) * 2020-08-25 2022-02-25 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof
US20220377881A1 (en) * 2019-11-13 2022-11-24 Autonetworks Technologies, Ltd. Battery wiring module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613946B (en) * 2015-05-06 2018-02-01 健鼎科技股份有限公司 Circuit board and manufacturing method thereof
JP6935268B2 (en) * 2017-08-09 2021-09-15 日本メクトロン株式会社 Manufacturing method of multi-layer printed wiring board and multi-layer printed wiring board
CN108987094A (en) * 2018-06-20 2018-12-11 深圳市信维通信股份有限公司 The production method of Wireless charging coil
JP2020013917A (en) * 2018-07-19 2020-01-23 京セラ株式会社 Wiring board
JP6634184B1 (en) * 2019-09-30 2020-01-22 株式会社フジクラ Flexible printed wiring board and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296804A (en) * 2003-03-27 2004-10-21 Toppan Printing Co Ltd Multilayer circuit wiring board and manufacturing method therefor
JP2007128970A (en) * 2005-11-01 2007-05-24 Nippon Mektron Ltd Manufacturing method of multilayer wiring board having cable section
JP2008147328A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Flexible board, and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050511A1 (en) * 2006-10-26 2008-05-02 Mitsubishi Electric Corporation Electronic circuit board
US7906835B2 (en) * 2007-08-13 2011-03-15 Broadcom Corporation Oblong peripheral solder ball pads on a printed circuit board for mounting a ball grid array package
JP5198105B2 (en) * 2008-03-25 2013-05-15 日本メクトロン株式会社 Manufacturing method of multilayer flexible printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296804A (en) * 2003-03-27 2004-10-21 Toppan Printing Co Ltd Multilayer circuit wiring board and manufacturing method therefor
JP2007128970A (en) * 2005-11-01 2007-05-24 Nippon Mektron Ltd Manufacturing method of multilayer wiring board having cable section
JP2008147328A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Flexible board, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220377881A1 (en) * 2019-11-13 2022-11-24 Autonetworks Technologies, Ltd. Battery wiring module
CN114096059A (en) * 2020-08-25 2022-02-25 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof
CN114096059B (en) * 2020-08-25 2023-10-10 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011228348A (en) 2011-11-10
CN102396300B (en) 2015-12-09
JP5710152B2 (en) 2015-04-30
TWI484884B (en) 2015-05-11
TW201223378A (en) 2012-06-01
CN102396300A (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5710152B2 (en) Manufacturing method of multilayer flexible printed wiring board
JP5290455B2 (en) Manufacturing method of laminate
US8766106B2 (en) Double-sided circuit board and manufacturing method thereof
JP5475135B2 (en) Flexible printed wiring board and manufacturing method thereof
JP4538486B2 (en) Multilayer substrate and manufacturing method thereof
JP5450272B2 (en) LASER PROCESSING METHOD AND MULTILAYER FLEXIBLE PRINTED WIRING BOARD MANUFACTURING METHOD USING THE LASER PROCESSING METHOD
JP2009277916A (en) Wiring board, manufacturing method thereof, and semiconductor package
TWI479972B (en) Multi-layer flexible printed wiring board and manufacturing method thereof
JP2008235801A (en) Multi-layer printed wiring board and manufacturing method therefor
TWI400023B (en) Multilayer printed circuit boards and their wiring boards
JP2006310421A (en) Printed wiring board with built-in components and its manufacturing method
JP2010087168A (en) Method for manufacturing multilayer printed circuit board
JP2009111133A (en) Method of manufacturing multilayer printed wiring board incorporating film resistance element
JP4792673B2 (en) Manufacturing method of high-density multilayer build-up wiring board
JP5073395B2 (en) Manufacturing method of multilayer printed wiring board
TWI391063B (en) Multilayer circuit board and manufacturing method thereof
JP5359757B2 (en) Multi-layer printed wiring board position recognition mark
JP2008078487A (en) Method of manufacturing copper clad laminate for vop
JP5347888B2 (en) Manufacturing method of multilayer printed wiring board
JP2009088337A (en) Printed circuit board and its manufacturing method
JP3459398B2 (en) Method of manufacturing multilayer printed circuit board having interlayer connection via hole
JP2000165039A (en) Manufacturing printed wiring board
JP6147549B2 (en) Manufacturing method of printed wiring board with built-in component and printed wiring board with built-in component
JP2002329964A (en) Method of manufacturing multilayer printed wiring board
JP2013165158A (en) Position identifier mark of multilayer printed wiring board and manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001769.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768649

Country of ref document: EP

Kind code of ref document: A1